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Abstract. Emission inventories are essential for modeling studies and pollution control, but traditional emission inventories 

have large uncertainties and are often not real-time because they are highly human resource demanding to develop. In this 

study, a four-dimensional variational assimilation (4DVAR) system was developed to optimize sulfur dioxide (SO2) 

emissions by assimilating hourly SO2 concentrations. An observation system simulation experiment was conducted to 15 

evaluate the performance of the system. This evaluation indicates that the 4DVAR system can effectively reduce the 

uncertainty in SO2 emissions at a regional level. The 4DVAR system was then applied to optimize SO2 emissions during the 

early period of COVID-19 (from January 17 to February 6, 2020), and the reduction in SO2 emissions was assessed in 

comparison with the 2016 inventory. The hourly surface SO2 observations were assimilated. The results show that the 

emissions in 2020 decreased by 18.0% compared with those in 2019, indicating a significant decrease between 2019 and 20 

2020 due to the COVID-19 related lockdown. Three forecast experiments were conducted using emissions in 2016, 2019, 

and 2020 to demonstrate the effects of optimized emissions. The root mean square error in 2020 decreased by 47.9% and the 

correlation coefficient increased by 300.0% compared with 2016 emissions. This suggests that the 4DVAR system can 

effectively optimize emissions to describe the actual change in SO2 emissions during special events and improve the forecast 

skill. 25 
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1 Introduction 

Sulfur dioxide (SO2) can cause acid rain through sulfuric acid formation, destroying buildings and harming aquatic and 

terrestrial ecosystems (Saikawa et al., 2017; Zheng et al., 2018). SO2 is also a precursor of sulfate aerosols, which directly 

affects the radiation budget and causes haze pollution. Therefore, SO2 emission significantly impacts the ecological 30 
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environment. SO2 pathway in the atmosphere is generally investigated using chemistry transport models (CTMs) that 

estimate the three-dimensional changes in SO2 concentrations. Thus, accurately estimating SO2 emissions is important for 

understanding spatiotemporal distribution of SO2 concentrations in CTMs (Zeng and Wu, 2021).  

SO2 emission is generally estimated using the “bottom-up” approach, which requires direct observation of all possible 

sources' activities and emission factors (Zhao et al., 2022). However, the estimates are subject to significant uncertainties 35 

because of limited available observations, with difference among existing inventories as high as 42% (Granier et al., 2011). 

Saikawa et al. (2017) compared five types of emission inventories and found a significant difference in SO2 emissions from 

the power sector owing to the difference in the assumed timing of installation of flue gas desulfurization in coal-fired power 

plants. Moreover, most “bottom-up” emissions are recorded as annual or monthly amounts, which need to be 

spatiotemporally allocated into gridded hourly emissions for regional air quality model applications and cause uncertainty in 40 

grid emissions (Peng et al., 2017; Peng et al., 2018; Zeng and Wu, 2018). Several control strategies, such as strengthening 

emission standards, phasing out obsolete industrial capacity, small but high-emitting factories, have been implemented in 

China (Zheng et al., 2018), which have markedly reduced the emissions. However, varying extents of control policies 

implemented in different regions, have led to large spatiotemporal changes in emission values (Chen et al., 2019a; Dai et al., 

2021). Such complex changes in SO2 emission did not reflect in the “bottom-up” estimates. Differences in the spatiotemporal 45 

control also caused additional uncertainties in gridded hourly emissions reducing their accuracy (Zeng et al., 2020). 

In contrast to the “bottom-up” approach, data assimilation (DA) provides a “top-down” approach, where the ensemble 

Kalman filter (EnKF) and four-dimensional variational DA (4DVAR) are two of the most explored algorithms. The EnKF 

method uses flow-dependent covariance generated by an ensemble of model outputs to convert observational information 

into emissions (Tang et al., 2013; Ma et al., 2019), and has been used to estimate both aerosols and gas-phase emissions, 50 

such as SO2, NOx, CO, and particulate matter, to estimate total regional and global emissions. (Huneeus et al., 2012; 

Huneeus et al., 2013; Miyazaki et al., 2012; Miyazaki et al., 2014; Tang et al., 2013; Tang et al., 2016; Chu et al., 2018). For 

example, Peng et al. (2017, 2018) developed an EnKF system to include more spatiotemporal emission characteristics over 

China using hourly surface observations as constraints, and the forecasting results with optimized emissions are 

more accurate than those with background emissions. SO2 forecasts with optimized emissions were improved for the 72-h 55 

forecast range, which decreased the root-mean-square errors (RMSEs) 30% compared with those with background emission. 

