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Abstract. DMS emitted from sea water is a key precursor to new particle formation and acts as a regulator in Earth’s warming 

climate system. However, DMS’s effects are not well understood in various ocean regions. In this study, we estimated DMS 

emissions based on a machine learning method and used the GEOS-Chem global 3D chemical transport model coupled with 

the TwO Moment Aerosol Sectional (TOMAS) microphysics scheme to simulate the atmospheric chemistry and radiative 

effects of DMS. The contributions of DMS to atmospheric SO4
2- aerosol and cloud condensation nuclei (CCN) concentrations 20 

along with the radiative effects over the Asian region were evaluated for the first time. First, we constructed novel monthly-

resolved DMS emissions (0.5° × 0.5°) for the year 2017 using a machine learning model. 4351 seawater DMS measurements 

(including the recent measurements made over the Chinese Seas) and 12 relevant environment parameters were selected for 

model training. We found the model could predict the observed DMS concentrations with a correlation coefficient of 0.75 and 

fill the values in regions lacking observations. Across the Asian Seas, the highest seasonal mean DMS concentration occurred 25 

in Mar-Apr-May (MAM), and we estimate annual DMS emission flux of 1.25 Tg (S), which equivalent to 15.4% of 

anthropogenic sulfur emissions over the entire simulation domain (which covered most of Asia) in 2017. The model estimates 

of DMS and methane sulfonic acid (MSA), using updated DMS emissions, were evaluated by comparing with cruise survey 

experiments and long-term online measurement site data. The improvement in model performance can be observed compared 

with simulation results derived from the global-database DMS emissions. The relative contributions of DMS to SO4
2- and CCN 30 

were higher in remote oceanic areas, contributing 88% and 42% of all sources, respectively. Correspondingly, the sulfate direct 

radiative forcing (DRF) and indirect radiative forcing (IRF) contributed by DMS ranged from -200 to -20 mW m-2 and -900 to 

-100 mW m-2, respectively, with levels varying by season. The strong negative IRF is mainly over remote ocean regions ( -
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900 to -600 mW m-2). Generally, the magnitude of IRF derived by DMS was twice as large as its DRF. This work provides 

insights into the source strength of DMS, the impact of DMS on climate, and addresses knowledge gaps related to factors 35 

controlling aerosols in the marine boundary layer and their climate impacts. 

1 Introduction 

Ocean-emitted DMS is a precursor of non-sea-salt SO4
2- and controls the composition, size distribution, and number 

concentration of aerosols over the remote oceanic areas. SO4
2- directly influences the climate system directly by reflecting 

solar radiation back into the space and indirectly by acting as CCN and altering the albedo of clouds and changing cloud 40 

radiative properties (Andreae and Rosenfeld, 2008). The “CLAW” hypothesis proposed by Charlson et al. (1987) assumed 

that negative feedback interactions between ocean plankton and climate system, where the Earth system acted to buffer itself 

from warming, was linked through DMS production. Thereafter, several studies found that significant impacts of DMS induced 

aerosols on CCN and cloud albedos in remote oceans (Park et al., 2017;Quinn et al., 2017;Kulmala et al., 2014;Vallina and 

Simó, 2007), which lend credence to CLAW hypothesis. Nevertheless, due to low sensitivity of each step of the interactions 45 

to changes in force factors in the CLAW climate feedback loop (e.g., low sensitivity of DMS production to changes in incident 

solar radiation), Quinn and Bates (2011) disproved the hypothesis. Whether the CLAW climate feedback is positive or negative 

is still uncertain and further research is need to quantify the climate effects of DMS.  

Building an accurate emission inventory is key to simulating the climate effects of DMS. As many previous studies have 

shown (Chen et al., 2018;Hodshire et al., 2019;Rap et al., 2013;Yang et al., 2017;Zhao et al., 2021), the marine DMS emissions 50 

used in numerical models are mainly estimated using an interpolation scheme (Kettle et al., 1999;Lana et al., 2011), which 

estimates DMS climatology by interpolating observed DMS data at limited sites to the global ocean. Previously, observations 

from Global Surface Seawater DMS Database have been grouped into 57 ecological geographic ocean provinces and weighted 

interpolations from nearby provinces have been used to fill the values without observations. Wang et al., (2020) has pointed 

out that there are uncertainties in using spatial and temporal averaged data to fill regions without observations. However, 55 

artificial neural networks can potentially be trained and used to fill measurement gaps (Wang et al., 2020). Galí et al. (2018) 

created a remote sensing algorithm to estimate DMS concentrations which is based on the relationship between a precursor of 

DMS and plankton light exposure. Their results (Galí et al., 2018) indicated that the remote sensing algorithms have better 

ability to reproduce the climatological features of DMS seasonality than interpolated DMS climatologies, which also outweigh 

the disadvantage of the interpolation scheme used in previous study (Lana et al., 2011). In a recent study (Bell et al., 2021), 60 

long-term in-situ DMS measurements conducted in North Atlantic Ocean from 2015 to 2018 were compared with the 

interpolated DMS climatologies (Lana et al., 2011), predicted DMS concentrations from the remote sensing algorithm (Galí 

et al., 2018), and a neural network approach (Wang et al., 2020). The analysis revealed that that both the remote sensing 

algorithm and the neural network model were better able to reproduce the sea water DMS trends better than the interpolated 



3 

 

climatologies. However, DMS predictions from two of the models (Galí et al., 2018;Wang et al., 2020) underpredicted DMS 65 

concentrations, likely because the primary biological processes of DMS production was not accounted for(Bell et al., 2021).  

