

Four-dimensional Variational Assimilation for SO₂ Emission and its Application around the COVID-19 lockdown in the spring 2020 over China

Yiwen Hu^{1,2}, Zengliang Zang², Xiaoyan Ma¹, Yi Li², Yanfei Liang³, Wei You², Xiaobin Pan², Zhijin Li^{4,5}

¹Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China

删除[ywhu]: ¹Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key

²College of Meteorology and Oceanography, National University of Defense Technology, Changsha, 410073, China

³No. 32145 Unit of PLA, Xinxiang, 453000, China

⁴Fudan University, Shanghai, 200031, China

⁵University of California Los Angeles, California, 91109, USA

Correspondence to: Zengliang Zang (zllqxy@163.com) and Xiaoyan Ma (xma@nuist.edu.cn)

Abstract. Emission inventories are essential for modeling studies and pollution control, but traditional emission inventories are usually updated after a few years based on the statistics of “bottom-up” approach from the energy consumption in provinces, cities, and counties. The latest emission inventories of Multi-Resolution Emission Inventory in China (MEIC) was compiled from the statistics for the year 2016 (MEIC_2016). However, the real emissions have varied yearly, due to national pollution control policies and accidental special events, such as the coronavirus disease (COVID-19) pandemic. In this study, a four-dimensional variational assimilation (4DVAR) system based on the “top-down” approach was developed to optimize sulfur dioxide (SO₂) emissions by assimilating the data of SO₂ concentrations from surface observational stations. The 4DVAR system was then applied to obtain the SO₂ emissions during the early period of COVID-19 pandemic (from 17 January to 7 February, 2020), and the same period in 2019 over China. The results showed that the average MEIC_2016, 2019, and 2020 emissions were 42.2×10^6 , 40.1×10^6 , and 36.4×10^6 kg d⁻¹. The emissions in 2020 decreased by 9.2% in relation to the COVID-19 lockdown compared with those in 2019. For Central China, where the lockdown measures were quite strict, the mean 2020 emission decreased by 21.0% compared with 2019 emissions. Three forecast experiments were conducted using the emissions of MEIC_2016, 2019, and 2020 to demonstrate the effects of optimized emissions. The root-mean-square error (RMSE) in the experiments using 2019 and 2020 emissions decreased by 28.1% and 50.7%, and the correlation coefficient increased by 89.5% and 205.9% compared with the experiment using MEIC_2016. For Central China, the average RMSE in the experiments with 2019 and 2020 emissions decreased by 48.8% and 77.0%, and the average correlation coefficient increased by 44.3% and 238.7%, compared with the experiment using MEIC_2016 emissions. The results demonstrated that the 4DVAR system effectively optimized emissions to describe the actual changes in SO₂ emissions related to the COVID lockdown, and it can thus be used to improve the accuracy of forecasts.

Key words: 4DVAR; Sulfur dioxide; Emission inventory; WRF-Chem

1 Introduction

Sulfur dioxide (SO₂) causes acid rain through the formation of sulfuric acid, which destroys infrastructure and harms 35 aquatic and terrestrial ecosystems (Saikawa et al., 2017; Zheng et al., 2018). SO₂ is also a precursor of sulfate aerosols, which directly affect the radiation budget and indirectly modulate clouds and precipitation, and also cause haze pollution (Qin et al., 2022). Thus, SO₂ emission, impacts the ecological environment. SO₂ pathway in the atmosphere is generally investigated using chemistry transport models (CTMs) to estimate the three-dimensional changes of SO₂ concentrations. Thus, accurately estimating SO₂ emissions is important for understanding spatiotemporal distribution of SO₂ concentrations 40 in CTMs (Zeng and Wu, 2021).

SO₂ emissions are generally estimated using the “bottom-up” approach, which requires direct observations of the activities and emissions factors from all possible sources (Zhao et al., 2022). However, the estimates are subject to 45 substantial uncertainties because of limited available observations, with the differences among existing inventories as high as 42% (Granier et al., 2011). Saikawa et al. (2017) compared five types of emission inventories and found a significant difference in SO₂ emissions from power sector due to the difference in the assumed installation period of flue gas desulfurization in coal-fired power plants. Moreover, most “bottom-up” emissions are recorded annually or monthly amounts, which need to be spatiotemporally allocated into the hourly gridded emissions for use in regional air quality models, and thus 50 can cause uncertainties (Peng et al., 2017; Peng et al., 2018; Zeng and Wu, 2018). China has implemented several control strategies, such as strengthening emission standards, phasing out obsolete industrial capacity, and establishing small-but high-emitting factories (Zheng et al., 2018), all of these have markedly reduced the emissions. However, these policies have 55 been applied to varying extents in different regions, so that emission changes vary spatiotemporally (Chen et al., 2019a; Dai et al., 2021). Such complex changes in SO₂ emission were not reflected in the “bottom-up” estimates. Differences in the spatiotemporal control also caused additional uncertainties in gridded hourly emissions reducing their accuracy (Zeng et al., 2020).

In contrast to the “bottom-up” approach, data assimilation (DA) provides a “top-down” approach, where the ensemble 60 Kalman filter (EnKF) and four-dimensional variational DA (4DVAR) are two of the most explored algorithms to optimize emissions (Cohen and Wang, 2014; Wang et al., 2021). The EnKF method uses flow-dependent covariance generated by an ensemble of model outputs to convert observational information into emissions (Tang et al., 2013; Ma et al., 2019), and has been used to estimate regional and global aerosols and gas-phase emissions, such as SO₂, NO_x, CO, and particulate matter. (Huneeus et al., 2012; Huneeus et al., 2013; Miyazaki et al., 2012; Miyazaki et al., 2014; Tang et al., 2013; Tang et al., 2016; Chu et al., 2018). For example, Dai et al. (2021) developed a four-dimensional regional ensemble transform Kalman filter and showed that SO₂ emissions over China in November 2016 decreased by 49.4% in comparison to the 2010 background 65 emission due to the implementation of emission control policies (Zheng et al., 2018). Peng et al. (2017, 2018) developed an EnKF system to include more spatiotemporal emission characteristics over China using hourly surface observations as constraints, and the forecasting results with optimized emissions are more accurate than those with the background emissions.

刪除[ywhu]: formation

刪除[ywhu]: It is thus acknowledged that

刪除[ywhu]: significantly

刪除[ywhu]: that

刪除[ywhu]: in

刪除[ywhu]: of

刪除[ywhu]: significant

刪除[ywhu]: difference

刪除[ywhu]: owing

刪除[ywhu]: timing of

刪除[ywhu]: as annual

刪除[ywhu]: hourly

刪除[ywhu]: which

刪除[ywhu]:

刪除[ywhu]: and

刪除[ywhu]: did

刪除[ywhu]: reflect

刪除[ywhu]: the

The SO₂ forecasts with the optimized emissions were improved for the forecast out to 72-h, and the root-mean-square errors (RMSEs) decreased by 30% in comparison to the forecasts with the background emission. Feng et al. (2020) quantitatively optimized the gridded CO emissions in China using hourly surface CO measurements and EnKF algorithm with the Weather Research and Forecasting (WRF)/CMAQ model, and found the optimized CO emissions in December 2017 17% lower than those in December 2013.

A 4DVAR method has been used to estimate emissions based on the adjoint model of a CTM and is known as an inverse process (Bao et al., 2019; Yumimoto and Uno, 2006; Yumimoto et al., 2007; Wang et al., 2021). Several studies have shown that 4DVAR is a promising approach to derive the emission rates (Dubovik et al., 2008; Hakami et al., 2005; Müller and Stavrakou, 2005; Elbern et al., 2007; Yumimoto et al., 2007; Yumimoto et al., 2008). Stavrakou and Atmospheres (2006) estimated CO and NOx emissions with a 4DVAR system using satellite data as a constraint and showed that the optimized CO emission was 2900 Tg yr⁻¹, which was about 5% higher than the background emission. Henze et al. (2007) developed an adjoint model based on the GEOS-Chem model and used it to optimize the SO_x, NO_x, and NH₃ emissions. The model was also used to investigate the sensitivity of modeled aerosol concentrations to their precursor emissions, suggesting that their relationship, strongly depended on thermodynamic competition. Qu et al. (2019) estimated SO₂ emissions by assimilating OMI observations using the GEOS-Chem model and its adjoint model and found that the SO₂ emissions decreased by 48% over China from 2008 to 2016. The emissions based on a “top-down” approach can reduce the uncertainty of “bottom-up” emissions and provide a more accurate emission related to a special event than traditional emissions.

Emergence of the coronavirus disease (COVID-19) pandemic during the period from the end of 2019 through the beginning of 2020 (Wang et al., 2020) impacted more than 200 countries. To slow and stop the rapid spread of the virus, Wuhan was the first city to implement a lockdown on January 23, 2020, followed by the entire Hubei province one day later (Wuhan is capital of the Hubei province). Subsequently, all provinces in China successively implemented a national emergency to respond to major public health emergencies. The pollutant emissions decreased because human activities reduced during the lockdown (Filonchyk et al., 2020; Forster et al., 2020; Ghahremanloo et al., 2021; Keller et al., 2021; Li et al., 2020; Miyazaki et al., 2020; Li et al., 2021; Huang et al., 2021a; Zhang et al., 2020). For example, Huang et al. (2021b) estimated NO_x emissions over China during this period and found a decrease trend owing to human activity reduction.

In this study, we developed a 4DVAR system to estimate SO₂ emissions, using the WRF model coupled with chemistry (WRF-Chem) (Grell et al., 2005). Some physical and chemical processes, including transport, dry/wet deposition, emission, vertical mixing, and SO₂ chemicals, were implemented to describe the pathway of SO₂ in WRF-Chem. The 4DVAR system was applied to investigate the changes in SO₂ emissions over China during the COVID-19 lockdown. Hourly surface SO₂ observations were assimilated.

This paper is organized as follows. Section 2 describes the methodology, including the WRF-Chem and 4DVAR system configurations and their adjoint model, as well as observational data. In Section 3, the spatiotemporal changes in SO₂

emission during the COVID-19 lockdown are estimated. SO₂ simulations using optimized emissions are also verified against

100 observations to show the improvements in emission data. Finally, a discussion and conclusions are presented in [Section 4](#).

删除[ywhu]: section

2 Method and Data

2.1 WRF-Chem model

WRF-Chem is an online coupled air quality model (Grell et al., 2005), which includes sophisticated and comprehensive physical and chemical processes such as transport, turbulence, emission, chemical transformation, photolysis, radiation, and

105 more. The WRF-Chem version 3.9.1 was used, in this study. The WRF-Chem domain (Fig. 1a) is centered at 101.5 °E,

37.5 °N, and covers all of China, with 27 km horizontal resolution. There are totally 169×211 grid points. In the vertical, 40

vertical layers extend from the surface to 50 hPa, with high resolution near the surface. Meteorological initial and boundary

conditions were derived from the 1° × 1° National Centers for Environmental Prediction Global Final Analysis data at a 6-h

frequency. Most of the WRF-Chem settings follows Hu et al. (2022) (Table 1). Those settings include the WRF Lin

110 microphysics scheme (Lin et al., 1983), Rapid Radiative Transfer Model longwave (Mlawer et al., 1997), Goddard

shortwave radiation schemes (Chou, 1994), Yonsei University (YSU) boundary layer scheme (Hong et al., 2006), Noah land

surface model (Chen et al., 2010), and Grell-3D cumulus parameterization (Grell, 1993; Grell and Dévényi, 2002). Aerosol

and gas-phase chemistry schemes are the aerosol interactions and chemistry (MOSAIC-4 bin) and carbon bond mechanism-

Z (CBMZ) (Zaveri and Peters, 1999; Zaveri et al., 2008). The heterogeneous SO₂ reaction is also added to the WRF-Chem

115 (Sha et al., 2019). The anthropogenic emissions from the Multi-Resolution Emission Inventory for China (MEIC) in 2016

are used as the background emission input.