Feng et al. (2019) quantitatively optimized gridded CO emissions in China using hourly surface CO measurements using the 

Weather Research and Forecasting (WRF)/CMAQ model and EnKF algorithm. Optimized CO emissions in December 2017 

were found to be 17% lower than those in December 2013. Moreover, the accuracy analysis field of EnKF depends on the 

difference between the ensemble members. However, this difference usually converges gradually, and the background 60 

emissions of different members become similar during DA cycling of the EnKF (Chen et al., 2019). The EnKF is less 

effective when the difference between ensemble members is insufficient because of the small ensemble spread (Dai et al., 

2021). 
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A 4DVAR method can be used to estimate emissions based on the adjoint model of a CTM, which canbe described as 

the inverse process of the forward CTM (Bao et al., 2019; Yumimoto and Uno, 2006; Yumimoto et al., 2007; Wang et al., 65 

2021). Several studies have shown that 4DVAR is a promising tool for deriving the emission rates (Dubovik et al., 2008; 

Hakami et al., 2005; Müller and Stavrakou, 2005; Elbern et al., 2007; Yumimoto et al., 2007; Yumimoto et al., 2008). Müller 

and Stavrakou (2005) and Stavrakou and Atmospheres (2006) estimated CO and NOx emissions based on a 4DVAR system 

using satellite data as a constraint. They showed that the optimized CO emission was 2900 Tg yr-1, which was ~5% higher 

than the background emission. Henze et al. (2007) developed an adjoint model based on the GEOS-Chem model and used it 70 

to optimize the SOx, NOx, and NH3 emissions. The model was also used to investigate the sensitivity of modeled aerosol 

concentrations to their precursor emissions, suggesting that the relationship between the two mainly depended on 

thermodynamic competition. Wang et al. (2012) followed Henze et al. (2007) and applied their adjoint model to constrain 

dust emissions by assimilated aerosol optical depth from Moderate Resolution Imaging Spectroradiometer. They showed that 

the optimized emissions decreased by 51% compared with the a-prior emissions, with a total decrease in emissions from 9.36 75 

Tg to 4.55 Tg. The emissions based on “top-down” approach can reduce the uncertainty of "bottom-up" emissions, and 

provide a more accurate emission for a special event than traditional emissions.   

Emergence of the coronavirus pandemic (COVID-19) between the end of 2019 and the beginning of 2020 (Wang et al., 

2020) impacted over 200 countries. To control the rapid spread of the virus and protect people's health, Wuhan was the first 

city to restrict travel and impose social distancing measures on January 23, 2020, followed by the entire Hubei province a 80 

day later (Wuhan city is in the Hubei Province). Subsequently, all provinces in China successively implemented a national 

emergency response to major public health emergencies. Because of lockdown during the pandemic, human activities, such 

as industrial production and transportation, decreased sharply, which significantly decreases pollutant emissions (Filonchyk 

et al., 2020; Forster et al., 2020; Ghahremanloo et al., 2021; Keller et al., 2021; Li et al., 2020; Miyazaki et al., 2020; Li et al., 

2021; Huang et al., 2021a). Zhang et al. (2020), Li et al. (2020), and Huang et al. (2021b) estimated the NOx emissions over 85 

China during this period and observed a decreasing trend owing to human activity reduction. This study analyzes the 

changes in SO2 emission sources with respect to the COVID-19 pandemic.  

We developed a 4DVAR SO2 emission system to optimize its emission inventories using the WRF model coupled with 

chemistry (WRF-Chem). Factors, such as transport, dry/wet deposition, emission, vertical mixing, and SO2 chemicals were 

implemented to describe the pathway of SO2 in WRF-Chem. The observing systems simulation experiment (OSSE) was first 90 

conducted to evaluate the performance of the 4DVAR system, which was then applied to investigate the changes in SO2 

emission in China, especially Central China, during the COVID-19 lockdown, by assimilating hourly surface SO2 

observations.  

The remainder of this paper is organized as follows. The methodology, including the WRF-Chem and 4DVAR system 

configurations and their adjoint model, is described in Section 2. The observational data are also presented in this section. In 95 

Section 3, details of the OSSE are provided to verify the performance of the 4DVAR system, and the spatiotemporal changes 

in SO2 emission during the COVID-19 lockdown are estimated. SO2 simulations using optimized emissions were also 
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verified against observations to show the improvements in emission data. Finally, a discussion and conclusions are presented 

in section 4. 

2 Method and Data 100 

2.1 WRF-Chem model 

WRF-Chem is a fully coupled online air quality model involving sophisticated and comprehensive physical and 

chemical processes such as transport, deposition, emission, chemical transformation, photolysis, and radiation. The WRF-

Chem version 3.9.1 was used to simulate and predict air pollutants. The center of the WRF-Chem domain (Fig. 1) is at 

101.5 °E, 37.5 °N, covering the entire country with a 27 km horizontal resolution (169×211 grids). Additionally, 40 vertical 105 

layers extended from the surface to 50 hPa, with a more satisfactory resolution near the surface. Meteorological initial and 

boundary conditions were provided by the 1° × 1° National Centers for Environmental Prediction Global Final Analysis data 

at a 6-hour frequency. Most of the WRF-Chem settings were the same as those in Hu et al. (2022) (Table 1), i.e., the WRF 

Lin microphysics scheme (Lin et al., 1983), Rapid Radiative Transfer Model longwave (Mlawer et al., 1997), Goddard 

shortwave radiation schemes (Chou, 1994), Yonsei University (YSU) boundary layer scheme (Hong et al., 2006), Noah land 110 

surface model (Chen et al., 2010), and Grell-3D cumulus parameterization. Aerosol and gas-phase chemistry schemes 

include the model for simulating aerosol interactions and chemistry (MOSAIC-4 bin) and carbon bond mechanism-Z 

