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Abstract. We quantify methane emissions in China and the contributions from different sectors 

by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. The 

inversion uses as a prior estimate the latest 2014 national sector-resolved anthropogenic emission 

inventory reported by the Chinese government to the United Nations Framework Convention on 

Climate Change (UNFCCC) and thus serves as a direct evaluation of that inventory. Emissions 

are optimized with a Gaussian mixture model (GMM) at up to 0.25o×0.3125o resolution. The 

optimization is done analytically assuming lognormally distributed errors on prior emissions. 

Errors and information content on the optimized estimates are obtained directly from the 

analytical solution and also through a 36-member inversion ensemble. Our best estimate for total 20 

anthropogenic emissions in China is 65.0 (57.7-68.4) Tg a-1, where parentheses indicate the 

uncertainty range determined by the inversion ensemble. Contributions from individual sectors 

include 16.6 (15.6-17.6) Tg a-1 for coal, 2.3 (1.8-2.5) for oil, 0.29 (0.23-0.32) for gas, 17.8 (15.1-

21.0) for livestock, 9.3 (8.2-9.9) for waste, 11.9 (10.7-12.7) for rice paddies, and 6.7 (5.8-7.1) for 

other sources. Our estimate is 21% higher than the Chinese inventory reported to the UNFCCC 

(53.6 Tg a-1), reflecting upward corrections to emissions from oil (+147%), gas (+61%), 

livestock (+37%), waste (+41%), and rice paddies (+34%), but downward correction for coal (-

15%). It is also higher than previous inverse studies (43-62 Tg a-1) that used the much sparser 

GOSAT satellite observations and were conducted at coarser resolution. We are in particular 

better able to separate coal and rice emissions. Our higher livestock emissions are attributed 30 

largely to northern China where GOSAT has little sensitivity. Our higher waste emissions reflect 

at least in part a rapid growth in wastewater treatment in China. Underestimate of oil emissions 

in the UNFCCC report appears to reflect unaccounted-for super-emitting facilities. Gas 

emissions in China are mostly from distribution, in part because of low emission factors from 

production and in part because 42% of the gas is imported. Our estimate of emissions per unit of 

domestic gas production indicates a low life-cycle loss rate of 1.7 (1.3-1.9) %, which would 

imply net climate benefits from the current coal-to-gas energy transition in China. However, this 

small loss rate is somewhat misleading considering China’s high gas imports, including from 

Turkmenistan where emission per unit of gas production is very high.  

   40 
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Methane (CH4) is a potent greenhouse gas with an atmospheric lifetime of 9.1 ± 0.9 years 

(Prather et al., 2012). Its atmospheric concentration has nearly tripled since pre-industrial times 

because of anthropogenic emissions. The resulting radiative forcing from methane on an 

emission basis (including effects on tropospheric ozone, stratospheric water vapor, and carbon 

dioxide (CO2)) is 1.21 W m−2 since the pre-industrial era, compared to 2.16 W m−2 for CO2 (Naik 

et al, 2021). Reducing methane emissions is a recognized priority under the Paris Agreement. As 

of January 2022, 111 countries have signed the Global Methane Pledge to reduce their methane 

emissions by 30% below 2020 levels by 2030 (https://www.globalmethanepledge.org).   

China is the single largest contributor to global anthropogenic methane emissions (Worden et al., 50 

2022). It is estimated to have emitted 46-74 Tg a-1 out of a global anthropogenic source of 349-

393 Tg a-1 for the 2008-2017 decade (Saunois et al., 2020). According to the latest national 

emission inventory for 2014 submitted by the Chinese government to the United Nations 

Framework Convention on Climate Change (UNFCCC, 2020), China emitted 53.6 Tg a-1 

including contributions from coal mining (38%), livestock (24%), rice paddies (16%), landfills 

(7%), wastewater management (5%), oil/gas systems (2%), and other sources (8%). Emission 

inventories reported to the UNFCCC are ‘bottom-up’ estimates derived from activity data and 

emission factors (EFs) per unit of activity, supplemented in some cases with more source-

specific information. There are large uncertainties in these bottom-up estimates (Saunois et al., 

2020; Gao et al., 2021). Different bottom-up national inventories for China as reported by Lin et 60 

al. (2021) ranged from 44.4 to 57.5 Tg a-1 in 2010, with larger relative differences for individual 

sectors. These uncertainties make it difficult to set targets for reducing methane emissions. 

The recent ‘coal-to-gas’ transition policy in China (Qin et al., 2018) has raised growing 

awareness of oil/gas methane emissions, which are presently small but could grow rapidly. Gas 

is projected to account for 15% of total energy supply in China by 2030 (Gan et al., 2020). It is 

crucial to quantify China’s oil/gas and coal methane emissions in order to assess the climate 

benefits of switching from coal to gas (Alvarez et al., 2012, 2018). Chinese oil/gas emissions in 

the most recent version of the widely used bottom-up EDGAR v6 inventory for 2018 (3.4 Tg a-1; 

Crippa et al., 2021) are much higher than in the government report to the UNFCCC (1.1 Tg a-1), 

while coal emissions in EDGAR v6 (20.4 Tg a-1) are consistent with the government report (19.5 70 

Tg a-1). Previous versions of EDGAR overestimated coal emissions from China (Bergamaschi et 

al., 2013; Turner et al., 2015).  

Satellite observations of atmospheric methane in the shortwave infrared (SWIR) offer important 

‘top-down’ information for evaluating bottom-up inventories and reducing uncertainty (Jacob et 

al., 2016). Exploiting this information involves inversion of the observations with an 

atmospheric transport model relating emissions to atmospheric concentrations, and using the 

bottom-up inventory as prior information (Brasseur and Jacob, 2017). A number of global and 

regional inversions relevant to China have been conducted with satellite observations from the 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) for 

2003–2012 (Bergamaschi et al, 2013; Houweling et al., 2014) and the Greenhouse Gases 80 

Observing Satellite (GOSAT) for 2009-present (Alexe et al., 2015; Turner et al., 2015; Pandey et 

al., 2016; Miller et al., 2019; Maasakkers et al., 2019; Y. Zhang et al., 2021; Qu et al., 2021; 

Deng et al., 2022). The TROPOspheric Monitoring Instrument (TROPOMI) satellite instrument 

launched in October 2017 provides global daily data with 5.5 km × 7 km (7 km × 7 km before 

August 2019) pixel resolution, considerably increasing coverage relative to previous satellite 

instruments (Hu et al., 2018; Lorente et al., 2021). Recent studies have used TROPOMI data in 
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inverse analyses of methane emissions for North America (Y. Zhang et al., 2020; Shen et al., 

2021) and globally at coarse resolution (Qu et al., 2021; van Peet et al., 2021). Qu et al. (2021) 

pointed out that their TROPOMI inversion suffered from major artifacts in southern China due to 

mislocation of prior coal emissions, juxtaposition of coal and rice emissions at the ~200 km 90 

resolution of the inversion, and extensive seasonal cloudiness.  