There are several modelling studies which have quantified the aerosol direct and indirect radiative forcing of DMS on a 

global scale. The global annual mean DMS aerosol indirect radiative forcing estimates have ranged from -6.55 to -0.23 W/m2 

in previous studies (Mahajan et al., 2015;Thomas et al., 2010;Rap et al., 2013;Yang et al., 2017;Jin et al., 2018). However, 

there have been few studies that have reported the radiative effect of DMS on a regional scale. Choi et al. (2020) adopted an 70 

empirical algorithm to estimate DMS concentrations and calculated the direct radiative effect of DMS aerosol to be -1.3 W/m2 

for the year 2014-2016 over East Asian seas, which was higher than the global average results (Yang et al., 2017;Rap et al., 

2013). There were no evaluations of the DMS predictions in the seawater or atmosphere in these studies, leading to an unknown 

reliability of the results. The annual-mean direct radiative forcing due to DMS produced aerosol were -0.2 to -0.1 W/m2 over 

East Asia reported by Li et al. (2019) who used a DMS climatology(Lana et al., 2011) with 1° × 1° horizontal resolution for 75 

radiative forcing calculation. As mentioned before, some uncertainties in the DMS climatology estimated by an interpolation 

scheme and coarse grid (1° × 1°) may not be appropriate for regional simulations. In the previous studies, (Li et al., 2020b;Li 

et al., 2020a) used long-term DMS measurements in 2011, 2013, 2015, 2016, and 2017 from a series of shipboard field 

experiments and performed interpolation to map DMS concentrations in Chinese Seas. The newest DMS measurements were 

used to explore the impact of DMS on air quality over coastal areas of China, but the radiative effect of DMS was not reported.  80 

To our knowledge, this is the first systematic study of the Asia region that quantifies the impacts of DMS on sulfate, 

particle number concentration, and radiative forcing by using state-of-the-art aerosol microphysics model coupled on global 

3D chemical transport model. In this study, we developed the regional DMS emissions for the year 2017 by training eXtreme 

Gradient Boosting (XGBoost) machine learning algorithms (Chen and Guestrin, 2016) combined with a newly updated dataset. 

Then, the model estimates of DMS and MSA were evaluated by comparing the model simulations with shipboard field 85 

measurements and long-term online measurement site data. Finally, the annual-average and seasonal impacts of DMS on 

sulfate/CCN concentrations and direct/indirect radiative forcing were quantified.  

 

2 Methods and data 

2.1 GEOS-Chem-TOMAS  90 

In this study, the GEOS-Chem version 12.9.3 (https://doi.org/10.5281/zenodo.3974569, last access: 25 March 2021) 

coupled with the online TOMAS aerosol microphysics model (Adams and Seinfeld, 2002) was adopted to calculate 

atmospheric aerosol size, number, and mass concentrations from marine DMS emissions. TOMAS was used to simulate 

aerosol microphysics processes (i.e., nucleation, coagulation, condensation, cloud processing). The advantage of TOMAS is 

the full aerosol size resolution for all chemical species and the conservation of aerosol number, which allows modelers to 95 

construct aerosol and CCN number budgets that balance. GEOS-Chem-TOMAS (GC-TOMAS) has been used in a range of 

https://doi.org/10.5281/zenodo.3974569
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previous studies (Kodros and Pierce, 2017;Pierce and Adams, 2006;Kodros et al., 2016;D'Andrea et al., 2013;Westervelt et 

al., 2013;Lee et al., 2009;Trivitayanurak et al., 2008;Pierce et al., 2007;Adams and Seinfeld, 2002;Jathar et al., 2020). The 

model contains detailed hydrocarbon – nitrogen oxide (NOx) – ozone(O3) - volatile organic compounds(VOC) – bromine 

oxides(BrOx) tropospheric chemistry (Bey et al., 2001) and aerosol species (including sulfate, nitrate, ammonium, black carbon, 100 

organic carbon, mineral dust, and sea salt) (Duncan Fairlie et al., 2007;Pye et al., 2009;Alexander et al., 2005;Park et al., 2004) 

that are fully coupled to gas-phase chemistry, with the ISORROPIA II algorithm to calculate the thermodynamic equilibrium 

between aerosols and their gas phase precursors (Fountoukis and Nenes, 2007). The model includes detailed wet and dry 

deposition scheme for aerosols and gas species which have been described in previous studies (Wesely, 2007;Liu et al., 

2001;Wang et al., 1998;Amos et al., 2012). This version of GC-TOMAS tracks the total aerosol particle number and the mass 105 

of each aerosol species (sulfate, mineral dust, sea salt, hydrophilic and hydrophobic organic carbon, externally and internally 

mixed elemental carbon, and aerosol water) across 15 logarithmically size bins ranging from 3 nm to 10 μm (Lee and Adams, 

2012;Lee et al., 2013). Since the ammonium nitrate size distribution is not explicitly tracked with GC-TOMAS, so we assume 

that it follows the aerosol water distribution(Bilsback et al., 2020a;Bilsback et al., 2020b). 

The simulation domain covers most of Asia (11°S to 55°N, 60–150°E), was discretized with a horizontal grid resolution 110 

of 0.5° × 0.625° and 47 vertical layers, and uses Modern‐Era Retrospective Analysis for Research and Applications Version 

(MERRA‐2) assimilated meteorological field for meteorological inputs (Gelaro et al., 2017). To assess radiative impacts of 

DMS emissions at a regional scale, we performed three different annual simulations for the year 2017 (Table 1). The “XG” 

simulation represents DMS emissions that were calculated from our updated DMS emissions estimates (see Section 2.3) and 

the “LANA” simulation refer to DMS emissions from Lana DMS climatology (Lana et al., 2011), which is default setting in 115 

current version of Geos-Chem model.  The “ND” simulation has DMS emissions tuned off. Each simulation was conducted 

with 1 month spin-up period (December 2016). The boundary conditions for the simulation domain were obtained from global 

simulations at 2° × 2.5° with 47 vertical layers. 

For anthropogenic emissions in Asia, we used the recently updated Global anthropogenic emission inventories (0.5°x0.5°) 

or the year 2017 from the open-source Community Emissions Data System (CEDS) (McDuffie et al., 2020), which applied 120 

scale factors from Zheng et al., (2018) to update China’s emissions for the year 2017. Since there is a significant reduction 

(62%) in SO2 emissions in China from 2010 to 2017 (Zheng et al., 2018), updated emissions for China are crucial for 

quantifying contributions of biogenic sulfur source over Asia. Biomass burning emissions in the GC-TOMAS are obtained 

from Global Fire Emissions Database Version 4 (van der Werf et al., 2017). Dust, biogenic VOCs, sea salt, soil NOx, and 

lighting NOx emissions are calculated online based on MERRA-2 meteorological field. The Dust Entrainment and Deposition 125 

(DEAD) scheme from Zender et al., (2003) was implemented GEOS-Chem to simulate dust mobilization. The Model of 

Emissions of Gases and Aerosols from Nature from Guenther et al., (2012) was used to generate biogenic VOCs emissions. 

