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Abstract. Multiple linear regression (MLR) models are used to assess the contributions of meteorology/climate and10
anthropogenic emission control to linear trends of PM2.5 concentration during the period 2013–2018 in three regions in

eastern China, namely Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). We find

that quantitative contributions to the linear trend of PM2.5 derived based on MLR results alone are not credible because a

good correlation in the MLR analysis does not imply any causal relationship. As an alternative, we propose that the

correlation coefficient should be interpreted as the maximum possible contribution of the independent variable to the15
dependent variable, and the residual should be interpreted as the minimum contribution of all other independent variables.

Under the new interpretation, the previous MLR results become self-consistent. We also find that the results of a short-term

(2013–2018) analysis are significantly different from those of a long-term (1985–2018) analysis for the period 2013–2018

they overlap, indicating that MLR results depend critically on the length of time analyzed. The long-term analysis renders a

more precise assessment, because of additional constraints provided by the long-term data. We therefore suggest that the best20
estimates of the contributions of emissions and non-emission processes (including meteorology/climate) to the linear trend in

PM2.5 during 2013–2018 are those from the long-term analyses: i.e., emission <51% and non-emission >49% for BTH,

emission <44% and non-emission >56% for YRD, emission <88% and non-emission >12% for PRD.

1 Introduction

PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) pollution has been a severe problem in China that25
affected human health (Kan et al., 2007; Wang and Mauzerall, 2006; Xu et al., 2013; Cohen et al., 2017), visibility (Han et

al., 2014; Zhang et al., 2012; Zhang et al., 2014), the acid deposition problem (Yim et al., 2019; Zhang et al., 2016) as well

as the climate systems (Albrecht, 1989; Carslaw et al., 2010; Kok et al., 2018). Recent observations from the China National

Environmental Monitoring Center showed a 30%–50% decrease in annual mean PM2.5 concentration in China during 2013–

2018 (Zhai et al., 2019). These remarkable decreases in the PM2.5 concentrations were mostly attributed to emission control30
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of PM2.5 and its precursors in recent studies (e.g., Chen et al., 2019; Gong et al., 2021; Zhai et al., 2019). Using various

statistical models, these studies concluded that the control of anthropogenic emissions accounted for 81% to 103% of the

reductions of PM2.5 in eastern China, suggesting that emissions reductions were crucial to the improvement of air quality in

2013–2018 (Chen et al., 2019; Gong et al., 2021; Zhai et al., 2019). However, Dang and Liao (2019) conducted an

investigation with a global 3-D chemical transport model and revealed that transport was the most important process for the35
occurrence frequency as well as the intensity of severe winter haze days in Beijing–Tianjin–Hebei (BTH) in 2013–2017.

Although Dang and Liao (2019) dealt with the severe winter haze rather than the mean haze in BTH, their results suggested

that meteorological conditions could exert a critical impact on the reduction in PM2.5 in eastern China.

In this study, we use multiple linear regression (MLR) models to investigate the relative contributions of emissions and

climate/meteorology processes to linear trends in winter (December-January-February) PM2.5 concentration in three major40
polluted regions in eastern China, namely BTH, Yangtze River Delta (YRD), and Pearl River Delta (PRD). The results can

provide important insight for better designing successive clean-air plans to mitigate PM2.5 as well as other air pollutants in

China. The rest of the paper is structured as follows: The data and methods employed are introduced in Section 2, Section 3

presents the major results and discussions, and Section 4 presents a summary and conclusions.

2 Data and methodology45

2.1 Data

Winter visibility data in 1973–2019 are obtained from Global Summary of Day (GSOD) provided by the National Climatic

Data Center (NCDC) (https://www.ncei.noaa.gov/maps/daily/, last access: 10 March 2022). The relative humidity (RH) is

derived from dew point temperature and air temperature of GSOD following the approach proposed by Lawrence (2005).

Surface PM2.5 measurements in 2013–2019 are taken from China National Environment Monitoring Center (CNEMC,50
http://www.cnemc.cn/, last access: 10 March 2022). The PM2.5 concentrations were measured by the micro-oscillating

balance method and/or the β-absorption method (MEE, 2012; Zhang and Cao, 2015). The autumn (September-October-

November) Arctic sea ice index (ASI) is defined as the normalized sea ice fraction north of 45oN as suggested by Wang et al.

