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Responses to reviewers’ comments 

 

We appreciate the reviewers’ careful and thoughtful comments of our manuscript entitled 

“Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on Machine 

learning estimates” and for the many helpful suggestions to improve the article. We have carefully 

reviewed all comments and revised the article accordingly. The sentences are depicted in yellow in 

the manuscript text to highlight the new addition and used strikethrough for deletion. To be clear, 

all the responses are in green background in the below. 

Responses to Reviewer 1 comments: 

1. My main concern is regarding the training and validation data split. The authors state that 

“we selected the data from 2° latitude bands between 11°S and 30°N as validation datasets 

(809 points), while the rest of the data was all used as training data (2939 points).” I am 

unsure exactly what this means but given the large latitudinal variation in DMS in the 

region (e.g., Fig. S2) this could introduce unnecessary bias in the model. Why not just use 

a random split? 

Answer:  

Thank you for your suggestive comments. The reason why we split the validation data 

manually because it has pointed out that the measurement data collected from the same cruise 

are highly intercorrelated, and the common practice of shuffling and randomly splitting the 

data produces an overfitted model due to the validating data can be predicted using near-

neighbor values in a recent study which use artificial neural network to generate DMS 

climatology (Wang et al., 2020). We also have learned from our previous study (Li et al., 2020) 

that there were a large number of DMS measurements in our simulation domain (Figure S1) 

were from same shipboard field campaign. So, we followed Wang et al. (2020) selected the 

validation data manually rather than automatically. As you mentioned, there could be a large 

latitudinal and seasonal variation in DMS, thus we’ve also assumed that the in situ sampling 

times and locations would also influence the effects of model prediction. So, the coordinate 

space notations (longitude and latitude) and sampling times (months and hours) were also 
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included as predictors in machine learning estimates. Now we have added a description about 

these datasets in revised manuscript in the first paragraph of section 2.3:  

“Avoiding the possible large latitudinal and seasonal variation in DMS, the sampling 

times and geographic coordinates were also included in machine learning estimates. To solve 

issues in data discontinuity, these datasets were converted to periodic functions as suggested 

in previous studies (Gade, 2010;Gregor et al., 2017;Wang et al., 2020).” 

“As suggested by Wang et al. (2020), the measurement data collected from the same 

cruise are highly intercorrelated, and using near-neighbor values to predict validation data 

may cause the model overfit. So, we selected the validation data manually rather than 

automatically.” 

2. While the authors provide a good overall evaluation of their model, given the large seasonal 

variation in DMS (and it’s contributing factors), I would also like to see a validation of the 

RMSE in each season, even if only in the supplemental. This would provide confidence that 

the model is providing robust predictions in different regimes. 

Answer:  

Following your suggestion, we have added Table S2 in the supplemental information 

which illustrated Model performance of DMS concentration in each season, the corresponding 

description was added to the revised section 2.3 as that “Model performance for predicting 

DMS concentration in each season was illustrated Table S2. Predicted DMS concentrations 

were slightly underestimated in comparison with validation datasets, with mean bias (MB) of 

-0.59 to -0.21 μmol m-3 and normalized mean bias (NMB) of -19.36 to -6.51% across the four 

seasons. A lower RMSE of 1.81 μmol m-3 was observed in spring. The MB and NMB in spring 

were smaller than those in other seasons, which indicated that model performed best in spring. 

Most of available validation datasets were concentrated in the spring (about 67.9%). Thus, 

the imbalanced data may leaded to less ideal performance in other seasons.” 

3. On this point, the authors state that “the training process is not interpretable and not 

transparent”. I would dispute that. One of the benefits of a tree-based model like XGBoost is 
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that it is quite efficient to investigate the sensitivity of the output to each of the predictors. For 

example, the authors could provide Shapley values for the different predictors, perhaps in 

different seasons. I don’t believe this is too much work and would help demonstrate the 

robustness of the model and support the interpretation of their model. 