Soil and lighting NOx emissions are calculated by parameterization scheme described in Hudman et al., (2012) and Price and 

Rind (1992), respectively. 

The sea-air flux of DMS is estimated using the following the empirical formula as described in (Lana et al., 2011): 130 
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F =Cw × kw× (1-γ)                                                                                      (1) 

 Where, Cw is the seawater DMS concentrations and kw is the water side gas transfer velocity and γ is the atmospheric 

gradient fraction. In this study, we selected the Nightingale et al. (2000) parameterization (hereafter N00) for kw to represent 

the DMS emissions over the global ocean. 

 135 

2.2 Radiative forcing calculation scheme 

To calculate the top-of-atmosphere (TOA) all sky DRF and cloud-albedo IRF, we used Rapid Radiative Transfer Model 

for Global Climate Models (RRTMG) (Iacono et al., 2008) with monthly averaged aerosol number and mass concentrations 

from GC-TOMAS output and meteorological variables from MERRA2. For the DRE, we calculated aerosol optical depth 

(AOD) single scattering albedo, and the asymmetry parameter based on Mie theory (Bohren and Huffman, 1983) and refractive 140 

indices from the Global Aerosol Database (Koepke et al., 1997). In all cases, the DRE was calculated for core-shell optical 

assumption, where, for each aerosol size bin, black carbon was represented as a spherical core within a homogenous shell of 

all other hydrophilic species. For the cloud-albedo IRF, we calculate cloud droplet number concentration (CDNC) using the 

activation parameterization from Abdul-Razzak and Ghan (2002). Cloud-liquid water content is prescribed from MERRA-2 

and held fixed, and hence we only calculated the cloud-albedo (Twomey) indirect effect. The changes in effective cloud drop 145 

radii were estimated following the cloud-droplet-radius perturbation method used in previous studies (Rap et al., 2013;Kodros 

et al., 2016;Scott et al., 2014). Then, RRTMG was used to calculate the changes of TOA radiative flux from the changes effect 

cloud drop radii. We limited this calculation to liquid clouds, which is a limitation in this method. More detailed information 

about implementation of RRTMG in GC-TOMAS can be found in Kodros et al., (2016).  

 150 

2.3 Machine learning estimates of sea-surface DMS concentration for calculating DMS emission flux 

XGBoost (machine learning algorithm under the Gradient Boosting framework) was used due to its many advantages. 

For example, XGBoost is computationally efficiency, has prediction accuracy, requires less tunning, and is scalable, has been 

widely used in area of geoscience (Sun et al., 2021;Ivatt and Evans, 2020;Pan, 2018;Qian et al., 2020;Silva et al., 2022;Cao et 

al., 2021), and generally outperformed other models. Moreover, Xgboost is good for tabular data and does not require large 155 

training datasets (Shwartz-Ziv and Armon, 2022). Thus, to better capture the nonlinear relationship between DMS and the 

parameters that influence it, we trained an XGBoost model with the entire dataset to predict sea surface DMS concentrations 

in the place of missing observations. 

Figure S1 shows the spatial distribution of DMS measurements. The red points (1022 valid measurements) represent local 

DMS observations dataset (2011, 2013, 2015, 2016, and 2017) across several Chinese Seas from China Ocean University. 160 

Details can be found in our previous studies (Yang et al., 2015a;Yang et al., 2014;Yang et al., 2015b;Xu et al., 2021;Zhai et 

al., 2020;Wu et al., 2020;Jian et al., 2019;Yu et al., 2019;Mao et al., 2021). The blue points (3329 valid measurements) 
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represent the observations from Global Surface Seawater DMS Database (http://saga.pmel.noaa.gov/dms/; last access: 1 May 

2021). In total, 12 environmental parameters (Table S1) which strongly affect the growth of phytoplankton and the production 

of DMS (Wang et al., 2015) were included as predictors in machine learning estimates. Satellite remotely sensed chlorophyll 165 

(Chl), photosynthetically available radiation (PAR), particulate inorganic/organic carbon (PIC/POC), and diffuse attenuation 

coefficient at 490m (kd490) were from MODIS-Aqua products (daily,8-day, and monthly Level 3-binned 4km resolution data).  

Nutrient data (Silicate, Phosphate, and Nitrate), sea surface temperature (SST), salinity, and dissolved oxygen (DO) were 

obtained from World Ocean Atlas 2018 (monthly 0.25° and 1° climatology data). Monthly mixed layer depth (MLD) 

climatology (0.5° × 0.5°) was obtained from Monthly Isopycnal & Mixed-layer Ocean Climatology (MIMOC). Before the 170 

implementation of the algorithm to Asia’s oceans, we performed a model validation. First, the environmental parameters were 

matched with DMS measurements according to sampling geographical coordinates and date. Take remotely sensed Chl data, 

for example, if the daily binned data failed to match the DMS observed data, we used the 8-day binned data to take the place 

of daily binned data. After the data matching, we then conducted filtering and quality control which followed methods from 

Wang et al., (2020), the number of data points in the simulation domain was reduced from 4351 to 3748 observation-based 175 

datasets for in-situ DMS and matched with environmental parameters. Table S1 has a description of the environmental 

parameters, sources, and their filtering thresholds. Avoiding the possible large latitudinal and seasonal variation in DMS, the 

sampling times and geographic coordinates were also included in machine learning estimates. To solve issues in data 

discontinuity, these datasets were converted to periodic functions as suggested in previous studies (Gade, 2010;Gregor et al., 

2017;Wang et al., 2020). To verify the prediction performance of XGBoost model, we divided the datasets into two parts: a 180 

validation dataset and a training dataset. Considering that most of the northern part of the simulation domain was land area, 

we selected the data from 2° latitude bands between 11°S and 30°N as validation datasets (809 points), while the rest of the 

data was all used as training data (2939 points). As suggested by Wang et al. (2020), the measurement data collected from the 

same cruise are highly intercorrelated, and using near-neighbor values to predict validation data may cause the model overfit. 