(CBMZ), respectively (Zaveri and Peters, 1999; Zaveri et al., 2008). The heterogeneous SO2 reaction was also added to 

WRF-Chem (Sha et al., 2019), and anthropogenic emissions from the Multi-Resolution Emission Inventory for China (MEIC) 

in 2016 were used as the background emission input (Fig. 1). 115 

  

Figure 1: Spatial distribution of SO2 emissions from MEIC for January 2016 and the study area. The red rectangle represents 

Central China. Black circle with dot is the location of large cities. Units: mol km-2 h-1. 
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Table 1: WRF-Chem model configuration. 

Physical or chemical process Option 

Microphysics Lin microphysics scheme (Lin et al., 1983) 

Longwave radiation Rapid Radiative Transfer Model longwave (Mlawer et al., 

1997) 

Shortwave radiation Goddard Space Flight Center shortwave radiation scheme 

(Chou, 1994) 

Boundary layer scheme Yonsei University (Hong et al., 2006) 

Land surface model Noah land surface model (Chen et al., 2010) 

Cumulus parameterization Grell 3-D scheme 

Aerosol scheme  Model for Simulating Aerosol Interactions and Chemistry 

(MOSAIC-4 bin) (Zaveri et al., 2008) 

Gas scheme Carbon Bond Mechanism-Z (CBMZ) (Zaveri and Peters, 

1999) 

 120 

2.2 4DVAR system 

4DVAR is a continuous data assimilation method that simultaneously assimilates a time series of observations over a 

time window. It produces an analysis that fit a set of observations taken over a time window, and evolution of the analyzed 

quantities is governed using a deterministic model as a strong constraint. The cost function of 4DVAR is as follows: 
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where 𝑐 is the state variable that denotes the initial concentration vector, and 𝑐
 is the background concentration at 

zero time. The first term in Eq. 1 is the background term for the initial concentration field. 𝑒 is the state variable that denotes 

the modified emission and 𝑒
 is the background emission. Subscripts of the variables represent the time window. The second 

term is the background term for emissions during the time window. 𝐵 and 𝐵 are the background error covariances (BEC) 

for the concentrations and emissions, respectively. The third term is the observation term, where 𝑦
 is the observation vector, 130 

𝐻 is the observation operator that computes the modeled observation estimate from the state variables and 𝑅 is the error 

covariance matrix. 𝑐 is the concentration at time 𝑖, which is subject to: 

𝑐 ൌ 𝑓,ିଵሺ𝑐ିଵ, 𝑒ିଵሻ                                                                                                                                                                (2) 

The increment field of the initial SO2 concentration can be written as 𝛿𝑐 ൌ 𝑐 െ 𝑐
, and the increment field of SO2 

emission as 𝛿𝑒 ൌ 𝑒 െ 𝑒
 . The innovation vector is denoted as 𝑑 ≡ 𝑦

 െ 𝐻ሺ𝑐ሻ, which is the difference between the 135 

observations and the model equivalent state. Thus, the cost function (1)  can be written in an incremental form as follows: 
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Using a linearization approximation, Eq. 2 becomes 
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𝛿𝑐 ൌ 𝐿,ିଵ𝛿𝑐ିଵ  𝐿,ିଵΓିଵ𝛿𝑒ିଵ                                                                                                                                          (4) 

where 𝐿,ିଵ and Γିଵ are Jacobians, and 𝑖 ൌ 1,2, ⋯ 𝑛. Thus, a time integration can give Eq. 4 in the form: 140 

𝛿𝑐 ൌ 𝐿,𝛿𝑐  ∑ 𝐿,Γ𝛿𝑒
ିଵ
ୀ                                                                                                                                                    (5) 

where 𝐿, denotes the tangent linear model operator of the CTM acting on 𝛿𝑐, and the subscript is the time step from 𝑖 

to the initial time. 𝐿,Γ (𝑙 ൌ 0,1, ⋯ 𝑖 െ 1ሻ is the operator acting on 𝛿𝑒 and Γ is the emission term that converts emission to 

concentration.  

Available numerical algorithms can minimize the cost function in Eq. 3 (Courtier et al., 1994; Li and Navon, 2001). For 145 

algorithms that can solve for large dimensions, the cost function gradient is required. This can be written with respect to 𝛿𝑐 

and 𝛿𝑒 (𝑖 ൌ 0,1 , ⋯ , 𝑛 െ 1) as: 
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Note that, when 𝑙 ൌ 0 in Eq. 6, the 𝐿, ൌ 1. The window length is typically approximately six hours in operational 150 

synoptic-scale numerical weather prediction centers. Additionally SO2 lifetime is usually<6 h in a model grid (Fioletov et al., 

2015). Thus, we use a 6-h window (𝑛 ൌ 6) for the 4DVAR system. 