(2015), which is calculated from the Hadley Centre (HadISST1: Hadley Centre Sea Ice and Sea Surface Temperature data set,

https://www.metoffice.gov.uk/hadobs/hadisst) with 1o×1o resolution for 1870–2022 (Rayner et al., 2003).55
PM emission inventories of PM10, PM2.5, SO2, NH3, NOx, black carbon, and organic carbon in this study are obtained from

Peking University (PKU, 1960–2014, 0.1o×0.1o, monthly), which include the fuel consumption and emissions of greenhouse

gases and air pollutants from all combustion sources (http://inventory.pku.edu.cn/, last access: 10 November 2021). Multi-

resolution Emission Inventory for China (MEIC, version 1.3, 2010–2017, 0.25o×0.25o, monthly, http://www.meicmodel.org,

Li et al., 2017; Zheng et al., 2018; last access: 10 November 2021) provided by Tsinghua University, and PRD Emission60
Inventory (PRD-EI, 2006–2019, 3o×3o, monthly) from Huang et al. (2021) and Zhong et al. (2018) are also used. Due to the
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discontinuity of these three inventories, we calculate the scaling factor of each pollutant based on the overlapping period to

get a winter inventory from 1985–2018 (Figure 1) in PRD as follows:

scaling factorEi= 2013
2006Eij,PKU�

2013
2006Eij,PRD-EI�

(1)

Ei=
Eij,PKU (j=1985, 1986, …2013)

scale factori×Eij,PRD-EI (j=2014, 2015, 2016, 2017, 2018)
(2)65

where Ei is emission of species i, the subscripts PKU and PRD-EI denote the PKU inventory and the PRD inventory of

Huang et al. (2021) and Zhong et al. (2018), respectively, and j denotes year.

The corresponding formulas for BTH and YRD are:

scaling factorEi= 2013
2010Eij,PKU�

2013
2010Eij,MEIC�

(3)

Ei=
Eij,PKU (j=1985, 1986, …2013)

scale factori×Eij,MEIC (j=2014, 2015, 2016)
(4)70

where the subscript MEIC denotes the MEIC inventory.

Since the ratios of annual emission inventories in PRD to those of YRD and BTH are not expected to change significantly in

one or two years (Figure S1), the 2016 winter emission ratio of BTH to PRD is multiplied by the 2017 and 2018 winter

emission of PRD to obtain the winter emission of BTH in 2017 and 2018. The same is true for 2017 and 2018 winter

emission of YRD. The annual emission inventories for BTH, YRD and PRD from 1985 to 2018 are shown in Figure 1.75

2.2 Nonlinear exponential fitting

Since direct observed data of PM2.5 are not available before 2013, we employ nonlinear exponential fitting to retrieve PM2.5

concentrations in BTH, YRD and PRD from visibility data that have a long-term and complete record. Because RH affects

strongly the relationship between PM2.5 concentration and visibility (Fu et al., 2016; Liu et al., 2017; L. Zhang et al., 2015; Q.

Zhang et al., 2015), we evaluate the relationship for different RH intervals in each region as shown in Figures S2–S4. The r280
of average fitting is greater than 0.50, some as high as 0.77, significant at 99% confidence level, indicating that the fitting

performance is acceptable (Figures S2–S4). As expected, the retrieved PM2.5 has a significant negative correlation with

visibility (Figure S5). More importantly, the retrieved PM2.5 concentrations are in good agreement with the observed PM2.5 in

recent years from CNEMC (2013–2018) and those observed in US Embassy in Beijing (2009–2018) and Consulates in

Shanghai and Guangzhou (2011–2018) (Figure 1). Since the Embassy/Consulates PM2.5 data are totally independent of the85
retrieving of PM2.5 concentrations from visibility, the agreement between our retrieved PM2.5 concentrations and those

observed in US Embassy in Beijing and Consulates in Shanghai and Guangzhou lends strong support for the validity of our

retrieved PM2.5 concentrations.

A quick inspection of the PM2.5 and emission lines in Figure 1 reveals that an expected good regression between PM2.5 and

emission is only possible for PRD where the emission line matches well with the PM2.5 line in general as both have a broad90
maximum near 2005–2010 (Figure 1c). In BTH a good regression is made difficult due to a critical mismatch characterized
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by two broad maxima (1985–2000, 2000–2013) in the emission line and a sharp drop after 2013, while the PM2.5 line has a

shallow depression during the period 1993–2012 followed by a large bulge peaked in 2013 (named hereafter as bulge-2013)

and lasted until 2016 (Figure 1a). This mismatch also existed in YRD as the emission line crossed over the PM2.5 line in

opposite directions near 2012, albeit the bulge was not as large and a depression could be barely seen in 2003–2012 (Figure95
1b).