So, we selected the validation data manually rather than automatically. 185 

Figure 1 displays the validation results for XGBoost model, which reproduced DMS concentrations with high correlation 

coefficients (R) of 0.75 and low root-mean-square error (RMSE) of 1.97 μmol m-3. The validation statistics are comparable to 

other studies (R=0.73-0.81 and RMSE=1.92-2.00 μmol m-3) that used nonlinear/multilinear models to predict sea-surface DMS 

concentrations over the global ocean (Galí et al., 2018;Wang et al., 2020). Model performance for predicting DMS 

concentration in each season was illustrated Table S2. Predicted DMS concentrations were slightly underestimated in 190 

comparison with validation datasets, with mean bias (MB) of -0.59 to -0.21 μmol m-3 and normalized mean bias (NMB) of -

19.36 to -6.51% across the four seasons. A lower RMSE of 1.81 μmol m-3 was observed in spring. The MB and NMB in spring 

were smaller than those in other seasons, which indicated that model performed best in spring. Most of available validation 

datasets were concentrated in the spring (about 67.9%). Thus, the imbalanced data may leaded to less ideal performance in 

other seasons. 195 

http://saga.pmel.noaa.gov/dms/
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The advantage of utilizing a machine learning method is the ability to capture nonlinear relationships between DMS and 

its affecting parameters to estimate DMS concentrations with a plausible underlying basis in spatial-temporal variability. A 

shortcoming of the traditional geographical interpolation method is that relatively sparse data is typically interpolated to the 

entire ocean, which has been highlighted by previous studies (Galí et al., 2015;Galí et al., 2018;Wang et al., 2020). In this 

study, the advantage of the machine learning method is also demonstrated by comparing two different model simulations (see 200 

Section 3.2). In the implementation phase of the machining learning algorithm to regional ocean, the remotely sensed datasets 

used to predict DMS concentrations are all from MODIS-Aqua products in 2017, and monthly climatologies were interpolated 

to the 8-day or monthly periods for the remotely sensed data; then, we trained XGBoost model to obtain grid values that did 

not have DMS measurements. Finally, estimated DMS concentration were temporally averaged to a seasonal period and 

spatially binned to 0.5°×0.5° grid for Asia region (see Section 3.1).  205 

Decision-tree-based machine learning model have a high interpretability. The SHapley Additive exPlanation regression 

(SHAP) (Lundberg et al., 2020) can provide a deeper understanding of model predictions, which allows for individualized 

feature attribution for every decision. Stirnberg et al. (2021) quantified the impact of various meteorological derivers on PM1 

concentrations by using SHAP analysis, and Silva et al. (2022) used SHAP to explore the errors in the prediction of lightning 

occurrence in a widely used earth system model. In this study, SHAP was applied to investigate the importance of each 210 

predictor on model predicted DMS concentrations. 

3 Results 

3.1 Spatial and temporal patterns of the sea-water DMS 

Regional DMS maps for sea surface DMS concentrations predicted by XGBoost in four seasons are displayed in Figure 

2. The data show distinct seasonal variations. The highest regional mean DMS concentrations were observed in the MAM, 215 

that is 2.52 μmol m-3, which was approximately 1.15, 1.24, and 1.31 times higher than those in Jun-Jul-Aug (JJA), Sep-Oct-

Nov (SON), and Dec-Jan-Feb (DJF) (Table S3), respectively. However, according to the previous studies (Lana et al., 

2011;Galí et al., 2018;Wang et al., 2020), the highest DMS concentrations usually occurred in JJA, mainly due to adequate 

solar irradiation and warm temperature being favourable for primary production. We assumed that this difference was caused 

by the fact that we examined a different statistical region, compared to previous results that were based on global scale 220 

estimates. For comparative purposes, we extracted corresponding simulation domain (Figure 2) estimates values from global 

scale estimates results; they are listed in Table S3. Across the Asian Seas, all the highest seasonal mean DMS concentrations 

occurred in MAM, demonstrating that our estimates agreed well with the estimates of 2.21-2.33 μmol m-3 reported in previous 

studies (Wang et al., 2020;Lana et al., 2011). As shown in Figure S2, zonal mean DMS concentrations between 10°S and 30°N 

latitude areas of simulation domain were higher in MAM than in JJA, but those between the 30°N and 50°N latitude band were 225 

higher in JJA than in MAM. As mentioned in Section 2.3, most of ocean area is concentrated in 10°S and 30°N latitude band 

of the entire simulation domain (11°S to 55°N, 60–150°E), which leads to the highest regional mean DMS concentrations 
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being observed in MAM. This is most likely due to the seasonal variation of solar irradiation, because most of ocean area 

(11°S to 30°N) in the simulation domain was influenced more by the solar irradiation in the MAM than in JJA. A similar result 

can be found in monthly Hovmöller diagrams of DMS climatologies, depicted by Galí et al. (2018). Throughout the four 230 

seasons, there were some high concentrations of DMS (higher than 4.3 μmol m-3) that appeared in different coastal areas, 

which is probably relevant to high nutrient and chlorophyll concentrations over the coastal areas. Galí et al. (2015) also found 

that most of the coastal regions have higher dimethylsulfoniopropionate (DMSP) concentrations compared to the global ocean, 

and DMS in the sea water was generated from the breakdown of DMSP.  

Figure S3 summarizes the ranked mean SHAP values of each predictor across all prediction cases. The line ranges 235 

represent interquartile range across the distribution. Larger SHAP value magnitudes are interpreted to as more important for 

the prediction task as they have larger contribution from that variable to that prediction. In our study, the most important 

environmental parameter to predict DMS concentrations was Chl, followed by MLD, PAR, POC, and salinity. Above all, the 

SHAP value of Chl is more than double its value of MLD and PAR, and much larger than all others. This is consistent with 

known importance of Chl in developing predicting models of surface water DMS concentrations, because of its biogenic origin 240 

(Simó and Dachs, 2002;Galí et al., 2015;Wang et al., 2020;Deng et al., 2021).  

We calculated regional sea-air DMS fluxes using the N00 gas transfer velocity and DMS concentrations predicted by 

XGBoost (Figure 3a). We estimated annual DMS emission fluxes of 1.25 Tg (S), corresponds to 15.4% of the anthropogenic 

sulfur emissions over the entire simulation domain (covers most of Asia) in 2017. The higher estimated values of DMS fluxes 

(higher than 250 tonnes (S)/grid) occurred over some coastal waters, which generally agreed well with the estimated sea surface 245 

DMS concentration distribution. The highest emission fluxes occurred over the Chinese Seas (reach up to 450 tonnes (S)/grid). 