2.3 Adjoint model of 4DVAR system based on WRF-Chem 

The CTM in this study was based on WRF-Chem, which is a fully coupled online air quality model with sophisticated 

and comprehensive physical and chemical processes. The governing equation for the concentration of species in WRF-Chem 155 

can be written as: 
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where 𝑐  is the gas/aerosol concentration, 𝜕𝑥  and 𝜕𝑦  are the horizontal resolutions of the model, 𝜕𝑧  is the vertical 

resolution, and 𝑢, 𝑣, 𝑎𝑛𝑑 𝑤  denote the wind in 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧  directions. Thus, the 𝑢
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𝐾௫, 𝐾௬𝑎𝑛𝑑 𝐾௭ are turbulent exchange coefficient in 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 directions based on K theory of turbulence, and  
డ

డ௫
ቀ𝐾௫

డ

డ௫
ቁ 160 

డ

డ௬
ቀ𝐾௬

డ

డ௬
ቁ 

డ

డ௭
ሺ𝐾௭

డ

డ௭
ሻ is the turbulent term. For the large horizontal resolution study, the 
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డ௧
ൈ 𝒆ିஃ denotes the wet deposition term, where Λ is the loss rate (Grell and Dévényi, 2002) and 𝒆 is the base of 

natural logarithms equal to 0.272, 𝒓 ൈ
డ

డ௧
 is the chemical term, where 𝒓 is the chemical reaction rate of the species, and 
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ൈ 𝐸 is the emission term, where 𝐸 denotes the emission source of the species. 𝑉 ൌ 22.4×10-3 mଷ molିଵ is 

the molar volume of the gas, ρ is the air density of the actual atmosphere (kg mିଷ), 𝜌 is the standard air density indicating 165 

the molar volume, and ∆𝑆 is the grid area.  
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In Eq. 4, 𝐿 is the linearization approximation of the model. According to Eq. 8, 𝐿 should include transport, dry/wet 

deposition, and chemical transformation, which can be written as 𝐿௧௦  𝐿ௗ௬ , 𝐿௪௧ , and 𝐿 , respectively, using a 

linearization approximation (Jacob, 2000; Sha et al., 2019), where Γ is the emission term. 
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 The variables in Eqs. 9–12 with superscript “െ” denote the average values during a time step. Thus, the linearization 180 

Eq. 8 can be written as:  

డ

డ௧
ൌ 𝐿  Γ ൌ 𝐿௧௦  𝐿௧௨  𝐿௪௧𝐿  Γ                                                                                                            (14) 

In addition, the vertical turbulence term (𝐿௧௨) for the surface level is  
డ

డ௭
ൈ 𝑣ௗ , which denotes the dry deposition 

term,and 𝑣ௗ is the dry deposition velocity. 

 185 

2.4 Observational and background error covariances 

𝑅 in Eq. 1 is the observational error covariance for a set of observations (𝑦), where 𝐵 and 𝐵
 are the BECs for the 

concentrations and emissions, respectively. In a DA system, 𝑅 and BEC play important roles in successful assimilation. 𝑅 

is derived from the measurement error (observed value error) and representative error (error of observation operator 𝐻), 

which affect the weight of the observed data in assimilation. The observation error is defined as follows: 190 

𝜀ௌைమ ൌ ඥ𝜀
ଶ  𝜀

ଶ                                                                                                                                                               (15)  

where 𝜀ௌைమ is the observation error of the assimilation variable, which is the SO2 concentration in this experiment, 𝜀 is 

the measurement error, and 𝜀 is the representative error.  
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BECs (𝐵 and 𝐵
 in Eq. 1) are the error covariance matrices of SO2 concentrations and emissions. Practically, the BEC 

is too large to be handled numerically. Thus, we followed the method used by Li et al. (2013) and Zang et al. (2016) to 195 

simplify 𝐵:  

𝐵 ൌ 𝐷𝐶𝐷்                                                                                                                                                                             (16) 

where 𝐷 is the RMSE matrix and 𝐶 is the correlation matrix.  

𝐶 can be simplified by the Cholesky factorization and Kronecker product method (Li et al., 2013) as: 

𝐶
భ
మ ൌ 𝐶௫

భ
మ⨂𝐶௬

భ
మ⨂𝐶௭

భ
మ                                                                                                                                                                   (17) 200 

For SO2 concentrations, the BEC used one month of the 48 h and 24 h forecast differences were used as the background 

error. These differences were generated from January 2020. For the state variables of emissions, D is diagonal with a 200% 

error (Wang et al., 2012) and 𝐶 is a lower triangular matrix with a diagonal matrix because the emission can be diffused by 

advection and vertical mixing. 

2.5 Observation and emission data 205 

Hourly SO2 data from the website of the China National Environmental Monitoring Center (http://www.cnemc.cn) were 

used for assimilation and evaluation. A total of 1933 national control measurement sites existed in China in January 2020. 

Most observational sites were located in central and eastern China, whereas the sites in the west were relatively sparse. Only 

1425 stations were selected (randomly) for assimilation, while the data of the remaining 508 stations were used to verify the 

improvement in using optimized emissions (Fig. 2). A strict criterion was used to remove SO2 observations with values 210 

exceeding 650 µg m-3 to ensure data quality (Chen et al., 2019).  