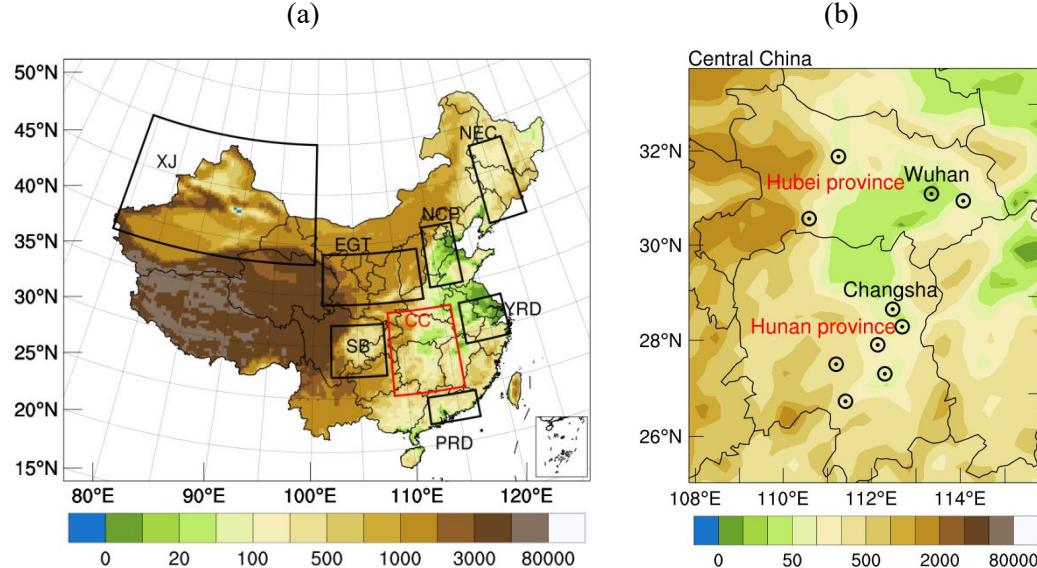


Figure 1: (a) Maps of the WRF modeling domain and (b) Central China. The color bars represent the terrain altitude. The black rectangles in (a) are North China Plain (NCP), Northeastern China (NEC), Energy Golden Triangle (EGT), Xinjiang (XJ), Sichuan Basin (SB), Yangtze River Delta (YRD), and Pearl River Delta (PRD). The red rectangle in (a) represents Central China (CC). (b) The details of CC. Black circle with dots in (b) represent the locations of large cities. The red characters in (b) are the name of provinces, and the black characters are the name of capital cities. Wuhan and Changsha are the capitals of Hubei and Hunan provinces. Inset in (a): South China Sea. Units: m.

120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945

y_i^o is the observation vector at time i . \mathbf{H}_i is the observation operator maps the control variables to the observations, and \mathbf{R}_i is the observation error covariance matrix. The concentration c_i is governed by a model.

$$c_i = f_{i,i-1}(c_{i-1}, e_{i-1}) \quad (2)$$

140 where $f_{i,i-1}$ represents the model time integration for one time step from time $i-1$ to i . The increment field of the initial SO₂ concentration can be written as $\delta c_0 = c_0 - c_0^b$, and the increment field of SO₂ emission as $\delta e_i = e_i - e_i^b$. The innovation vector is denoted as $d_i \equiv y_i^o - \mathbf{H}_i(c_i)$, which is the difference between the observations and the model equivalent state. Thus, the cost function Eq. (1) can be written in an incremental form as follows:

$$J = \frac{1}{2}(\delta c_0)^T \mathbf{B}_c^{-1}(\delta c_0) + \frac{1}{2} \sum_{i=0}^{n-1} (\delta e_i)^T \mathbf{B}_{e_i}^{-1}(\delta e_i) + \frac{1}{2} \sum_{i=0}^n (d_i - \mathbf{H}_i \delta c_i)^T \mathbf{R}_i^{-1}(d_i - \mathbf{H}_i \delta c_i) \quad (3)$$

145 Using a linearization approximation, Eq. (2) becomes

$$\delta c_i = L_{i,i-1} \delta c_{i-1} + L_{i,i-1} \Gamma_{i-1} \delta e_{i-1} \quad (4)$$

where $L_{i,i-1}$ and Γ_{i-1} are Jacobians of $f_{i,i-1}$ with respect to δc_{i-1} and δe_{i-1} , and $i = 1, 2, \dots, n$. Thus, with a time integration, Eq. (4) can be presented as:

$$\delta c_i = L_{i,0} \delta c_0 + \sum_{l=0}^{i-1} L_{i,l} \Gamma_l \delta e_l \quad (5)$$

150 where $L_{i,0}$ denotes the tangent linear model operator of the CTM acting on δc_0 , and the subscript is the time step from i to the initial time. $L_{i,l} \Gamma_l$ ($l = 0, 1, \dots, i-1$) is the operator acting on δe_l , and Γ_l is an operator that converts emissions to concentrations.

There are several numerical algorithms available to minimize the cost function in Eq. (3) (Courtier et al., 1994; Li and Navon, 2001). For the algorithms to minimize Eq. (3) with large dimensions, the gradient of the cost function is required.

155 The gradient with respect to δc_0 and δe_i ($i = 0, 1, \dots, n-1$) can be written as:

$$\frac{\partial J}{\partial \delta c_0} = \mathbf{B}_c^{-1}(\delta c_0) + \sum_{l=0}^n L_{l,0}^T \mathbf{H}_l^T \mathbf{R}_l^{-1}(d_l - \mathbf{H}_l \delta c_l) \quad (6)$$

$$\frac{\partial J}{\partial \delta e_i} = \mathbf{B}_{e_i}^{-1}(\delta e_i) + \sum_{l=i+1}^n \Gamma_l^T L_{l,i}^T \mathbf{H}_l^T \mathbf{R}_l^{-1}(d_l - \mathbf{H}_l \delta c_l) \quad (i = 0, 1, \dots, n-1) \quad (7)$$

Here, $L_{0,0} = I$ for $i = 0$, where I is an identity matrix. A time window of 6 h is typically used in operational synoptic-scale numerical weather predictions. Since a SO₂ lifetime in a model grid is usually less than 6 h (Fioletov et al., 2015), we still use a window of 6-h ($n = 6$) in the experiments presented in the following sections.

Eq. (6) and (7) include three types of adjoint operators, that is, Γ^T , L^T and \mathbf{H}^T , which are derived from the tangent linear model operator Γ , L , and observation operator \mathbf{H} , respectively. The tangent linear operators Γ and L from WRF-Chem are very complex and computational demanding, we simplify the CTM to focus on SO₂.

165 WRF-Chem is an online coupled air quality model with sophisticated and comprehensive physical and chemical processes. Focusing on SO₂, the governing equation for the concentration can be written as:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} - v \frac{\partial c}{\partial y} - w \frac{\partial c}{\partial z} + \frac{\partial}{\partial x} \left(K_x \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial c}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial c}{\partial z} \right) - \mathbf{e}^{-\Lambda} \frac{\partial c}{\partial t} - r \frac{\partial c}{\partial t} + V_m \frac{\rho_{air}}{\rho} \frac{\Delta S}{dz} e \quad (8)$$

删除[ywhu]: Although,
删除[ywhu]: smaller
删除[ywhu]: in a model grid
删除[ywhu]:). Thus,
删除[ywhu]:
删除[ywhu]: In
删除[ywhu]:), there are
设置格式[ywhu]: 字体: (默认) Times New Roman
删除[ywhu]: .
删除[ywhu]: <math>

where c is the gas/aerosol concentration, and u, v , and w denote the wind in x, y , and z directions, respectively.

Thus, the $u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + w \frac{\partial c}{\partial z}$ is a transport term. K_x, K_y , and K_z are turbulent exchange coefficient in x, y , and z directions, respectively, based on K theory of turbulence, and $\frac{\partial}{\partial x} (K_x \frac{\partial c}{\partial x}) + \frac{\partial}{\partial y} (K_y \frac{\partial c}{\partial y}) + \frac{\partial}{\partial z} (K_z \frac{\partial c}{\partial z})$ is the turbulent term. In the study,

170 the horizontal grid spacing is 27 km, thus the $\frac{\partial}{\partial x} (K_x \frac{\partial c}{\partial x}) + \frac{\partial}{\partial y} (K_y \frac{\partial c}{\partial y})$ can be neglected. But the vertical turbulence term $(\frac{\partial}{\partial z} (K_z \frac{\partial c}{\partial z}))$ should be retained since the vertical grid spacing is generally less 200 m in the lower and middle layers. $e^{-\Lambda \frac{\partial c}{\partial t}}$ denotes the wet deposition term, where Λ is the loss rate (Grell and Dévényi, 2002) and e is the base of natural logarithms ($=0.272$). $r \frac{\partial c}{\partial t}$ is the chemical term, where r is the chemical reaction rate of the species, and $V_m \frac{\rho_{air} \Delta S}{\rho} e$ is the emission term, where e denotes the emission source of the species. $V_m = 22.4 \times 10^{-3} \text{ m}^3 \text{ mol}^{-1}$ is the molar gas volume, ρ is the air density of the actual atmosphere (kg m^{-3}), ρ_{air} is the standard air density indicating the molar volume, and ΔS is the grid area.

From the simplified Eq. (8), the model operators of Γ and L can be written as:

$$L = -u \frac{\partial c}{\partial x} - v \frac{\partial c}{\partial y} - w \frac{\partial c}{\partial z} + \frac{\partial}{\partial z} (K_z \frac{\partial c}{\partial z}) - e^{-\Lambda \frac{\partial c}{\partial t}} - r \frac{\partial c}{\partial t} \quad (9)$$

$$\Gamma = V_m \frac{\rho_{air} \Delta S}{\rho} e \quad (10)$$

180 Using tangent linear coding techniques, we could derive the code for the discretized tangent linear operators L and Γ (Eq. (9-10)) from the source code built in WRF-Chem. Once the source code is available for the tangent linear operators, we use the adjoint coding technique to derive the adjoint operator. The adjoint coding technique are detailed in Hoffman et al. (1992).

2.3 Observational and background error covariances

185 \mathbf{R}_i in Eq. (1) is the observational error covariance for a set of observations (y_i), where \mathbf{B}_c and \mathbf{B}_{e_i} are the BECs for the concentrations and emissions, respectively. In a DA system, \mathbf{R}_i and BEC play important roles in successful assimilation. The observational errors include the measurement error (observed value error) and representative error (error of observation operator \mathbf{H}). The observation error ε_{SO_2} is defined as below:

$$\varepsilon_{SO_2} = \sqrt{\varepsilon_r^2 + \varepsilon_o^2} \quad (11)$$

190 where ε_o is the measurement error, and ε_r is the representative error. The measurement error ε_o is the systematic error generated during monitoring by the instrument at each environmental monitoring station. Therefore, the measurement error ε_o of SO_2 observation in this study is $1.0 \mu\text{g m}^{-3}$, similar to that reported by Chen et al. (2019).

The representative error ε_r is caused by converting the model variable to the observation variable (Schwartz et al., 2012) and can be expressed as:

$$\varepsilon_r = \gamma \varepsilon_o \sqrt{\frac{dx}{L}} \quad (12)$$

设置格式[ywhu]: 字体: (默认) Times New Roman

设置格式[ywhu]: 字体: (默认) Times New Roman

删除[ywhu]: <math>

删除[ywhu]: .

设置格式[ywhu]: 字体: (默认) Times New Roman

删除[ywhu]: <math>

设置格式[ywhu]: 字体: (默认) Times New Roman

设置格式[ywhu]: 字体: (默认) Times New Roman

删除[ywhu]: <math>

删除[ywhu]: large

删除[ywhu]: 27km

删除[ywhu]: neglect

删除[ywhu]: equal to

删除[ywhu]: ,

设置格式[ywhu]: 字体: (默认) Cambria Math

删除[ywhu]: of the gas

删除[ywhu]: <math>

删除[ywhu]: <math>

删除[ywhu]: observation

删除[ywhu]: The representative error ε_r represents ...

删除[ywhu]: defined as <math>

删除[ywhu]: -

删除[ywhu]: following the result of

删除[ywhu]: er

where γ is an adjustable parameter scaling ε_o . $\gamma = 0.5$ was used in accordance with that used in Dai et al., (2021).

Furthermore, dx is the grid spacing (27 km in this study) and L is the radius of influence of an observation, which was taken as 2 km according to that reported by Chen et al. (2019). Then, $\varepsilon_r = 1.8 \mu\text{g m}^{-3}$ calculated from Eq. (12).

BECs (\mathbf{B}_c and \mathbf{B}_{e_i} in Eq. (1)) are the error covariance matrices of SO_2 concentrations and emissions. Practically, the

200 BEC is overly large for handling numerically. Thus, we followed the method used by Li et al. (2013) and Zang et al. (2016) to simplify \mathbf{B} :

$$\mathbf{B} = \mathbf{D}\mathbf{C}\mathbf{D}^T \quad (13)$$

where \mathbf{D} is the RMSE matrix and \mathbf{C} is the correlation matrix.

\mathbf{C} can be simplified by the Cholesky factorization and Kronecker product method (Li et al., 2013) as:

$$205 \quad \mathbf{C}^{\frac{1}{2}} = \mathbf{C}_x^{\frac{1}{2}} \otimes \mathbf{C}_y^{\frac{1}{2}} \otimes \mathbf{C}_z^{\frac{1}{2}} \quad (14)$$

For \mathbf{B}_{e_i} , the standard deviation \mathbf{D}_{e_i} is diagonal with a 200% error (Wang et al., 2012) and \mathbf{C}_{e_i} is a block diagonal matrix, with the main diagonal blocks being the correlation matrices of SO_2 emission. The main diagonal blocks of \mathbf{C}_{e_i} is 1.0 because the emission in each grid point is independent of that in other grids.

210 The National Meteorological Center method (Parrish and Derber, 1992) was used to estimate the BEC of SO_2 concentrations. The differences between 48 h and 24 h forecasts were generated from 17 January 2020 to 18 February 2020.