Here we use TROPOMI observations for 2019 to quantify methane emissions from China at up 

to 0.25o ×0.3125o (~ 25 × 25 km2) resolution and with attribution to different source sectors. Our 

inversion uses the Chinese national inventory reported to the UNFCCC as prior information so 

that our results are directly relevant for evaluating that inventory, and includes an improved prior 

spatial distribution of methane emissions from the coal sector (Sheng et al., 2019). We apply an 

analytical solution to the Bayesian inference of methane emissions (Jacob et al., 2016), which 

has the advantage of providing closed-form error statistics and hence information content as part 

of the solution, and also allows us to conduct an ensemble of sensitivity inversions at minimal 

added computational effort.  100 

 

2. Data and Methods 

We conduct the inversion of TROPOMI data for the full year of 2019 over the East Asia domain 

of Fig. 1 (15o-55o N, 70o-140o E) at up to 0.25o×0.3125o resolution. In this section we describe 

the TROPOMI observations (Sect. 2.1), the prior emission estimates (Sect. 2.2), the GEOS-

Chem chemical transport model used as forward model for the inversion (Sect. 2.3), the 

analytical inversion method (Sect. 2.4), the sectoral attribution of inversion results (Sect. 2.5), 

and the ensemble of sensitivity inversions (Sect. 2.6).  

2.1 TROPOMI observations  

TROPOMI is onboard the polar sun-synchronous Sentinel-5 Precursor satellite with a ~ 13:30 110 

local overpass time. The instrument observes methane columns by solar backscatter in the 2.3 

μm absorption band with near-uniform sensitivity down to the surface. The column-averaged 

dry-air methane mixing ratio (XCH4) is retrieved with a full-physics algorithm (Butz et al., 2011) 

together with surface and atmospheric scattering properties. We use the recently updated 

TROPOMI version 2.02 retrieval from the Netherlands Institute for Space Research (Lorente et 

al., 2021; http://www.tropomi.eu/data-products/methane), filtering out low-quality retrievals 

(‘qa_value’ < 0.5) and surfaces above 2 km where the stratospheric contribution to the column is 

large (Shen et al., 2022). We further adopt the ‘blended albedo’ filter suggested in Lorente et al 

(2021) to remove snow- or ice-covered scenes identified by blended albedo exceeding 0.8 from 

October to April. 120 

 

Global mean bias in the TROPOMI observations is inconsequential for regional inversions 

because it can be incorporated in the boundary conditions (defined as the edges of the study 

domain), and random error (precision) is effectively reduced through the large number of 

observations (Fig. 1). More problematic is spatially variable bias, which corrupts the information 

on methane concentration gradients used to optimize emissions in the inversion. This variable 

bias typically arises from aliasing of surface spectral features into the XCH4 retrieval. Lorente et 

al. (2021) estimated a variable bias of 5.6 ppb for the TROPOMI XCH4 full-physics retrieval as 

the spatial standard deviation of the mean difference with ground-based methane observations 

from the Total Carbon Column Observing Network (TCCON; Wunch et al., 2011). This is below 130 
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the threshold requirement of 10 ppb recommended by Buchwitz et al. (2015) for use of satellite 

data in regional inversions. However, the TCCON network is sparse and includes no sites in 

China.  

Qu et al. (2021) conducted a more thorough worldwide analysis of variable bias in the 

TROPOMI version 1.03 data (Hu et al., 2018) by using the GOSAT observations as reference on 

a 4o×5o grid. GOSAT is much less subject to retrieval artifacts because of its higher spectral 

resolution and its use of the CO2 proxy retrieval method in the 1.65 μm absorption band (Parker 

et al., 2020). Qu et al. (2021) found TROPOMI variable biases typically in the range 9-13 ppb 

but exceeding 20 ppb for some regions. Repeating this analysis for our East Asia domain with 

TROPOMI version 2.02 (Lorente et al., 2021) on the 0.25o×0.3125o grid, we find a mean 140 

TROPOMI-GOSAT difference of -9.9 ± 17.6ppb (Fig. 2a). The mean difference is largely driven 

by TROPOMI values below 1830 ppb at high latitudes (Fig. 1), likely reflecting snow-covered 

surfaces that are not successfully removed by the blended albedo filter. The standard deviation of 

the difference (measure of variable bias) is relatively high in part due to the high spatial 

resolution in our analysis, which also means that a higher bias threshold is acceptable because 

methane enhancements are larger. Here we exclude TROPOMI observations that show 

discrepancies larger than 20 ppb compared to GOSAT. The mean TROPOMI-GOSAT difference 

after these outlying data have been excluded is -3.6 ± 9.1 ppb with no evident regional structure 

(Fig. 2b).  

Fig. 1 shows the mean TROPOMI observations for 2019 retained in our analysis on the 150 

0.25o×0.3125o grid, along with the number of observations in each grid cell. We assimilate m = 

5907939 TROPOMI retrievals over the inversion domain. There are few observations in western 

China and no observations at all in Tibet because we have excluded locations with surface 

altitude above 2 km following Shen et al. (2022). 

 

2.2 Prior emissions 

 

Fig. 3 shows the prior estimates of emissions from different sectors over the inversion domain 

and Table 1 gives national totals for China. Anthropogenic emissions for China are from the 

latest 2014 national governmental report to the UNFCCC (UNFCCC, 2020). Emissions from 160 

coal and oil/gas exploitation are spatially allocated to the 0.25o×0.3125o GEOS-Chem grid using 

infrastructure information compiled by the Global Fuel Exploitation Inventory (GFEI v2; 

Scarpelli et al., 2022). This includes bottom-up information from Sheng et al (2019) for the 

distribution of China’s coal emissions. Other anthropogenic sources are spatially allocated using 

the EDGAR v4.3.2 inventory. Anthropogenic emissions outside of China are from GFEI v2 for 

fuel exploitation and from EDGAR v4.3.2 for other sectors. Wolf et al. (2017) produced an 

alternative global gridded inventory for livestock emissions but we find that it is too uniform 

over China, as Scarpelli et al. (2020a) previously found over Mexico, because they use livestock 

numbers resolved only by province and distribute them over all grasslands and shrublands. All 

anthropogenic emissions are assumed to be aseasonal, except for manure management for which 170 

we apply temperature-dependent corrections following Maasakkers et al., (2016) and rice 

paddies for which we apply seasonal corrections derived from a biogeochemical model (B. 

Zhang et al., 2016).    
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Wetland emissions are monthly means for 2019 on a 0.5o×0.5o grid from the nine-member high-

performance subset of the WetCHARTs v1.3.1 inventory ensemble that best fits global GOSAT 

inversions (Ma et al, 2021). Other natural sources include daily open-fire emissions from the 

Global Fire Emissions Database version 4s (GFED4s; van der Werf et al., 2017), termite 

emissions from Fung et al (1991), and geological seepage emissions from Etiope et al (2019) 

scaled to a global magnitude of 2 Tg a-1 following Hmiel et al (2020).  180 

 

2.3 GEOS-Chem chemical transport model  

 

A nested version of the GEOS-Chem chemical transport model (13.0.0; 

https://doi.org/10.5281/zenodo.4618180) is used as the forward model in the inversion to relate 

methane emissions to atmospheric observations. The model is driven by GEOS-FP reanalysis 

meteorological fields with 0.25o ×0.3125o spatial resolution and 3-hour temporal resolution (1-h 

for mixing depths and surface fields) from the NASA Global Modeling and Assimilation Office 

(Lucchesi, 2013). We conduct GEOS-Chem model simulations at 0.25o ×0.3125o resolution over 

the study domain of Fig. 1 for 2019. The nested version of GEOS-Chem is similar to that used in 190 

previous regional inversions of TROPOMI observations (Y. Zhang et al., 2020; Shen et al., 

2021) and uses 3-hour dynamic boundary conditions from the global GEOS-Chem simulated 

vertical profiles at 2o× 2.5o resolution for 2019 with posterior methane emissions optimized by 

TROPOMI observations (Qu et al., 2021). The global simulation includes methane sinks from 

atmospheric oxidation and uptake by soils, but these are inconsequential in the nested version 

because the ventilation time scale for the nested domain is much shorter than the methane 

lifetime. We convolve the GEOS-Chem vertical profiles of methane dry mixing ratios with the 

TROPOMI averaging kernel vectors and prior vertical profiles (Varon et al., 2022) to obtain the 

model simulation of XCH4 for comparison to the TROPOMI observations in the inversion.  