The background emission data of anthropogenic emissions were obtained from the MEIC (http://www.meicmodel.org/) 

developed by Tsinghua University, with a 0.25° × 0.25° resolution and 2016 as the base year. The MEIC is a “bottom-up” 

emission inventory model covering 31 provinces in Chinese mainland, including eight major chemical species (Zhang et al., 

2009), and counts anthropogenic emissions from sources in five sectors (power, industry, residential, transportation, and 215 

agriculture). Details of the technology-based approach and source classifications can be found in Zhang et al. (2009). The 

actual emission inventory (0.25 °× 0.25 °) was preprocessed to match the model grid spacing (27 km). 
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Figure 2: Locations of the 1425 SO2 assimilation observation stations (red) and 508 independent observation stations (blue). 

2.6 Experiment design 

Figure 3 shows a flowchart of the optimization procedure of SO2 emissions in a single time step from 𝑖 to 𝑖  𝑛. The 220 

background field of SO2 concentrations was initialized based on WRF-Chem and background emission, running 10 days 

before the starting time to spin up the chemistry fields. A 6-h forecast was then performed to produce the SO2 background 

field using the WRF-Chem model and background emissions. The meteorological and chemical parameters were recorded 

every ten minutes and then input into the 4DVAR emission assimilation system as a parameter. The tangent linear model 

operator 𝐿 calculated the physical and chemical processes in the adjoint model. The hourly SO2 output was applied as a 225 

background field to calculate the innovation (𝑑). Finally, by assimilating the hourly SO2 observations, the 4DVAR system 

performed to obtain SO2 optimized emissions and initial concentrations.  

 An OSSE was designed to evaluate the effect of the 4DVAR system. First, pseudo-observations were generated from a 

model using an emission inventory that was assumed as the “real” emission. A second inventory with a normally distributed 

emission was considered as the background emission, based on which an experiment was performed to obtain an optimized 230 

emission by assimilating pseudo-observations using the 4DVAR system. Finally, the “real”, background, and optimized 

emissions were compared to verify the effect of the 4DVAR system. The details of the experiment are described in Section 

3.1. 
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Figure 3: Flow chart of the procedure to optimize SO2 emission in a single time step from 𝒊 to 𝒏  𝒊. The dark red box is the SO2 235 

optimized emission of output.  Obs: observation. 

 

 

In addition to the OSSE, three sets of experiments were performed on the emissions during COVID-19 (Table 3), 

including the Ctrl_2016, DA_2019, and DA_2020, to estimate the improvement of SO2 forecasts using optimized emissions. 240 

National lockdown was imposed in Wuhan and other cities of Hubei on January 23 and 24, 2020, respectively. The national 

lockdown policies were implemented from January 26, 2020. Thus, we selected the week before the lockdown in 

Wuhan(January 17 to 23, 2020) and two weeks during the lockdown period (January 24 to February 6, 2020) as the study 

period. The optimized emissions for 2019 and 2020 were obtained from the 4DVAR system by assimilating the 2019 and 

2020 surface SO2 observations. Three experiments were run daily with 24 h forecasts from January 17 to 7 February 2020. 245 

All experiments used the same WRF-Chem domain settings and physicochemical parameters. The MEIC_2016 emissions 

were used in the Ctrl_2016 experiment. For the DA_2019 experiment, the 2019 optimized emissions were used to simulate 

SO2 concentrations during the study period. For the DA_2020 experiment, the 2020 optimized emissions were applied. The 

SO2 initial condition at 0000 UTC on January 17 was based on the spin-up forecasts at 0000 UTC on January 7, 2020 for all 

three forecast experiments. The SO2 ICs were later obtained from the forecasting of the previous day for the three 250 

experiments. 

Table 3: Details of the experiments designed in this study. 

name Emission Forecast duration Study period 

Ctrl_2016 MEIC_2016 24 h 17 January - 7 February, 2020 

DA_2019 The 2019 optimized 24 h 17 January - 7 February, 2020 

WRF-Chem 

4DVAR DA system 

SO2 background filed 

 Physical and 
chemical parameter 

(as a nonlinear 
model operator)

SO2 background 
emission 

SO2 optimized 
emission 
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DA_2020 The 2020 optimized 24 h 17 January - 7 February, 2020 

3 Results 

3.1 Observing Systems Simulation Experiment (OSSE) 

An OSSE was conducted to verify the performance of the 4DVAR DA system. The “real” emissions included 273 255 

sources (Fig. 4a). These emissions were evenly distributed, with 13 arrays and 9 columns. The “real” emission values 

(EM_real) at each grid were random. The hourly factors of EM_real were equal. The WRF-Chem model and EM_real 

emission were applied to simulate (because the assimilation window was 6 h) SO2 concentrations for 30 h. SO2 

concentrations simulated by WRF-Chem were set as the “real” observation. The background emission (EM_back) included 

273 sources having the same spatial distribution as EM_real (Fig. 4b). The value of EM_back were random with a mean 260 

value of 50 mol km-2 h-1, and the hourly factors were equal between 24 hours. Both EM_real and EM_back were normally 

distributed, but did not correlate with each other.  