Answer:  

We have deleted the statement “However, the primary weakness of the machine learning 

method is that the training process is not interpretable and not transparent (Reichstein et al., 

2019;Wang et al., 2020). the relationship between training parameters should have a minimal 

physical interpretation, which should be done in future work to give not only accurate but 

also credible predictions.” from the section 3.5. 

We calculated Shapley values of each predictor across all prediction cases, which 

displayed in Figure S3. And, the following statements were added to the revised section 2.3 

and section 3.1, respectively as the below: 

“Decision-tree-based machine learning model have a high interpretability. The SHapley 

Additive exPlanation regression (SHAP) (Lundberg et al., 2020) can provide a deeper 

understanding of model predictions, which allows for individualized feature attribution for 

every decision. Stirnberg et al. (2021) quantified the impact of various meteorological 

derivers on PM1 concentrations by using SHAP analysis, and Silva et al. (2022) used SHAP 

to explore the errors in the prediction of lightning occurrence in a widely used earth system 

model. In this study, SHAP was applied to investigate the importance of each predictor on 

model predicted DMS concentrations.” 

“Figure S3 summarizes the ranked mean SHAP values of each predictor across all 

prediction cases. The line ranges represent interquartile range across the distribution. Larger 

SHAP value magnitudes are interpreted to as more important for the prediction task as they 

have larger contribution from that variable to that prediction. In our study, the most important 

environmental parameter to predict DMS concentrations was Chl, followed by MLD, PAR, 

POC, and salinity. Above all, the SHAP value of Chl is more than double its value of MLD 
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and PAR, and much larger than all others. This is consistent with known importance of Chl 

in developing predicting models of surface water DMS concentrations, because of its biogenic 

origin (Simó and Dachs, 2002;Galí et al., 2015;Wang et al., 2020;Deng et al., 2021).” 

4. On line 244 the authors state that “Overall, the simulation results of XG in other periods were 

closer to the observations than those of LANA simulation results.” but this doesn’t look true 

by eye. Could the authors report the respective RMSE of each result against the observations 

for this time series? It does seem that XG represents the variability somewhat better though. 

Answer:  

As reviewer suggested we revised the statement into “Although in some periods, LANA 

simulation results were closer to the observations, and XG simulations underpredicted, e.g. 

RMSE of 0.013 and 0.006 μg m-3 for LANA, 0.021 and 0.010 μg m-3 for XG during the period 

of Jun 21 to Jun 25 and Jun 28 to July 3, respectively. However, in the whole, the simulation 

results of XG in other periods were closer to the observations than those of LANA simulation 

results, with RMSE of 0.024 and 0.018μg m-3 for LANA and XG, respectively”. 

5. L24: ‘lack of’ -> ‘lacking’ 

Answer:  

Thanks for the correction. We have changed “lack of” to "lacking”. 

6. L25: The authors state that the DMS emissions flux ‘accounts for 15.4% of anthropogenic 

sulfur emissions’, but DMS isn’t an anthropogenic source so this doesn’t make sense. Perhaps 

they mean ‘equivalent to 15.4% of …’? 

Answer:  

Thanks for the suggestion. As suggested, we have revised the sentences into “which 

equivalent to 15.4% of anthropogenic sulfur emissions over the entire simulation domain”. 

7. L30: ‘of all sources’ -> ‘of all sources, respectively’. 

Answer: 
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Thanks for the correction. We have changed “of all sources” to " of all sources, 

respectively”. 

8. L81-84: The sentence which begins “In this study…” is quite long and doesn’t seem to make 

sense, consider rephrasing. 

Answer: 

As suggested, we have revised the sentence into that “In this study, we developed the 

regional DMS emissions for the year 2017 by training eXtreme Gradient Boosting (XGBoost) 

machine learning algorithms (Chen and Guestrin, 2016) combined with a newly updated 

dataset”. 

9. L90: The whole manuscript has inappropriate line breaks in the middle of words from this 

point on, please check. 

Answer: 

Thanks for the suggestion. We have checked throughout the manuscript, and fixed all the 

word break issues. 

