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Abstract  15 
The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable 

source of information to monitor the NOX emissions that adversely affect air quality. We conduct a series of 

experiments using a 4 × 4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April 

– September 2019 in east Texas to evaluate the multiple challenges that arise in reconciling the NOX emissions in 

model simulations with TROPOMI. We find an increase in NO2 (+17% in urban areas) when transitioning from the 20 
TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in east Texas, with the greatest difference 

(+25%) in the city centers and smaller differences (+5%) in less polluted areas. We find that lightning NOX 

emissions in the model simulation contribute up to 24% of the column NO2 in the areas over the Gulf of Mexico and 

8% in Texas urban areas. NOX emissions inventories, when using locally resolved inputs, agree with NOX emissions 

derived from TROPOMI NO2 version 2.3.1 to within 20% in most circumstances, with a small NOX underestimate 25 
in Dallas-Fort Worth (– 13%) and Houston (– 20%). In the vicinity of large power plant plumes (e.g., Martin Lake 

and Limestone) we find larger disagreements: the satellite NO2 is consistently smaller by 40 – 60% than the 

modelled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty 

distinguishing NO2 attributed to power plants from the background NO2 concentrations in Texas – an area with 

atmospheric conditions that cause short NO2 lifetimes. Secondarily, the NOX/NO2 ratio in the model may be 30 
underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 

column information with HCHO column information. We find modest low biases in the model relative to 

TROPOMI HCHO: – 9% underestimate in eastern Texas and – 21% in areas of central Texas with lower biogenic 

VOC emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx-limited almost 

everywhere in the domain except along the Houston ship channel, near the Dallas Fort Worth International airport, 35 
and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in 

the early morning hours that TROPOMI cannot observe, and would be well-suited for analysis with NO2 and HCHO 

from the upcoming TEMPO mission. This study highlights that TROPOMI measurements offer a valuable means to 

validate emissions inventories and ozone formation regimes, with important limitations.  
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1 Introduction 

Nitrogen oxides (NOX ≡ NO+NO2) are a group of reactive trace gases toxic to human health (Burnett et al., 2004; He 

et al., 2020; Khreis et al., 2017) that can be converted into other chemical species, including ozone and fine particulate 

matter (Jacob, 1999). There are some natural emissions of NOX (e.g., lightning, soil), but the majority of the NOX 

emissions are from anthropogenic sources (Van Vuuren et al., 2011). Anthropogenic NOX emissions in polluted areas 5 
can be estimated using NO2 column measurements from satellites (Lamsal et al., 2011; Leue et al., 2001; Martin, 

2003; Stavrakou et al., 2008) if the meteorology, NO2 chemical lifetime, tropospheric/stratospheric components, and 

NOX/NO2 ratio are all properly accounted for (Beirle et al., 2011; de Foy et al., 2014; Goldberg et al., 2020).  

Satellite instruments can observe NO2 from space because it has strong absorption features within the 400 – 465 nm 

wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of 10 
NO2 in the atmosphere between the instrument and the surface can be derived; this technique is called differential 

optical absorption spectroscopy (DOAS) (Platt, 1994). The first satellite instrument to utilize the DOAS technique to 

observe NO2 air pollution was Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999) launched in 

1995 (320 × 40 km2 spatial resolution) and was followed by the Ozone Monitoring Instrument (OMI) (Levelt et al., 

2006) launched in 2004 with vastly improved pixel resolution (24 × 13 km2 at nadir) and instrument stability 15 
(Schenkeveld et al., 2017). Initial studies used OMI NO2 satellite data to pinpoint NOX emissions in the vicinity of 

large power plants (Duncan et al., 2013; Kim et al., 2009; Russell et al., 2012) and in areas with high population 

densities (Boersma et al., 2008; Lamsal et al., 2008, 2010).  