  

Figure 4: (a) Real emissions (EM_real) and (b) background emission (EM_back) of OSSE. Units are mol km-2 h-1.  

OSSE was performed using EM_back. The optimized emission (EM_new) was obtained from the 4DVAR emission 

system by assimilating the hourly “real” SO2 concentrations. Figure 5a shows a comparison of the 24 h average of EM_real 265 

emissions, EM_back and EM_new emissions. It was observed that the 4DVAR emission assimilation system can effectively 

improve emission accuracy. Compared with EM_back, the average bias of EM_new increased considerably (90%) from -

18.7 to -1.9 mol km-2 h-1. This suggests that the 4DVAR system can effectively correct system deviation of the emissions 

when the EM_back is underestimated or overestimated. The RMSE decreased from 43.3 to 16.8 mol km-2 h-1, and the 

correlation coefficient (CORR) increased from 0.01 to 0.90. This indicates that the 4DVAR assimilation system could 270 
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improve SO2 emission estimation by assimilating the surface SO2 concentrations. Even with large differences between the 

background and real values, the 4DVAR assimilation system can effectively reduce the deviation. 

Figure 5b shows the size of the cost function for each inner iteration. In this example, the maximum number of 

iterations was ten considering the balance between calculation time and result accuracy. It shows that the cost function 

quickly converges with an increase in the number of iterations. After seven iterations, the cost function was stable and close 275 

to minimum. The 𝐽 of the end iteration was 6.3% of the first iteration. 

 
 

Figure 5: (a) Scatter plot between EM_real and EM_back/EM_new. (b) Cost function for each inner iteration. Units are mol km-2 

h-1 for (a) 

3.2 Emission changes 

3.2.1 Temporal changes in emission 280 

Figure 6 shows the hourly SO2 concentrations and daily optimized SO2 emissions for the Chinese mainland and Central 

China. The SO2 emission trends were similar to those of SO2 concentrations during the study period in both 2019 and 2020. 

In 2019, the lowest emissions occurred on February 3, 2019, followed which day is celebrated as Spring Festival in China 

that is the most important festival of the country. Increased SO2 emissions during February 4–6, 2019, was mainly attributed 

to traditional firework displays during the Spring Festival (Wang et al., 2007; Zhang et al., 2020; Huang et al., 2021a). In 285 

2020, complex changes were observed in SO2 emission trends because of negligible human activities during COVID-19. The 

first peak in the country was 40.1 kg d-1 on January 24, 2020, because of the firework displays (Figs. 6a and 6b), after which 

the SO2 emissions decreased because of national lockdown, when most factories shutting down and people staying at home 

to protect against coronavirus. SO2 emissions in Central China peaked at 3.5 kg d-1 on January 24, 2020, due to firework 

displays, and a significant reduction began from January 26, 2020, because of national lockdown. Increased SO2 290 

concentrations on January 31, 2020, were mainly due to meteorological conditions, when there was no significant change in 

emissions. 
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 295 

 

 

 

 

(a) SO2 concentration in China (b) SO2 emission in China 

 
 

(c) SO2 concentration in Central China  (d) SO2 emission in Central China 

 
 

Figure 6: Time series of hourly SO2 concentration in (a) China and (c) Central China. Time series of daily SO2 emission in (b) 300 

China and (d) Central China. Units are μg km-3 for (a) and (c), and 106 kg d-1 for (b) and (d). The Chinese Spring Festivals were on 

February 4 2019 and January 24 2020, respectively; January 26 2020 was the date of implementation of national lockdown. 

3.2.2 Spatial changes in emission 

Figure 7 shows the spatial differences and variations in emission ratios in 2019 and 2020. Compared with the 2019 

optimized emissions (Fig. 7a), the 2020 optimized emissions (Fig. 7b) decreased in most of the country due to the lockdown. 305 

The decrease in emissions (Fig. 7c) in most areas was <10 mol km-2 h-1, but the ratios (Fig. 7d) were more significant than 
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20%. Zheng et al. (2020) showed that SO2 emissions in China decreased by 29% in February 2020 compared to that in 2019. 

Nationwide emission reduction occurred because of the implementation national lockdown policies. The areas with 

increased SO2 emissions were Northeast China, the Tibetan Plateau, Yunnan Province, and southeast coastal areas, where the 

epidemic was less severe than in other areas (Kraemer Moritz et al., 2020; Tian et al., 2020). Most of the increase in SO2 was 310 

<10 mol km-2 h-1, but the positive rates were >100%, suggesting that new emission sources were generated. It is believed that 

these newly generated emissions were caused by relocating power plants and factories from cities to the surrounding villages. 

(a) 2019 optimized emission (b) 2020 optimized emission 

  

(c) 2020–2019 (d) (2020–2019)/2019 

  

Figure 7: Optimized emissions in China for (a) 2019 and (b) 2020. (c) Differences between 2019 and 2020 optimized emissions and 

(d) ratios of (2020–2019)/2019. (Units are mol km-2 h-1 for (a), (b), and (c).) 