These high fluxes can be attributed to local DMS observations dataset in the Chinese Seas (red point in Figure S1) that were 

included in the machine learning estimates. Our previous studies (Li et al., 2020a;Li et al., 2020b) have reported that DMS 

emissions fluxes calculated with the local dataset is 3 times higher than default global-database (Lana et al., 2011) over most 

area of the Chinese Seas. The highest positive changes of DMS emissions fluxes were mainly in the areas of East China Sea 250 

(up to 200 tonnes (S)/grid), and some coastal regions (Figure 3b). However, there were more negative changes of DMS 

emissions fluxes than positive changes in the sea water, which suggested that sea-air DMS flux estimated in this study generally 

lower than those from Lana et al. (2011). Similar results can be found in Wang et al. (2020). 

3.2 Model evaluation 

3.2.1 Model performance of DMS and its oxidation product MSA 255 

Modelled atmospheric DMS concentrations were compared to observations from 2017 Cruise Survey Experiment (CSE) 

1-3 (Figure 4). Due to the discontinuities in time and gaps in observations, we averaged the whole period of each CSE 

observation for our comparisons. The results in Table S4 demonstrate moderate improvements in the model performance of 

DMS predictions when using updated DMS emissions relative to default DMS emissions, i.e., the difference between the 
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observations and predictions (observation - prediction) became smaller (from -16.34 to 6.68 pptv for CSE 1, -21.11 to -16.17 260 

pptv for CSE 2, and -121.57 to 117.39 pptv for CSE 3, respectively). CSE 3 had much higher DMS concentrations, because 

most of the measurements were from the mouth of the Changjiang River, and it is difficult for a coarse model grid (0.5° × 

0.625°) to represent the high values that occur off coastal areas. MSA is a tracer of DMS, because it is formed exclusively 

from DMS (Gondwe et al., 2003). We also evaluated the model performances for MSA by comparing the model simulations 

with long-term online measurement site data (Zhou et al., 2021) from Hua Niao Island (Figure 4). Figure 5 displays time series 265 

of daily mean MSA values of predictions (XG and LANA) and observations. The simulated MSA concentrations from XG 

and LANA are both within the range of observed values, and the trends of the MSA concentrations were relatively well 

reproduced, with mean values of 0.014, 0.020, and 0.023 μg m-3 for LANA, XG, and observations. Although in some periods, 

LANA simulation results were closer to the observations, and XG simulations underpredicted, e.g., RMSE of 0.013 and 0.006 

μg m-3 for LANA, 0.021 and 0.010 μg m-3 for XG during the period of Jun 21 to Jun 25 and Jun 28 to July 3, respectively. 270 

However, in the whole, the simulation results of XG in other periods were closer to the observations than those of LANA 

simulation results, with RMSE of 0.024 and 0.018μg m-3 for LANA and XG, respectively. 

3.2.2 Model performance evaluation for PM2.5, AOD, and CCN 

The magnitude and distributions of PM2.5, AOD, and CCN directly influence DRF and IRF estimates. To evaluate whether 

GC-TOMAS can reproduce the spatial distribution and temporal trends of these parameters over the simulation area, we 275 

evaluated model performance by comparing simulation results for XG with ground observations and satellite‐retrieved 

estimates. Since DMS impacts PM2.5 and CCN over the ocean and some coastal areas (see Section 3.3), and the ground 

observational data is all over land areas, so we only used one of the simulations for model evaluation.   

Boylan and Russell (2006) suggested that model predictions can be regarded as sufficiently accurate when the model has 

a mean fractional bias(MFB) ≤ ±30% and mean fractional error (MFE) ≤ ±50%. Figure S4 presents the distributions of 280 

simulated annual mean PM2.5 concentrations and observations at 366 city sites from China National Environmental Monitoring 

Center (CNEMC). The model performed well against PM2.5 observations for the year 2017, with MFB of 5.5% and MFE of 

23.1%, which both within the range suggested by Boylan and Russell (2006), and had a Pearson’s correlation coefficient (R) 

of 0.62. Simulated PM2.5 concentrations were slightly underpredicted with a MB of -1.3 μg m-3, which is probably ascribed to 

underpredict PM2.5 in some parts northern China. Further, uncertainties in land-based emission inventories tend to cause 285 

different model performance in different regions.  

Table S5 summarizes the collected in-situ measurements of CCN concentrations in other previous studies and 

corresponding annual-mean simulated CCN concentrations which were used for evaluation. The MFB and MFE was 28.17% 

and 34.16%, which met the suggested benchmark; however, the model estimates underpredicted the measurements in most 

areas. Liu et al., (2020) adopted a satellite-based method to retrieve CCN concentrations from 2013 to 2019 and reported that 290 

they could reasonably reproduce the spatial pattern of CCN in East Asia. In this study, monthly mean GC-TOMAS CCN 

concentrations were compared to satellite-retrieved CCN concentrations at supersaturation levels of approximately 0.2% from 
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Liu et al., (2020). A total of 8 months of satellite-retrieved CCN concentrations were averaged on the MERRA‐2 grid 

(corresponding 667 simulation grids) for comparison (Figure S5). The simulated CCN concentrations presented generally 

similar monthly variations when compared to the satellite-retrieved concentrations. The modeled concentrations had a MFB 295 

of 17.23% and MFE of 37.28%, both meeting the criteria suggested by Boylan and Russell (2006). The GC-TOMAS CCN 

concentrations (430 cm-3) for 8 months underestimated the satellite-retrieved concentrations (587 cm-3). This underestimation 

is more apparent in July, August, September, and November. However, for other months (February, April, May, and June) the 

simulated CCN concentrations only slightly underpredicted observations with mean bias (MB) of -75 cm-3. This difference is 

more likely attributable to differences in model performance in different regions. For example, the underpredictions of CCN 300 

in May were mainly distributed in eastern coastal area of China, the Korean Peninsula, and Japan. But in August and September, 

the underprediction of model estimates discrepancies were mainly in the southern and northern part of China, respectively. 