Mao et al. (2019) analyzed extensively the depression 1999–2012 (the deeper part of the 1993–2012 depression) and bulge-

2013. They found that the depression and bulge-2013 were primarily caused by a combination of climate oscillations which

include negative phases of the Pacific Decadal Oscillation, Arctic Oscillation, El Niño-Southern Oscillation and global

temperature, in addition to positive phases of East Asian Winter Monsoon and ASI. It is clear that the presence of bulge-100
2013 can have a big impact on any study on the contributions of meteorology/climate and anthropogenic emission control to

the linear trends in PM2.5, especially for a short-term study such as the period 2013–2018 that overlooks the cause of the

bulge. This point will be elaborated in Sections 3.3 and 3.4. Finally, given the critical importance of bulge-2013, it is

reassuring that the existence of bulge-2013 is independently confirmed by the PM2.5 concentrations retrieved from visibility

as well as those observed in US Embassy in Beijing and Consulate in Shanghai.105

3 Results and discussions

3.1 Multiple linear regression studies

Zhai et al. (2019) constructed a stepwise MLR model to quantify the meteorological contribution to the PM2.5 trends. The

MLR model made correlation analysis between the 10-day PM2.5 anomalies and wind speed, precipitation, RH, temperature,

as well as 850 hPa meridional wind velocity. The residual after removing meteorological influence from the MLR model110
was considered to be driven by changes in anthropogenic emissions. They quantified the contribution of meteorology to

PM2.5 trends from 2013 to 2018 in BTH, YRD, and PRD at 14%, -3% and 19%, respectively. The residuals, 86%, 103%, and

81% of PM2.5 trends were attributed to anthropogenic emissions (Table 1).

Chen et al. (2019) employed Kolmogorov–Zurbenko (KZ) filter to produce an adjusted long-term time series of PM2.5

concentrations in Beijing from 2013 to 2017 by removing interannual and seasonal variations in meteorological conditions.115
They applied MLR models between PM2.5 and wind speed, RH, temperature and solar radiation to remove the influence of

meteorological conditions and estimated that the contribution of emissions to adjusted PM2.5 was 81%, while the contribution

of meteorology was 19% (Table 1).

To compare with these two studies, we carry out an MLR analysis on the emission and observed concentrations of PM2.5, of

which the results will be denoted hereafter as MLR-EMIS. As shown in Figure 2, the observed PM2.5 decreased remarkably120
from 2013 to 2018 in the three regions, with a downward trend of -12.2 µg m-3 yr-1 in BTH, -7.7 µg m-3 yr-1 in YRD and -5.0

µg m-3 yr-1 in PRD. The MLR-EMIS model can mostly capture these decreasing features. The non-emission (residual) in

BTH, YRD and PRD has a trend of -0.03 µg m-3 yr-1, 0.1 µg m-3 yr-1 and 0.2 µg m-3 yr-1 respectively, or 0.2%, -1.0% and -
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4.0% of the observed trends, respectively. Hence, the contribution of climate/meteorology to the observed linear trend in

winter PM2.5 in BTH, YRD and PRD from 2013 to 2018 is 0.2%, -1.0% and -4.0% respectively, meaning that 99.8%,125
101.0% and 104.0% of the linear trend in the observed winter PM2.5 is attributable to emission (Table 1). These results of

MLR-EMIS regarding the predominant contribution of emission are in good agreement with Zhai et al. (2019) and Chen et al.

(2019). This agreement is reinforced by a mechanistic model assessment conducted by Chen et al. (2019), who suggested

that the contribution of emissions to the linear trend in PM2.5 in 2013–2017 was 79%, while the contribution by meteorology

was only 21%. In addition, Gong et al. (2021) developed a framework based on an Environmental Meteorology Index, to130
quantitatively assess the contribution of meteorology variations to the trend of PM2.5 concentrations and separate the impacts

of meteorology from the emission-control measures. They found that emission control contributed more than 90% of the

PM2.5 trend in BTH from 2013 to 2017, again in good agreement with those values in BTH and Beijing shown in Table 1

(upper two rows).

Wang et al. (2015) hypothesized that the decreasing ASI could be an important contributor to the recent increase in haze135
days in eastern China, and about 45–67% of the interannual to interdecadal variability of winter haze days could be

explained by the ASI variability. Following the MLR-EMIS model study above, we carry out a parallel MLR-ASI model

study in which the emission is replaced by ASI (Figure 3). The non-ASI trends (residuals) contribute -9.3 µg m-3 yr-1, -3.3 µg

m-3 yr-1 and -3.0 µg m-3 yr-1, respectively, to the observed linear trends in winter PM2.5 in BTH, YRD and PRD, which imply

that the emissions (non-ASI) are responsible for 76%, 43% and 60% of the observed linear trend in winter PM2.5 in BTH,140
YRD and PRD, respectively, in 2013–2018 (Table 2). It follows that ASI can explain 24%, 57% and 40% of the decreasing

trends in BTH, YRD and PRD, respectively (Table 2), which are on the low side but nevertheless in qualitative agreement

with Wang et al. (2015). Here we note that the contribution of ASI represents only a partial contribution of

climate/meteorological conditions, adding other meteorological parameters would increase the contribution.

