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Dear Editor,

We appreciate the prompt reviews and would like to thank the three reviewers for

insightful comments and suggestions on our manuscript entitled “Contributions of

meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern

China 2013–2018” (MS No.: acp-2022-304). We have carefully considered all

comments and suggestions. Listed below are our point-by-point responses to all

comments and suggestions of this reviewer (Reviewer’s points in black, our responses

in blue).

Anonymous Referee #1

This paper presents a MLR statistical attribution of the 1985-2018 PM2.5 trends in

three megacity clusters in China, using visibility data as proxy for pre-2013 PM2.5

data. It finds a large meteorological (non-emission) contribution to the trend, and

argues that previous MLR analyses of the 2013-2018 trend using the actual PM2.5 data

starting in 2013 and attributing the trend to emissions are not robust. The paper makes

some good points about the difficulty of sorting out meteorological effects when

interpreting short (post-2013) trends. However, I believe that it may be (1) flawed in

its reconstruction of the 1985-2018 PM2.5 record which is the basis for most of the

argumentation, (2) mistaken in claiming that attribution of recent PM2.5 trends to

emissions is not based on mechanistic knowledge, and (3) annoying in belaboring

trivial statistical points that are well known to any trained scientist. I don’t think that

this paper is publishable in ACP in current form.

Response:

The reviewer made three general criticisms. Our responses are listed below one by

one.

(1) Our reconstruction of the 1985–2018 PM2.5 record is based on a method that

converts observed visibility data to the concentrations of PM2.5. This method has been
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shown in many previous studies to be credible (Shen et al., 2016; Liu et al., 2017; Gui

et al., 2020; Li et al., 2020; Li et al., 2021). The first two references are already cited

in our paper. Given the serious concern of this reviewer, in Figure R1 below we

compare the winter PM2.5 record derived in our study (black line) to winter haze days

derived from observed visibility data in Beijing by Li et al. (2021) (green line). The

winter PM2.5 concentrations are expected to be well correlated with the number of

winter haze days. Indeed the correlation coefficient between the green line and black

line is quite high at 0.7. Also shown in Figure 1 are PM2.5 concentrations observed by

the US Embassy in Beijing (blue line, 2009–2018) and those observed by CNEMC in

BTH (red line, 2013–2018). The crucial bulge-2013 shows up consistently in all data

sets. The correlation coefficients between our PM2.5 values and those of the US

Embassy and CNEMC are also very high at 0.6 and 0.9, respectively. These high

correlation coefficients suggest that our reconstruction of the 1985–2018 PM2.5 record

from observed visibility data is credible.

Figure R1. Temporal variations of winter inversed PM2.5 concentrations in BTH of

this study (black, 1985–2018), simulated PM2.5 concentrations in Beijing by Dang and

Liao (2019) (purple, 1985–2017), PM2.5 concentrations observed by the US Embassy

in Beijing (blue, 2009–2018) and those observed by CNEMC in BTH (red,

2013–2018).

(2) In our paper we didn’t state “that attribution of recent PM2.5 trends to emissions is

not based on mechanistic knowledge”. What we did state was that quantitative
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attribution of recent PM2.5 trends to emissions is not based on realistic/credible

mechanistic models. There is a significant difference between mechanistic knowledge

and realistic/credible mechanistic models. Only realistic/credible mechanistic models

have the capability of making quantitative attribution of recent PM2.5 trends. However,

it is extremely formidable to make a multi-year realistic/credible simulation of the

winter mean PM2.5 in the megacity clusters in China. In our opinion, the most realistic

multi-year mechanistic model simulation is the study by Dang and Liao (2019), who

made a 33-year (1985–2017) model simulation study of severe winter haze days in

BTH (purple line in Figure R1). There is an excellent agreement between the purple

line and PM2.5 concentrations observed by the US Embassy in Beijing (blue line,

2009–2018). The agreement with PM2.5 concentrations observed by CNEMC in BTH

(red line, 2013-2018) is also very good. For the entire period of 1985–2017, there are

moderate mismatches near 1997–2002 and 2010 between the purple line (Dang and

Liao, 2019) and green line (Li et al., 2021), but still has an acceptable overall

correlation coefficient of 0.4. As cited in lines 201–202 of our paper, Dang and Liao

(2019) “found that meteorology contributed significantly more than emissions to the

linear trend”, which is consistent with the result of our study.