 200 

Bias in boundary conditions is critical to avoid as it would propagate to biases in the inversion.  

The boundary condition vertical profiles obtained from Qu et al. (2021) avoids systematic drift 

of the simulation from the TROPOMI observations, but some bias could remain because Qu et 

al. (2021) used an earlier version (1.03) of the TROPOMI data and the data would not be 

expected to perfectly correct the model anyway. We therefore further correct the boundary 

conditions on each side of our domain (north, south, west, and east) and for each season as part 

of the inversion (Table S1). Initial conditions on 1 January 2019 are also from the GEOS-Chem 

simulations by Qu et al (2021) and uniformly scaled to match the mean column mixing ratios 

retrieved from TROPOMI. 

2.4. Analytical inversion 210 

The state vector 𝒙 to be optimized in the inversion includes spatially resolved emissions within 

the inversion domain and seasonal boundary conditions. We could technically carry out the 

inversion on the 0.25o × 0.3125o model grid, but satellite observations do not have sufficient 

information to constrain emissions in such detail everywhere; attempting to do so would 

introduce large smoothing errors (Wecht et al., 2014; Turner and Jacob, 2015).Here we use the 

Gaussian mixture model (GMM) of Turner and Jacob (2015) to define emission patterns that can 

be effectively constrained by the TROPOMI observations as informed by the prior estimates. 

The GMM functions are selected with the goal of retaining native resolution for strong localized 

source features while merging weak source regions as given by the prior emission field. 
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Specifically, we project methane emissions at 0.25o × 0.3125o resolution onto K-dimensional 220 

Gaussian functions where K is the number of similarity criteria, in this case 14 similarity factors 

on the 0.25o×0.3125o grid including longitude and latitude (spatial proximity), and the prior 

emission patterns by sector (Sect. 2.2). Each multivariate Gaussian is hence built to characterize 

the location (determined by longitude and latitude), emission magnitude and distribution from 

different sectors (Turner and Jacob, 2015). The parameters of the Gaussians are estimated using 

an expectation-maximization algorithm (Dempster et al., 1977) to find the maximum likelihood. 

We choose to use 600 Gaussian functions, based on previous experience in inversions for North 

America (Turner and Jacob, 2015; Maasakkers et al., 2021). The inversion optimizes the 

amplitudes for each Gaussian. We also optimize 16 boundary conditions (four seasons × four 

boundaries) for a total of n = 616 state vector elements. Construction of the GMM does not 230 

include information from the observations and therefore might not resolve hotspots in the 

observations that are not present in the prior emission patterns. Nesser et al. (2021) proposed an 

alternative approach where information from the observations is integrated into the emission 

patterns to be optimized.  

We perform the inversion with lognormal error probability density functions (pdfs) for prior 

emissions (Maasakkers et al., 2019; Lu et al., 2022). Specifically we optimize ln(x) instead of x, 

with the prior errors on ln(x) (refer to hereafter as 𝒙′) following a Gaussian distribution. This 

enforces positivity of the solution and better captures the high tail of the frequency distribution 

of emissions than a normal error pdf. High-tailed emissions have been observed for all sectors 

including oil/gas (Yuan et al., 2015; Zavala-Araiza et al., 2015; Lyon et al., 2015; Alvarez et al., 240 

2018), coal (Sadavarte et al., 2021), waste (Maasakkers et al., 2022), and livestock(Duren et al., 

2019).  

 
Bayesian inference of the maximum a posteriori (MAP) estimate for the state vector x assuming 

normal error pdfs involves minimization of the cost function J(x) (Brasseur and Jacob, 2017): 

𝐽(𝒙′) = (𝒙′ − 𝒙′𝒂)T𝐒′𝐚
−𝟏(𝒙′ − 𝒙′𝒂) + 𝛾(𝒚 − 𝐊′𝒙′)T𝐒𝐨

−𝟏(𝒚 − 𝐊′𝒙′)                                    (1) 

where 𝒙′ = ln(𝒙) and 𝒙𝒂
′ = ln(𝒙𝒂),  𝒙𝒂 (n × 1) is the prior emission estimate (Sect. 2.2), and y 

(m×1) is the m-dimensional vector of TROPOMI observations (m = 5907939). 𝐒𝐚
′  (n × n) is the 

prior error covariance matrix in log space and 𝐒𝐨 (m × m) is the observational error covariance 

matrix. 𝐊′ = 𝜕𝒚 𝜕𝒙⁄ ′ (m × n) is the Jacobian matrix that describes the sensitivity of observations 250 

𝒚 to 𝒙′,and 𝐊′𝒙′ = 𝐊𝒙 where K = 𝜕𝒚 𝜕𝒙⁄  is the sensitivity of 𝒚 to 𝒙, which can be readily 

represented by the GEOS-Chem forward model (Jacob et al., 2016). The relationship between 

methane emissions and concentrations (or more precisely, concentration enhancement above 

background mixing ratios) in the nested GEOS-Chem simulation is linear (omitting the minimal 

effect of potential errors in initial conditions), so that K defines the forward model for the 

purpose of the inversion. We hence derive 𝐊′𝑖,𝑗 =
𝜕𝑦𝑖

𝜕ln (𝑥𝑗)
= 𝑥𝑗

𝜕𝑦𝑖

𝜕𝑥𝑗
= 𝑥𝑗𝐊𝑖,𝑗, where i and j 

represent the indices of the observation and the state vector elements.  𝛾 is a regularization factor 

to avoid over/underfit to observations. 𝛾 is needed because the prior and observational error 

covariance matrices can only be roughly estimated and is assumed here to be diagonal for lack of 

better information and convenience of computation.  260 
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We assume a geometric standard deviation factor (𝜎𝑔) of 2 for the lognormally distributed errors 

in 𝒙 and construct the 𝐒𝐚
′  matrix (with diagonal elements 𝑠𝑎

′ ) following √𝑠𝑎′ = ln (𝜎𝑔) 

(Kirkwood, 1979; Limpert et al., 2001). Observational error standard deviations (square roots of 

diagonal terms of So) include contributions from instrument error, retrieval error, representation 

error, and forward model error. We calculate the sum of these errors using the residual error 

method (Heald et al., 2004) on the basis of the XCH4 differences Δ = 𝒚 − 𝒚𝑮𝑬𝑶𝑺−𝑪𝒉𝒆𝒎,𝒑𝒓𝒊𝒐𝒓 for 

individual 0.25o× 0.3125o grid cells between individual TROPOMI observations and the GEOS-

Chem simulation with prior emissions. The temporal mean 2019 difference Δ̅ =
𝒚 − 𝒚𝑮𝑬𝑶𝑺−𝑪𝒉𝒆𝒎,𝒑𝒓𝒊𝒐𝒓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for each grid cell is to be corrected in the inversion while the standard 270 

deviation of the residual difference Δ − Δ̅ is taken as the observational error standard deviation, 

adjusted up to a minimum value of 10 ppb following Maasakkers et al (2019) if necessary 

(10.4% of the retrievals). The resulting observational error standard deviation averages 13.4 ppb, 

which agrees closely with previous TROPOMI inverse analyses and is mostly due to retrieval 

error (Shen et al., 2021; Qu et al., 2021). Sparse matrix algebra is applied wherever possible in 

matrix calculations, making use of the diagonal structure of the error covariance matrices 𝐒𝐚
′  and 

𝐒𝐨. 