The comparison of Tables 1 and 2 poses an interesting problem. For BTH, the MLR-ASI value of 76% (Table 2) for the145
contribution of emissions is slightly lower than, but nevertheless agrees qualitatively with the results of MLR-EMIS in the

upper two rows of Table 1. However, for YRD and PRD, the contributions of 43% and 60% (Table 2), respectively, by non-

ASI (including emissions) to the observed linear trends in winter PM2.5 are significantly less than those values of 101%–

104% derived by the MLR-EMIS analysis (bottom two rows of Table 1). What causes the discrepancy? Which table has the

correct results? The answer to the first question is that there were significant linear trends in PM2.5, anthropogenic emissions150
and ASI in 2013-2018 (Figures 1 and 3), but there was no significant linear trend in 2013-2018 in the meteorological

parameters used in the studies by Zhai et al. (2019) and Chen et al. (2019). The MLR analysis gives high values to

correlation coefficients of parameters with significant linear trends. In fact, any parameter with a significant linear trend in

2013–2018, e.g., sea surface temperature (SST) of the western Pacific, would get a high correlation coefficient in the MLR

analysis.155
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3.2 Comparing the MLR results to mechanistic models

The answer to the question whether Table 1 or 2 is correct is that neither of them is correct, for the following reasons: All

evaluations in Tables 1 and 2 quantified the contributions of anthropogenic emission and meteorology to the linear trend of

PM2.5 in 2013−2018 using certain statistical MLR models. No mechanistic process was considered in these models. This

raises a fundamental concern about the attribution of causes based on statistical regression results alone. It is well known that160
a good correlation in the MLR analysis does not imply any causal relationship. The causal relationship can only be

established if a mechanistic model, that simulates the atmospheric environment with realistic emissions of air pollutants and

ambient meteorological conditions as model inputs, can credibly reproduce the observed concentrations and trends of PM2.5.

Therefore, we conclude that the quantitative results in Tables 1 and 2 are not scientifically credible unless corroborated by a

mechanistic model.165
The KZ-MLR results of Chen et al. (2019) in Table 1 were corroborated by the Weather Research and Forecasting and the

Community Multi-scale Air Quality model (WRF-CMAQ), a mechanistic model (Chen et al., 2019). However, the

mechanistic model study of Chen et al., (2019) was consisted of short term (2013–2017) simulations. As noted in Section 2.2,

a short-term study of 2013–2017 overlooks the effect and the cause of bulge-2013, which might lead to significant

uncertainties and/or biased results. In this context, we believe that a credible mechanistic (or MLR) model study should170
cover long enough time before the period of interest (2013–2018), so that the model could be constrained by the major

features of interannual variations such as bulge-2013 and the depression before it (Figure 1a).

We summarize the discussions involving Tables 1 and 2 as follows. (1) Quantitative MLR results in Tables 1 and 2 without

corroboration by a mechanistic model are not credible. (2) Results from mechanistic models are more credible than MLR in

theory, but significant uncertainties and/or biased results exist in the short-term model simulations.175

3.3 An alternative interpretation of MLR results

In view of the difficulty in interpreting the results from MLR analysis, we propose an alternative interpretation of the

correlation coefficient by interpreting it as “the maximum possible contribution of an independent variable (e.g., emissions

in Table 1) to the dependent variable (e.g., linear trends of PM2.5 in Table 1)”, while the residual should be interpreted as the

minimum contribution of all other independent variables (e.g., non-emission variables such as meteorological parameters in180
Table 1). A theoretical foundation in support of this alternative interpretation can be understood as follows: The MLR

analysis is, in effect, performing an optimum-fit between the independent variable and the dependent variable. In other

words, the optimum-fit enables the independent variable (e.g., emission in our case) to attain the optimum/maximized

contribution to the variability (including the linear trend) of the dependent variable (e.g., PM2.5). Furthermore, the “the

maximum possible contribution” in the alternative interpretation is reinforced because all-factors-other-than-emission (e.g.,185
ASI) that may contribute to the variability (including the linear trend) are excluded in the optimum-fit process.
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Tables 3 and 4 are the corresponding outcomes from the new interpretation for Tables 1 and 2, respectively. It is clear that

under the new interpretation, Tables 3 and 4, unlike Tables 1 and 2, are now consistent with each other. In addition, the

results of Chen et al. (2019) and Gong et al. (2021), under the new interpretation, are also consistent with the range of values

in Tables 3 and 4. These consistent results provide a solid cornerstone to explore additional applications of the alternative190
interpretation as discussed in Section 3.4.