TROPOMI (Veefkind et al., 2012) builds upon the overwhelming success of OMI (Levelt et al., 2018) and has pixel 

resolution and instrument stability that are even more advantageous for observing urban scale NO2 pollution. Most 20 
recently, TROPOMI has been used to estimate NOX emissions (Beirle et al., 2019; Dix et al., 2022; de Foy and 

Schauer, 2022; Goldberg et al., 2019b; Griffin et al., 2019; Lorente et al., 2019) and its changes during the COVID-

19 lockdowns (Bauwens et al., 2020; Cooper et al., 2022; Goldberg et al., 2020; Liu et al., 2020; Souri et al., 2021; 

Sun et al., 2021; Wang et al., 2020). The high spatial resolution of TROPOMI makes it an excellent instrument to 

observe some of the fine-scale structure of NO2 pollution, such as within cities (Demetillo et al., 2020; Geddes et al., 25 
2021; Goldberg et al., 2021; Ialongo et al., 2020; Zhao et al., 2020), near power plants (Saw et al., 2021; Shikwambana 

et al., 2020), near ships (Georgoulias et al., 2020), in the presence of wildfires (Griffin et al., 2021; Jin et al., 2021), 

and in the presence of oil and gas operations (van der A et al., 2020; Dix et al., 2022; Ialongo et al., 2021). 

Studies in the mid 2010s (Canty et al., 2015; Curier et al., 2014; Harkey et al., 2015; Kemball-Cook et al., 2015; Souri 

et al., 2016; Travis et al., 2016) described the synergistic use of satellite NO2 and regional chemical transport model 30 
simulations to better quantify NOX emissions. These studies compared satellite data to model simulations directly 

while also accounting for vertical sensitivity differences between the satellite and model simulation. Results from 

these studies were mixed, but generally found that satellite NO2 was larger than the model data in rural areas and 

smaller than the model in urban areas. These studies suggested a potential overestimate of NOX emissions in U.S. 
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urban areas, and demonstrated the importance of stratospheric transport, lightning NOX emissions, soil NOX emissions, 

and NO2 chemical recycling.  

For simulations of 2018 and more recent years, TROPOMI data have been used for model evaluations (e.g., 

Community Multiscale Air Quality (CMAQ) modeling system, Long Term Ozone Simulation European Operational 

Smog (LOTOS-EUROS) model, Weather Research Forecast with Chemistry (WRF-Chem) model). Most studies show 5 
high correlations, but larger NO2 columns in the model in major urban areas and near large point sources. This result 

is persistent across regions including Korea (Kim et al., 2020), Europe (Skoulidou et al., 2021), and North America 

(Lawal et al., 2021; Li et al., 2021). Judd et al. (2020) examined NO2 in New York City using TROPOMI version 1.3 

(v1.3) NO2 data and aircraft/ground-based spectrometer measurements and found that the satellite underestimated 

NO2 by 19-33%. Verhoelst et al. (2021) also found a satellite low bias (23 – 51%) in v1.3 when comparing to ground-10 
based measurements suggesting an algorithm change is a necessary. 

There appears to be three primary causes for the low bias in the v1.3 algorithm: 1.) a persistent high bias of the cloud 

pressure retrieved with the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm 

(van Geffen et al., 2021), 2.) the relatively coarse model a priori vertical NO2 profiles (1° × 1°) which underestimate 

the near-surface NO2 in polluted regions and are needed for the conversion of the satellite slant column into a vertical 15 
column (Goldberg et al., 2017), and 3.) the spatial heterogeneity in pointwise-to-gridded data comparisons (Souri et 

al., 2022). The TROPOMI version 2.3.1 (v2.3.1) NO2 algorithm includes an improved way to estimate cloud pressure 

and addresses reason #1. Reason #2 can be remediated by incorporating high-resolution spatial information. Judd et 

al. (2021) reported that when information from higher resolution chemical transport models were included in the 

calculation of the air mass factor, TROPOMI NO2 values increased by approximately 12 – 14% in an urban area. 20 
Reason #3 can be accounted for by comparing the satellite measurements to model simulations at similar spatial 

resolutions as the satellite. 

We conduct a series of experiments using a high-resolution photochemical grid model simulation over east Texas and 

evaluate multiple challenges that arise in evaluation with TROPOMI. We examine the impact of the revised 

TROPOMI algorithm (Section 3.1), the impact of lightning emissions and other sources of NO2 in the free troposphere 25 
(Section 3.2), accounting for TROPOMI’s vertical sensitivity (Section 3.3), and evaluating the ability of TROPOMI 

to resolve urban areas and power plants (Section 3.4).  While each of these issues involves disparate aspects of model 

methodology and chemistry, in fact they are intertwined in the correct interpretation of satellite and model results. 