Due to the limited CCN monitoring data in our domain during simulation period, we compared predicted results with satellite-

retrieved CCN. However, as Liu et al., (2020) indicated that errors in retrieved data and the CCN counters might cause 

inaccuracy of satellite CCN inversion results. Thus, we note that the satellite derived CCN cannot be treated as true as in-situ 305 

observations when validating model results.  

For AOD, monthly averages from the Aerosol Robotic Network (AERONET) Version 3 spectral deconvolution algorithm 

(SDA) level 2.0 measurements (Giles et al., 2019) were used to validate the model estimations. In total, there were 79 

measurements within the simulation domain. Figure S6 displays annual-mean model estimates and AERONET measurements 

AOD at 550nm (the AERONET AODs at 500nm are converted to 550nm using Ångström exponents at 500nm). The model 310 

estimates compared well with measurements with a Pearson’s R of 0.84 and only a slightly underprediction of AOD with MBs 

of -0.13. The respective MFB and MFE were -28.64% and 13.45%, which all meet the benchmark suggested in Boylan and 

Russel et al, 2006.  

 

3.3 Seasonal variations of DMS impacts to SO4
2- , CCN, and radiative forcing 315 

By updated the DMS emissions in GEOS-Chem (XG-ND), we find an enhancement of near-surface SO4
2- concentrations of 

0.1-0.3 μg m-3 over most areas of seawater (Figure 6(a)). The highest impacts (approximately 0.3 μg m-3) occurred in MAM 

around the South China Sea area due to highest regional mean DMS concentrations in MAM. However, the spatial distributions 

of SO4
2- concentrations enhanced by addition of DMS emissions in the four seasons did not exactly follow the spatial and 

temporal pattern of seawater DMS concentrations (Figure 2). Sea surface wind speed has noticeable impacts on the sea-air 320 

DMS flux and followed atmospheric DMS concentrations, which caused higher atmospheric DMS concentrations over the 

India Ocean in the MAM. Ambient oxidant level also plays an important role in the subsequent DMS oxidation phase. For 

example, higher atmospheric DMS (300-400pptv) and SO2 (0.2-0.3μg m-3) concentrations contributed by DMS can be found 

around the areas of East China Sea (Figure S7 and S8) in MAM and JJA. However, a higher contribution of DMS emissions 

to near-surface SO4
2- concentrations occurred over south China Sea in DJF and MAM. The spatial disparities might be due to 325 
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the roles of oxidants in the conversion of SO2 into SO4
2- in different seasons. Additionally, cloud cover could also affect 

aqueous conversion. 

The magnitude of the all-sky sulfate DRF at TOA contributed by DMS ranged from -200 to -20 mW m-2 in four seasons 

(Figure 6(b)).  The spatial patterns of DRF are highly consistent with those of SO4
2- concentrations, with the stronger negative 

DRF (-200 to -120 mW m-2) in the areas with higher SO4
2- concentrations contributed by DMS such as the South China Sea, 330 

Philippine Sea, and Japan Sea. It should be noted that DRF calculation is from the whole column of the atmosphere whereas 

Figure 6(a) just shown the surface layer concentrations, yet the spatial results are still qualitatively similar. As reported by 

some previous studies (Khan et al., 2016;Chen et al., 2018;Zhao et al., 2021), DMS mainly exists in the lower atmosphere, 

and the impacts of DMS to SO2 and SO4
2- concentrations are limited to the lower troposphere. So, the magnitude of sulfate 

DRF at TOA shown in Figure 6(b) is mostly caused by lower-altitude SO4
2- from DMS. SO4

2- aerosols are non-absorbing 335 

aerosols that primarily scatter incoming radiation and the increase in reflected solar radiation flux at TOA and almost equally 

reduce the radiation at the surface (Ramanathan et al., 2001). Thus, for sulfate aerosol, the magnitude of the cooling effect can 

be estimated from the aerosol radiative forcing at the TOA. The seasonal mean sulfate DRF has a contribution of -22.24, -

18.79, -21.58, and -17.43 mW m-2 from DMS over the simulation domain in DJF, MAM, JJA, and SON, respectively. The 

magnitude of the DMS-induced sulfate DRF in DJF and JJA is higher than other seasons, but the highest impacts of DMS 340 

emissions on SO4
2- concentrations occurred in MAM followed by DJF. The all-sky DRF was calculated based on the RRTMG 

model using aerosol mass concentrations (whole column) and optical parameters along with surface albedo and cloud fractions 

from MERRA‐2 assimilated meteorological data. Hence, aerosol mass concentrations as well as other parameters can impact 

the magnitude and spatial distributions of the DRF. For clear sky condition, aerosol scatter more of incoming solar radiation 

than in all sky condition, which lead to aerosol DRF at TOA and surface increases compared to all sky conditions. 345 

Figure 7(a) shows the changes in seasonal mean CCN surface concentrations at 0.2% supersaturation (CCN (0.2%)) 

between the XG - ND simulations. Updating the DMS emissions lead to an increase in CCN concentrations by 3 - 42 cm-3 over 

most areas of seawater and an increase of 6 - 16 cm-3 in some coastal regions. The highest increases occurred in DJF, followed 

by MAM. The impacts of DMS on CCN concentrations are shown in Figure 6(a). The modeled DMS-induced cloud-albedo 

IRF ranged from -900 to -100 mW m-2 in four seasons (Figure 7(b)), which is much higher relative to that of the sulfate DRF 350 

attributable to DMS. The seasonal mean sulfate IRF had a contribution of -43.29, -45.04, -43.60, and -33.03 mW m-2 from 

DMS in our domain in DJF, MAM, JJA, and SON, respectively. There are some similarities in the spatial distribution of the 

effects of DMS on IRF and CCN. However, the strong negative IRF was mainly over remote oceans ( -900 to -600 mW m-2), 

while the higher contributions to CCN were concentrated within coastal waters. One explanation for these differences was that 

strong anthropogenic emissions in Asia leaded to an intense competition for water vapor during cloud-droplet activation, which 355 

further decreased the maximum supersaturation achieved in updrafts and limits droplet activation (Kodros et al., 2016). Also, 

the clouds are not necessarily at a height where CCN changes are affected by DMS. 
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3.4 Annual DMS impacts to SO4
2- , CCN, and radiative forcing 