Another critical factor affecting the MLR results is the length of time period studied. Table 5 compares the results of two

short-term studies (2013–2017; 2013–2018) in BTH to a long-term study (1985–2018) for MLR-EMIS and MLR-ASI. The

emissions of MLR-EMIS can contribute to a maximum of 101% of the observed trend of PM2.5 in BTH during 2013–2017,

while the residual parameters contribute at least -1%. For the MLR-ASI analysis, the maximum possible contribution of ASI195
to observed PM2.5 in 2013–2017 is 30%, while the residuals (including emissions) contribute at least 70%. Using the

retrieved PM2.5 does not change the results significantly from the observed PM2.5. Adding 2018 into consideration makes

little difference for MLR-EMIS. However, adding only the year 2018, the ASI’s maximum possible contribution to observed

PM2.5 declines by about 11% compared to that of 2013–2017, while the minimum contribution of the residual increases from

57% to 68% (Table 5). The reason for the larger change in the MLR-ASI can be readily understood by comparing the solid200
red line (EMIS) in Figure 2a to that (ASI) of Figure 3a, the former maintained a smooth declining trend in 2016–2018 while

the latter turned around and increased from 2016 to 2018. This turning-around made the MLR-ASI regression significantly

worse and was responsible for the residual increasing from 57% to 68%.

The 2013–2017 and 2013–2018 results of MLR-EMIS in YRD (Table 6) and PRD (Table 7) were also consistent with those

in BTH (Table 5). The 2013–2017 and 2013–2018 results of MLR-ASI in PRD were consistent with those in BTH, while the205
values of corresponding results of YRD were relatively large compared with the other two regions. The reason for the

difference was that the solid red line (ASI) and the solid black line (observed PM2.5) in YRD showed relatively consistent

trends from 2013 to 2017, while both lines showed opposite trends in the 2014–2017 BTH and 2015–2018 PRD (Figure 3).

The consistent trend between the two lines made the MLR-ASI regression in YRD relatively good, resulting in the maximum

contribution of ASI to PM2.5 in YRD from 2013 to 2017 being 80%, while the residual contribution was greater than 20%.210
After adding the opposite upward trend of the two curves from 2017 to 2018, the maximum ASI contribution to PM2.5 in

YRD decreased substantially from 85% to 54%, while the residual increased to >46% (Table 6).

Extending to 1985–2018, these long-term results differed drastically from the short-term results: The contribution of

emissions in MLR-EMIS to the linear trends of PM2.5 in BTH for the 34-year study was merely <7%, while the contribution

of all residual parameters was >93%. The small upper limit of 7% can be easily explained by examining Figure 4a in which215
the regression between the red line (emission) and black line (PM2.5) is very poor, especially after 2010 when the observed

PM2.5 started to climb from around 20% to the bulge-2013 of 100%. In fact, the red emission line in Figure 1a had to be

turned upside down in Figure 4a to get the best fit to the black line of PM2.5 (note the fit between 1988 and 2012 was fairly

good), which resulted in the red line to miss the bulge-2013 completely. The small contribution of emissions compared to the

residuals is in good agreement with the mechanistic model results of Dang and Liao (2019) who found that meteorology220
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contributed significantly more than emissions to the linear trend as well as the interannual variability of severe winter haze

days in BTH in 2013−2017. The MLR-ASI analysis for PM2.5 in BTH over the 34-year period from 1985 to 2018 had a

slightly better regression result as shown in Figure 5a. As a result, the maximum possible contribution of ASI to the linear

trend of PM2.5 was 43%, while the minimum contribution of the residuals was 57% (Table 5). The bulge-2013 in the winter

haze days in North China Plain was also noticed by Yin and Wang (2017), whose generalized additive model using ASI and225
SST as predictors was found to capture the interannual and interdecadal variations of winter haze days in 1980−2015,

including the bulge-2013.