The first initial chemical field at 0000 UTC on 17 January 2020 was obtained from a 10-d forecast in consideration of spin-up. The subsequent initial chemical fields were derived from the former forecast one day prior. The horizontal length scale was used to determine the magnitude of SO_2 variance in the horizontal direction. This scale can be estimated by the curve of the horizontal correlation with distances, and the horizontal correlation is approximately expressed by a Gaussian function

215
$$\mathbf{e}^{\frac{(x_1-x)^2}{2L_s^2}}$$
 (e is the base of natural logarithms equal to 0.272). Here, x_1 and x are two points, and L_s is the horizontal length scale. According to Zang et al. (2016), when the intersection of the decline curve reaches $e^{1/2}$, the distance can be approximated as the horizontal length scale in Fig 2(a). The horizontal length scale was 81 km in this study. The vertical variance of SO_2 concentrations was considered by the vertical correlations in the BEC. A strong relationship was observed in the boundary layer (approximately below the 20th model layer) in the vertical direction (Fig. 2(b)). The standard deviation demonstrates the reliability of the forecasting model, and the standard deviation for the vertical distribution of SO_2 concentrations decreased with increasing height in the \mathbf{B}_c (Fig. 2(c)).

(a)

(b)

(c)

删除[ywhu]: <math>

设置格式[ywhu]: 字体: (默认) Times New Roman, 英语 (美国)

删除[ywhu]: 27km

删除[ywhu]: 2km following

设置格式[ywhu]: 字体: (默认) Times New Roman, 英语 (美国)

删除[ywhu]: 10

删除[ywhu]: too

删除[ywhu]: to be handled

删除[ywhu]: with

删除[ywhu]: 00

删除[ywhu]: 10d

删除[ywhu]: approximately

带格式表格[ywhu]

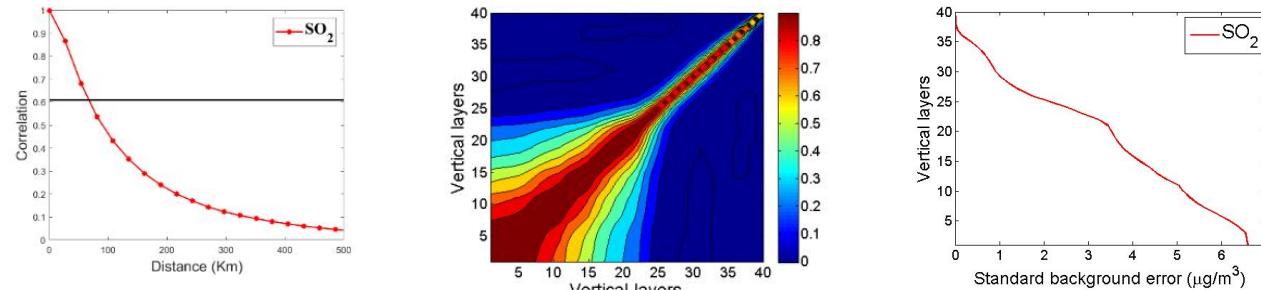


Figure 2: Background error covariation of SO₂ concentrations. (a) Vertical distribution of the horizontal correlation; the horizontal thin black line is the reference line ($e^{1/2}$) used to determine the horizontal correlation scales. (b) Vertical correlations. (c) Vertical distribution of the standard deviation.

225

2.4 Observation and emission data

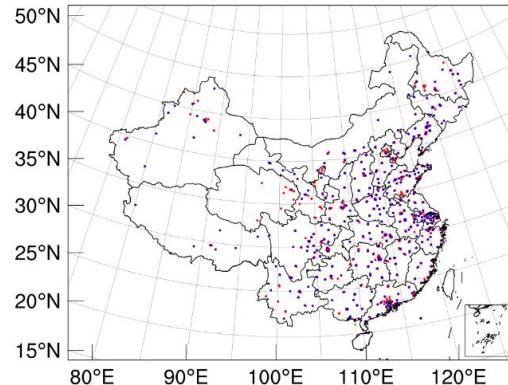
Hourly SO₂ data obtained from the website of the China National Environmental Monitoring Center (<http://www.cnemc.cn>) were used for assimilation and evaluation. There were 1933 stations in China in January 2020. Most observational stations were located in central and eastern China, whereas the stations in the west were relatively sparse. The sites were gridded into the model grid (27 \times 27 km²). If more than two stations were in the same grid, one station was randomly selected to verify the improvements relating to using optimized emissions, and the remaining sites were used for assimilation. In this study, 508 sites were selected for verification, and the remaining 1425 stations were used for assimilation. A strict criterion was used to remove SO₂ observations with values exceeding 650 $\mu\text{g m}^{-3}$ to ensure data quality (Chen et al., 2019).

230

The background anthropogenic emissions data were obtained from the MEIC (<http://www.meicmodel.org/>) developed by Tsinghua University, with a $0.25^\circ \times 0.25^\circ$ resolution and 2016 as the base year. The MEIC is a “bottom-up” emission inventory that covers 31 provinces on the Chinese mainland and includes eight major chemical species (Zhang et al., 2009) and counts anthropogenic emissions from sources in five sectors (power, industry, residential, transportation, and agriculture). Details of the technology-based approach and source classifications has been reported by Zhang et al. (2009). The actual emission inventory ($0.25^\circ \times 0.25^\circ$) was pre-processed to match the model grid spacing (27 km).

235

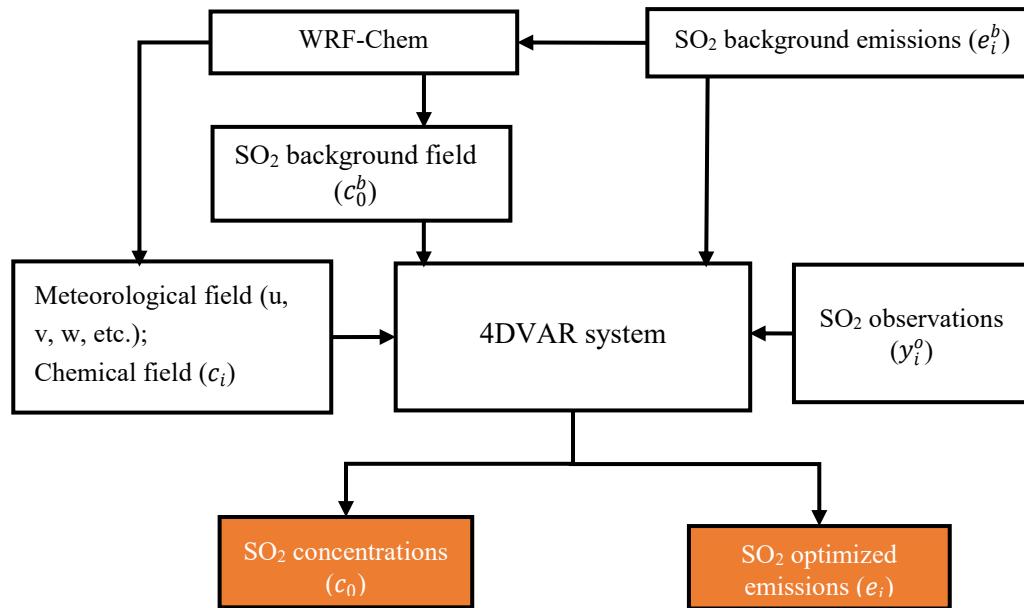
删除[ywhu]: are
删除[ywhu]: <math>
设置格式[ywhu]: 英语(美国)
删除[ywhu]: there were
删除[ywhu]: located
设置格式[ywhu]: 英语(美国)
删除[ywhu]: -
删除[ywhu]: emission data of
删除[ywhu]: model
删除[ywhu]: . It
删除[ywhu]: can be found in
删除[ywhu]: preprocessed



240 **Figure 3: Locations of the 1425 SO₂ assimilation observation stations (red) and 508 independent observation stations (blue). Inset: South China Sea.**

2.5 Experimental design

Figure 4 shows a flowchart of the procedure used to optimize SO₂ emissions in a single time step of i . First, a forecast was performed using the WRF-Chem model and background emissions to generate the meteorological and chemical fields, which were recorded every 10 min and then used in the 4DVAR system. Then, the 4DVAR system performed every 6 h to obtain SO₂ optimized emissions and initial concentrations by assimilating the hourly SO₂ observations. For example, the observations during 0000–0600 UTC were assimilated using Eq. (1). The assimilated SO₂ concentration initial field (0000 UTC) and the optimized SO₂ emissions during 0000–0500 UTC were obtained.



删除[ywhu]: Firstly,,
 删除[ywhu]: . These fields
 删除[ywhu]: ten minutes
 删除[ywhu]: Secondly
 删除[ywhu]: hours

Figure 4: Flow chart of the SO₂ emissions optimization procedure in a single time step of i . The orange boxes represent the SO₂ optimized emissions and SO₂ concentrations of output. The c_0^b , c_0 , e_i^b , e_i and y_i^o are the mathematical symbols from Eq. (1).

The SO₂ emissions during the COVID-19 lockdown over China were optimized to evaluate the performance of the 4DVAR system, and to analyse the reduction of SO₂ emissions related to the COVID-19 lockdown. The National lockdown was imposed in Wuhan and surrounding cities of Hubei provinces on 23 and 24 January 2020, respectively. Then, Chinese mainland implemented the national lockdown policies on 26 January 2020. We selected the study period from 17 January to 6 February 2020, which covered the time before and during lockdown. The latest available MEIC emission inventory is based on the statistics of 2016. However, the changes of emissions between 2020 and 2016 are both related to the emissions reduction policies and COVID-19 lockdown. The difference between 2019 and 2020 emissions during the same period reflected the influence of COVID-19 lockdown on SO₂ emissions. Thus, the SO₂ emissions during the study period in 2019 was also optimized.

Table 2 summarizes the details of DA emissions experiments. For the set of Emi_2019 experiments, the first DA process started on 17 January 2019, and the observations during 0000–0600 UTC of 17 January 2019 were assimilated by the 4DVAR system. Then, the optimized initial SO₂ concentration field (0000 UTC) and SO₂ emissions during 0000–0500 UTC were obtained. Before conducting Emi_2019 experiment, 24 h forecasts were performed by WRF-Chem with MEIC_2016 emissions every 0000 UTC from 17 January to 7 February, 2019 to provide the physical and chemical parameters. The daily chemical initial conditions were obtained from the 24 h forecast of the previous day. For the 24 h forecast, the meteorological initial and boundary conditions were provided by the 1° × 1° National Centers for Environmental Prediction (NCEP) Global Final Analysis data at a 6-hour frequency. The chemical boundary fields were not considered because the domain used in this study was wider than that in China. For the Emi_2019 experiment, the emissions of 2019 were optimized by the 4DVAR system every 6 h with the background emissions of MEIC_2016. The physical and chemical parameters used in this DA process were obtained from the WRF-Chem forecast. For the Emi_2020 experiment, the DA process settings were similar to those of the Emi_2019 experiment. The optimized emissions for 2020 were obtained with the emission 2019 as background emission.

Table 2: Details of 4DVAR experiments to optimize emissions for 2019 and 2020

Name	Background emissions	Optimized emissions	Study period
Emi_2019	MEIC_2016	2019 optimized emissions	Every 6 h from 17 January to 7 February, 2019
Emi_2020	2019 optimized emissions	2020 optimized emissions	Every 6 h from 17 January to 7 February, 2020

To estimate the improvement of SO₂ forecasts using optimized emissions, three sets of forecast experiments were performed using the MEIC_2016 emissions and the optimized emissions for 2019 and 2020, respectively, labeled Ctr_2016, DA_2019, and DA_2020, respectively (see Table 3). The three experiments were run daily with 24 h forecasts from 17 January to 7 February 2020 using the same WRF-Chem domain settings and physiochemical parameters. The SO₂ initial

删除[ywhu]: analyze
 删除[ywhu]: .
 删除[ywhu]: The
 删除[ywhu]: were implemented from
 删除[ywhu]: days both covered
 删除[ywhu]: newest
 删除[ywhu]: of MEIC relates to
 删除[ywhu]: for
 删除[ywhu]: shows
 删除[ywhu]: of Emi_2019
 删除[ywhu]: the optimized
 删除[ywhu]: parameter
 删除[ywhu]: of each day
 删除[ywhu]: forecasting
 删除[ywhu]: of Emi_2019
 设置格式[ywhu]: 英语(美国)
 删除[ywhu]: hours
 带格式表格[ywhu]
 删除[ywhu]: hours
 删除[ywhu]: hours
 删除[ywhu]:
 删除[ywhu]: and these were

condition (IC) at 0000 UTC on January 17 was based on the spin-up forecasts initialized at 0000 UTC on January 7, 2020
280 for all three forecast experiments. The SO₂ ICs were later obtained from the 24-h forecast of the previous day for the three experiments, respectively. For example, the SO₂ IC of the experiment beginning at 0000 UTC on 18 January was taken from the 24-h forecast result of the experiment beginning at 0000 UTC of 17 January, and so on. Meteorological initial and boundary conditions were provided by the $1^\circ \times 1^\circ$ NCEP Global Final Analysis data at a 6-h frequency. The chemical boundary fields were not considered.