3.4.1 Annual DMS impacts to SO4
2- , CCN, and radiative forcing between XG and ND simulation 360 

Figure 8 (a) shows the annual-mean percent changes and absolute changes in SO4
2- and CCN between the XG and ND 

simulations. Oceanic DMS emissions increased the near-surface SO4
2- and CCN concentrations by 0.1-0.3 μg m-3 and 3 - 42 

cm-3 over most areas of seawater across the four seasons. Due to heavy amounts of anthropogenic pollutants from the continent, 

DMS contributed 88% of SO4
2- and 42% of CCN in remote oceanic areas. More than 40% the SO4

2-  and 20% of the CCN 

contributed by DMS emissions were also found in the Philippine Sea and India Ocean, respectively.  DMS had a moderate 365 

impact of 0.1-0.18 μg m-3 for SO4
2- and 10 -22 cm-3 for CCN when considering all coastal regions of simulation domain. Yang 

et al. (2017) indicated that DMS emissions only have 20-40% of contributions to SO4
2- concentrations over downwind ocean 

areas of East Asia, which was much lower than 40-70% contribution estimated in this study. This discrepancy is mainly 

ascribed to a significant reduction (62%) in SO2 emissions in China from 2010 to 2017 (Zheng et al., 2018).  

The modeled all sky DRF of DMS induced sulfate here range from -100 to -10 mW m-2 (Figure 8 (b)). The sulfate DRF 370 

was the strongest ( -100 to -60 mW m-2) over the South China Sea, which is consistent with the distributions of SO4
2- 

concentrations contributed by DMS emissions. The DMS induced cloud-albedo IRF (-700 to -100 mW m-2) here was higher 

than the all sky DRF estimate. A relatively strong cooling IRF (-700 to -400 mW m-2) induced by DMS emissions can be seen 

in the vicinity of equatorial belt in India Ocean and northwest Pacific Ocean. The simulated annual mean sulfate DRF and IRF 

is -20.01 and -41.26 mW m-2 over the simulation domain, respectively. Li et al. (2019) estimated the annual mean all sky DRF 375 

of -100 mW m-2 from DMS emissions over the East China Sea. Our estimates (-20.01 mW m-2) were lower than their result, 

which is likely attributable to discrepancies in the DMS emissions used to drive the model.  

 

3.4.2 Annual DMS impacts to SO4
2- , CCN, and radiative forcing between XG and LANA simulation 

To quantify the impacts of DMS emissions changes on SO4
2-, CCN, and radiative forcing, we compared the XG and 380 

LANA simulations (Figure S9(a)). Increases in SO4
2- and CCN can be found in the areas of Indonesia and northwest Pacific 

Ocean (Figure S9 (a)), which was generally consistent with the changes in DMS emissions fluxes between XG and LANA 

(Figure 3b). DMS emissions changes (between XG and LANA) accounted for 4-20% and 6-18% of SO4
2- and CCN 

concentrations over areas of Indonesia, and 2-10% and 3-6% of those concentrations over the northwest Pacific Ocean, 

respectively. The largest decreases were seen in the vicinity of the India Ocean, which was -0.06 μg m-3 for SO4
2- and -10 cm-385 

3 for CCN. Due to the higher background concentrations contributed by anthropogenic sources, the relative percent change 

was smaller over that area, where DMS emissions changes only accounted for -8 to -4 % for SO4
2- and -6 to -3 % for CCN. 

Also, changes of DMS fluxes around the equatorial belt in western Pacific Ocean (Figure 3b) did not directly link to negative 

changes in SO4
2- and CCN, which was most likely offset by large scale transport of sulfate caused by DMS from East China 

Sea. The changes in annual mean DRF and IRF from XG-LANA simulation as shown in Figure S9 (b). Decreases in DRF (-390 



13 

 

20 to -5 mW m-2) mainly were concentrated over the northwest Pacific Ocean. The largest increase in DRF (up to 40 mW m-

2) was found in the areas of the Japan Sea, and most of the increases in DRF (5 to 20 mW m-2) were mainly distributed in the 

region of the Indian Ocean and land areas of India. Their spatial patterns were consistent with distributions of absolute changes 

of SO4
2- concentrations. The largest changes in IRF were found in areas of the northwest Pacific Ocean and the Sea of Okhotsk, 

with changes up to -200 and 200 mW m-2. The decreases of IRF from the XG-LANA simulation can span most Pacific Ocean 395 

over the simulation domain and some continental regions, and increases of IRF are more concentrated within the India Ocean 

and Sea of Okhotsk. Generally, our estimated sea-air DMS fluxed are lower than those from Lana et al. (2011) over the most 

of the ocean areas, but the DMS-caused changes to SO4
2- , CCN, and radiative forcing were more varied, with the increases 

over the northwest Pacific Ocean for SO4
2-  and CCN, and decreases in the regions of India Ocean, oppositely, increases in the 

regions of India Ocean for DRF and IRF, and decreases over the northwest Pacific Ocean. 400 

 

3.5 Limitations of this study 

We found several limitations in our emission estimates and modeling study. We try to use machine learning estimates of 

DMS concentrations to fill the regions without observations. While the recently measured 1022 seawater DMS observations 

over Chinese Seas included a training period, for some months (January, November, etc.) there were still not enough data to 405 

create a monthly mean. Hence, we temporally averaged input parameters to a seasonal period rather than use monthly data, 

which is a limitation of this study, but as shown in Section 3.1, the estimated results showed distinct seasonal variations, and 

the results are comparable with other studies. Due to the limited continuous measurements of atmospheric DMS and MSA 

concentrations, we only presented the averaged each cruise survey observations for DMS model evaluation and temporal 

variation of MSA prediction performance evaluated only from a single observation site. We acknowledged that this is an 410 

important limitation of this study, which prevents us from giving comprehensive estimates (in temporal and spatial scale) of 

the advantage of our updated DMS emissions. More marine and atmospheric observational data are necessary for further model 

evaluation.  