(3) We accept the criticism of “belaboring trivial statistical points that are well known

to any trained scientist.” We will delete some of the repeated statements in the revised

manuscript. We were surprised that previous MLR studies would have overlooked

these trivial yet important statistical points, and tried to find an explanation. That

leads us to realize the importance of the bulge-2013 (as noted by this reviewer in

specific comment #1 below) and to suggest the “maximum possible contribution” as

an alternative interpretation for the MLR results.

Specific comments

1. The ‘bulge-2013’ feature in Figure 1 (line 88) anchors much of the argumentation

in the paper but it is very weird. It seems caused by the switch from the visibility

proxy to the actual PM2.5 data in 2013. The methods are buried in Supplementary
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Material. Is this ‘bulge-2013’ seen in the consistent long-term satellite AOD data

record? I think that the authors would have to show that it is present in the AOD data

in order to have credibility.

Response:

We believe that Figure R1 and associated discussions above address this comment

adequately. In response to the question about AOD, we compare below the winter

satellite AOD data (MERRA2) in BTH to PM2.5 and visibility (both from this study)

in Figure R2. The correlation between AOD and PM2.5 is fair (overall correlation

coefficient 0.3) except some mismatches during two periods (2007–2009 and

2012–2013). As a result, only half of the bulge (2013–2018) can be seen in AOD. The

reason for the mismatches is probably because surface PM2.5 is sensitive to the height

of mixed layer while AOD is not. In other words, changes of surface PM2.5 due to

changing mixing height are usually not detected in the AOD observations.

Figure R2. Time series of winter PM2.5 concentration, visibility (both from our study)

and AOD (from MERRA2) in BTH from 1985 to 2018.

2. What is the ‘emission’ in Figure 1? Of what species?

Response:

The ‘emission’ is composed of PM10, PM2.5, SO2, NH3, NOx, black carbon, and

organic carbon in three sets of emission inventories (PKU inventory, MEIC inventory

and PRD-EI inventory). Data and calculation methods for emissions are presented in
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Section 2.1.

As an example, Figure R3 shows the temporal variation of three emission inventories

in PRD. They show generally consistent variations during overlapping periods.

Figure R3. PKU emission inventory for winter 1985–2012, MEIC emission inventory

for winter 2010–2016 and PRD-EI emission inventory for winter 2006–2018 for PRD.

The raw data are normalized to the difference of the maximum value and minimum

value.

3. Line 91: the Mao et al. 2019 reference which is intended to provide support for the

authors’ meteorological attribution of the trend is in fact grey literature involving

some of the same authors.

Response:

Mao et al. (2019) is a peer reviewed article, not a “grey literature”. The Mao et al.

(2019) reference (Lines 352–353) is reproduced below:

Mao, L., Liu, R., Liao, W., Wang, X., Shao, M., Liu, S. C. and Zhang, Y.: An

observation-based perspective of winter haze days in four major polluted regions of

China, Natl. Sci. Rev., 6(3), 515–523, https://doi.org/10.1093/nsr/nwy118, 2019.

National Science Review is published by Oxford University Press on behalf of China
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Science Publishing & Media Ltd. The current impact factor of National Science

Review is over 23, which ranks it among the best international scientific journals.