285 **Table 3: Details of the forecast experiments using emissions from 2016, 2019 and 2020.**

Name	Emission	Forecast duration	Study period
Ctrl_2016	MEIC_2016	24 h	<u>Daily</u> from 17 January to 7 February, 2020
DA_2019	The 2019 optimized emissions	24 h	<u>Daily</u> from 17 January to 7 February, 2020
DA_2020	The 2020 optimized emissions	24 h	<u>Daily</u> from 17 January to 7 February, 2020

3 Results

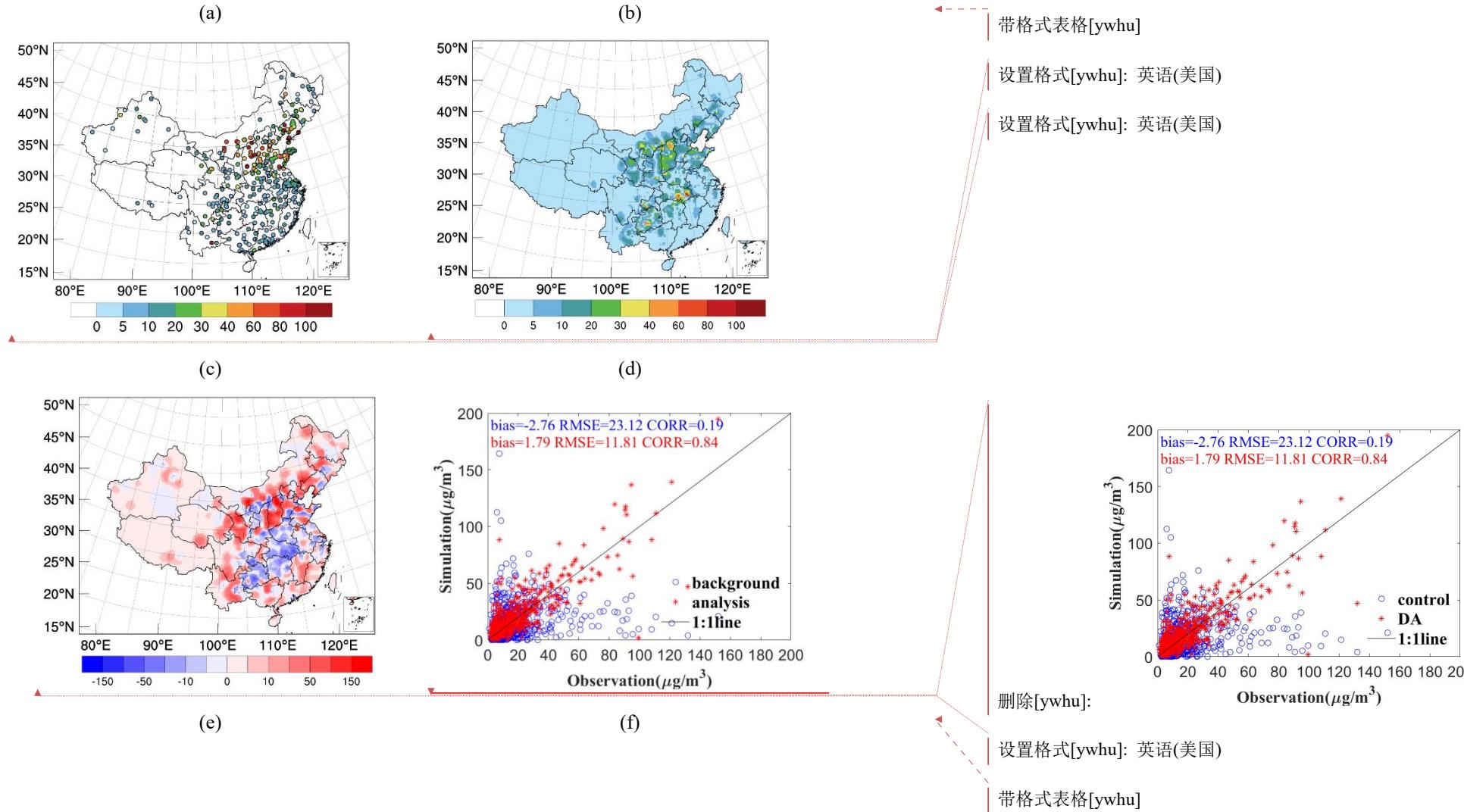
3.1 Results of 4DVAR emission experiments

3.1.1 4DVAR test case

The first day (17 January 2019) was used as a test case to determine the effectiveness of using 4DVAR. The experiment
290 employed MEIC_2016 as the background emissions and assimilated the hourly surface SO₂ observations during 0000–0600 UTC of 17 January 2019. The observed SO₂ concentrations in Fig. 5a indicated the heavy polluted areas with SO₂ concentrations exceeding $80 \mu\text{g m}^{-3}$ were mostly located in the North China Plain and Northeast China. The areas lightly polluted with SO₂ concentrations below $40 \mu\text{g m}^{-3}$ were mostly located in Southern China. Compared with the observed concentrations, the background concentrations (Fig. 5b) were underestimated in North China Plain and Northeast China, but overestimated in Central China and the Sichuan Basin. Figure 5c shows the increment field of SO₂ concentrations (analyzed field minus background field). Positive values in most of Northern China, and negative in Central China and the Sichuan Basin were observed, suggesting that the optimized IC is more consistent with the observed SO₂ concentrations than the background concentrations. The evaluations of the optimized IC and background concentrations are shown in Fig. 5d. Compared with the background field, the mean bias in analysis field improved from -2.76 to $1.79 \mu\text{g m}^{-3}$ and RMSE decreased from 23.42 to $11.81 \mu\text{g m}^{-3}$ and the correlation coefficient (CORR) of analysis field increased from 0.19 to 0.84 .
295 The result indicates that the accuracy of the ICs of SO₂ concentrations were improved after using the 4DVAR method. The forecast accuracy can be improved using optimized ICs (Peng et al., 2017, 2018), but the emission is the most important factor influencing the forecast accuracy. The emissions and IC concentrations were simultaneously optimized in the EMI_2019 experiment using our 4DVAR system.

300 Figure 5e presents the background emission of MEIC 2016 at 0000 UTC. According to Fig. 5a and 5b, MEIC_2016 emissions underestimated in most of Northern China and overestimated in Central China and Sichuan Basin. Fig. 5f shows

the increment of SO₂ emissions at 0000 UTC 17 January 2019 by using the 4DVAR system. There were positive increment in North China Plain, and Northeast China, and negative increment in Central China and Sichuan Basin. The distribution of the incremental SO₂ emissions was consistent with that of the incremental SO₂ concentration (Fig. 5c). There is a reasonable relationship between the two increments, since the underestimated/overestimated emission may result in underestimated/overestimated simulation of concentration.



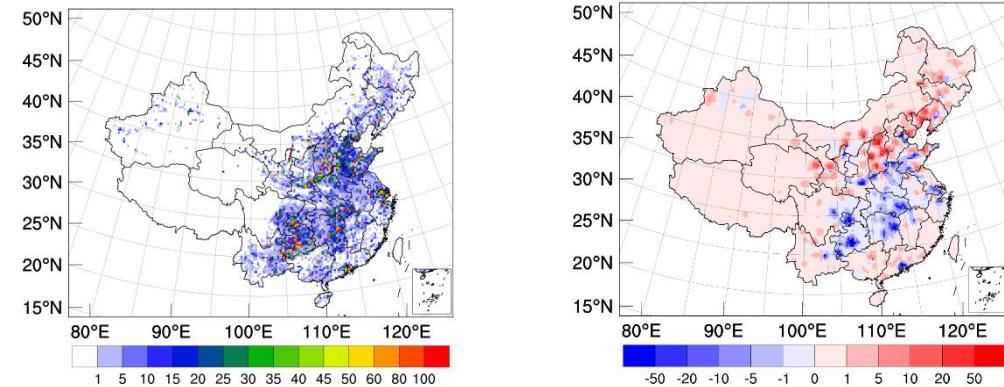


Figure 5: Simulated and observed SO₂ concentrations at 0000 UTC 17 January 2019. (a) Observations, (b) background concentrations, (c) SO₂ concentrations increment, (d) scatter plots, (e) background emissions, and (f) SO₂ emissions increment.

315 Units: $\mu\text{g m}^{-3}$ for (a), (b), (c), and (d), and $\text{mol km}^{-2} \text{ h}^{-1}$ for (e) and (f). Insets: South China Sea.

3.1.2 Spatial distribution of emission

Compared with MEIC_2016 (Figure 6a), the emissions for 2019 and 2020 (Fig. 6b and 6c) from the 4DVAR experiments of Emi_2019 and Emi_2020 decreased in the area with heavy emissions, particularly in North China Plain and Central China. The reduction in emissions between 2019 and MEIC_2016 may primarily result from the national pollution control policy. However, the reduction of emissions between 2020 and 2019 may primarily result from the COVID_2019 lockdown, including school and workplace closures, event and public gathering cancellation, and restrictions on public transport.

Figure 7a shows the difference in emissions between 2020 and 2019. The negative values were seen in most of the areas with strict lockdown, such as North China Plain, Central China, Yangtze River Delta, and Pearl River Delta. It indicates that 325 the 2020 emission substantially decrease, compared with the 2019 emission due to the COVID-19 lockdown. The reducing ratio of emission was averaged in China as 9.2% (Fig. 7b), but over 40.0% in most areas of North China and Central China. Zheng et al. (2020) have found that SO₂ emissions in China decreased by 12.0% in January and February 2020 compared to values in 2019. Fan et al. (2020) have also reported the SO₂ concentration decreased by 20.0–50.0% over China during the COVID-19 lockdown period in the spring of 2020 based on TROPOMI satellite data. Our results are similar to those of 330 previous studies. In addition, SO₂ emissions increased in some areas of Northeast China, Tibetan Plateau, Yunnan Province, and the southeast coastal areas, where the epidemic was weaker than that in other areas (Kraemer Moritz et al., 2020; Tian et al., 2020). Most of the increase in SO₂ was $<10 \text{ mol km}^{-2} \text{ h}^{-1}$, but the positive ratios were $>100.0\%$, suggesting that new emission sources were generated. It is suggested that these newly generated emissions were probably due to relocating power plants and factories from cities to the surrounding villages (Chen et al., 2019).

(a)

(b)

(c)

设置格式[ywhu]: 英语(美国)

设置格式[ywhu]: 英语(美国)

删除[ywhu]: The simulated

删除[ywhu]: 00UTC

删除[ywhu]: the increment of

设置格式[ywhu]: 英语(美国)

删除[ywhu]: the increment of

设置格式[ywhu]: 英语(美国)

删除[ywhu]: -

删除[ywhu]: -

设置格式[ywhu]: 字体: 小四, 非加粗, 英语(美国)

删除[ywhu]:

删除[ywhu]: Figure 6a shows the spatial distribution of

...

删除[ywhu]: especially

删除[ywhu]: But

删除[ywhu]: of events and public gatherings

删除[ywhu]: and

删除[ywhu]: significantly

删除[ywhu]: averaged

删除[ywhu]: 9.2% over

设置格式[ywhu]: 英语(英国)

删除[ywhu]:). Especially, the reducing ratios were more than

设置格式[ywhu]: 英语(美国)

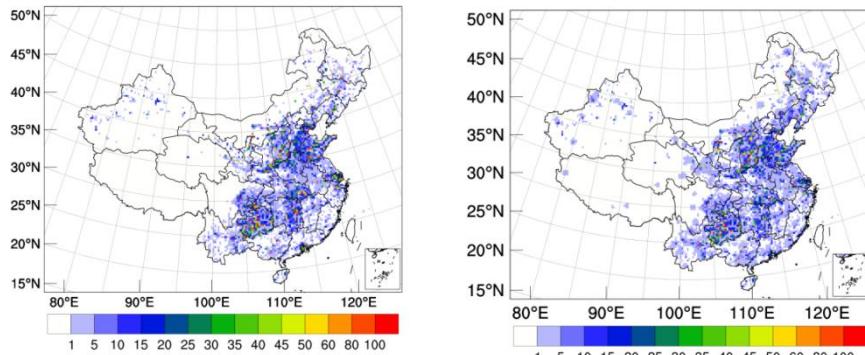
设置格式[ywhu]: 英语(美国)

删除[ywhu]: found

删除[ywhu]: addtition, there are some areas with increased

删除[ywhu]: were

删除[ywhu]: -



335 | Figure 6: Emissions in China for (a) MEIC_2016, (b) 2019 and (c) 2020. Units: $\text{mol km}^{-2} \text{h}^{-1}$. Insets: South China Sea.