Based on these results, we consider the ability of TROPOMI to inform emission quantification (Section 4.1) and 

evaluate ozone sensitivity along with formaldehyde (HCHO) retrievals (Section 4.2). Based on these results, we offer 30 
best practice recommendations for TROPOMI model evaluation and future work. 
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2 Methods 

2.1 CAMx model simulation 

For our analysis, we use a 4 × 4 km2 Comprehensive Air quality Model with extensions (CAMx) simulation version 

7.00 centered over eastern Texas driven off-line by Weather Research Forecast (WRF) model version 4.0.3. The 4 × 

4 km2 domain is nested inside 12 × 12 km2 and 36 × 36 km2 two-way domains, shown in Figure 1. We ran the WRF 5 
and CAMx models for the 2019 Texas ozone season, March 15 – October 15. Only model output between April 1 

through Sept 30 are used for this study. We use the 0.25° × 0.25° Global Forecasting System data assimilation system 

as initial conditions for the WRF meteorological model, which is also used for boundary conditions and analysis 

nudging on the 36 km and 12 km domains. The WRF simulation had 43 vertical levels between the surface and 50 

hPa, with approximately 21 layers below 700 hPa. The 43 WRF vertical layers were mapped to 28 vertical layers for 10 
the CAMx model simulations; all 21 layers below 700 hPa were mapped without merging. The CAMx simulation was 

utilized with the Carbon Bond Version 6, Revision 4 (CB6r4) chemical mechanism (Emery et al., 2016). 

 
Figure 1. CAMx 36/12/4 km modeling domains. Image underlaid is from © Google Maps. 

For this study, we use a projected 2020 Texas Commission on Environmental Quality (TCEQ) modeling inventory 15 
from a 2017 TCEQ inventory, which is different from the National Emission Inventory (NEI). The 2020 modeling 

emissions inventory did not include impacts of the socioeconomic response to COVID-19, which was advantageous 

for this application since we modelled the 2019 ozone season. TCEQ developed the 2020 modeling emissions 

inventory for the Dallas-Fort Worth and Houston-Galveston-Brazoria Attainment Demonstration State 
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Implementation Plan revision (Johnson et al., 2018). Within Texas, emissions were calculated using locally resolved 

inputs, such as mobile emissions from MOVES2014a adjusted based on traffic statistics from the Highway 

Performance Monitoring System. Outside of Texas, NEI estimates were used such as the default outputs from 

MOVES2014 and the 2014 EPA NEI.  

We included hourly-specific power plant emissions using measurements from the EPA’s Clean Air Markets 5 
Division (CAMD) (https://www.epa.gov/airmarkets) as inputs into the model simulation. Large power plants use 

Continuous Emissions Monitoring Systems (CEMS) to report emissions of sulfur dioxide (SO2), NOx, and CO2, 

along with other parameters such as heat input, as required by the federal Clean Air Act. We downloaded hourly 

data from EPA’s Air Markets Program Data (AMPD) website for the continental US for March through October 

2019. Stack parameters were based on EPA’s 2017 NEI data. The 2017 NEI data with matching facilities in Texas 10 
were then adjusted to their 2019 annual totals. Table 1 provides the annual inventory NOx emission rates for four 

cities within a 50 km radius of the city center and three power plants examined in detail in this study. 

Table 1. NOX emission rates for 2019 from the four largest metropolitan areas and three largest power plants within 
our model domain. For the cities, the fraction of emissions allocated to on-road mobile sources are also noted. 