4. Line 132, etc.: the mechanistic meteorological connection of ASI to PM2.5 is not

clear, and as the authors point out any meteorological variable with a suitable

long-term trend would do the trick. But there is in fact a strong mechanistic argument

for emissions to be related to PM2.5 (line 154), and there is strong independent

evidence that Chinese emissions have decreased over the 2013-2018 period (emission

inventories, satellite data). To claim that the connection of PM2.5 to emissions has no

mechanistic support strikes me as obviously wrong. In fact the authors cite Chen et al.

2019 in demonstrating the mechanistic connection in WRF-CMAQ but argue that the

analysis is flawed because it did not consider the effect of the bulge-2013 (line 158).

As pointed out above, I am very suspicious of this bulge-2013.

Response:

We have addressed extensively the issues raised here in general comment #2 (and #1

about the bulge-2013). Moreover, in lines 261–262 we already stated “there is little

doubt that anthropogenic emissions make a significant contribution to the reduction

trend of PM2.5.” We were only “skeptical of those high contributions by emissions

obtained based solely on MLR models.”

5. There is a lot of trivial stuff about the non-mechanistic basis of statistical models,

correlation not implying causality, more years increasing the credibility of the model,

etc., that is repeated again and again and does not rise above the level of a basic

course in statistics.

Response:

As stated in our response to general comment #3, we accept the criticism of

“belaboring trivial statistical points that are well known to any trained scientist,” We

will delete some of the repeated statements in the revised manuscript.
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Anonymous Referee #2

This is a very interesting paper analyzing the causes of PM2.5 trends observed in

eastern China. The research topic is highly important from air pollution control point

of view and, although this topic has been studied quite intensively during the recent

years, this paper manages to provide new insight into it. The paper is clearly

organized and relatively well written. I could not find any scientific errors, even

though I do feel being an expert on trend analysis. I have a few minor issues to be

considered before accepting this paper for publication:

Response:

We appreciate the encouraging comments, particularly from an expert on trends.

Specific comments

(1) Please explain how ASI is defined. Based on Figure 1 it seems to be dimensionless

variable but this has not been explained anywhere. This is particularly important

because related to Arctic sea ice, most often the concept“Arctic sea ice area”is used

in a scientific literature.

Response:

We adopted the Arctic Sea Ice index (ASI) suggested by Wang et al. (2015), i.e. the

area-averaged sea ice fraction in the region of north 45oN. Its dimension is fraction.

ASI was calculated from the Hadley Centre (HadISST1: Hadley Centre Sea Ice and

Sea Surface Temperature data set, https://www.metoffice.gov.uk/hadobs/hadisst) with

1o × 1o resolution for 1870–2022 (Rayner et al., 2003).

(2) Similarly, please explain explicitly what is meant by “emissions” appearing in

Figures 1 to 5. Are they simply primary PM emissions taken from the emission

inventory, or do they also include precursors that form secondary aerosol matter?

Response:
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The ‘emissions’ are composed of PM10, PM2.5, SO2, NH3, NOx, black carbon, and

organic carbon in three sets of emission inventories (PKU inventory, MEIC inventory

and PRD-EI inventory). These emission inventories only conclude primary emissions,

precursors forming secondary aerosols are not taken into consideration. Data and

calculation methods for emissions are presented in Section 2.1.

As an example, Figure R3 shows the temporal variation of three emission inventories

in PRD. They show generally consistent variations during overlapping periods.

(3) Describing what was done or observed, is usually written in a past tense. Please

check out this throughout section 2. Past tense is also preferred in the following

places: … were crucial (line 35), … was the most (line 37), … carried out (lines

111 and 128).

Response:

Thanks. We have checked and corrected the tense problems according to your

suggestion in the revised manuscript.