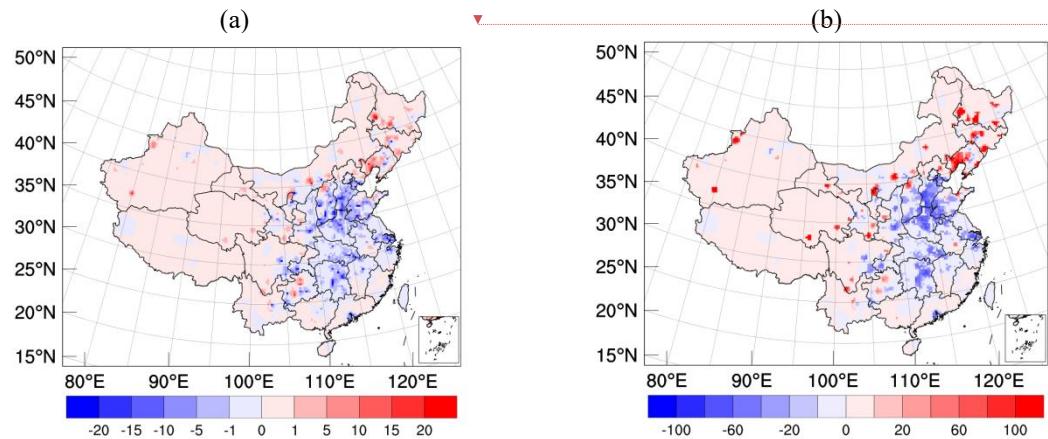
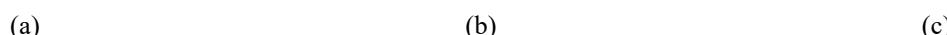


Figure 7: (a) Difference between 2020 and 2019 emissions and (b) ratios of (2020–2019)/2019 emissions in China. Units are $\text{mol km}^{-2} \text{h}^{-1}$ for (a) and percent (%) for (b). Insets: South China Sea.

Figure 8 shows the similar analyses as in Fig. 6, but for Central China. Wuhan first implemented the first-level response to the COVID-19 with strict lockdown policies on 23 January 2020, and the entire Hubei province implemented lockdown on 24 January 2020. The heavy emissions exceeding $20.0 \text{ mol km}^{-2} \text{h}^{-1}$ were most located around large cities from the emissions of 2019 and 2020 (Fig. 8b and 8c). Figure 9a shows the difference between 2020 and 2019 emissions in Central China. The average emission value in Wuhan was $43.0 \text{ mol km}^{-2} \text{h}^{-1}$ in 2019 and $34.0 \text{ mol km}^{-2} \text{h}^{-1}$ in 2020, showing a reduction of 21.0% compared with the emissions for 2019. Al-qaness et al. (2021) have also found approximately 15% decrease in SO_2 concentrations with 15% around Wuhan. Furthermore, almost all emissions around the large cities decreased by $5\text{--}10 \text{ mol km}^{-2} \text{h}^{-1}$ (Fig. 9a), and the negative ratios were $>20.0\%$ (Fig. 9b). The large reduction in SO_2 emissions were related to the decrease in industrial and domestic coal combustion and power plants during the COVID-19 lockdown (Zheng et al., 2018, 2020; Bian et al., 2019; van der A et al., 2017).



刪除[ywhu]:
帶格式表格[ywhu]
刪除[ywhu]: minus
刪除[ywhu]: .
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: same
刪除[ywhu]: those shown
刪除[ywhu]: was the
刪除[ywhu]: city to implement
刪除[ywhu]: followed to
刪除[ywhu]: with the value
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: in
刪除[ywhu]: for
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: a
刪除[ywhu]: of
刪除[ywhu]: -
刪除[ywhu]: -
帶格式表格[ywhu]

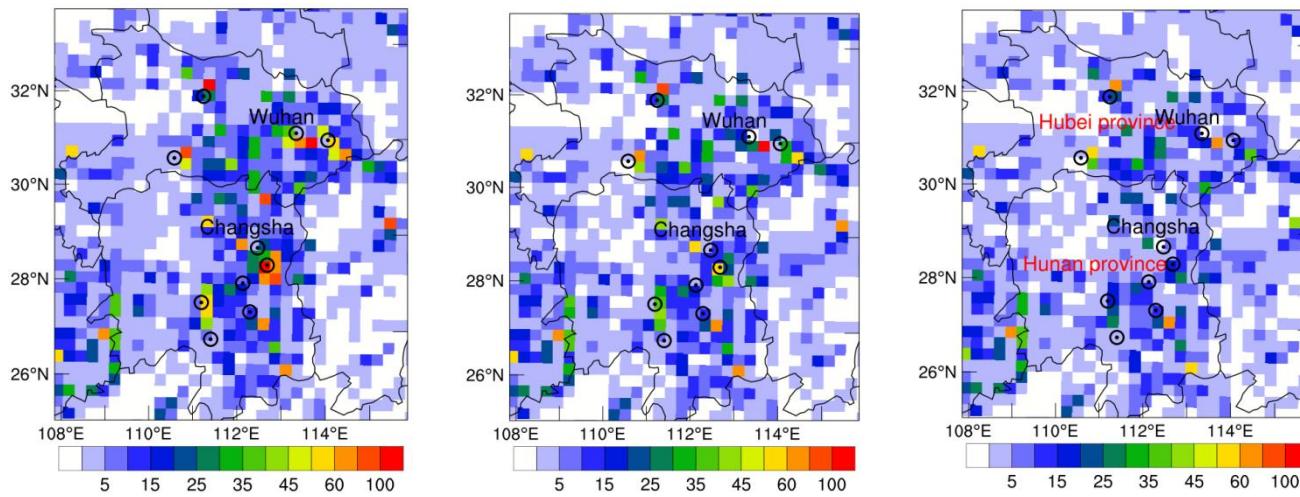


Figure 8: Emissions in Central China for (a) MEIC 2016, (b) 2019, and (c) 2020. Black circles with dots are the locations of large cities. The red characters in (c) are the name of provinces, and the black characters are the name of cities. Wuhan and Changsha are the capitals of Hubei and Hunan provinces, respectively. Unit: $\text{mol km}^{-2} \text{ h}^{-1}$

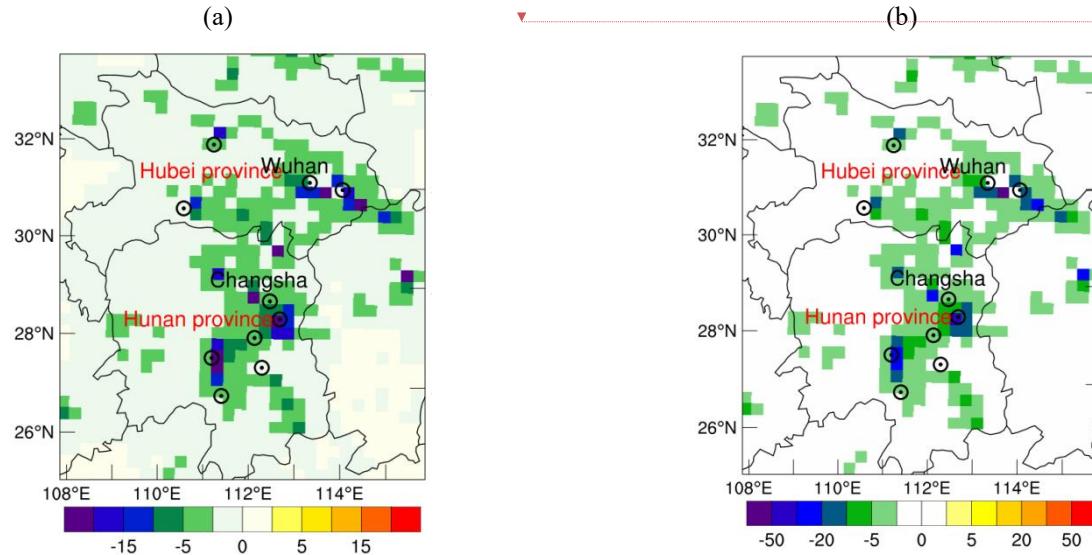


Figure 9: (a) Difference between 2020 and 2019 emissions and (b) ratios of (2020–2019)/2019 emissions in Central China. Black circles with dots are the location of large cities. The red characters are the name of provinces, and the black characters are the name of cities. Wuhan and Changsha are the capitals of Hubei and Hunan provinces, respectively. Units: $\text{mol km}^{-2} \text{ h}^{-1}$ for (a) and percent (%) for (b).

350
355
刪除[ywhu]: Parameters are the same as those
刪除[ywhu]: Figure 6, but for central
刪除[ywhu]: . Units are
刪除[ywhu]: -
刪除[ywhu]: -
刪除[ywhu]: for (a)
刪除[ywhu]:
刪除[ywhu]: Parameters are the same as those
刪除[ywhu]: Figure 7, but for central
刪除[ywhu]: .
刪除[ywhu]: are
刪除[ywhu]: -
刪除[ywhu]: -

3.1.3 Temporal evolution of emissions

Figure 10 shows the daily SO_2 emissions for MEIC_2016, Emi_2019, and Emi_2020 over all grid points. The average emissions in Chinese mainland (Fig. 10a) from MEIC_2016, Emi_2019, and Emi_2020 were 42.2×10^6 , 40.1×10^6 , and $36.4 \times 10^6 \text{ kg d}^{-1}$ during the same period from 17 January to 7 February. The emissions for 2020 decreased by 9.2% compared with those for 2019, indicating a decrease between 2020 and 2019 due to the COVID-19 related lockdown. In Emi_2019 emissions, the lowest emissions occurred on 1 February 2019, but increased during 4–6 February, 2019 mainly attributed to the traditional firework displays during Spring Festival (Wang et al., 2007; Zhang et al., 2020; Huang et al., 2021a). Complex changes in SO_2 emission trends were observed in 2020 in relation to reduced human activity. For example, a peak of $40.1 \times 10^6 \text{ kg d}^{-1}$ occurred on 24 January, 2020, in relation to firework displays (Fig. 10a), after which the SO_2 emissions decreased because of the COVID-19 lockdown. For Central China, the average SO_2 emissions were 5.7×10^6 , 4.2×10^6 and $3.1 \times 10^6 \text{ kg d}^{-1}$ during the same period from 17 January to 7 February (Fig. 10b). The SO_2 emissions peaked at $3.5 \times 10^6 \text{ kg d}^{-1}$ on 24 January, 2020, due to firework displays, and a reduction began from 26 January, 2020, because of the national lockdown.

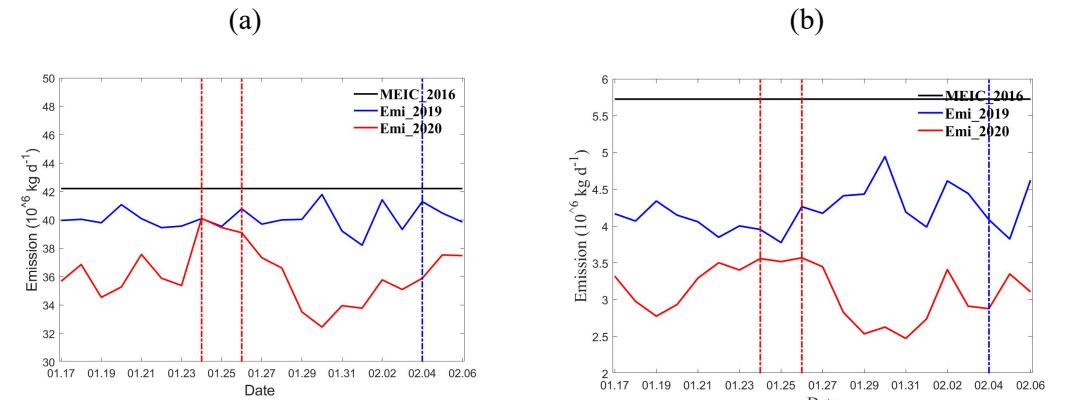


Figure 10: Time series of daily SO_2 emissions in (a) China and (b) Central China. The red dotted lines represent the dates of the start of national lockdown and the Chinese Spring Festival in 2020. The blue dotted line represents the Chinese Spring Festival in 2019. Units: 10^6 kg d^{-1} .

Figure 11 shows the average hourly emissions for MEIC_2016, Emi_2019, and Emi_2020 emissions from 17 January to 7 February over all grid points. The hourly factors for MEIC_2016 were obtained from power plant report, with two peaks during the day at 0100 UTC (0900 BJ time – Beijing time) and 0900 UTC (1700 BJ time) to reflect the emissions at rush hours (Chen et al., 2019b; Hu et al., 2022). In the Chinese mainland (Fig. 11a), the emissions of 2019 and 2020 were lower than those of MEIC_2016 during 0600–1200 UTC. This is primarily due to the recent implementation of China's emission reduction policies and the COVID-19 lockdown. Previous studies have shown that the second peak (0900 UTC) of SO_2 emissions had weakened (Chen et al., 2019), which was also reflected in our hourly emission analysis. The emissions for Emi_2019 and Emi_2020 were higher than those of MEIC_2016 during 1600–2000 UTC, but remain almost unchanged.

between Emi 2019 and Emi 2020 emissions. During this time period, most factories were closed and human activities were reduced. The SO₂ emissions are primarily emitted from power plants, and the changes in emissions are small between different years (Zheng et al., 2018, 2021; Hu et al., 2021). Thus, the increase in Emi 2019 and Emi 2020 emissions during 1600–2000 UTC are mainly due to the uncertainties of MEIC_2016 (Chen et al., 2019). Compared with the average emissions for Emi 2019, those for Emi 2020 emissions decreased by 18.0%, reflecting the reduction due to the COVID-19 lockdown. The emissions in 2019 and 2020 in Central China were lower than those in MEIC_2016 for 24 h period, with a maximum reduction at 0900 UTC (Fig. 9b). Compared with the emissions in 2019, the emissions in 2020 appreciably decreased by 22.3–42.1%. The first peak of the emissions in 2020 was delayed and occurred at 0200 UTC because of the national lockdown policies. The most substantial reduction between 2019 and 2020 emissions was $-120.4 \times 10^3 \text{ kg h}^{-1}$ at 01 UTC, reflecting the change in human activities at the first peak. Additionally, although there was only a moderate decrease in SO₂ emissions ($-72.3 \times 10^3 \text{ kg h}^{-1}$) at 1300 UTC, the reduction ratio (-54.5%) was the largest during 24 h.