Location 
NOx emissions 

(Gg/yr) 
Fraction on-road 

mobile sources 

Dallas-Fort Worth (city) 58 0.34 

Houston (city) 86 0.24 

San Antonio (city) 35 0.24 

Austin (city) 23 0.27 

Martin Lake (power plant) 8.4 N/A 

Limestone (power plant) 7.1 N/A 

Sam Seymour (power plant) 5.8 N/A 
 15 

Biogenic emissions were estimated for 2019 from the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) version 3.1 and fire emissions from Fire INventory of NCAR (FINN) version 1. We included lightning 

NOx (LNOX) emissions with the CAMx LNOX processor using the 2019 WRF meteorological data. The LNOX 

processor estimates hourly, grid column-specific lightning flash rates (Luo et al., 2017; Price and Rind, 1992) using 

cloud top heights and Convective Available Potential Energy (CAPE) diagnosed from WRF temperature and moisture 20 
profiles. The processor then determines the ratio of intracloud lightning (IC) to cloud-to-ground lightning (CG) 

according to the approach of Price and Rind (1993), NO yield per flash estimated by Pickering et al. (2017), and 

vertical distribution of resulting NO emission rates following DeCaria et al. (2005). In-line inorganic iodine emissions 

(IX) from saltwater areas and iodine chemistry are also included.  

 25 
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2.2 TROPOMI  

TROPOMI was launched by the European Space Agency (ESA) for the European Union’s Copernicus S5P satellite 

mission on 13 October 2017.  The satellite follows a sun-synchronous, low-earth (825 km) orbit with an equator 

overpass time of approximately 13:30 local solar time.  TROPOMI measures total column amounts of several trace 

gases in the Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) (e.g., NO2 and HCHO) and Shortwave Infrared (SWIR) 5 
(e.g., CO) spectral regions. At nadir, pixel sizes are 3.5 × 7 km2 (modified to 3.5 × 5.5 km2 on August 6, 2019) with 

the edges having slightly larger pixels sizes (~14 km wide) across a 2600 km swath, equating to 450 rows (van Geffen 

et al., 2020). The instrument observes the swath approximately once every second and orbits the Earth in about 100 

minutes, resulting in daily global coverage. For the domain-wide comparisons, we screened TROPOMI pixels for 

quality assurance flag values greater than 0.75. As a polar-orbiting satellite with an afternoon overpass, care must be 10 
taken in the interpretation of TROPOMI column retrievals as an indicator of near-surface emissions (Penn and 

Holloway, 2020; Streets et al., 2013). TROPOMI provides “snapshots” at the same time each day, except as limited 

by cloud cover, surface albedo, or instrument errors. 

2.2.1 NO2 

NO2 slant column densities are derived from radiance measurements in the 405 – 465 nm spectral window of the UV-15 
VIS-NIR spectrometer. Tropospheric vertical column density data, which represent the vertically integrated number 

of NO2 molecules per unit area between the surface and the tropopause, are then calculated by subtracting the 

stratospheric portion and then converting the tropospheric slant column to a vertical column using an air mass factor 

(AMF). The AMF is a unitless quantity used to convert the slant column into a vertical column and is a function of 

the satellite viewing angles, solar angles, the effective cloud radiance fraction and pressure, the vertical profile shape 20 
of NO2 provided by a chemical transport model simulation (for operational data the TM5-MP model is used at 1 × 1° 

resolution) (Williams et al., 2017), and the surface reflectivity (for operational data, climatological Lambertian 

Equivalent Reflectivity is used at a 0.5 × 0.5° resolution) (Kleipool et al., 2008). The operational AMF calculation 

does not explicitly account for aerosol absorption effects, which are accounted for in the effective cloud radiance 

fraction. 25 

For our analysis we use both the v1.3 off-line (OFFL) algorithm, which was operational during the April through 

September 2019 timeframe, and the v2.3.1 Products Algorithm Laboratory (PAL) algorithm, released in December 

2021 and includes updates to the cloud retrieval scheme (decrease in cloud pressure), the surface albedo (to avoid 

negative cloud fractions), and the quality flags (better screening of snow). The net result of the change in tropospheric 

vertical column NO2 from v1.3 to v2.3.1 has been reported to be a +13% increase for cloud-free scenes that varies 30 
spatially, and is higher in polluted areas (van Geffen et al., 2021).  

2.2.2 HCHO 

HCHO slant column densities are derived from radiance measurements in the 328 – 359 nm spectral window of the 

UV-VIS-NIR spectrometer. In a similar manner to NO2, HCHO is measured as a slant column and is converted from 
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a slant column to a vertical column using an AMF and a priori information from TM5-MP. However, in contrast to 

NO2, HCHO is reported only as a tropospheric vertical column amount since the stratospheric portion is negligible. 