(4) Section 3.2. Please reformulate the title of this section (e.g. “Comparing the MLR

results… ). Starting the section by referring to “the second question” is not a good

practice, as the reader need to find out from the earlier text what is this question. I

would recommend repeating this section e.g. by writing “The answer to the question

whether Table 1 or 2 is correct is that neither of them is correct, for the following …”

Response:

Thank you for the suggestions. We have reformulated the title of Section 3.2 to be

“Comparing the MLR results to mechanistic models”. We also revised the beginning

statement of Section 3.2 as you suggested “The answer to the question whether Table

1 or 2 is correct is that neither of them is correct, for the following reasons”
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Anonymous Referee #3

This work proposes a different method for the MLR analysis of PM2.5. Based on the

new interpretation and the comparison with previous studies, the MLR results among

different studies were found to be more consistent. In addition, the authors also

pointed out that the relationship constrained by long-term data is more reliable.

Overall, this is an interesting study and it provides some useful information for other

researchers when choosing MLR for air quality trend analysis. However, more

explanations, especially for the methodology, are still needed.

Response:

We appreciate the insightful comments and suggestions. More explanations have been

added in our revised manuscript, especially in the methodology section.

Specific comments

(1) Line 60, the resolution of the PRD emission inventory is three degrees, which is

rather coarse.

Response:

The emission inventory of PRD (PRD-EI) is adopted from Huang et al. (2021) and

Zhong et al. (2018). Although the resolution of the PRD-EI is coarser than other two

inventories, we can only get the emission information of year 2018 and 2019 from

PRD-EI. In addition, in our study, we mainly focus on the long-term trend and

interannual variation in the annual total emissions in each region, which is

independent of the resolution of emission inventories.

Figure R3 shows the temporal variation of three emission inventories. They have

similar variation for the overlapping period.

(2) This work mainly focuses on the PRD, YRD and Jing-Jin-Ji regions. For YRD and

Jing-Jin-Ji regions, the authors combined the MEIC and PKU emission inventories to
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do the analysis. While for PRD, they combined PKU and PRD-EI to do the scaling.

MEIC and PRD-EI are different emission inventories and the methods that used to

derive these two emission inventories should be not consistent. Based on the

literatures, the MEIC emission inventory should have already covered the PRD region,

why not also using the MEIC emission inventory to analyze the PRD region?

Response:

The MEIC inventory does also cover the PRD region, but the time span of MEIC

inventory is 2010–2017. The time span of the PRD-EI inventory and PKU inventory

is 2006–2019 and 1960–2014, repetitively. Therefore, we combined PRD-EI and PKU

inventories in PRD for the winters of 1985–2018.

(3) Please label the scaling factor and Ei equations.

Response:

Thanks, we have labeled the scaling factor and Ei equations in our revised manuscript.

(4) Line 71, please use data or reference to support this assumption.

Response:

Thanks, we have added Figure S1 (Figure R4) in the revised Supplementary Material

and revised the Line 71 statement to make it clearer as “Since the ratios of annual

emission inventory in PRD to those of YRD and BTH are not expected to change

significantly in one or two years (Figure S1)”
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Figure S1 (Figure R4). Time series of emission inventory (EI) ratios in the winter of

1985–2018 for the BTH/PRD and YRD/PRD, respectively.

(5) The PRD scaling factor was calculated by the emission sum from 2006 to 2013,

while the scaling factors for the other two regions were calculated by the emission

sum from 2010 to 2013. Please explain why using different emission sum to derive

the scaling factors.

Response:

We calculate the scaling factor based on the overlapping periods of two inventories.

As stated in our response to your Point #2, the time spans of these three inventories

are different, so we derived scaling factors for PRD from 2006 to 2013, while for

BTH and YRD from 2010 to 2013.

(6) The authors applied the nonlinear exponential fitting to retrieve the long-term

PM2.5 concentration before 2013, because China began to release the air quality

observation data since 2013 and it is unlikely to acquire long-term observation data in

this nation before 2013. However, based on the figures in the supplemental material,

some of the fittings are not acceptable for further analysis, such as BTH-RH (40, 60)

and YRD-RH (90, 100). The authors need to analyze and discuss whether such errors

can influence their conclusion.
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Response:

We believe that our PM2.5 retrievals from nonlinear exponential fitting are acceptable

for further analysis and do not influence our conclusion for the following reasons: (1)