Figure 8 shows the same observations as Fig. 7, but for central China. Hubei province was the first to implement a first-315 

level response to major public health emergencies. The emissions in Wuhan were relatively lower than those in surrounding 

grid points because most of the factories were relocated to the countryside owing to China's recent emission reduction 
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policies (Figs. 8a and 8b) (Zheng et al., 2018; Bian et al., 2019; van der A et al., 2017). The highest emission value around 

Wuhan in 2019 was 475 mol km-2 h-1 and 203 mol km-2 h-1 in 2020, showing a reduction of 57%. Almost all emissions in the 

Hubei Province decreased slightly by 5–10 mol km-2 h-1 (Fig. 8c). The reduction percentage in these regions was over -40% 320 

(Fig. 8d). Remarkably, emission reduction occurred because most industries in central China closed during the epidemic. 

Slightly increased emissions were observed at some scatter points (<5 mol km-2 h-1), possibly because of increased 

residential emissions due to home isolation. 
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Figure 8: Parameters same as Figure 7, but for central China. (Units are mol km-2 h-1 for (a), (b) and (c). CC: central China) 325 

3.2.3 Hourly emission 

Figure 9 shows the average hourly emissions for 2016, 2019, and 2020 for the entire study period. The hourly factors 

for MEIC_2016 were obtained from the power plant report, with two peaks during the day at 0100 UTC (0900 BJ time – 

Beijing time) and 0900 UTC (1700 BJ time) to reflect the emissions during rush hours (Chen et al., 2019b; Hu et al., 2022). 

The emissions in 2019 and 2020 were lower than those of MEIC_2016 during 0600–1200 UTC (Fig. 9a). The main reason 330 

for this is the recent implementation of China’s emission reduction policies. Studies have shown that the second peak (0900 

UTC) of SO2 emissions had weakened (Chen et al., 2019), which was also reflected in our hourly emission analysis. 

However, the 2019 and 2020 emissions were slightly higher than those of MEIC_2016 during 1600–2000 UTC. 

Consequently, the difference in the hourly factor between the optimized emissions and MEIC_2016 suggests changes in the 

hourly emission characteristics. Compared with the 2019 optimized emissions, the 2020 optimized emissions averagely 335 

decreased by -18.0%, reflecting reduction due to the lockdown during COVID-19.  

The optimized emissions in 2019 and 2020 in Central China were significantly lower than the emissions in 2016 for 

each of the 24 h, with maximum reduction at 0900 UTC (Fig. 9b). Compared with 2019 optimized emissions, the 2020 

emissions appreciably decreased by 22.3–42.1%. The first peak of the 2020 optimized emissions was delayed and occurred 

at 0200 UTC because of the national lockdown policies. The most significant reduction between 2019 and 2020 emissions 340 

was -120.4 × 103 kg h-1 at 01 UTC, reflecting the change in human activities at the first peak. Additionally, although the 
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decrease in SO2 emission was moderate (-72.3 × 103 kg h-1) at 1300 UTC, the reduction ratio (-54.5%) was the largest during 

24 h.  

  

Figure 9: Hourly emission source for (a) China and (b) Central China (Unit: 103 kg h-1).  

3.3 Forecast improvement 345 

Figure 10 shows the average 24-hour forecast of SO2 concentrations in China for 2020 during the study period using 

MEIC_2016, 2019 and 2020 optimized emissions. It was observed that the DA_2020 experiment with the 2020 optimized 

emissions performed much better than the Ctrl_2016 and DA_2019 experiments, indicating that emission values are one of 

the most important factors for 24 h forecasts. The SO2 concentrations in Ctrl_2016 and DA_2019 were significantly 

overestimated, especially during 0800–1800 UTC (Fig. 10a). Additionally, the 2020 optimized emission during 1800–2200 350 

UTC were higher than MEIC_2016, but the SO2 forecast concentrations with them were lower than those with MEIC_2016. 

This is possibly because the high values of the 2020 emissions were mainly located in the western and northwestern regions 

(Fig. 7), where were fewer sites in the western and northwestern regions, meanwhile, there were more measurement sites 

where the 2020 emissions have low values. Thus, when the concentrations in Fig. 10 were interpolated to the measurement 

sites and averaged to derive the mean concentrations in DA_2020, so the results were lower than those in Ctrl_2016. 355 

Compared to the Ctrl_2016 experiment, the RMSE of the DA_2020 experiment performed better during the study period, 

and the average RMSE decreased from 21.7 to 11.3 μg m-3. For DA_2019, the RMSE was better than that for Ctrl_2016 over 

24 h. The average CORR for the Ctrl_2016, DA_2019, and DA_2020 experiments were 0.2, 0.4, and 0.6, respectively. The 

average Bias of Ctrl_2016, DA_2019, and DA_2020 experiments were 5.9, 4.9, and -0.1 μg m-3, respectively, suggesting 

that the 4DVAR method reduces the uncertainty of the background emissions.  360 
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Figure 10: Forecast skill of SO2 concentrations in China for the Ctrl_2016, DA_2019, and DA_2020 experiments during the study 

period in 2020: (a) Mean concentration, (b) RMSE, (c) CORR, and (d) bias. Unit is μg m-3 for (a), (b), and (d). Obs: Observation. 