For our analysis, we use the v1.1.6 off-line (OFFL) algorithm, which was operational during the April through 

September 2019 timeframe. At the time of this study, there has not been a public release of TROPOMI HCHO data 

using the version 2 algorithm predating July 13, 2020. 5 

2.2.3 Re-gridding and accounting for the vertical sensitivity of TROPOMI  

For comparison with CAMx, we gridded TROPOMI data to the model to create a custom “Level-3” data product for 

comparison with each other or model data on a common grid. Though our Level-3 data product is on an equivalent 

horizontal grid as the model, the satellite a priori (used in the retrieval) and CAMx have different vertical resolutions 

and distributions of NO2. To limit artificial differences when doing the comparisons in this work, additional processing 10 
is done two ways.  

1. Applying the Averaging Kernel: The most user-friendly approach involves creating a model simulated 

satellite NO2 column using the CAMx profile and a TROPOMI data product-specific “averaging kernel,” 

which may be described as the weights used to calculate a weighted vertical integral (we refer to this as AK). 

To apply the averaging kernel to the model simulation, we first interpolate the averaging kernel from the 15 
TM5-MP vertical pressure levels to the CAMx vertical pressure levels at each horizontal grid location using 

linear interpolation. Once the averaging kernel is on the CAMx grid, we multiply the partial tropospheric 

columns by the averaging kernel at each vertical level (e.g., multiply the partial columns by ~1.5 at 10 km, 

by ~1 at 2 km, and by ~0.5 near the surface) to account for the retrieval sensitivity at different altitudes. We 

applied the gridded TROPOMI NO2 averaging kernel in a similar manner to previous work (Deeter, 2002; 20 
Harkey et al., 2015, 2020).  

2. Re-calculating the AMF: In a second approach, we instead use daily partial vertical NO2 columns from 

CAMx and the tropospheric averaging kernel to recalculate a new TROPOMI AMF as described in the 

TROPOMI NO2 Product User’s Manual (Eskes et al., 2021). The tropospheric slant column is then divided 

by the recalculated AMF to generate day-specific recalculated tropospheric vertical column NO2 (Goldberg 25 
et al., 2017; Judd et al., 2020). This new satellite measurement can then be compared directly to the 

tropospheric vertical column NO2 from the CAMx model simulation. 

2.3 Deriving NOX emissions from TROPOMI NO2 

2.3.1 Exponentially modified Gaussian fitting method 

To derive NOX emissions from the polluted areas of east Texas, an exponentially modified Gaussian (EMG) function 30 
is fit to a collection of NO2 plumes observed from TROPOMI. The original methodology, proposed by Beirle et al. 

(2011), involves the fitting of satellite line densities to an EMG function.  Line densities are the integral of the column 

NO2 retrieval perpendicular to the path of the plume; the units are mass per distance. We rotate each day’s plume 
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based on the wind direction, so that all daily plumes are artificially in the same horizontal direction (Lu et al., 2015; 

Valin et al., 2013). The 100-m wind speed and direction are obtained from the ERA5 re-analysis project (Hersbach et 

al., 2020). Appendix B has a sensitivity analysis of using different wind configurations. Once all daily plumes are 

rotated and aggregated together, the EMG statistical fit can be applied as expressed as Equation (1): 

𝑂𝑀𝐼	𝑁𝑂&	𝐿𝑖𝑛𝑒	𝐷𝑒𝑛𝑠𝑖𝑡𝑦	 = 𝛼 1 2
34
𝑒𝑥𝑝 7 8
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:
− :
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where α is the total number of NO2 molecules observed near the pollution source, excluding the effect of background 

NO2, β; xo is the e-folding distance downwind, representing the length scale of the NO2 decay; µ is the location of the 

apparent source relative to the assumed pollution source center; σ is the standard deviation of the Gaussian function, 

representing the Gaussian smoothing length scale; Φ is the Gaussian cumulative distribution function.  Using the 

‘curvefit’ function in IDL, we determine the five unknown parameters: α, xo, σ, µ, β based on the independent 10 
(distance; x) and dependent (NO2 column line density) variables.  