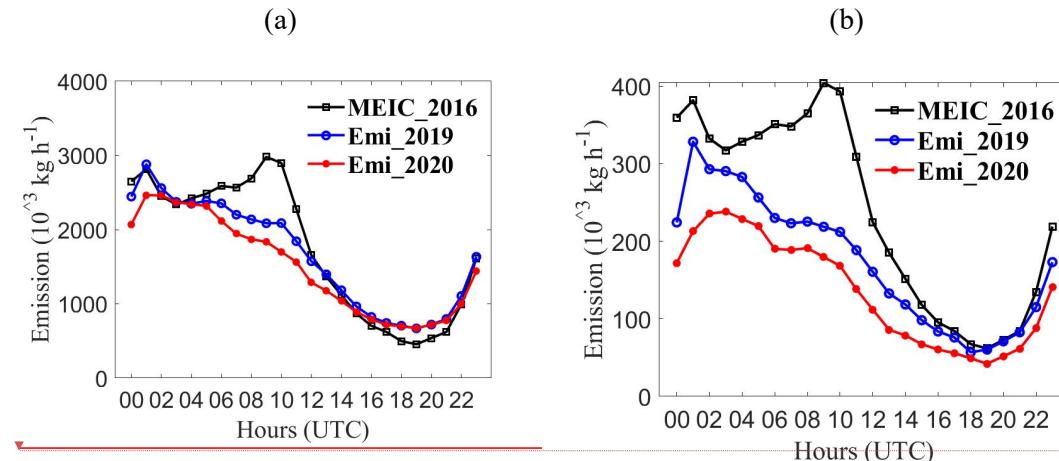
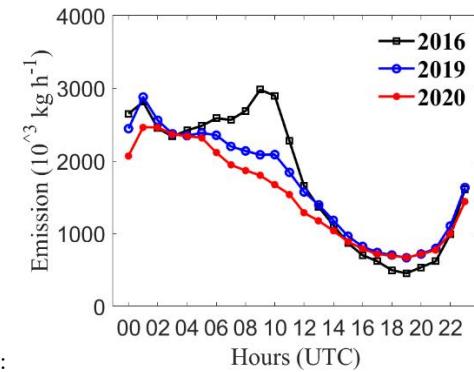
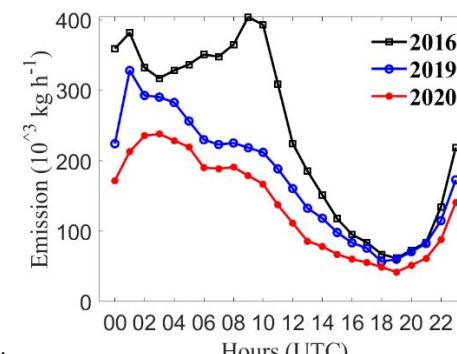


Figure 11: Hourly emissions for (a) China and (b) Central China (Unit: 10^3 kg h^{-1}).

3.2 Results of forecast experiments

Using the emissions of MEIC_2016, Emi 2019 and Emi 2020, three forecast experiments (Ctrl 2016, DA 2019 and DA 2020 in Table 3) were implemented to further demonstrate the effect of optimized emissions. Figure 12 shows the average 24-h forecast of SO₂ concentrations of the three forecast experiments over all stations in China during the study period from 17 January to 7 February 2020. The DA 2020 experiment with the 2020 emissions performed much better than the Ctrl 2016 and DA 2019 experiments, indicating that the emission is one of the most important factors for 24 h forecasts. The SO₂ concentrations in Ctrl 2016 and DA 2019 were overestimated, particularly during 0800–1800 UTC (Fig. 12a), while the SO₂ concentrations in DA 2020 are similar to the observed concentrations. The result showed the 4DVAR system effectively optimize emissions and improve the accuracy of forecast. The average RMSEs of the three experiments were 21.7, 15.6, and $10.7 \mu\text{g m}^{-3}$ respectively. Compared to the average RMSE of Ctrl 2016 experiment, the RMSEs of the

删除[ywhu]: shut down,
删除[ywhu]: , the
删除[ywhu]: on average
删除[ywhu]: the emissions
删除[ywhu]: each of the
删除[ywhu]: periods
删除[ywhu]: significant
删除[ywhu]: -
删除[ywhu]: -
删除[ywhu]: -
带格式表格[ywhu]



删除[ywhu]:
删除[ywhu]: Table 3) of
删除[ywhu]: hour
删除[ywhu]: which indicated
删除[ywhu]: values were
删除[ywhu]: especially

DA_2019 and DA_2020 decreased by 28.1% and 50.7%. The average CORRs for the Ctrl_2016, DA_2019, and DA_2020 experiments were 0.20, 0.38, and 0.61, respectively. Thus, the average CORRs for DA_2019 and DA_2020 experiments increased by 89.5% and 205.9% from the CORR for Ctrl_2016 experiment. The average bias of Ctrl_2016, DA_2019, and DA_2020 experiments were 5.9, 4.9, and $-0.1 \mu\text{g m}^{-3}$, respectively. It is suggested that the optimized emissions could substantially improve forecast accuracy, and the 4DVAR approach is effective to optimize daily and hourly emission during an accidental special event.

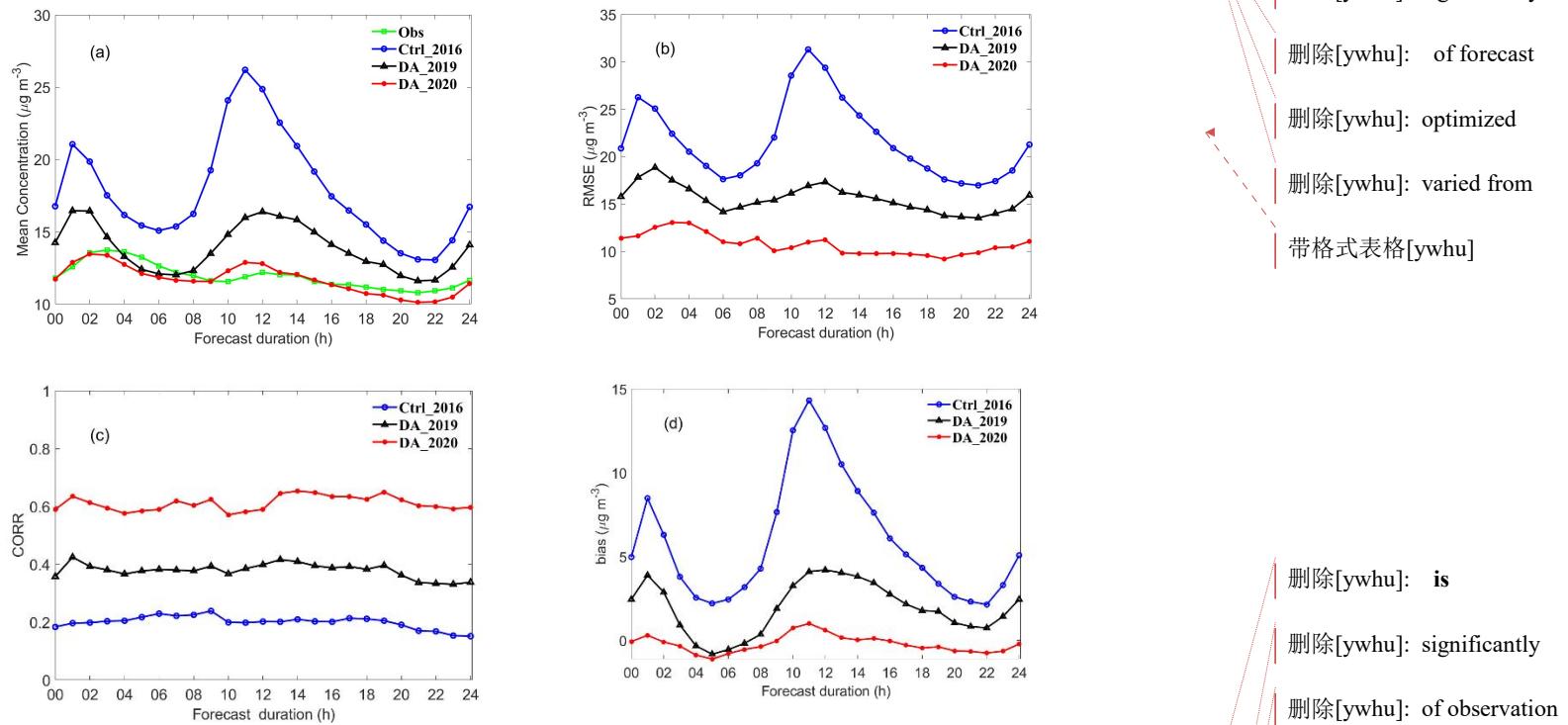


Figure 12: Forecast accuracy of SO₂ concentrations in China for the Ctrl_2016, DA_2019, and DA_2020 experiments during the study period in 2020: (a) mean concentration, (b) RMSE, (c) CORR, and (d) bias. Unit: $\mu\text{g m}^{-3}$ for (a), (b), and (d). Obs: Observation.

Figure 13 shows the same analyses as those presented in Fig. 12, but for Central China. It also showed that the forecast accuracies of the DA_2019 and DA_2020 experiments were higher than those of Ctrl_2016. The average observation concentration was $<10 \mu\text{g m}^{-3}$, which is substantially lower than that for Chinese mainland (Fig. 12a). The mean concentration of DA_2020 was close to the observed concentration in Central China. The above results suggest that although the 2020 optimized emissions were generally consistent with the real emissions, they were slightly higher than the real emissions. In the 4DVAR optimization process, each grid will be influenced by surrounding grids because of the advection and vertical mixing. The theory of 4DVAR method is to take a balance between the observations and background field and to obtain the optimized field. Therefore, when the observations are lower and the background field are higher, the value of the optimized field will be higher than the observation. Compared to that of Ctrl_2016, the average bias of the DA_2019 and

405
410
415
420

刪除[ywhu]: 2
刪除[ywhu]: 4
刪除[ywhu]: 6
刪除[ywhu]: significantly
刪除[ywhu]: of forecast
刪除[ywhu]: optimized
刪除[ywhu]: varied from
帶格式表格[ywhu]

刪除[ywhu]: is
刪除[ywhu]: significantly
刪除[ywhu]: of observation
刪除[ywhu]: This suggests
刪除[ywhu]: those of
刪除[ywhu]: larger
刪除[ywhu]: observation values
刪除[ywhu]: small
刪除[ywhu]: those of
刪除[ywhu]: large
刪除[ywhu]: larger

DA_2020 experiments decreased from 20.1 to 12.6 and $3.5 \mu\text{g m}^{-3}$. The average RMSE decreased by 48.8% and 77.0%, and the average CORR increased by 44.3% and 238.7%. This indicates that the forecast accuracy substantially improved after using optimized emissions.