For YRD, the 1985–2018 emission contribution to the linear trend in the observed PM2.5 had an upper limit of only 1%,

implying the contribution of residuals (including meteorology) to be at least 99% (Table 6). The small 1% can be explained

by the extremely poor match between the red line (emission) and the black line (PM2.5) in Figure 4b. The regression result of230
the MLR-ASI analysis in YRD was relatively good. Although the red line (ASI) also failed to match bulge-2013, it matched

well with the 2016−2018 profile as shown in Figure 5b. As a result, the maximum possible contribution of ASI to the 34-

year linear trend of PM2.5 reached 75%, implying the minimum contribution of the residuals to be 25% (Table 6). PRD did

not have the bulge-2013 (Figure 1c) and therefore had a good regression between emissions and PM2.5 from 1985 to 2018

(Figure 4c), implying that emissions over 34-year period could contribute as much as 157% to the linear trend of PM2.5,235
while >-57% was contributed by the residuals (Table 7). The regression result of the MLR-ASI analysis for PM2.5 in PRD

from 1985 to 2018 was slightly better than those of the MLR-EMIS, and the red line (ASI) and the black line (PM2.5) showed

opposite trends only in 2011−2015 as shown in Figure 5c, resulting in the maximum contribution of ASI to the linear trend

of PM2.5 being 81%, while the minimum contribution of the residuals was 19% (Table 7).

3.4 Best estimate of the contribution240

Tables 5−7 and Figures 4−5 provide strong evidence supporting the notion that the contributions of emissions and

meteorology to the linear trend in PM2.5 depend on the length of time analyzed. A critical question remaining is which

regression analysis gives the correct value of the contribution when a long-term analysis overlaps with a short-term analysis,

e.g., the 1985−2018ret analysis (Figure 4a) vs. the 2013−2018ret analysis (Figure 2a) for BTH during the period 2013−2018

(fourth row vs. last row in Table 5)? A logical answer to this question is that the long-term analysis gives the correct value245
because it has more data points to constrain the regression. This is discussed in the following using the BTH case as an

example.

Figure 4a-a shows an enlarged plot of the 2013−2018 portion of Figure 4a (named as 2013−2018ret34 analysis hereafter and in

Tables 5−7). The green solid bars in Figure 4a-a denote the anomalies/deviations of the red emission line from the black

observations line, of which the mean absolute value of 49% (third column and the last row of Table 5) can be recognized as250
the minimum contribution of the residual/non-emission (including meteorology/climate) to the linear trend in PM2.5

according to the alternative interpretation. Hence the maximum possible contribution by EMIS is 51%, which is substantially

less than the 94% of the 2013−2018ret analysis (second column and fourth row of Table 5). The main reason for this
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difference can be traced to the bulge-2013 in Figure 4a which, as discussed in Section 3.3, contributes pivotally to the red

emission line in Figure 1a being turned upside down in Figure 4a to get the best fit with the black line of observed PM2.5. For255
the 2013−2018ret34 ASI analysis, the green solid bars of Figure 5a-a denote the anomalies/deviations of ASI line from the

PM2.5 line, of which the mean absolute value of 38% (fifth column and last row of Table 5) can be recognized as the

minimum contribution of the residual of ASI, which includes emissions. Hence, we derive the maximum possible

contribution by ASI to be 62% (fourth column and last row of Table 5). Key results of the two analyses above are

summarized in the fourth and last rows of Table 5. Qualitatively the results of the 2013−2018ret analysis and the260
2013−2018ret34 analysis are consistent (overlap) with each other, quantitatively a significant difference exists between the

two analyses: the contribution of emission to the linear trend in PM2.5 in the latter has a tighter upper limit of only 51%

compared to 94% of the former, and a greater lower limit for the contribution of the residual which includes

meteorology/climate in the latter (49%) compared to the former (6%). The fact that the long-term analysis renders a tighter

upper/lower limit is evidently the result of additional constraints provided by the long-term data. Finally, since a tighter265
upper/lower limit gives a more precise estimate of the contribution, we propose that the best estimates of the contributions of

emission, ASI and other meteorology/climate parameters to the linear trend in PM2.5 in BTH during 2013−2018 are those

listed in the last row of Table 5, specifically, emission<51%, non-emission>49%, ASI<62% and non-ASI>38%. These are

our best estimates which are remarkably different from those of MLR studies listed in Table 1.

The same analysis can be carried out for YRD and PRD, and the key results are summarized in the fourth and last rows of270
Tables 6 and 7, respectively. For YRD, the best estimates of the contributions of emission, ASI and other

meteorology/climate parameters to the linear trend in PM2.5 during 2013−2018 are those listed in the last row of Table 6,

specifically, emission<44%, non-emission>56%, ASI<74% and non-ASI>26%. For PRD, the best estimates of the

contributions of emission, ASI and other meteorology/climate parameters to the linear trend in PM2.5 during 2013−2018 are

those listed in the last row of Table 7, specifically, emission<88%, non-emission>12%, ASI<55% and non-ASI>45%. These275
best estimates are also significantly different from those of MLR studies listed in Table 1.