Yes, the correlation coefficient (R) of 0.56 for BTH-RH (40, 60) is a little low, but the

fittings for other intervals with more samples are very good, so the overall fitting for

BTH remains good. The sample size of YRD-RH (90, 100) is the smallest among all

intervals, so its relatively small R (0.36) has negligible effect on the overall fitting for

YRD. (2) We compared the retrieved PM2.5 concentrations with the observed PM2.5

concentration in BTH and YRD (Figure R5), and found that R is more than 0.87, and

normalized mean bias (NMB) are 5.9% and 4.6% in BTH and YRD, respectively.

These values of R and NMB suggest that the exponential fitting model is capable of

reproducing the observed PM2.5 concentrations. (3) As you suggested in comment

point #7, we use the data of 2015–2019 for the fitting and the 2014 data for the

verification, the R (NMB) between the fitted PM2.5 concentrations and observed PM2.5

concentrations is 0.77 (14.8%), 0.84 (5.5%), and 0.93 (5.1%) in BTH, YRD and PRD,

respectively, suggesting that the exponential fitting models are robust. (4) R between

the long-term retrieved PM2.5 concentrations and observed visibility reached -0.9 in

both BTH and YRD, reconfirming that the performance of our exponential fitting

model is satisfactory (Figures S4a-b).
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Figure R5. Temporal variation of retrieved PM2.5 and observed PM2.5 from 2015 to

2018.

(7) For the PM2.5 concentration retrieval, I suggest the authors use the data of

2014-2018 for the fitting and the 2013 data for the verification, this can help to verify

whether the methods implemented by the authors are reliable or not.

Response:

Since we did not have daily PM2.5 concentration data for the three regions in 2013, we

used observed daily visibility and PM2.5 concentration from 2015 to 2019 to establish

the exponential fitting model, as shown in Figures S1–S3. Furthermore, we use 2014

daily fitted PM2.5 and observed PM2.5 for verification (Figure R6). The R (NMB)

between the fitted PM2.5 concentration and observed PM2.5 concentration is 0.77

(14.8%), 0.84 (5.5%), and 0.93 (5.1%) in BTH, YRD and PRD, respectively,

verifying that the exponential fitting models are reliable.
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Figure R6. Temporal variation of retrieved PM2.5 and observed PM2.5 in 2014.

(8) Please introduce about the data source of RH and visibility in section 2.2.

Generally the locations of the meteorological stations are not the same with those of

the air quality stations. Did the authors use the nearest matching to pair the data? If so,

what is the mean distance between the meteorological station and air quality station?

Response:

The visibility data we used is obtained from Global Summary of the Day (GSOD)

database from National Environmental Satellite, Data, and Information Service

(NESDIS) of the US Department of Commerce. Besides visibility, GSOD also

provides daily average temperature and dew point, sea level pressure, wind speed and

other meteorological elements and records of weather phenomena such as fog, rain

and snow (http://www.ncdc.noaa.gov/cgi-bin/res40.pl). The GSOD data undergo

extensive automated quality control by the Air Weather Service, and over 400
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algorithms are applied automatically to correctly ‘decode’ the synoptic data, and to

eliminate many of the random and systematic errors found in the original data. Data

are generally available from 1929 to the present.

The RH used in this study is derived from dew point temperature and local air

temperature following the approach proposed by Lawrence (2005). Therefore, RH and

visibility data come from the same location.

We have added more information about the data source of visibility and RH in our

revised manuscript as follows:

“Winter visibility data in 1973–2019 are obtained from Global Summary of Day

(GSOD) provided by the National Climatic Data Center (NCDC)

(https://www.ncei.noaa.gov/maps/daily/, last access: 10 March 2022). The relative

humidity (RH) is derived from dew point temperature and air temperature of GSOD

following the approach proposed by Lawrence (2005).”