Using the mean ERA5 100-m wind speed, w, the mean effective NO2 lifetime τeffective and the mean NOX emissions 

can be calculated from the fitted parameters xo and α, as expressed in Equation 2: 

𝑁𝑂3	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1.32 I J
KLMMLNOPQL

R , where 𝜏TUUTVWXYT =
34
Z

   (2) 

Equation 2 yields emission estimates in units of mol-s−1. A factor of 1.32 is the mean column-averaged NOX / NO2 15 
ratio and is the widely used value to convert the NO2 to NOX in polluted regions (Beirle et al., 2021). Appendix C 

shows the variation in the NOX / NO2 across our domain.  

2.3.2 Flux divergence method 

Emissions were also estimated using the flux divergence method (Beirle et al., 2019) : 

𝑁𝑂3	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1.32 7∇ ⋅ (𝑉𝐶𝐷 ⋅ u) + bcd
K
=      (3) 20 

Fluxes of NO2 were obtained by multiplying NO2 vertical column densities (VCDs) with wind speeds (u) in orthogonal 

directions (along and across the swath tracks). The divergence of the fluxes yields an emission estimate in units of 

mol-m−2 s−1. The fluxes can then be integrated across the 2-D urban area to get emission rates in analogous units as 

Equation 2. Sinks of NO2 are included in the equation by adding VCD divided by the atmospheric lifetime of NO2, τ, 

which was taken from the EMG fit. Estimates of NOx emissions are obtained by multiplying the estimates by the ratio 25 
of NOx to NO2, which is the same 1.32 value as the EMG method (Beirle et al., 2021). The fluxes were calculated 

using the same 100-m ERA5 wind product used for the EMG estimates. The winds were linearly interpolated to the 

daily swath grid. This method follows de Foy and Schauer (2022) with minor modifications. The quality assurance 

flag threshold was set to 0.75 to be consistent with EMG. The central 250 pixels (out of 450) were used for swaths as 

these have a higher resolution than the outer bands and is critical for this method. We retrieved swaths from October 30 
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2019 through September 2021. Although this period does include the COVID-19 lockdowns, the October 2019 

through September 2021 timeframe does not show time-averaged NO2 values more than 10% different than the year 

prior, and is well within the uncertainty of this analysis. Two-dimensional Gaussian fits were obtained using the 

method described in de Foy et al. (2014).  

3 Results and Discussion 5 

3.1 Comparison between TROPOMI version 1.3 and version 2.3.1 algorithms 

To elucidate the effects of the recent TROPOMI NO2 algorithm change from v1.3 to v2.3.1, we compare both within 

our model domain. As expected, the v2.3.1 algorithm yields consistently larger values than the v1.3 algorithm in most 

areas of our east Texas domain (Figure 2). The largest increases by both magnitude and percentage occur in the most 

polluted areas. We find an average increase of +16.6% in urban counties, with a maximum increase of +45% in the 10 
most polluted section of east Houston. Increases exceeding +20% also occur in the vicinity of large point source 

emissions. In the rural areas of east Texas, we generally observe small increases less than +5%. We fit a linear 

regression to a scatterplot of the tropospheric vertical columns from both algorithms in the urban counties, and find a 

slope of 1.30 and a negative intercept, which further confirms that the algorithm change affects the most polluted areas 

more strongly than the moderate and low polluted areas.  15 

 

Figure 2. (Left) NO2 tropospheric vertical column amounts from the TROPOMI NO2 v2.3.1 algorithm screened 
with a quality assurance flag greater than 0.75. (Center) The ratio between the NO2 tropospheric vertical column 
amounts from the v2.3.1 algorithm compared to the v1.3 algorithm. (Right) A scatterplot and linear fit between the 
two TROPOMI NO2 products used in panel b. Urban area is defined as the five counties surrounding the largest five 20 
cities (Houston, Dallas, Fort Worth, San Antonio, and Austin). Rural area is everywhere outside those counties. 
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3.2 Effects of free tropospheric NO2 and lightning NOx  

