Supplementary Material for

Source Apportionment and Evolution of N-containing Aerosols at a Rural Cloud Forest in Taiwan by Isotope Analysis

by Ting-Yu Chen¹, Chia-Li Chen¹, Yi-Chi Chen², Charles C.-K. Chou³, Haojia Ren^{*,2}, and Hui-Ming Hung^{*,1}

Contents of this file

Description of $\delta^{18}O$ variation in NO_3^- oxidation processes Table S1 Figures S1 to S8

δ^{18} O variation in NO₃⁻ oxidation processes

The oxidation processes for aerosol NO_3^- formation can be represented as follows and shown as R1 to R10 in Fig. 1:

$$NO + O_3 \rightarrow NO_2 + O_2$$
 (R1)

$$NO_2 + hv \rightarrow NO + O$$
 (R2)

$$O + O_2 \longrightarrow O_3$$
 (R3)

OH radical oxidation:

$$NO_2 + OH \longrightarrow HNO_3$$
 (R4)

N₂O₅ hydrolysis at nighttime:

$NO_2 + O_3 - $	$\rightarrow NO_3 + O_2$	(R5)
$NO_2 + O_3 - $	$\rightarrow NO_3 + O_2$	(R5

$NO_2 + NO_3 \xrightarrow{M} N_2O_5$	(R6)

 $N_2O_5 + H_2O \longrightarrow 2HNO_3$ (R7)

OH formation:

$$O_3 + h\nu \longrightarrow O + O_2$$
 (R8)

$$O + H_2 O \longrightarrow 2OH$$
 (R9)

peroxyl radical oxidation:

 $NO + RO_2 \longrightarrow NO_2 + RO$ (R10)

If both oxygen atoms of NO₂ are from O₃ oxidation (R1), the O of NO₃⁻ would be 2/3 from O₃ and 1/3 from OH via OH oxidation (R4). On the other hand, if NO₃⁻ is formed via N₂O₅ hydrolysis during nighttime (R7), O atoms on NO₃⁻ would be 5/6 from O₃ and 1/6 from H₂O. Hastings et al. (2003) suggested that the δ^{18} O of OH radical was close to that of atmospheric H₂O (from -15‰ to 0‰ over the Asian continent, Global Network of Isotopes in Precipitation, IAEA); therefore, δ^{18} O of NO₃⁻ from OH oxidation (where δ^{18} O = +55‰ ~ +81.3‰) would be lower than that from N₂O₅ hydrolysis at night (where δ^{18} O = +72.5‰ ~ +101.67‰), as shown as yellow blocks in Fig. S6 and S7 (Hastings et al., 2003; Fang et al., 2011). However, if atmospheric OH radicals are mainly produced via R8 & R9, the δ^{18} O value of atmospheric OH could be the mean value of O₃ and H₂O in the range of +37.5‰ ~ +61.0‰ (half from O₃ and the other half from H₂O). The calculation would result in the same δ^{18} O (+72.5‰ ~ +101.67 ‰) of NO₃⁻ formed through the OH oxidation and N₂O₅ hydrolysis pathways.

If NO₂ has a significant contribution via the reaction of NO with peroxyl radicals (hydroperoxyl radical HO₂ or organic peroxyl radical RO₂) as R10, O atoms of HO₂ or RO₂ are supposed to have a similar δ^{18} O with atmospheric O₂ (δ^{18} O = +23.5‰, Luz and Barkan (2011)) as the O atom of the peroxyl radical is originated from atmospheric O₂ (H + O₂ + M \rightarrow HO₂ + M). Therefore, NO₂ from R10 reacting OH can produce NO₃⁻ with a lower δ^{18} O (could be low as +28.2‰ ~ +36.0‰) compared to that of NO₂ from R5 (+90‰ to +122‰). If the NO \leftrightarrow NO₂ cycle has rapidly exchanged through O₃ oxidation and NO₂ photolysis during the daytime, δ^{18} O of NO₂ would be close to that of O₃ after 7-8 times of reactions (Fig. S8). Therefore, δ^{18} O of formed NO₃⁻ would be +72.50-101.67‰ after either OH radical oxidation or nighttime N₂O₅ hydrolysis shown as

(P4) and (P6) in Fig. S6. If RO₂ radicals involve the oxidation processes, NO₃⁻ δ^{18} O could be low to +28.17‰ shown as (P7) in Fig. S7.