4 Summary and conclusions

Recently, Chen et al. (2019) and Zhai et al. (2019) used MLR models to analyze the significant downward trend of PM2.5

concentrations in China’s major air pollution regions in 2013–2018 (2013–2017 for Chen et al. (2019)) and quantified that

the control of anthropogenic emissions accounted for 81% to 103% of the PM2.5 reduction (Table 1). While there is little280
doubt that anthropogenic emissions make a significant contribution to the reduction trend of PM2.5, we are skeptical of these

high contributions by emissions obtained based solely on MLR models, because a good correlation in MLR analysis does not

imply any causal relationship. In this regard, Chen et al. (2019) corroborated their MLR result of 81% (Table 1) using the

mechanistic model WRF-CMAQ. However, the mechanistic model study of Chen et al., (2019) was consisted of short term

(2013–2017) simulations. As noted in Section 2.2, a short-term study of 2013–2017 overlooked the effect and the cause of285
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bulge-2013, which could lead to significant uncertainties and/or biased results. In this context, we believe that a credible

mechanistic (or MLR) model study should cover long enough time before the period of interest (2013–2017), so that the

model could be constrained by the major features of interannual variations such as the bulge-2013 and the depression before

it (Figure 1a).

To compare with previous MLR studies, the MLR model is used in this study to assess the contributions of290
climate/meteorology and anthropogenic emissions to the linear trends of PM2.5 concentration in three regions in eastern

China, namely BTH, YRD, and PRD. We first carry out an MLR analysis (MLR-EMIS) on the emissions and observed trend

of PM2.5 in BTH during 2013−2018, and show that the results of Zhai et al. (2019) and Chen et al. (2019) can be

satisfactorily reproduced (Table 1). Then the same MLR analysis are performed on ASI and observed trend of PM2.5 (MLR-

ASI), and obtain a 76% contribution by emissions in BTH, which is slightly lower than, but nonetheless in qualitative295
agreement with those values obtained by Zhai et al. (2019) and Chen et al. (2019) (Tables 1 and 2). However, for YRD and

PRD, the contributions of emissions to the observed trends of PM2.5 are only 43% and 60% (Table 2), respectively,

significantly less than those values of 101%−104% derived by the MLR-EMIS analysis (Table 1). We believe that the

discrepancy is rooted in the false assumption/interpretation of the correlation coefficient as the value of contribution in the

MRL studies as discussed earlier. We therefore propose an alternative interpretation: the correlation coefficient should be300
interpreted as the maximum possible contribution of the independent variable to the dependent variable, and the residual

should be interpreted as the minimum contribution of all other independent variables. Under the new interpretation, the new

results, as shown in Tables 3–4, become consistent with one another.

Another important outcome from this study is that the results of a short-term (2013–2018) analysis are significantly different

from those of a long-term (1985–2018) analysis for the period 2013−2018 they overlap, suggesting that MLR results depend305
critically on the length of time analyzed. The long-term analysis renders a more precise estimate, because of additional

constraints provided by the long-term data. We therefore suggest that the best estimates of the contributions of emissions and

non-emission (including climate/meteorology) to the linear trend in PM2.5 during 2013–2018 are those from the long-term

analyses: i.e., emission <51% and non-emission >49% for BTH, emission <44% and non-emission >56% for YRD, emission

<88% and non-emission >12% for PRD.310

Data availability. Visibility data were obtained from Global Summary of Day (GSOD) provided by the National Climatic

Data Center (NCDC) (https://www.ncei.noaa.gov/maps/daily/, last access: 10 March 2022). Surface PM2.5 measurements

from 2013–2019 are taken from China National Environment Monitoring Center (CNEMC, http://www.cnemc.cn/, last

access: 10 March 2022). The data of this paper are available upon request to Shaw Chen Liu (shawliu@jnu.edu.cn).315
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Table 1: Comparison of the contribution of emissions and meteorological conditions to the observed PM2.5 trends in 2013−2018415
(2013−2017 for Chen et al. (2019)).