In addition, due to the limited high temporal resolution monitoring data of CCN for the simulation year 2017 in our 

domain, we verified the model performance of the CCN simulation by comparing the modeled results with the collected mean 415 

annual observed concentrations of CCN in other previous studies and satellite-retrieved CCN concentrations. We acknowledge 

that the CCN model-measurement comparisons listed in Table S5 are not the exact times where CCN simulated, and satellite-

retrieved CCN (given the uncertainty in water uptake and size distributions) are not necessarily accurate enough to represent 

true atmospheric CCN concentrations in 2017.  

Modeled AOD may be biased during cloudy conditions when AERONET measurements cannot be made. Hence, there 420 

would be an uncertainty in using monthly averaged measurements and model predictions for comparison (Schutgens et al., 

2016).  
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Different chemical mechanisms of various chemical-transport models and the treatment of aerosol optical properties can 

also lead to differences in simulation results. Globally, the annual-mean DRF and IRF contributed by DMS reported by other 

studies (as listed in Table S6) varied from -0.23 to -0.074 W m-2 and -6.55 to -0.3 W m-2, respectively. Aerosol-cloud 425 

interactions are a major source of uncertainty in the prediction of climate change, impacting radiative forcing estimates, 

especially the IRF calculation. Differences in aerosol nucleation schemes, activation parameterizations, and emissions between 

models can contribute to large discrepancies in their simulation results (Carslaw et al., 2013). However, we did not explore 

impact of different nucleation schemes on radiative forcing. We recommend that this should be done in the future work to 

minimize uncertainties in future modeling studies. 430 

4 Conclusions 

In this study, we utilized the XGBoost machine learning algorithm to estimate sea-water DMS concentrations by training 

12 ocean environmental parameters on newly updated DMS measurements. 1022 recent seawater DMS measurements over 

Chinese Sea were included in our training data, and we used the machine learning method to fill the gap at times and in 

locations without observations. The DMS model-measurement validation results showed that our XGBoost estimates could 435 

capture the observed DMS concentrations with a correlation coefficient of 0.75. Zonal mean DMS concentrations between 

10°S and 30°N latitude areas of simulation domain were higher in MAM than in JJA, and most of ocean area was concentrated 

in 10°S and 30°N latitude band, which leaded to the highest regional mean DMS concentrations observed in MAM. We 

estimated annual DMS emission fluxes of 1.25 Tg (S), which accounted for 15.4% of anthropogenic sulfur emissions over the 

entire simulation domain (covers most of Asia) in 2017. Comparative analysis revealed that the sea-air DMS flux estimated in 440 

this study (from XG estimates) was generally lower than those from global-database DMS emissions (Lana et al., 2011).  The 

model estimates of DMS and MSA from XG simulation, were evaluated by comparing with cruise survey experiments and 

long-term online measurement site data. In general, the improvement in model performance can be observed by comparing 

XG with the LANA simulation, which uses the global-database DMS emissions.  

The modeled DMS-induced sulfate DRF and IRF ranged from -200 to -20 mW m-2 and -900 to -100 mW m-2 across the 445 

four seasons, respectively. The stronger negative DRF (-120 to -200 mW m-2) was in the areas where with higher SO4
2- 

concentrations contributed by DMS, such as the South China Sea, Philippine Sea, and Japan Sea. However, the strong negative 

IRF was mainly over remote oceans ( -900 to -600 mW m-2), which did not match with the spatial distributions of contributions 

of DMS to CCN concentrations due to the role of clouds in the IRF. Annually, DMS-induced sulfate IRF (-700 to -100 mW 

m-2) here obviously higher than those all sky DRF (-100 to -10 mW m-2). By adding our updated DMS emissions to a simulation 450 

with no DMS (XG-ND), we predict the enhancement of near-surface SO4
2- and CCN concentrations by 0.1-0.3 μg m-3 and 3 - 

42 cm-3, respectively, over most oceanic areas in all four seasons. We found higher contributions from DMS emissions to SO4
2- 

and CCN in MAM and DJF than JJA and SON. 

In this work, we quantified the contributions of DMS to atmospheric SO4
2- and CCN aerosol concentrations along with 

their radiative effect over a modeled Asian domain (covers most of Asia). This work provides better insights into the source 455 
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strength of DMS and its impact on climate, addressing knowledge gaps related to factors controlling aerosols in the marine 

boundary layer and their climate impacts. As discussed in Section 3.6, there are several limitations that need to be improved 

upon in the future work. More marine and atmospheric observational data are necessary for further DMS emission estimates 

and model evaluation to explore the interactions of DMS with aerosols and radiative forcing. In the future work, we also need 

to explore the impact of different aerosol nucleation schemes on radiative forcing, to more completely quantify the 460 

uncertainties our modeling study. 
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Figure 1. The scatter plot compares model predictions and observations of DMS. The colour represents the percentile of distribution of 

absolute difference between predicted and observation data. 
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Figure 2. Sea-surface DMS concentrations predicted by XGBoost model by season. 

 

 

Figure 3. Panel (a) presents Annual DMS emission flux calculated based on N00 flux parameterization (Nightingale et al., 2000) from XG 720 

sea surface concentrations, panel (b) presents changes between DMS emission flux from updated (XG) and default climatology (LANA). 
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Figure 4. Locations of atmospheric DMS observations from cruise survey experiments 1-3, and the MSA observation 

site in Hua Niao Island. 725 

 

 

Figure 5. A comparison of simulated daily concentrations of MSA with observations at the Hua Niao Island site (Units: μg m-

3). 
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Figure 6. Spatial pattern of the seasonal mean absolute changes in surface SO4
2- (first column) and all-sky DRF (second column) between 

the XG and ND (no DMS) simulations.  
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Figure 7. Spatial pattern of the seasonal mean absolute changes in surface CCN (0.2%) (first column) and cloud-albedo IRF (second column) 

between the XG and ND (no DMS) simulations.  

 

 

Figure 8. Panel (a) presents the spatial distributions of annual mean percent changes and absolute changes in surface SO4
2- and CCN, and 740 

panel (b) presents the spatial distributions of annual mean all-sky DRF and cloud-albedo IRF between XG and ND (no DMS) simulations. 

 

 

Table 1. Description of simulation 

Simulation Description 

XG DMS emissions on with updated DMS emissions predicted by 

XGBoost model. 

LANA DMS emissions on with default DMS emissions from Lana et al. 

(2011). 

ND DMS emissions turned off. 
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