10. L94: " allows modeler” -> “allows modelers”? 

Answer: 

Thanks for the correction. We have changed “allows modeler” to “allows modelers”. 

11. L151: “trained XGBoost” -> “trained an XGBoost”. 

Answer: 

Thanks for the correction. We have changed “trained XGBoost” to “trained an XGBoost” 

12. L153: “concentrations where without the observations” -> “concentrations in the place of 

missing observations”? 

Answer: 

Thanks for the correction. We have changed “concentrations where without the 
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observations” to “concentrations in the place of missing observations”. 

13. L215: “which is 15.4%” -> “which corresponds to 15.4%”? 

Answer: 

Thanks for the correction. We have changed “which is 15.4%” to “which corresponds to 

15.4%”. 

14. L394-396: This is true and the authors might like to cite Schutgens et al. 2016 

(https://acp.copernicus.org/articles/16/1065/2016/) in support of the claim. 

Answer: 

We have added the reference to the manuscript and updated citation at the third paragraph 

of section 3.5. 

15. Could the authors use the same colour scale for IRF and DRF in Figures 7 and 8 to aid 

comparison? 

Answer: 

As reviewer suggested, we have used the colour bar for DRF regenerate the Fugure 7b 

and 8b, and now is the same colour scale for IRF and DRF in Figures 7 and 8. 
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Responses to Reviewer 2 comments: 

1. The authors need to explain in more detail why they chose the XGBoost model instead of a 

different ML model and should give further details on the performance of this approach, both 

at training and at validation, rather than only Pearson’s coefficient and RMSE, especially when 

the RMSE is of the same order of magnitude as the predicted concentrations. I would have 

liked to see other performance metrics as well, such as relative errors. 

Answer:  

Thanks for your suggestions. As reviewer suggested, we have added Table S2 in the 

supplemental information which illustrated other performance metrics for DMS predictions 

in each season, and also added to the second paragraph of section 2.3 that“Model performance 

for predicting DMS concentration in each season was illustrated Table S2. Predicted DMS 

concentrations were slightly underestimated in comparison with validation datasets, with 

mean bias (MB) of -0.59 to -0.21 μmol m-3 and normalized mean bias (NMB) of -19.36 to -

6.51% across the four seasons. A lower RMSE of 1.81 μmol m-3 was observed in spring. The 

MB and NMB in spring were smaller than those in other seasons, which indicated that model 

performed best in spring. Most of available validation datasets were concentrated in the 

spring (about 67.9%). Thus, the imbalanced data may leaded to less ideal performance in 

other seasons.”  

The reason why we chose the XGBoost model, due to its advantages of scalability, 

computing efficiency and prediction accuracy, and robust to randomness, it has also been 

widely used in geoscience, predictions of atmospheric composition, and other areas (Sun et 

al., 2021;Ivatt and Evans, 2020;Qian et al., 2020;Zhang et al., 2019;Silva et al., 2022;Cao et 

al., 2021). Some studies also showed that XGBoost consistently outperforms other ML 

algorithms (Zamani Joharestani et al., 2019;Pan, 2018). Among the ML approaches, some 

deep learning techniques tend to require larger amounts of training data to make reasonable 

predictions, whereas Xgboost is good for tabular data with a small number of variables (Qian 

et al., 2020;Shwartz-Ziv and Armon, 2022). In our study, the total number of training samples 
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is 2939, thus, we believe that ML model like XGBoost requiring small training data sets is 

preferred in our DMS concentration predicting experiments. So, we selected XGBoost model 

to estimate DMS concentrations.  

We also added the introduction of advantages of XGBoost in updated section 2.3 that 

“XGBoost (machine learning algorithm under the Gradient Boosting framework) was used 

due to its many advantages. For example, XGBoost is computationally efficiency, has 

prediction accuracy, requires less tunning, and is scalable, has been widely used in area of 

geoscience (Sun et al., 2021;Ivatt and Evans, 2020;Pan, 2018;Qian et al., 2020;Silva et al., 

2022;Cao et al., 2021), and generally outperformed other models. Moreover, Xgboost is good 

for tabular data and does not require large training datasets (Shwartz-Ziv and Armon, 2022). 