As mentioned earlier, the Jacobian matrix 𝐊′ is nonlinear and can be immediately transformed 

following 𝐊′𝑖,𝑗 = 𝑥𝑗𝐊𝑖,𝑗. Here we construct K column by column, by perturbing individual 

elements xi of the state vector independently and running GEOS-Chem forward model 280 

simulations to obtain the columns ∂y/∂xi. These simulations are readily achievable with 

massively parallel computing.  

The optimization problem is nonlinear and needs to be solved iteratively. We approach the 

solution using the Levenberg-Marquardt method (Rodgers, 2000):  

𝒙′
𝑵+𝟏 = 𝒙′

𝑵 + (𝛾𝐊𝐍
′ 𝐓

𝐒𝐨
−𝟏𝐊𝐍

′ + (1 + 𝑘)𝐒𝐚
′−𝟏)

−𝟏
(𝛾𝐊𝐍

′ 𝐓
𝐒𝐨

−𝟏(𝒚 − 𝐊𝒙𝑵) − 𝐒𝐚
′ −𝟏(𝒙′

𝑵 − 𝒙𝒂
′ ))   (2) 

𝑘 is a coefficient for the iterative approach, and we tested three methods to set 𝜅: 

(1) κ is set to 100 to start and is gradually decreased as the solution is approached, i.e., 𝜅 =
101 − max( 𝑁, 101) where N is the iteration index;  

(2) 𝜅 is set to 100 for iterations 𝑁 ∈ [1,20); 10 for 𝑁 ∈ [21,40); 1 for 𝑁 ∈ [41,60); and 0 for 

𝑁 > 60; 290 

(3) 𝜅 is fixed at 10.  

We find that using 𝜅 = 10 converges faster with no difference in results compared to the other 

two methods, and adopt that method in what follows. We iterate on Eq. (2) until the maximum 

difference in state vector elements between two consecutive iterations (𝒙𝑵
′  and 𝒙𝑵+𝟏

′ ) is smaller 

than 0.5%, at which point we adopt  𝒙′̂ = 𝒙𝑵+𝟏
′  as the best posterior estimate. It takes the base 

inversion 139 iterations to converge to the solution.  

It is of critical importance to discuss if the Gaussian transformation in Eq. (1) could arrive at a 

best linear unbiased estimator (BLUE) solution (Cohn, 1997). As 𝒙′ − 𝒙𝒂
′   ~ 𝑁(0, 𝐒𝐚

′ ) and 𝒚 −
𝐊′𝒙′ = 𝒚 − 𝐊𝒙  ~ 𝑁(0, 𝐒𝐨) (Fig. S1), both the prior and observational errors are Gaussian with 
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zero mean; there is a non-linearity relationship between 𝒙′ and 𝒚 that are linked by 𝐊′. Our 300 

analytical transformation thus conforms to the case of a ‘Gaussian anamorphosis’ defined by 

Bocquet et al (2010), for which a BLUE solution can be properly carried out; a weak point is that 

the Jacobian matrix may be nonlinear, which is however sometimes the case in particular if the 

original Jacobian matrix is linear. Previous studies have applied this approach to transform non-

Gaussian problems (Fletcher et al., 2010; Brioude et al., 2011; Saide et al., 2015; Cui et al., 

2019). We acknowledge that those studies assumed non-Gaussian errors for both the prior 

information and the observations, while our work only assumes log-normally distributed errors 

on the prior state vector.  

Rodgers (2000) indicated that the solution of a non-linear problem using the Levenberg-

Marquardt method can be applied to obtain the posterior error covariance matrix 𝐒′̂: 310 

𝐒′̂ = (γ𝐊′𝐓𝐒𝐨
−𝟏𝐊′ + 𝐒𝐚

′−𝟏)−𝟏                      (3) 

with the averaging kernel matrix A quantifying the sensitivity of the solution to the true value:  

𝐀 =
𝛛𝒙′̂

𝛛𝒙′
= 𝐈𝐧 − �̂�′𝐒𝐚

′−𝟏                                                (4) 

where 𝐈𝐧 is the identity matrix. The trace of A measures the number of independent pieces of 

information on 𝒙′ obtained from the observations, and is often referred to as the degrees of 

freedom for signal (DOFS). The diagonal terms of A define the averaging kernel sensitivities, 

which quantify the extent to which the solution is informed by the observations within the 

inversion framework. They measure the actual error reduction if the inversion framework is 

correct, but errors in inversion parameters such as prior emission distributions can affect this 

interpretation (Yu et al., 2021). An alternative and better way to estimate posterior errors is to 320 

generate an ensemble of sensitivity inversions (Sect. 2.6).  

The optimal value of 𝛾 can be determined following Lu et al. (2021) so that the sum of state 

vector terms in the posterior estimate of the cost function, 𝐽𝑎(𝒙′̂) = (𝒙′̂ − 𝒙′𝒂)
T

𝐒𝐚
′−𝟏(𝒙′̂ − 𝒙′𝒂)  

has value of ~𝑛 ±  √2𝑛, which is the expected value (±1 standard deviation) from the Chi-

square distribution with n degrees of freedom. We find in this manner an optimal 𝛾 value of 

0.015 as the best fit for our TROPOMI inversion. This is smaller than a previous regional 

TROPOMI inversion at 0.25o×0.3125o resolution (γ=0.25 in Shen et al., 2021) because of the 

much larger number of observations per state vector element (m/n) in our work. We also 

conducted sensitivity inversions using 𝛾 =0.005 and 0.03 ns as described in Sect. 2.6.    

The MAP estimate in log space is for the median of emission but not for the mean; mean 330 

emissions are however necessary for spatial aggregation and sectoral attribution purposes. Here 

we make use of the posterior error covariance matrix from Eq. (3) to infer the mean emissions 

from the median following the lognormal distribution statistics 𝑥𝑚𝑒𝑎𝑛 = 𝑥𝑚𝑒𝑑𝑖𝑎𝑛exp (
𝑠′̂

2
) , and the 

corresponding analytical posterior error covariance �̂� (with diagonal elements �̂� =

𝑥𝑚𝑒𝑎𝑛
2 exp (𝑠′̂ − 1) ), where 𝑠 ′̂ is the diagonal element of the posterior error covariance matrix in 

log space corresponding to that state vector element. We still use the normal error assumption for 

the boundary conditions elements of the state vector, with a prior error standard deviation of 10 

ppb. 
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2.5 Sectoral attribution of posterior emissions 

The posterior estimate of methane emissions for the GMM state vector can be readily mapped on 340 

the 0.25o×0.3125o grid by summation of the GMM elements, but it is also of interest to aggregate 

it spatially for inferring national totals including by source sector. This reduction in state vector 

dimension is readily done while preserving the information from the posterior error covariance 

matrix by using a summation matrix W to represent the linear transformation from the full state 

vector (n ×1) to the reduced state vector. Here we use the reduction of the state vector to 12 

sectors (Sect. 2.2) of aggregated emissions as an example to illustrate the construction of 𝐖. The 

GMM approach derives the relative weighting of each Gaussian on the p native-resolution grid 

𝐖𝟏 (𝑝 × 𝑛); 𝐖𝟏 thus allows the spatial allocation of posterior state vector to individual 

0.25o×0.3125o grid cell (Figs. 4c-d). 𝐖𝟏 is further multiplied by 𝐖𝟐 (12 × 𝑝), the fractional 

contribution of individual sectors to total grid cell emissions, to obtain the summation matrix 350 

𝐖 = 𝐖𝟐𝐖𝟏 (12 × 𝑛 in this example).  