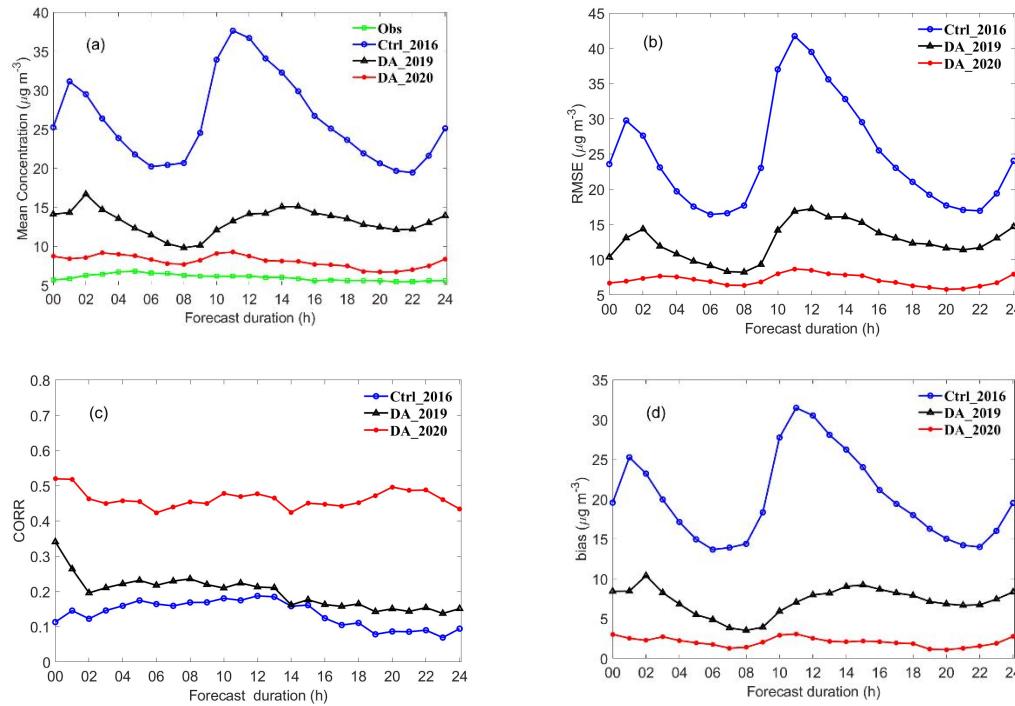


Figure 13: Forecast accuracy of SO₂ concentrations in Central China using the Ctrl 2016, DA 2019, and DA 2020 experiments during the study period in 2020. (a) mean concentration, (b) root-mean-square error (RMSE), (c) correlation coefficient (CORR), and (d) bias. Unit: $\mu\text{g m}^{-3}$ for (a), (b), and (d). Obs: Observation.

425

4 Conclusions

In this study, we developed a 4DVAR system based on the WRF-Chem model to estimate SO₂ emissions, where the initial SO₂ concentration and emissions were set as the state variables to estimate SO₂ emissions. An adjoint operator was 430 derived from the WRF-Chem model, focusing on the processes of transport, dry/wet deposition, vertical turbulence, and SO₂ chemical reactions. Hourly SO₂ concentration observations were assimilated to optimize SO₂ emissions, which were used to improve the SO₂ forecasting accuracy.

435

The 4DVAR system was applied to investigate SO₂ emission changes during the COVID-19 lockdown in China, particularly focusing on Central China. The MEIC_2016 emissions were set as the background values. The average emissions of MEIC_2016, 2019, and 2020 were 42.2×10^6 , 40.1×10^6 , and $36.4 \times 10^6 \text{ kg d}^{-1}$, namely 2020 emissions decreased by 9.2% compared with those in 2019, indicating a substantial decrease between 2019 and 2020 due to the COVID-19

440
 删除[ywhu]: experiment
 删除[ywhu]: by
 删除[ywhu]: were significantly improved
 带格式表格[ywhu]
 删除[ywhu]: Figure 13: Parameters are the same as those used in Fig. 12, but for Central China.
 删除[ywhu]: Observations of the hourly
 删除[ywhu]: with a particular focus
 删除[ywhu]: value. The observational data were assimilated to optimize SO₂ emissions from 17 January to 7 February in both 2019 and 2020. The SO₂ emissions and concentration increment fields at 0000 UTC on 17 January 2019 showed a positive increment in most of Northern China and negative increment in most of Southern China. The RMSE of concentrations in the analysis field decreased by 48.9% compared with the background concentrations. This result indicates that the 4DVAR system effectively reduced the uncertainty in SO₂ emissions and initial condition concentrations.
 设置格式[ywhu]: 默认段落字体, 字体: (中文) 宋体, 英语(美国)
 删除[ywhu]: emissions
 删除[ywhu]: -
 删除[ywhu]: . The
 删除[ywhu]: significant

related lockdown. The average 2020 emissions in Central China dropped by 21.0% compared to the 2019 emissions, owing to the strict lockdown policy during COVID-19. The largest decrease in emissions occurred in Wuhan (decline of 57.0%), which COVID-19 had heavily affected by this time. Hourly average emissions were analyzed to estimate the changes between 2019 and 2020. Compared with 2019 emissions, the average 2020 emissions decreased by 18.0%, reflecting lockdown-associated reduction in SO₂ emissions. The 2020 emissions in Central China decreased by 22.3–42.1% compared with the 2019 emissions.

Three sets of forecast experiments for 2020, using MEIC_2016, Emi_2019, and Emi_2020 emissions, were conducted to illustrate the effects of the optimized emissions. The experiment with MEIC_2016 emissions overestimated the SO₂ concentration forecast, whereas the experiment with 2019 optimized emissions decreased the concentrations but still overestimated the values. The forecast accuracy of the experiment with the 2020 emissions was the closest to the observation. The RMSE of the experiments with the emissions in 2019 and 2020 decreased from 21.7 to 15.6, and 10.7 $\mu\text{g m}^{-3}$ respectively, and the correlation coefficient increased from 0.20 to 0.38 and 0.61, respectively, compared with those of the experiment with MEIC_2016 emissions. For Central China, the average RMSE and correlation coefficient of the experiment with MEIC_2016 were 24.6 $\mu\text{g m}^{-3}$ and 0.1. Compared with the average RMSE of the experiment with MEIC_2016, those of the experiments with 2019 and 2020 emissions decreased by 48.8% and 77.0%, and the average correlation coefficient increased by 44.3% and 238.7%.

Though our 4DVAR system could effectively optimize real time emission as a “top-down” approach, some limitations still remain. Only hourly surface SO₂ observations were used to constrain the emission sources. The spatial distribution of surface observation sites was uneven, with fewer sites in the northwest and southwest regions, resulting in limited adjustments to emission sources in these regions. In future, satellite data will be used to adjust the emission source to address the lack of surface observation data. Furthermore, the simultaneous optimization of SO₂ concentrations and emissions will be implemented in a 4DVAR system, and multi-source observation data will be used to improve its performance.

Author contributions: Zengliang Zang designed the overall research; Yiwen Hu performed experiments; Yanfei Liang, Wei You and Xiaobin Pan contributed to the development of the DA system; Zengliang Zang and Xiaoyan Ma provided funds; Yiwen Hu, Zengliang Zang, and Xiaoyan Ma. wrote the paper, with contributions from all co-authors; Xiaoyan Ma, Zengliang Zang and Zhijin Li developed the mathematical formulation and reviewed the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos. 41975167, 42061134009, 41775123, 41975002, and 42061134009). This research was supported by the National Key Scientific and Technological Infrastructure project "Earth System Science Numerical Simulator Facility" (EarthLab).

Data availability: The data and data analysis method are available upon request.

Competing interests: The authors declare that they have no conflict of interest.

Acknowledgments: NCEP FNL reanalysis data were downloaded from <https://rda.ucar.edu/datasets/ds083.2/>, last access: 13 April 2022. The MEIC 2016 emission sources were developed by Tsinghua University (<http://meicmodel.org/?lang=en>, last access: 13 April 2022). The hourly SO₂ observations were downloaded from the CNEMC website (<http://www.cnemc.cn>, last access: 13 April 2022).

440 删除[ywhu]: in Central China

删除[ywhu]: around

删除[ywhu]: ..

删除[ywhu]: on an average

删除[ywhu]: the

删除[ywhu]: associated with the lockdown. For Central China, the

删除[ywhu]: average root-mean-square error

删除[ywhu]: for

删除[ywhu]: m^{-3}

删除[ywhu]: 2

删除[ywhu]: 4

删除[ywhu]: 6

删除[ywhu]: root-mean-square error

删除[ywhu]: the average RMSE in

删除[ywhu]: 201.3

删除[ywhu]: there are still

删除[ywhu]: , and there were

460 删除[ywhu]: and

References

Al-qaness, M. A. A., Fan, H., Ewees, A. A., Yousri, D., and Abd Elaziz, M.: Improved ANFIS model for forecasting Wuhan
475 City Air Quality and analysis COVID-19 lockdown impacts on air quality, *Environmental Research*, 194, 110607,
<https://doi.org/10.1016/j.envres.2020.110607>, 2021.

Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che, H., Ali, G., Dong, Y., Tang, Z., Gu, Y., Tang, W., and
Hou, Y.: Assessing the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in
northeast China, *Atmospheric Environment*, 205, 78-89, [10.1016/j.atmosenv.2019.02.026](https://doi.org/10.1016/j.atmosenv.2019.02.026), 2019.

480 Cohen, J. B., and Wang, C.: Estimating global black carbon emissions using a top-down Kalman Filter approach, *Journal of
Geophysical Research: Atmospheres*, 119, 307-323, <https://doi.org/10.1002/2013JD019912>, 2014.

Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air pollution in China: SO₂ emission changes
derived from a WRF-Chem/EnKF coupled data assimilation system, *Atmospheric Chemistry and Physics*, 19, 8619-8650,
10.5194/acp-19-8619-2019, 2019a.

485 Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air pollution in China: SO₂ emission changes
derived from a WRF-Chem/EnKF coupled data assimilation system, *Atmos. Chem. Phys.*, 19, 8619-8650, 10.5194/acp-19-
8619-2019, 2019b.

Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah Land Surface Model in Arid Regions with an
Appropriate Parameterization of the Thermal Roughness Length, *Journal of Hydrometeorology*, 11, 995-1006,
490 10.1175/2010JHM1185.1, 2010.

Chou, M., and Suarez, M.: An efficient thermal infrared radiation parameterization for use in general circulation models,
<http://purl.fdlp.gov/GPO/gpo60401>, 1994.

Chu, K., Peng, Z., Liu, Z., Lei, L., Kou, X., Zhang, Y., Bo, X., and Tian, J.: Evaluating the Impact of Emissions Regulations
on the Emissions Reduction During the 2015 China Victory Day Parade With an Ensemble Square Root Filter, *Journal of
495 Geophysical Research: Atmospheres*, 123, 4122-4134, <https://doi.org/10.1002/2017JD027631>, 2018.

Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for operational implementation of 4D-Var, using an
incremental approach, *Quarterly Journal of the Royal Meteorological Society*, 120, 1367-1387,
<https://doi.org/10.1002/qj.49712051912>, 1994.

Dai, T., Cheng, Y., Goto, D., Li, Y., Tang, X., Shi, G., and Nakajima, T.: Revealing the sulfur dioxide emission reductions in
500 China by assimilating surface observations in WRF-Chem, *Atmos. Chem. Phys.*, 21, 4357-4379, 10.5194/acp-21-4357-2021,
2021.

Dubovik, O., Lapyonok, T., Kaufman, Y. J., Chin, M., Ginoux, P., Kahn, R. A., and Sinyuk, A.: Retrieving global aerosol
sources from satellites using inverse modeling, *Atmos. Chem. Phys.*, 8, 209-250, 10.5194/acp-8-209-2008, 2008.

Elbern H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional,
505 Atmospheric Chemistry and Physics, 2007.

Feng, S., Jiang, F., Wu, Z., Wang, H., Ju, W., and Wang, H.: CO Emissions Inferred From Surface CO Observations Over China in December 2013 and 2017, *Journal of Geophysical Research: Atmospheres*, 125, e2019JD031808, <https://doi.org/10.1029/2019JD031808>, 2020.

510 Filonchyk, M., Hurynovich, V., Yan, H., Gusev, A., and Shpilevskaya, N.: Impact Assessment of COVID-19 on Variations of SO₂, NO₂, CO and AOD over East China, *Aerosol and Air Quality Research*, 20, 1530-1540, 10.4209/aaqr.2020.05.0226, 2020.

Fioletov, V. E., McLinden, C. A., Krotkov, N., and Li, C.: Lifetimes and emissions of SO₂ from point sources estimated from OMI, *Geophysical Research Letters*, 42, 1969-1976, <https://doi.org/10.1002/2015GL063148>, 2015.

515 Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D., Keller, C. A., Lamboll, R. D., Quéré, C. L., Rogelj, J., Rosen, D., Schleussner, C.-F., Richardson, T. B., Smith, C. J., and Turnock, S. T.: Current and future global climate impacts resulting from COVID-19, *Nature Climate Change*, 10, 913-919, 10.1038/s41558-020-0883-0, 2020.

Ghahremanloo, M., Lops, Y., Choi, Y., and Mousavinezhad, S.: Impact of the COVID-19 outbreak on air pollution levels in East Asia, *Sci Total Environ*, 754, 142226, 10.1016/j.scitotenv.2020.142226, 2021.

520 Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, *Climatic Change*, 109, 163, 10.1007/s10584-011-0154-1, 2011.

525 Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations, *Monthly Weather Review*, 121, 764-787, 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.

Grell, G. A., and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, 29, 38-31-38-34, <https://doi.org/10.1029/2002GL015311>, 2002.

530 Hakami, A., Henze, D. K., Seinfeld, J. H., Chai, T., Tang, Y., Carmichael, G. R., and Sandu, A.: Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment, *Journal of Geophysical Research: Atmospheres*, 110, n/a-n/a, 10.1029/2004jd005671, 2005.

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, *Atmos. Chem. Phys.*, 7, 2413-2433, 10.5194/acp-7-2413-2007, 2007.