Figure 11 shows the same observations as Fig. 10, but for Central China. It also showed that the forecast skills of the 

DA_2019 and DA_2020 experiments were higher than those of Ctrl_2016. The average observation was <10 μg m-3, which 

is significantly lower than that for Chinese mainland (Fig. 10a). The Ctrl_2016 and DA_2019 experiments overestimated the 365 

SO2 concentration in Central China, reflecting overestimation of MEIC_2016 and 2019 optimized emissions, which is 

consistent with the emission source (Fig. 8b). SO2 forecast in the DA_2020 experiment was closest to the observations, with 

values <10 μg m-3. Compared to Ctrl_2016, the average bias of DA_2020 experiment decreased from 20.1 to 3.5 μg m-3, the 

average RMSE decreased from 30.0 to 7.4 μg m-3, and the average CORR increased from 0.2 to 0.5, compared with the 

Ctrl_2016 experiment (Figs. 11b to 11d). Notably, the bias of the DA_2020 experiment was positive (Fig. 11d), and the 370 

average concentration was higher than the observations (Fig. 11a), suggesting an overestimation of the 2020 optimized 

emissions. This may be because the actual emissions in Central China decreased significantly, and the analyzed field 

(optimized emissions) is a balance between the background field (background emissions) and observations. Thus, the 

optimized emissions are still affected by the background field. 
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Figure 11: Parameters same as Fig. 10, but for Central China. 375 

4 Conclusions 

In this study, we developed a 4DVAR system based on the WRF-Chem model, where the initial SO2 concentration and 

emissions were set as the state variables to estimate SO2 emissions. An adjoint model was developed focusing on the 

processes of transport, dry/wet deposition, and SO2 chemical reactions derived from the WRF-Chem model. Observations of 

the hourly SO2 concentration were assimilated to optimize SO2 emissions, which were used to improve the SO2 forecasting 380 

skill.  

OSSE was performed to evaluate the performance of the 4DVAR system. The newly improved emission (EM_new) 

was obtained by assimilating the pseudo-observations, and EM_back was set as the background emission. Compared with 

EM_back, the average bias of EM_new decreased from -18.7 to -1.9 mol km-2 h-1. The average RMSE decreased from 43.3 

to 16.8 mol km-2 h-1, and the average CORR increased from 0.01 to 0.9. These results suggest that the developed 4DVAR 385 

system can effectively improve estimation accuracy of the emission source by assimilating the surface SO2 concentration.  

The 4DVAR system was then applied to investigate SO2 emission changes during the COVID-19 lockdown in China, 

with special focus on Central China. The MEIC_2016 emissions were set as the background value, and the observational 

data were assimilated to optimize SO2 emissions from January 17 to February 6 in 2019 and 2020. The results showed a 

significant reduction in emissions, with 2019 and 2020 optimized emissions decreasing by 5.0% and 14.5%, respectively. 390 
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The 2020 optimized emissions dropped by more than 20 % in most parts of Central China compared to the 2019 optimized 

emissions, owing to reduction in human activity during COVID-19. The largest decrease in emissions was around Wuhan, 

which COVID-19 heavily hit by the time, with a decline of 57%. Hourly average emissions were analyzed to estimate the 

changes between 2019 and 2020. Compared with 2019 optimized emissions, the 2020 optimized emissions decreased on an 

average by 18.0%, reflecting the reduction of SO2 emissions due to the lockdown. For Central China, the 2020 optimized 395 

emissions decreased by 22.3–42.1% compared with the 2019 optimized emissions.  

Three sets of forecast experiments for 2020, using MEIC_2016, 2019, and 2020 emissions, were conducted to illustrate 

the effects of the optimized emissions. The experiment with MEIC_2016 emissions overestimated the SO2 concentration 

forecast, whereas the experiment with 2019 optimized emissions decreased the concentrations but still overestimated the 

values. The forecast skill of the experiment with the 2020 emissions was the best, where the RMSE decreased from 21.7 to 400 

11.3 μg m-3, and the CORR increased from 0.2 to 0.6 compared to the 2016 emission. For Central China, the average bias 

and RMSE in the DA_2020 experiment decreased by 87.7% and 77.0%, respectively, and the average CORR increased by 

201.3%.  

However, the conducted study has some limitations. Only hourly surface SO2 observations were used to constrain the 

emission sources. The spatial distribution of surface observation sites was uneven, and there were fewer sites in the 405 

northwest and southwest regions, resulting in limited adjustments to emission sources in these regions. In future, satellite 

data will be used to adjust the emission source to address the lack of surface observation data. Furthermore, simultaneous 

optimization of SO2 concentrations and emissions will be implemented in a 4DVAR system, and multi-source observation 

data will be used to improve its performance.  

 410 
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