The posterior estimate of the reduced state vector (𝒙𝒓𝒆𝒅) is computed as 

�̂�𝒓𝒆𝒅 = 𝐖�̂�                                                                                                                         (5) 

and the posterior error covariance and averaging kernel matrices are then given by 

 

�̂�𝐫𝐞𝐝 = 𝐖�̂�𝐖𝐓                                                                   (6) 

𝐀𝐫𝐞𝐝 = 𝐖𝐀𝐖∗                                             (7) 

where 𝐖∗ = (𝐖𝐓𝐖)−𝟏𝐖𝐓 is the Moore-Penrose pseudo inverse (Calisesi et al., 2005). 

2.6 Error characterization and inversion ensemble  

The sections above describe our base inversion with solution defined by (�̂�, �̂�). By using the 360 

regularization factor 𝛾, we prevent overfit to the observations and therefore �̂� is a fair 

representation of the uncertainty within our choice of inversion parameters. However, there is 

uncertainty in these parameters, and we therefore perform an ensemble of sensitivity inversions 

with different choices. The sensitivity inversions include (1) using ln(1.5), and ln(2.5) for the 

prior error standard deviations instead of ln(2); (2) using 0.005 and 0.03 for the regularization 

factor 𝛾 instead of 0.015; and (3) using 5 and 20 ppb for the prior error standard deviation in the 

boundary condition elements of the state vector instead of 10 ppb. We also perform sensitivity 

inversions assuming normally distributed errors with prior error standard deviation √𝑠𝑎=50%. 

Combination of these perturbations to our inversion framework generates 36 members in the 

inversion ensemble. The uncertainty in posterior estimates reported here is taken as the greater of 370 

the range of solutions given by the inversion ensemble and the 2-sigma error inferred from the 

diagonal of �̂�, and is generally determined by the ensemble (Fig. S2). 

 

3. Results 

3.1 Evaluation of posterior emission estimates 
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Fig. 4 compares the prior and posterior estimates of emissions mapped on the 0.25o ×0.3125o 

grid. It also shows the averaging kernel sensitivities (diagonal terms of the averaging kernel 

matrix), which measure the ability of TROPOMI observations to determine the posterior solution 

independently of the prior estimate (0=not at all; 1=perfectly). High averaging kernel 

sensitivities reflect a combination of high observation density and large prior emissions. We 380 

achieve high sensitivities to observations in major source regions, with 167 independent pieces 

of information (DOFS) out of the 600 Gaussian state vector elements.  

Comparison of GEOS-Chem simulations using posterior versus prior emissions indicates an 

improved ability of the posterior emissions to fit the TROPOMI observations (Fig. 1). The mean 

bias over the inversion domain decreases from 7.8 to 0.4 ppb while the RMSE decreases from 

16.8 to 13.6 ppb. The inversion effectively corrects the mean bias from using the prior emissions. 

The ability to decrease the RMSE is limited by the retrieval error on individual observations.  

We independently evaluate the posterior estimate by comparison to in situ surface observations 

from the GLOBALVIEWplus CH4 ObsPack v4.0 database compiled by the National Oceanic and 

Atmospheric Administration (NOAA) Global Monitoring Laboratory (Schuldt et al., 2021). There 390 

are five sites in East Asia in 2019, all in relatively remote locations and with near-weekly sampling 

schedule (Fig. 5 and Table S2). The GEOS-Chem model bias for 2019 annual mean concentrations 

across the five sites is -4.1 ± 9.5 ppb using prior emissions and -3.8 ± 4.7 ppb using posterior 

emissions. There is little decrease in the mean bias, which is consistent with the mean bias of -3.4 

ppb for TROPOMI relative to TCCON (Lorente et al., 2021) and implies that both the prior and 

posterior simulations are effectively unbiased in the mean. The factor of 2 lower standard deviation 

in the posterior simulation indicates a better fit to observations. The RMSE for individual 

observations decreases only slightly from 23.7 ppb to 20.8 ppb because it is limited by the forward 

model transport error, previously estimated by Lu et al., (2021) at 20 ppb for the 

GLOBALVIEWplus CH4 ObsPack database using the residual error method. The model transport 400 

error is larger for surface than satellite observations because the amplitude of variability is larger 

and includes uncertainties in boundary layer vertical mixing. 

Qu et al (2021) previously reported overcorrections and inconsistencies with respect to GOSAT 

in their global TROPOMI inversion results over southeastern China. They attributed the problem 

to spatial overlap of coal and rice emissions, and to seasonal cloudiness correlated with the peak 

in rice emissions. We have more confidence in our results for several reasons. First, our higher 

spatial resolution compared to the 2o×2.5o of Qu et al (2021) allows better separation of coal and 

rice emissions. Second, we use an improved spatial distribution of coal emissions (Sheng et al., 

2019) compared to the EDGAR v4.3.2 inventory in Qu et al. (2021). Third, we use version 2.02 

of the TROPOMI retrieval with additional filters, and exclude data inconsistent with GOSAT 410 

(Fig. 2), whereas Qu et al. (2021) used TROPOMI v1.03 data with quality flags but no other 

filtering. Our results show higher averaging kernel sensitivities over southeastern China than Qu 

at al. (2021) and no overcorrections (Fig. 1).  

3.2 National and sectoral emissions for China 

Table 1 compiles the total national and sectoral posterior emissions for China. Sectoral 

attribution assumes that the posterior/prior emission ratios for a given 0.25o×0.3125o grid cell 

(Fig. 4c) apply equally to all prior emission sectors within that grid cell, so that the combination 

of Fig. 4c and Fig. 3 gives the spatial distribution of the change in emission by sector. Posterior 

estimates of total, anthropogenic, and natural emissions for China are 70.0 (61.6-79.9), 65.0 
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(57.7-68.4), and 5.0 (3.9-11.6) Tg a-1, respectively, where the parentheses indicate the 420 

uncertainty range in the inversion solution as described in Sect. 2.6. The averaging kernel 

sensitivities for the national total and anthropogenic posterior emission estimates are 0.91, 

indicating that these estimates are largely determined by the TROPOMI observations with little 

influence from the prior estimate. Our best posterior estimate of 65 Tg a-1 for Chinese 

anthropogenic emissions is 21% higher than the 2014 value of 53.6 Tg a-1 reported by the 

Chinese government to the UNFCCC, and the range of our inversion results gives us high 

confidence that the reported emissions are too low. 