Thus, to better capture the nonlinear relationship between DMS and the parameters that 

influence it, we trained an XGBoost model with the entire dataset to predict sea surface DMS 

concentrations where without the observations in the place of missing observations”. 

2. I am also puzzled by the high correlation coefficient and small RMSE in Figure S5, where 

observations are compared against model predictions for AOD. It is clear that the points are 

not around the 1:1 line (it looks like that the slope of the fitted straight line is of the order of 

0.6). How can R be 0.84 then?? Can the calculations be rechecked please? 

Answer:  

We have rechecked data extraction and calculation process and regenerated the Figure 

S5(Figure S6 now), and the results showed that the correlation coefficient R is indeed equal 

to 0.84 (R2=0.7094), and please see the below table for the original data with 78 data points, 

which there were 79 data points included in Figure S5 (now is Figure S6) before revision. The 

equation for the fitted line is updated from y=0.6x+0.0057 to y=0.57x+0.0151, the MB and 

RMSE are changed from 0.123 and 0.164 to 0.128 and 0.169. All the decriptions have 

been revised accordingly in section 3.2.2. 

Table 1. Comparison of annual mean modelled AOD concentrations with observations. 
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aod_sim aod_obs 

0.198019 0.413011 

0.055318 0.113226 

0.071594 0.160666 

0.111674 0.326399 

0.025943 0.08624 

0.046879 0.117806 

0.070258 0.135001 

0.161068 0.286322 

0.070329 0.137849 

0.120607 0.218007 

0.035525 0.162991 

0.18705 0.372478 

0.11299 0.184612 

0.134788 0.224337 

0.119421 0.119859 

0.358123 0.49824 

0.103856 0.168056 

0.244979 0.33077 

0.115247 0.203173 

0.154072 0.265692 

0.14188 0.240256 

0.197643 0.204565 

0.313507 0.575809 

0.155677 0.14272 

0.198349 0.290638 

0.19668 0.30869 

0.261558 0.301686 

0.283822 0.280422 

0.140958 0.536407 

0.3855 0.736027 

0.302966 0.437711 

0.228412 0.417132 

0.246119 0.578429 

0.143475 0.05651 

0.524572 0.742941 

0.226769 0.596238 

0.146769 0.461829 

0.178 0.398713 
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0.154861 0.357078 

0.267373 0.347199 

0.615157 0.720752 

0.325735 0.469155 

0.535509 0.728547 

0.607197 0.670223 

0.351102 0.658105 

0.340464 0.416898 

0.192791 0.029187 

0.023108 0.045445 

0.015623 0.035831 

0.321394 0.529831 

0.475251 0.736571 

0.240055 0.259574 

0.176538 0.281486 

0.123795 0.144617 

0.462741 0.686936 

0.13623 0.228129 

0.230922 0.501796 

0.174646 0.181009 

0.177354 0.240868 

0.178796 0.222414 

0.12677 0.208805 

0.249448 0.334583 

0.271836 0.327218 

0.250165 0.428985 

0.166509 0.148778 

0.249105 0.435451 

0.171069 0.28323 

0.156291 0.21485 

0.051773 0.307126 

0.271465 0.591433 

0.274265 0.617702 

0.232098 0.599271 

0.096996 0.172965 

0.047065 0.138489 

0.127681 0.191397 

0.022924 0.101644 

0.147541 0.253835 

0.009818 0.14474 
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3. As a final comment, the language in the paper needs to be checked, since the paper has a few 

grammatical errors. 

Answer:  

Thanks for the suggestion. We have checked and revised all the grammar and wording 

issues throughout the manuscript.  

 

We appreciate for Editors/Reviewers’ careful and thoughtful appraisal of our work and for the 

many helpful suggestions. We hope that the corrections in response to your feedback will meet with 

approval.  
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