(9) Line 120, combined with other studies and this work, we understand that the

emission is the major factor that influences the PM2.5 trend when compared to the

meteorological variables. However, in Chen et al. (2019), the meteorological factors

can still account for 21% of the contribution, which is much larger than the values

reported by the authors in Line 117. I do not think this is an ‘agreement’.

Response:

Sorry for the confusion! You are right that at this stage of the paper (Lines 111–125),

“we understand that the emission is the major factor that influences the PM2.5 trend

when compared to the meteorological variables”. Hence any number that shows

(emission >> meteorology) is considered an agreement, so is the 21% meteorology

because it is much less than the 79% emission. Nevertheless, you are quite right about

“the meteorological factors can still account for 21% of the contribution, which is

much larger than the values reported by the authors in Line 117”. We will clarify this
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point in the revised manuscript.

(10) Lines 162-164, based on the analysis performed by the authors, if there exists any

method that can compensate the shortcomings of the MLR and prognostic model?

Response:

Very important question!

As a start we believe that the alternative interpretation of MLR results proposed in

Section 3.3: “The correlation coefficient should be interpreted as the maximum

contribution of an independent variable to the dependent variable and the residual

should be interpreted as the minimum contribution of all other independent variables”

can help compensate some shortcomings of the MLR.

In regard to prognostic models, we are quite optimistic because some innovative

studies have already appeared. For instance, Dang and Liao (2019) made a 33-year

(1985–2017) model simulation study of severe winter haze days in BTH (purple line

in Figure R7). There is an excellent agreement between the purple line and PM2.5

concentrations observed by the US Embassy in Beijing (blue line, 2009–2018). The

agreement with PM2.5 concentrations observed by CNEMC in BTH (red line,

2013–2018) is also very good. For the entire period of 1985–2017, there are moderate

mismatches near 1997–2002 and 2010 between the purple line (Dang and Liao, 2019)

and green line (Li et al., 2021), but still has an acceptable overall correlation

coefficient of 0.4. As cited in lines 201–202 of our paper, Dang and Liao (2019)

“found that meteorology contributed significantly more than emissions to the linear

trend”, which is consistent with the result of our study.
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Figure R7. Temporal variations of winter inversed PM2.5 concentrations in BTH of

this study (black, 1985–2018), simulated PM2.5 concentrations in Beijing by Dang and

Liao (2019) (purple, 1985–2017), PM2.5 concentrations observed by the US Embassy

in Beijing (blue, 2009–2018) and those observed by CNEMC in BTH (red,

2013–2018).

(11) Lines 180-185, whether this means that previous studies that focused the ASI

harbor relatively large uncertainty?

Response:

This part of the analysis mainly emphasizes that the MLR results are highly sensitive

to the length of study time. Any short term MLR study, including those involving ASI,

can harbor large uncertainty.

(12) Lines 166-169, I suggest the authors to provide some theoretical foundations to

support this interpretation.

Response:

In the following we present a simplistic idea about a possible theoretical foundation to

support our alternative interpretation of “the maximum possible contribution of the

independent variable to the dependent variable”. As an example, Figure R8 below

depicts an MLR analysis of the contribution of emission to the linear trend of PM2.5 in
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BTH. It can be seen in Figure R8 that the MLR analysis is, in effect, performing the

best-fit between the red line (emission) and the black line (observed PM2.5). In other

words, the best-fit enables the red line to attain the “maximum possible contribution”

to the variability (including the linear trend) of the black line, where the “maximum”

is established because all factors-other-than-emission that may contribute to the

variability are excluded in the best-fit process. We propose the argument above as a

possible theoretical foundation to support our alternative interpretation.

Figure R8. Results of MLR-EMIS analysis for 2013–2018 in BTH. Temporal

variations of observed winter PM2.5 concentration are shown in black, contributions of

anthropogenic emissions to the PM2.5 trend are shown in red, and the residual is

shown in blue. Values inset in each panel are the ordinary linear regression trends,

with 95% confidence intervals obtained by the student’s t test.
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