Our ability to separate the contributions from different sectors to the posterior emission estimates 

for China can be evaluated by examining the error correlations in the reduced posterior error 

covariance matrix (Sect. 2.5), as shown in Fig. 6. We find that landfills and wastewater treatment 430 

cannot be effectively separated in the posterior solution (posterior error correlation coefficient r 

= 0.95), because they have similar spatial distributions associated with population (Fig. 3), and 

we thus group them as a single waste sector for further analysis. The ‘Other’ sector, which is 

mostly associated with urban emissions, also has strong error correlations with waste (r = 0.66-

0.75). Other sectors can be successfully separated, as shown by the posterior error correlations in 

Fig. 6. We find that most of the posterior error correlation coefficients between sectors are lower 

than 0.2. For example, there is little error correlation (r = -0.2 to 0.1) between coal and other 

sectors. The global TROPOMI inversion by Qu et al (2021) found it difficult to separate 

emissions between coal and rice paddies, but here we find a low error correlation of -0.04 that 

reflects our much higher spatial resolution. The main natural emission sector is wetlands, which 440 

is effectively separated from all other sectors except rice (r = 0.29).  

We can now attribute the 21% underestimate of anthropogenic emissions in the Chinese 

government report to the UNFCCC, as given in Table 1. We find large upward corrections in 

emissions from oil (+147%), gas (+61%), livestock (+37%), rice paddies (+34%), and waste 

(+41%), but a downward correction in coal emissions (-15%). Averaging kernel sensitivities for 

all anthropogenic sectors are high (0.71-0.91), indicating strong constraints from the 

observations. An exception is the gas sector (0.31), for which emissions are relatively small. The 

uncertainty ranges of the inversion results for the different sectors are small, indicating an 

insensitivity to different inversion assumptions and high confidence in the posterior sectoral 

emissions in the base inversion.    450 

The inversion returns a larger estimate of 5.0 (3.9-11.6) Tg a-1 for natural sources relative to 3.2 

Tg a-1 in the prior estimate, mainly driven by increased contributions from wetlands (+1.1 Tg a-1) 

and termites (+0.5 Tg a-1). Averaging kernel sensitivity for wetlands is moderately high (0.61) 

but low for the other small natural sources.  

The base inversion assuming a lognormal error distribution for prior emissions returns larger 

posterior Chinese emissions from all sectors relative to a normal error assumption, as would be 

expected from the asymmetry of the lognormal function. The largest differences are for the oil and 

gas sectors, where the sensitivity inversion assuming a normal error distribution yields posterior 

estimates respectively 22% and 21% lower than the base inversion. The oil and gas sectors are 

particularly high-tailed in their frequency distributions of emissions (Zavala-Araiza et al., 2015; 460 

Lyon et al., 2015; Brandt et al., 2016; Alvarez et al., 2018). 
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4. Discussion  

By using the official Chinese inventory reported to the UNFCCC as prior estimate of methane 

emissions, our inversion can usefully evaluate that inventory and guide its improvement.  Here 

we discuss the significance and implications of our results for different sectors, placing them in 

the context of previous literature, and we identify specific issues requiring further work.  

Fig. 7 compiles the total and sectoral anthropogenic emissions in China reported by top-down 

and bottom-up studies for the past decade. Our total posterior emission estimate of 65 (57.7-

68.4) Tg a-1 is consistent with the EDGAR inventories but this reflects canceling differences for 470 

individual sectors as shown in the bottom panel. We estimate higher national total emissions than 

Peng et al (2016), driven by their much smaller rice and waste emissions. Our estimate is higher 

than the best estimates from previous top-down studies (43-62 Tg a-1), which used EDGAR prior 

estimates for spatial distribution, and were conducted at much coarser resolutions (2o×2.5o-4o×5o 

versus 0.25o×0.3125o) and with much sparser observations (GOSAT versus TROPOMI) than 

ours. Deng et al (2022) compiled results from 11 GOSAT inversions for 2010-2017 using 

Chinese UNFCCC totals as prior estimate and showing a range of 40-62 Tg a-1. Although the 

emission estimates in Fig. 7  are from different years, Lu et al. (2021) and Y. Zhang et al. (2021) 

reported an increasing Chinese emission trend of 0.4 Tg a-1 from inversion of 2010-2018 

GOSAT observations, which would only make a small contribution to the differences. The lower 480 

emissions in the previous top-down studies are mostly driven by downward revision of coal 

emissions relative to their prior estimates, and we find such a decrease too but not to the same 

extent. Our inversion uses an improved prior estimate of the distribution of coal emissions in 

China with much larger contribution from southern China (Sheng et al., 2019), so that some of 

the previous corrections attributed to rice agriculture might reflect coal emissions instead. 

Another striking difference in our work relative to others is the much higher livestock emissions. 

We discuss the coal, oil/gas, livestock, and waste sectors in more detail below.  

4.1 Coal 

Our downward correction of coal emissions compared to the UNFCCC report is driven by both 

Shanxi province and southwestern China, which are the two largest coal producing regions in 490 

China (Zhu et al., 2017). This could reflect (1) overestimate of EFs in the UNFCCC report, (2) 

under-accounting of surface mines, and (3) increasing coal methane utilization. With regard to 

(1), many high methane-content coal mines with inefficient coal production have been closed in 

the past decade (Wang et al., 2020). Coal production has shifted from southern and eastern China 

to northwestern China (including Shanxi) with abundant coal reserves and where methane 

content is relatively low (Gao et al., 2021; Liu et al., 2021). With regard to (2), a previous study 

(Gao et al., 2021) indicated an underestimated share of surface mining in the UNFCCC report 

for China. The methane emission intensity of surface mining is ten times lower than underground 

mining (Palmer et al., 2021). With regard to (3), coal mine methane (CMM) utilization in China 

has greatly increased in the past decade (Y. Lu et al., 2021).  500 

However, uncertainty in the spatial distribution of coal emissions remains a major obstacle for 

top-down studies. Different bottom-up inventories are inconsistent in their estimates of the 

number of mines in China (e.g., 324 in EDGAR v4.2, 4243 in EDGAR v4.3.2, and 10963 in 

Sheng et al., 2019). Mine closures and regional shifts in coal production may also be difficult to 

track (Gao et al., 2021). New satellite observations of methane plumes from individual point 

sources could provide important new information for geolocation and quantification of emissions 
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from coal mines, as shown for the Shanxi province by Guanter et al. (2021) and Sánchez-García 

et al. (2022).   

4.2 Oil/gas   

Our posterior estimate of oil/gas emissions is higher than the UNFCCC report and Peng et al 510 

(2016), but lower than EDGAR v4.3.2 and v6. The previous top-down estimates in Fig. 7 range 

from 0.7 Tg a-1 by Lu et al (2021) to 5.5 Tg a-1 by Miller et al (2019), and our estimate is in mid-

range. Scarpelli et al (2022) found that the oil/gas emissions from Lu et al (2021) were heavily 

influenced by the low GFEI v1 inventory (Scarpelli et al., 2020b) used as their prior estimate. 

The high emissions in Miller et al (2019) could reflect their use of the EDGAR v4.2 inventory as 

prior estimate with spuriously high emissions from pipelines (Scarpelli et al., 2020b). 

We find that the oil sector has the largest relative upward correction to the UNFCCC inventory 

(+147%) among all sectors. The correction might be attributed to methane leakage from oil 

extraction not fully accounted for in the UNFCCC report (Rutherford et al., 2021; Deng et al., 

2022). Lauvaux et al (2022) used 2019-2020 TROPOMI observations to identify a number of 520 

ultra-emitters (>25 tons h-1 on the 5.5×7 km2 grid) from oil production fields; their identified 

ultra-emitters in China are consistent with the locations where we find large oil upward 

adjustments.  

