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Responses to reviewers’ comments 

 

We appreciate the reviewers’ careful and thoughtful comments of our manuscript entitled 

“Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on Machine 

learning estimates” and for the many helpful suggestions to improve the article. We have carefully 

reviewed all comments and revised the article accordingly. The sentences are depicted in yellow in 

the manuscript text to highlight the new addition and used strikethrough for deletion. To be clear, 

all the responses are in green background in the below. 

 

Responses to Reviewer 2 comments: 

1. The authors need to explain in more detail why they chose the XGBoost model instead of a 

different ML model and should give further details on the performance of this approach, both 

at training and at validation, rather than only Pearson’s coefficient and RMSE, especially when 

the RMSE is of the same order of magnitude as the predicted concentrations. I would have 

liked to see other performance metrics as well, such as relative errors. 

Answer:  

Thanks for your suggestions. As reviewer suggested, we have added Table S2 in the 

supplemental information which illustrated other performance metrics for DMS predictions 

in each season, and also added to the second paragraph of section 2.3 that“Model performance 

for predicting DMS concentration in each season was illustrated Table S2. Predicted DMS 

concentrations were slightly underestimated in comparison with validation datasets, with 

mean bias (MB) of -0.59 to -0.21 μmol m-3 and normalized mean bias (NMB) of -19.36 to -

6.51% across the four seasons. A lower RMSE of 1.81 μmol m-3 was observed in spring. The 

MB and NMB in spring were smaller than those in other seasons, which indicated that model 

performed best in spring. Most of available validation datasets were concentrated in the 

spring (about 67.9%). Thus, the imbalanced data may leaded to less ideal performance in 

other seasons.”  
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The reason why we chose the XGBoost model, due to its advantages of scalability, 

computing efficiency and prediction accuracy, and robust to randomness, it has also been 

widely used in geoscience, predictions of atmospheric composition, and other areas (Sun et 

al., 2021;Ivatt and Evans, 2020;Qian et al., 2020;Zhang et al., 2019;Silva et al., 2022;Cao et 

al., 2021). Some studies also showed that XGBoost consistently outperforms other ML 

algorithms (Zamani Joharestani et al., 2019;Pan, 2018). Among the ML approaches, some 

deep learning techniques tend to require larger amounts of training data to make reasonable 

predictions, whereas Xgboost is good for tabular data with a small number of variables (Qian 

et al., 2020;Shwartz-Ziv and Armon, 2022). In our study, the total number of training samples 

is 2939, thus, we believe that ML model like XGBoost requiring small training data sets is 

preferred in our DMS concentration predicting experiments. So, we selected XGBoost model 

to estimate DMS concentrations.  

We also added the introduction of advantages of XGBoost in updated section 2.3 that 

“XGBoost (machine learning algorithm under the Gradient Boosting framework) was used 

due to its many advantages. For example, XGBoost is computationally efficiency, has 

prediction accuracy, requires less tunning, and is scalable, has been widely used in area of 

geoscience (Sun et al., 2021;Ivatt and Evans, 2020;Pan, 2018;Qian et al., 2020;Silva et al., 

2022;Cao et al., 2021), and generally outperformed other models. Moreover, Xgboost is good 

for tabular data and does not require large training datasets (Shwartz-Ziv and Armon, 2022). 

Thus, to better capture the nonlinear relationship between DMS and the parameters that 

influence it, we trained an XGBoost model with the entire dataset to predict sea surface DMS 

concentrations where without the observations in the place of missing observations”. 

2. I am also puzzled by the high correlation coefficient and small RMSE in Figure S5, where 

observations are compared against model predictions for AOD. It is clear that the points are 

not around the 1:1 line (it looks like that the slope of the fitted straight line is of the order of 

0.6). How can R be 0.84 then?? Can the calculations be rechecked please? 

Answer:  
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We have rechecked data extraction and calculation process and regenerated the Figure 

S5(Figure S6 now), and the results showed that the correlation coefficient R is indeed equal 

to 0.84 (R2=0.7094), and please see the below table for the original data with 78 data points, 

which there were 79 data points included in Figure S5 (now is Figure S6) before revision. The 

equation for the fitted line is updated from y=0.6x+0.0057 to y=0.57x+0.0151, the MB and 

RMSE are changed from 0.123 and 0.164 to 0.128 and 0.169. All the decriptions have 

been revised accordingly in section 3.2.2. 

Table 1. Comparison of annual mean modelled AOD concentrations with observations. 

 

 

aod_sim aod_obs 

0.198019 0.413011 

0.055318 0.113226 

0.071594 0.160666 

0.111674 0.326399 

0.025943 0.08624 

0.046879 0.117806 

0.070258 0.135001 

0.161068 0.286322 

0.070329 0.137849 

0.120607 0.218007 

0.035525 0.162991 

0.18705 0.372478 

0.11299 0.184612 

0.134788 0.224337 

0.119421 0.119859 

0.358123 0.49824 

0.103856 0.168056 

0.244979 0.33077 

0.115247 0.203173 

0.154072 0.265692 

0.14188 0.240256 

0.197643 0.204565 

0.313507 0.575809 
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0.155677 0.14272 

0.198349 0.290638 

0.19668 0.30869 

0.261558 0.301686 

0.283822 0.280422 

0.140958 0.536407 

0.3855 0.736027 

0.302966 0.437711 

0.228412 0.417132 

0.246119 0.578429 

0.143475 0.05651 

0.524572 0.742941 

0.226769 0.596238 

0.146769 0.461829 

0.178 0.398713 

0.154861 0.357078 

0.267373 0.347199 

0.615157 0.720752 

0.325735 0.469155 

0.535509 0.728547 

0.607197 0.670223 

0.351102 0.658105 

0.340464 0.416898 

0.192791 0.029187 

0.023108 0.045445 

0.015623 0.035831 

0.321394 0.529831 

0.475251 0.736571 

0.240055 0.259574 

0.176538 0.281486 

0.123795 0.144617 

0.462741 0.686936 

0.13623 0.228129 

0.230922 0.501796 

0.174646 0.181009 

0.177354 0.240868 

0.178796 0.222414 

0.12677 0.208805 

0.249448 0.334583 

0.271836 0.327218 

0.250165 0.428985 

0.166509 0.148778 
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0.249105 0.435451 

0.171069 0.28323 

0.156291 0.21485 

0.051773 0.307126 

0.271465 0.591433 

0.274265 0.617702 

0.232098 0.599271 

0.096996 0.172965 

0.047065 0.138489 

0.127681 0.191397 

0.022924 0.101644 

0.147541 0.253835 

0.009818 0.14474 

 

3. As a final comment, the language in the paper needs to be checked, since the paper has a few 

grammatical errors. 

Answer:  

Thanks for the suggestion. We have checked and revised all the grammar and wording 

issues throughout the manuscript.  

 

We appreciate for Editors/Reviewers’ careful and thoughtful appraisal of our work and for the 

many helpful suggestions. We hope that the corrections in response to your feedback will meet with 

approval.  
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