	02D	02N	13N	14D	14N	15D	20N	21D	22D	22N
δ^{15} N, NH ₄ ⁺	14.38	9.93	13.33	16.30	12.30	14.92	11.32	7.61	10.43	8.94
δ ¹⁵ N, PM ₁₋₁₀ -NO ₃ -	2.72			3.70		4.24	1.85	5.20		
δ ¹⁵ N, PM ₁ -NO ₃ ⁻			1.46	1.50		1.93				
δ ¹⁸ O, PM ₁₋₁₀ -NO ₃ -	70.05			70.75		72.45	74.82	72.52		
δ ¹⁸ O, PM ₁ -NO ₃ ⁻			79.81	69.07		72.01				
δ ¹⁵ N, NO ₃ ⁻	2.72		1.46	2.29		2.83	1.85	5.20		
δ ¹⁸ O, NO ₃ ⁻	70.05		79.81	69.67		72.18	74.82	72.52		

Table S1. Mass weighted isotope value (‰) of each group of samples.

Figure S1. IR spectra of 3 collected samples on 2 December 2018. The absorption peaks for curve fitting are 2-curve fit for NH_4^+ , NO_3^- ; 3-curve fit for polytetrafluoroethylene (PTFE) and SO_4^{2-} ; the absorbance of BC is determined by the average absorption of 3950 ± 5 cm⁻¹ where have less interference by the absorption of other chemical species.

Figure S2. The Lorentzian fitting curve of the absorption curve of NH_4^+ and NO_3^- . The yellow thick curve is the background-corrected IR spectrum. Red and green curves are the fitted NH_4^+ and NO_3^- absorption curves, respectively. The black curve is the add-up of NH_4^+ and NO_3^- absorption, and the orange one represents the absolute value of the fitting curve minus the original curve.

Figure S3. The Lorentzian fitting curve of the absorption curve of SO_4^{2-} and polytetrafluoroethylene (PTFE). The red curve is the baseline-corrected absorption curve. Two gray curves are the fitting curve of PTFE filter absorption, and the green line is that of SO_4^{2-} . The black thick curve is the add-up of absorption curves, and the orange one represents the absolute value of the fitting curve minus the original curve.

Concentration comparison between different methods

Figure S4. Comparison between the measured water-soluble (TN minus NN) and FTIR measured NH_4^+ concentration.

Figure S5. Statistic box plot of concentration of (A) SO_4^{2-} , (B) black carbon (BC) in non-foggy daytime and nighttime, and (C) SO_4^{2-} , (D) BC in the foggy and non-foggy daytime condition in different cut-off sizes. (diamond: mean value; outliers: < 1st quartile Q1-1.5 interquartile range (IQR) or > 3rd quartile Q3+1.5 IQR).

Figure S6. The predicted δ^{18} O (gray shaded bottom-right boxes) of products during HNO₃ formation pathways assuming the δ^{18} O of initial NO is 90~122‰ (i.e., fully reacted with O₃). Products are in darkblue font color, reactants in light-blue, and by-products in green. The yellow-shaded boxes are based on the assumption of water-originated O atom of OH radical, whereas the O atoms of P1 and P4 are assuming that the OH is from O₃ and H₂O. The reactions in the dashed boxes are related to N₂O₅ hydrolysis occurring during nighttime.

Figure S7. The predicted δ^{18} O (gray shaded bottom-right blocks) of products during HNO₃ formation pathways assuming the δ^{18} O of initial NO is +23.5‰ (i.e., freshly emitted and close to that of atmospheric O₂). Products are in dark-blue font color, reactants in light-blue, and by-products in green. The yellowshaded blocks are based on the assumption of water-originated O atom of OH radical, whereas the O atoms of P7 and P10 are assuming that the OH is from O₃ and H₂O. The reactions in the dashed squares are related to N₂O₅ hydrolysis, where the reactions only occur at night.

Figure S8. The predicted $\delta^{18}O$ of freshly formed NO (assume the $\delta^{18}O$ close of atmospheric $O_2 = 23.5\%$) after exchanging with O_3 (where $\delta^{18}O = 90 \sim 122\%$).

References

Fang, Y. T., Koba, K., Wang, X. M., Wen, D. Z., Li, J., Takebayashi, Y., Liu, X. Y., and Yoh, M.: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China, Atmospheric Chemistry and Physics, 11, 1313-1325, 10.5194/acp-11-1313-2011, 2011.

Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at Bermuda, Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, 10.1029/2003jd003789, 2003.

Luz, B. and Barkan, E.: The isotopic composition of atmospheric oxygen, Global Biogeochemical Cycles, 25, n/a-n/a, 10.1029/2010gb003883, 2011.