Gas emissions for China in the UNFCCC report (0.18 Tg a-1) are dominated by distribution 

(0.125 Tg a-1) with only small contributions from production (0.03 Tg a-1) and transmission 

(0.025 Tg a-1). This is in part because of low EFs from production, and in part because a large 

fraction of the gas used in China is imported. The assumed EF for gas production in the 

UNFCCC report is 1.3×10-10 Gg per m3 of gas production, much lower than in the IPCC (2006) 

EF guidelines (lower-end value of 3.8×10-10 Gg per m3 of gas production for developed 

countries). 42% of the gas used in China in 2019 was imported (EIA, 2020). 530 

Our inversion returns a posterior emission for the gas sector of 0.29 Tg a-1 including 0.16 Tg a-1 

from distribution, 0.07 Tg a-1 from production, and 0.06 Tg a-1 from transmission. However, the 

averaging kernel sensitivity is low (0.3) and the distribution subsector is difficult to disentangle 

from the waste sector because it is mostly urban. Alvarez et al (2012) suggested that the life-

cycle loss rate from gas production should be less than 3.2% for a coal-to-gas transition to be of 

climate benefit. Our posterior estimate indicates a loss rate of 1.7 (1.3-1.9) % for China, 

assuming 92% methane gas by volume (Scarpelli et al., 2022). 

China’s gas industry has entered a rapid development stage driven by the domestic coal-to-gas 

transition policy (Qin et al., 2018); China’s gas production in 2019 was 42% higher than in the 

2014 year of the UNFCCC inventory (EIA, 2020). The small loss rate suggests that the transition 540 

will be beneficial for climate, but is somewhat misleading because of the large fraction of 

imported gas. 25% of that imported gas is from Turkmenistan (EIA, 2020), where emissions 

from gas production are exceedingly high (Varon et al., 2019; Ikakulis-Loixalte et al., 2022; 

Lauvaux et al., 2022). A more complete accounting of the loss rate in China from gas production 

would factor in the effect of international trade.   

4.3 Livestock 

Our estimate of Chinese livestock emissions is higher than any previous study (Fig. 7). This is 

because our inversion corrects livestock emissions upward in northwestern and northeastern 



14 
 

China, where existing bottom-up inventories show weak emissions (Lin et al., 2021). Previous 

GOSAT inversions had poor observational coverage over these regions (Fig. 5 in Qu et al., 550 

2021), and their inversion solutions hence cannot depart sufficiently from the low bottom-up 

inventories used as prior estimates. However, TROPOMI observations provide strong constraints 

as illustrated by the high averaging kernel values (Fig. 3).  

4.4 Waste 

We estimate higher waste emissions than the 2010 Peng et al (2016) inventory and the 2014 

UNFCCC report, and we attribute this in part to the rapid development of wastewater treatment 

in China. China has enacted major policies on water pollution prevention since 2014 (Xu et al., 

2020), including new standards for sewage discharge (Han et al., 2016). The number of 

wastewater treatment plants increased by 44% from 2014 to 2019 (Xu et al., 2020). Solid waste 

generation has also increased in the past decade (Sheng et al., 2021) but an increasing fraction is 560 

incinerated rather than landfilled (Liu et al., 2021).  

 

5. Conclusions 

We estimated 2019 methane emissions in China by high-resolution inversion of TROPOMI 

satellite observations. Our inversion uses as prior estimate the Chinese national inventory 

reported to the UNFCCC so that our results are directly relevant for evaluating and improving 

that inventory.  

Our inversion uses an analytical solution to the Bayesian inference of methane emissions from 

the TROPOMI observations, providing closed-form statistics on posterior errors and information 

content as part of the solution. It optimizes a 600-member Gaussian mixture model (GMM) of 570 

emissions, in which concentrated source regions are quantified at up to 0.25o×0.3125o (≈25×25 

km2) resolution while regions with weak emissions are spatially aggregated. We assume 

lognormal error distributions for the prior emissions, which allows better representation of the 

high-tailed component. The Jacobian sensitivity matrix constructed for our analytical solution 

enables immediate generation of an inversion ensemble to explore the dependence of the solution 

on uncertainties in inversion parameters. This ensemble is combined with the posterior error 

covariance matrix of the base inversion to provide a conservative estimate of errors on inferred 

emissions including from different sectors. Independent evaluation of inversion results with 

surface sites from the NOAA GLOBALVIEWplus CH4 ObsPack v4.0 database shows significant 

improvement in the ability to fit the observations. 580 

We estimate from the inversion a total emission for China of 70.0 (61.6-79.9) Tg a-1, where the 

parentheses indicate the uncertainty ranges. Total anthropogenic emission for China is 65.0 

(57.7–68.4) Tg a-1
 including 16.6 (15.6-17.6) Tg a-1 from coal, 2.3 (1.8-2.5) Tg a-1 from oil, 0.29 

(0.23-0.32) Tg a-1 from gas, 17.8 (15.1-21.0) Tg a-1 from livestock, 9.3 (8.2-9.9) Tg a-1 from 

waste, 11.9 (10.7-12.7) Tg a-1 from rice paddies, and 6.7 (5.8-7.1) Tg a-1 from other sources. Our 

inferred total anthropogenic emission for China is 21% higher than the national inventory 

reported by the Chinese government to the UNFCCC (53.6 Tg a-1). This reflects upward 

corrections to emissions from oil (+147%), gas (+61%), livestock (+37%), waste (+41%), and 

rice paddies (+34%), and a downward correction in coal emissions (-15%). 
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Our estimate of anthropogenic Chinese emissions is at the high end of the range of past inversion 590 

studies (43-62 Tg a-1) that used the much sparser GOSAT satellite observations, coarser 

resolution, and versions of the EDGAR inventory as prior estimates. We find in particular higher 

emissions from coal, livestock, and waste. The higher emission from coal may reflect our 

improved accounting of sources in southern China (Sheng et al., 2019) and a higher spatial 

resolution that allows us to better separate emissions from coal and rice paddies (Qu et al., 

2021). Our upward correction to livestock emissions is mostly in northwestern and northeastern 

China, where TROPOMI provides much denser information than was previously achievable 

from GOSAT. Our high estimate of emissions from waste may be driven in part by the large 

increase in wastewater treatment plants in China over the past decade. 