Hoffman, R., Louis, J. F., and Nehrkorn, T.: A method for implementing adjoint calculations in the discrete case, in, ECMWF, Shinfield Park, Reading, <https://www.ecmwf.int/node/9906>, 1992.

535 Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, *Monthly Weather Review*, 134, 2318-2341, 10.1175/mwr3199.1, 2006.

Hu, Y., Zang, Z., Chen, D., Ma, X., Liang, Y., You, W., Pan, X., Wang, L., Wang, D., and Zhang, Z.: Optimization and Evaluation of SO₂ Emissions Based on WRF-Chem and 3DVAR Data Assimilation, *Remote Sensing*, 14, 10.3390/rs14010220, 2022.

540 Huang, C., Wang, T., Niu, T., Li, M., Liu, H., and Ma, C.: Study on the variation of air pollutant concentration and its formation mechanism during the COVID-19 period in Wuhan, *Atmospheric Environment*, 251, 118276, <https://doi.org/10.1016/j.atmosenv.2021.118276>, 2021a.

Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F., Davis, S. J., Zhang, Q., and 545 He, K.: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China, *National Science Review*, 8, 10.1093/nsr/nwaa137, 2021b.

Huneeus, N., Chevallier, F., and Boucher, O.: Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model, *Atmospheric Chemistry and Physics*, 12, 4585-4606, 10.5194/acp-12-4585-2012, 2012.

Huneeus, N., Boucher, O., and Chevallier, F.: Atmospheric inversion of SO₂ and primary aerosol emissions for the year 2010, 550 *Atmospheric Chemistry and Physics*, 13, 6555-6573, 10.5194/acp-13-6555-2013, 2013.

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, *Atmospheric Environment*, 34, 2131-2159, [https://doi.org/10.1016/S1352-2310\(99\)00462-8](https://doi.org/10.1016/S1352-2310(99)00462-8), 2000.

Keller, C. A., Evans, M. J., Knowland, K. E., Hasenkopf, C. A., Modekurty, S., Lucchesi, R. A., Oda, T., Franca, B. B., Mandarino, F. C., Díaz Suárez, M. V., Ryan, R. G., Fakes, L. H., and Pawson, S.: Global impact of COVID-19 restrictions on 555 the surface concentrations of nitrogen dioxide and ozone, *Atmospheric Chemistry and Physics*, 21, 3555-3592, 10.5194/acp-21-3555-2021, 2021.

Kraemer Moritz, U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott David, M., null, n., du Plessis, L., Faria Nuno, R., Li, R., Hanage William, P., Brownstein John, S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus Oliver, G., and Scarpino Samuel, V.: The effect of human mobility and control measures on the COVID-19 epidemic in China, *Science*, 560 368, 493-497, 10.1126/science.abb4218, 2020.

Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi, L., Li, R., Azari, M., Wang, Y., Zhang, X., Liu, Z., Zhu, Y., Zhang, K., Xue, S., Ooi, M. C. G., Zhang, D., and Chan, A.: Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation, *Sci Total Environ*, 732, 139282, 10.1016/j.scitotenv.2020.139282, 2020.

565 Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Fu, Q., Zhao, M., Wu, H., Liu, J., Saikawa, E., and Liao, K.: Drivers for the poor air quality conditions in North China Plain during the COVID-19 outbreak, *Atmospheric Environment*, 246, 118103, <https://doi.org/10.1016/j.atmosenv.2020.118103>, 2021.

Li, Z., and Navon, I. M.: Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, *Quarterly Journal of the Royal Meteorological Society*, 127, 661-683, <https://doi.org/10.1002/qj.49712757220>, 2001.

570 Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5; prediction, *Atmospheric Chemistry and Physics*, 13, 4265-4278, 10.5194/acp-13-4265-2013, 2013.

Lin, Y., Farley, R., and Orville, H. D. J. J. o. A. M.: Bulk Parameterization of the Snow Field in a Cloud Model, 22, 1065-

1092, 1983.

575 Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China, *Journal of Geophysical Research: Atmospheres*, 10.1029/2019jd030421, 2019.

Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NO_x emission estimates derived from an assimilation of OMI tropospheric NO₂ columns, *Atmospheric Chemistry and Physics*, 12, 2263-2288, 10.5194/acp-12-2263-2012, 2012.

580 Miyazaki, K., Eskes, H. J., Sudo, K., and Zhang, C.: Global lightning NO_x production estimated by an assimilation of multiple satellite data sets, *Atmospheric Chemistry and Physics*, 14, 3277-3305, 10.5194/acp-14-3277-2014, 2014.

Miyazaki, K., Bowman, K., Sekiya, T., Jiang, Z., Chen, X., Eskes, H., Ru, M., Zhang, Y., and Shindell, D.: Air Quality Response in China Linked to the 2019 Novel Coronavirus (COVID-19) Lockdown, *Geophys Res Lett*, 47, e2020GL089252, 10.1029/2020GL089252, 2020.

585 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, 102, 16663-16682, <https://doi.org/10.1029/97JD00237>, 1997.

Müller, J. F., and Stavrakou, T.: Inversion of CO and NO_x emissions using the adjoint of the IMAGES model, *Atmos. Chem. Phys.*, 5, 1157-1186, 10.5194/acp-5-1157-2005, 2005.

590 Parrish, D. F., and Derber, J. C.: The National Meteorological Center's Spectral Statistical-Interpolation Analysis System, *Monthly Weather Review*, 120, 1747-1763, 10.1175/1520-0493(1992)120<1747:TNCSS>2.0.CO;2, 1992.

Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, *Atmospheric Chemistry and Physics*, 17, 4837-4855, 10.5194/acp-17-4837-2017, 2017.

595 Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact of multi-species surface chemical observation assimilation on air quality forecasts in China, *Atmospheric Chemistry and Physics*, 18, 17387-17404, 10.5194/acp-18-17387-2018, 2018.

Qin, K., He, Q., Zhang, Y., Cohen, J. B., Tiwari, P., and Lolli, S.: Aloft Transport of Haze Aerosols to Xuzhou, Eastern China: Optical Properties, Sources, Type, and Components, *Remote Sensing*, 14, 10.3390/rs14071589, 2022.

600 Qu, Z., Henze, D. K., Theys, N., Wang, J., and Wang, W.: Hybrid Mass Balance/4D-Var Joint Inversion of NO_x and SO₂ Emissions in East Asia, *Journal of Geophysical Research: Atmospheres*, 124, 8203-8224, <https://doi.org/10.1029/2018JD030240>, 2019.

Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-Maenhout, G., Kurokawa, J. I., Klimont, Z., Wagner, F., Naik, V., Horowitz, L. W., and Zhang, Q.: Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China, *Atmos. Chem. Phys.*, 17, 6393-6421, 10.5194/acp-17-6393-2017, 2017.

605 Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth, *Journal of Geophysical Research: Atmospheres*, 117,

[https://doi.org/10.1029/2011JD017383, 2012.](https://doi.org/10.1029/2011JD017383)

Sha, T., Ma, X., Jia, H., Tian, R., Chang, Y., Cao, F., and Zhang, Y.: Aerosol chemical component: Simulations with WRF-Chem and comparison with observations in Nanjing, *Atmospheric Environment*, 218, 10.1016/j.atmosenv.2019.116982, 2019.

610 Stavrakou, T., and Atmospheres, J. F. M. J. J. o. G. R.: Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data, 111, 2006.

615 Tang, X., Zhu, J., Wang, Z. F., Wang, M., Gbaguidi, A., Li, J., Shao, M., Tang, G. Q., and Ji, D. S.: Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter, *Atmospheric Environment*, 81, 676-686, 10.1016/j.atmosenv.2013.08.051, 2013.

Tang, X., Zhu, J., Wang, Z., Gbaguidi, A., Lin, C., Xin, J., Song, T., and Hu, B.: Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas, *Atmospheric Chemistry and Physics*, 16, 6395-6405, 10.5194/acp-16-6395-2016, 2016.

620 Tian, H., Liu, Y., Li, Y., Wu, C. H., Chen, B., Kraemer, M. U. G., Li, B., Cai, J., Xu, B., Yang, Q., Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P., Wang, Q., Bjornstad, O. N., Yang, R., Grenfell, B. T., Pybus, O. G., and Dye, C.: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, *Science*, 368, 638-642, 10.1126/science.abb6105, 2020.

625 Wang, D., You, W., Zang, Z., Pan, X., Hu, Y., and Liang, Y.: A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem: design, development, and application of assimilating Himawari-8 aerosol observations, *Geosci. Model Dev. Discuss.*, 2021, 1-54, 10.5194/gmd-2021-215, 2021.

Wang, J., Xu, X., Henze, D. K., Zeng, J., Ji, Q., Tsay, S.-C., and Huang, J.: Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model, *Geophysical Research Letters*, 39, n/a-n/a, 10.1029/2012gl051136, 2012.

630 Wang, P., Chen, K., Zhu, S., Wang, P., and Zhang, H.: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak, *Resour Conserv Recycl*, 158, 104814, 10.1016/j.resconrec.2020.104814, 2020.

Wang, S., Cohen, J. B., Deng, W., Qin, K., and Guo, J.: Using a New Top-Down Constrained Emissions Inventory to Attribute the Previously Unknown Source of Extreme Aerosol Loadings Observed Annually in the Monsoon Asia Free Troposphere, *Earth's Future*, 9, e2021EF002167, <https://doi.org/10.1029/2021EF002167>, 2021.

635 Wang, Y., Zhuang, G., Xu, C., and An, Z. J. A. E.: The air pollution caused by the burning of fireworks during the lantern festival in Beijing, 41, 417-431, 2007.

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, *Atmospheric Environment* (1967), 23, 1293-1304, [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4), 1989.

640 Yumimoto, K., and Uno, I.: Adjoint inverse modeling of CO emissions over Eastern Asia using four-dimensional variational data assimilation, *Atmospheric Environment*, 40, 6836-6845, <https://doi.org/10.1016/j.atmosenv.2006.05.042>, 2006.

Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., and Satake, S.: Adjoint inverse modeling of dust emission and transport

over East Asia, *Geophysical Research Letters*, 34, 10.1029/2006gl028551, 2007.

Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., and Winker, D. M.: Adjoint inversion modeling of Asian dust emission using lidar observations, *Atmos. Chem. Phys.*, 8, 2869-2884, 10.5194/acp-8-2869-2008, 2008.

645 Zang, Z., Hao, Z., Pan, X., Li, Z., Chen, D., Zhang, L., and Li, Q.: Background error statistics for aerosol variables from WRF/Chem predictions in Southern California, *Asia-Pacific Journal of Atmospheric Sciences*, 51, 123-135, 10.1007/s13143-015-0063-8, 2015.

Zang, Z., Li, Z., Pan, X., Hao, Z., and You, W.: Aerosol data assimilation and forecasting experiments using aircraft and surface observations during CalNex, *Tellus B: Chemical and Physical Meteorology*, 68, 10.3402/tellusb.v68.29812, 2016.

650 Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, *Journal of Geophysical Research: Atmospheres*, 104, 30387-30415, 10.1029/1999jd900876, 1999.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), *Journal of Geophysical Research*, 113, 10.1029/2007jd008782, 2008.

655 Zhan, C. and Xie, M.: Land use and anthropogenic heat modulate ozone by meteorology: a perspective from the Yangtze River Delta region, *Atmos. Chem. Phys.*, 22, 1351-1371, <https://doi.org/10.5194/acp-22-1351-2022>, 2022.

Zeng, Q., and Wu, L.: Optimal reduction of anthropogenic emissions for air pollution control and the retrieval of emission source from observed pollutants I. Application of incomplete adjoint operator, *Science China Earth Sciences*, 61, 951-956, 10.1007/s11430-017-9199-2, 2018.

660 Zeng, Q., Wu, L., and Fei, K.: Optimal reduction of anthropogenic emissions for air pollution control and the retrieval of emission source from observed pollutants II: Iterative optimization using a positive-negative discriminant, *Science China Earth Sciences*, 63, 726-730, 10.1007/s11430-018-9568-5, 2020.

Zeng, Q., and Wu, L.: Optimal reduction of anthropogenic emissions for air pollution control and the retrieval of emission source from observed pollutants III: Emission source inversion using a double correction iterative method, *Science China Earth Sciences*, 10.1007/s11430-020-9860-7, 2021.

665 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, *Atmos. Chem. Phys.*, 9, 5131-5153, 10.5194/acp-9-5131-2009, 2009.

Zhang, R., Zhang, Y., Lin, H., Feng, X., Fu, T.-M., and Wang, Y.: NOx Emission Reduction and Recovery during COVID-19 in East China, *Atmosphere*, 11, 10.3390/atmos11040433, 2020.

670 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, *Atmospheric Chemistry and Physics*, 18, 14095-14111, 10.5194/acp-18-14095-2018, 2018.

Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K. J. E. S. S. D.: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, *Earth System Science Data*, 13, 2895-2907, 10.5194/essd-13-2895-2021, 2021.

设置格式[ywhu]: 字体: 10 磅, 字距调整: 1 磅, 英语(美国)