Research Region Method Emission Meteorology

Chen et al. (2019) Beijing KZ-MLR 81% 19%

Zhai et al. (2019)
BTH

MLR 86% 14%

This study MLR-EMIS 99.8% 0.2%

Zhai et al. (2019)
YRD

MLR 103% -3%

This study MLR-EMIS 101% -1%

Zhai et al. (2019)
PRD

MLR 81% 19%

This study MLR-EMIS 104% -4%

Note: KZ: Kolmogorov–Zurbenko filter; MLR: stepwise multiple linear regression; MLR-EMIS indicates the use of

emissions and PM2.5 as inputs to the MLR model.
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Table 2: Contributions of arctic sea ice (ASI) and residuals (Non-ASI) to the observed PM2.5 trends in the winter seasons of420
2013−2018.

Region Method ASI Non-ASI

BTH

MLR-ASI

24% 76%

YRD 57% 43%

PRD 40% 60%

Note: MLR-ASI indicates the use of ASI and PM2.5 as inputs to the MLR model.
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Table 3. Contributions of emissions and non-emissions (including climate and meteorological conditions) to the observed PM2.5

trends in 2013−2018 (2013−2017 for Chen et al. (2019)).425

Research Region Method Emission Non-emission

Chen et al. (2019) Beijing KZ-MLR <81% >19%

Zhai et al. (2019)
BTH

MLR <86% >14%

This study MLR-EMIS <99.8% >0.2%

Zhai et al. (2019)
YRD

MLR <103% >-3%

This study MLR-EMIS <101% >-1%

Zhai et al. (2019)
PRD

MLR <81% >19%

This study MLR-EMIS <104% >-4%
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Table 4. Contributions of ASI and residuals (Non-ASI) to the observed PM2.5 trends in 2013−2018.

Region Method ASI Non-ASI

BTH

MLR-ASI

<24% >76%

YRD <57% >43%

PRD <40% >60%
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Table 5. Contributions of emissions and ASI to the PM2.5 trends in BTH.

Time Period
MLR-EMIS MLR-ASI

Emission Non-emission ASI Non-ASI

2013−2017obs <101% >-1% <30% >70%

2013−2017ret <94% >6% <43% >57%

2013−2018obs <99.8% >0.2% <24% >76%

2013−2018ret <94% >6% <32% >68%

1985−2018ret <7% >93% <43% >57%

2013−2018ret34 <51% >49% <62% >38%

Note: The superscripts obs and ret indicate the use of observed and retrieved PM2.5 data, respectively. Superscript ret34430
indicates the retrieved PM2.5 data for 2013–2018 obtained using the data of 1985–2018.



20

Table 6. Contributions of emissions and ASI to the PM2.5 trends in YRD.

Time Period
MLR-EMIS MLR-ASI

Emission Non-emission ASI Non-ASI

2013−2017obs <104% >-4% <80% >20%

2013−2017ret <84% >16% <85% >15%

2013−2018obs <101% >-1% <57% >43%

2013−2018ret <86% >14% <54% >46%

1985−2018ret <1% >99% <75% >25%

2013−2018 ret34 <44% >56% <74% >26%
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Table 7. Contributions of emissions and ASI to the PM2.5 trends in PRD.435

Time Period
MLR-EMIS MLR-ASI

Emission Non-emission ASI Non-ASI

2013−2017obs <119% >-19% <67% >33%

2013−2017ret <104% >-4% <59% >41%

2013−2018obs <104% >-4% <40% >60%

2013−2018ret <99.5% >0.5% <39% >61%

1985−2018ret <157% >-57% <81% >19%

2013−2018 ret34 <88% >12% <55% >45%



22

Figure 1: Annual winter averages of retrieved PM2.5 concentrations (black, 1985–2018), emission (red, 1985–2018), Arctic Sea Ice
(ASI, blue, 1985–2018) in BTH, YRD and PRD; PM2.5 concentrations observed by the US Embassy/Consulates in Beijing (orange,
2009–2018), Shanghai and Guangzhou (orange, 2011–2018); and PM2.5 concentrations observed by CNEMC (green, 2013–2018).440
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Figure 2: Results of MLR-EMIS analysis for 2013–2018 in BTH (a), YRD (b) and PRD (c). Temporal variations of observed winter
PM2.5 concentration are shown in black, contributions of anthropogenic emissions to the PM2.5 trend are shown in red, and the
residual is shown in blue. Values inset in each panel are the ordinary linear regression trends, with 95% confidence intervals
obtained by the student’s t test.445
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Figure 3: Same as Figure 2 except for MLR-ASI analysis.
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Figure 4: The same as Figure 2 except for time period of 1985–2018. Subfigures 4(a-a) are enlarged schematic representations of
the period 2013–2018 in Figure 4(a).450
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Figure 5: The same as Figure 4 except for MLR-ASI analysis.
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