Our upward corrections relative to the Chinese government inventory are largest for oil and gas, 600 

even though the contributions from these two sectors to total national methane emissions are still 

small compared to other sectors. We find high emissions from oil production in the same 

locations where Lauvaux et al. (2022) identified ‘ultra-emitters’ in the TROPOMI data, 

suggesting that much of these emissions originate from malfunctioning or poorly operated 

equipment. Most of the gas emissions in China are from distribution, reflecting low emission 

factors from gas production but also a large share of imported gas. Emission from gas may 

increase in the future as China undergoes a coal-to-gas transition in energy policy (Qin et al., 

2018) with increasing domestic gas production. We derive a life-cycle loss rate of 1.7 (1.3-

1.9) % from gas production in China, lower than the 3.2% break-even point for a coal-to-gas 

transition to be beneficial for climate (Alvarez et al., 2012). However, this does not account for 610 

imported gas from countries such as Turkmenistan where emission per unit of gas production is 

exceedingly high.  
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Figure 1. TROPOMI observations of column-averaged dry methane mixing ratios (XCH4) over 

East Asia and comparison to GEOS-Chem simulations. (a) Mean observations for 2019 mapped 

on the GEOS-Chem 0.25o × 0.3125o grid. (b) Number of observations on that grid. (c) Mean 

differences between the GEOS-Chem simulation with prior emissions and observations. The 990 

spatiotemporal mean bias (MB) and root-mean-square error (RMSE) over the study domain are 

shown inset. (d) Same as (c) but for the GEOS-Chem simulation with posterior emissions. Thin 

black lines are Chinese provincial boundaries. 
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Figure 2. Comparison between 2019 TROPOMI and GOSAT observations of XCH4 over East 

Asia. (a) Scatter plot of daily observations on the GEOS-Chem 0.25o ×0.3125o grid. Green lines 

indicate absolute TROPOMI-GOSAT differences of 20 ppb and we exclude the outlying 

TROPOMI observations. (b) Spatial pattern of annual mean differences ΔXCH4 between 

TROPOMI and GOSAT observations after outlying TROPOMI data have been excluded. The 

mean difference is -3.6 ± 9.1 ppb. TROPOMI version 2.02 observations are from Lorente et al. 

(2021) and GOSAT version 9.0 observations are from Parker et al. (2020). 1010 
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Figure 3. Prior estimates of methane emissions used for the inversion. Coal, oil, and gas 

emissions are from the GFEIv2 gridded version of the national inventories from individual 

countries reported to the UNFCCC (Scarpelli et al., 2022). Other anthropogenic emissions for 

China are from its UNFCCC report with spatial allocation from EDGAR v4.3.2, while for other 

countries they are from EDGAR v4.3.2. Wetland emissions are 2019 monthly means of the nine-

member high-performance subset of the WetCHARTs inventory ensemble (Ma et al., 2021) and 1030 

are shown here as the annual means for 2019. White areas have emissions lower than 1x10-12 kg 

m-2 s-1. Total emissions for China are listed in Table 1. 
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Figure 4. Optimization of methane emissions over East Asia in 2019 from inversion of 1040 

TROPOMI observations. Results are from the base inversion and are shown on the 0.25o× 

0.3125o grid. (a) Prior estimates of methane emissions, summing the contributions from the 

sectors in Fig. 3 plus additional minor sectors as given in Table 1. (b) Posterior methane 

emissions from the TROPOMI inversion. (c) Posterior/prior emission ratios. (d) Averaging 

kernel sensitivities. The averaging kernel sensitivities are the diagonal elements of the averaging 

kernel matrix and display the ability of the observations to quantify emissions independently 

from the prior estimates (1 = fully, 0 = not at all). The degrees of freedom for signal (DOFS, 

defined as the trace of the averaging kernel matrix) is given inset.   
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Figure 5. Comparison of GEOS-Chem simulations of atmospheric methane concentrations to in 

situ observations from five surface sites in 2019 compiled in the NOAA GLOBALVIEWplus 

CH4 ObsPack v4.0 database. The five sites are described in detail in Table S2. The annual mean 

GEOS-Chem model biases and root-mean-square errors (RMSEs) for individual near-weekly 

observations at each site are shown. The insets give spatial mean biases ± standard deviations for 

the ensemble of sites and corresponding RMSEs.  1060 
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Figure 6. Error correlation coefficients (r) between posterior estimates of methane emissions 

from different source sectors in China. Error correlations measure the ability of the inversion to 1070 

separate emissions between sectors (±1: not at all; 0: fully). ‘Other’ is a combination of minor 

anthropogenic emissions including industry, stationary combustion, mobile combustion, aircraft, 

composting, and field burning of agricultural residues.  
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Figure 7. Anthropogenic methane emissions in China. The top panel compares the national total 

emissions reported by different bottom-up and top-down studies. Vertical bars for our work 1080 

indicate the uncertainty range, obtained by combining results from the inversion ensemble and 

the posterior error covariance �̂� (Fig. S2). Peng et al (2016), Janardanan et al (2020), Worden et 

al (2022), and Deng et al (2022) also reported uncertainty estimates. The bottom panel shows the 

contributions from different sectors inferred in our work and compared to inventories including 

the UNFCCC, EDGAR, and Peng et al (2016), and to the means and ranges from recent top-

down studies compiled in Table S3.  
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              Table 1. Methane emissions in China in 2019. 
 

Prior 

estimate 

(Tg a-1)a 

Posterior estimate 

(Tg a-1)b 

Sensitivity to 

observationsc 

Total emission 56.8 70.0 (61.6-79.9) 0.91 

Anthropogenic 53.6 65.0 (57.7-68.4) 0.91 

Coal mining 19.5 16.6 (15.6-17.6) 0.91 

Oil 0.93 2.3 (1.8-2.5) 0.76 

Gasd 0.18 0.29 (0.23-0.32) 0.30 

Livestocke 13.0 17.8 (15.1-21.0) 0.75 

Wastef 6.6 9.3 (8.2-9.9) 0.71 

Rice paddies 8.9 11.9 (10.7-12.7) 0.86 

Otherg 4.6 6.7 (5.8-7.1) 0.81 

Natural 3.2 5.0 (3.9-11.6) 0.61 

Open firesh 0.16 0.24 (0.18-0.26) 0.30 

Wetlands 2.3 3.4 (2.8-7.5) 0.61 

Seeps 0.06 0.11 (0.10-0.18) 0.43 

Termites 0.72 1.2 (0.8-3.7) 0.32 

 

aPrior estimates of anthropogenic emissions are from the Chinese government report to the 

UNFCCC for 2014 (UNFCCC, 2020). Wetland emissions are the mean of the high-performance 

subset of the WetCHARTs v1.3.1 inventory ensemble for 2019 (Ma et al, 2021). Open-fire 

emissions are from GFED4s (van der Werf et al., 2017). Termite emissions are from Fung et al 

(1991), and geological seepage emissions are from Etiope et al (2019) with scaling from Hmiel 1100 

et al. (2020). See Sect. 2.2 for details. 

bResults from the base inversion, with uncertainty range in parentheses encompassing the best 

estimates from the inversion ensemble and the 2-sigma error from the posterior error covariance 

matrix �̂� of the base inversion (Fig. S2). See Sect. 2.6 for details. 

cSensitivity of posterior emissions to the TROPOMI observations, ranging from 0 (no 

information from observations, emissions determined by prior estimate) to 1 (full information 

from observations, no sensitivity to prior estimate). The sensitivities are defined by the diagonal 

terms of the reduced averaging kernel matrix for the inversion. See Sect. 2.5 for details.  

dContributions from production, transmission, and distribution sub-sectors are 0.03, 0.025, and 

0.125 Tg a-1 in the prior estimate, and are 0.07, 0.06, and 0.16 Tg a-1 in the posterior estimate.  1110 

eLivestock sector includes emissions from enteric fermentation and manure management. 

fWaste sector includes emissions from landfills and wastewater treatment, and are combined in 

the inversion because of their spatial overlap. Prior estimates are 3.84 Tg a-1 for landfills and 

2.72 Tg a-1 for wastewater treatment. 
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gIncluding industry, stationary combustion, mobile combustion, aircraft, composting, and field 

burning of agricultural residues. 

hExcluding field burning of agricultural residues. 

 