For this study, we conducted two CAMx simulations: with and without lightning NOX emissions. The tropospheric 

NO2 vertical profiles for eastern Texas, Dallas, and Houston are shown in the left side panels of Figure 3. In a CAMx 

simulation without lightning NOX, average NO2 concentrations between 2.5 – 10 km averaged 20 ppt for the eastern 

Texas domain. This can be compared to free tropospheric (>2.5 km) NO2 concentrations from the NASA Studies of 5 
Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign 

within our east Texas model domain, but in 2013 instead of 2019. Measured NO2 concentrations between 2.5 – 10 km 

averaged 50 ppt during the SEAC4RS campaign. This also compares the ~40 ppt estimate from OMI using a cloud-

slicing methodology in the central US during June – August 2005 – 2007 (Marais et al., 2018). When lightning NOX 

emissions are included in CAMx, the free tropospheric NO2 between 2.5 – 10 km increases from 20 ppt to 33 ppt, but 10 
there is still a slight underestimate compared to SEAC4RS data between 2.5 – 6 km. The small underestimate shown 

in the CAMx simulation with lightning NOX emissions compared to the SEAC4RS data in the 2.5 – 6 km altitude 

range could be due the decrease in anthropogenic NOX emissions between 2013 and 2019. Collocated vertical NO2 

measurements in time and space would be needed to evaluate this further.  

In order to compare model simulation output to satellite data, it is important to understand free tropospheric NO2 15 
(Marais et al., 2018, 2021) and understand its effects on the satellite retrieval (Silvern et al., 2019). TROPOMI has 

greater sensitivity to the upper portion of the troposphere and this must be accounted for in any comparison with model 

output. In the right panels of Figure 3, we show the modeled shape profiles – the NO2 vertical distribution normalized 

to a unitless quantity that integrates to unity over the depth of the troposphere – and the sensitivity of TROPOMI to 

NO2 at different levels of the atmosphere (green line). In Texas during summer 2019, TROPOMI was three times as 20 
sensitive to NO2 at an altitude of 10 km (tropospheric averaging kernel = 1.5) as compared to the surface (tropospheric 

averaging kernel = 0.5). This demonstrates that NO2 at the tropospheric/stratospheric interface (~12 km altitude), such 

as lightning NOX (Zhu et al., 2019) and cruising aircraft emissions, can have an outsized effect on the satellite 

measurement. To facilitate a comparison, model simulated column amounts can be adjusted by “applying the 

averaging kernel”, which will be discussed in Section 3.3. 25 
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Figure 3. (Left) NO2 vertical concentration profiles between the surface and 12 km altitude from the CAMx model 
with (orange) and without (red) lightning NOx emissions for July 2019, and median free tropospheric NO2 in situ 
observations acquired during the Aug – Sept 2013 NASA SEAC4RS field campaign (black) for (top) the East Texas 
average, (middle) Dallas, and (bottom) Houston; orange and red dots represent surface concentrations. (Right) NO2 5 
shape profiles – the fraction of the column at any given altitude – from the same two model simulations and the 
TROPOMI tropospheric averaging kernel for the same locations; dotted line indicates an averaging kernel=1.  
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The inclusion of lightning NOX emissions increases seasonal column tropospheric NO2 by an average of 0.16 × 1015 

molecules-cm-2 in the model simulation during April through September 2019 (Figure 4). This increase varies 

spatiotemporally due to the prevalence of thunderstorms, however when averaged over 6 months, the increase is 

relatively homogeneous. The inclusion of lightning NOX emissions most affects the satellite-model comparison in 

rural areas, but is also relevant in urban areas. The 0.16 × 1015 molecules-cm-2 increase yields an increase in the 5 
tropospheric column NO2 of +7.8% in urban areas, +15% in the rural areas of eastern Texas, and up to +24% over the 

Gulf of Mexico. For the rest of this paper, only the CAMx simulation with the inclusion of lightning NOX emissions 

will be analyzed. 

 

 10 
Figure 4. NO2 tropospheric vertical column amounts from the CAMx model (left) without and (center) with 
lightning NOx emissions averaged during April through Sept 2019 at the coincident TROPOMI overpass time (~19 
UTC). Areas with invalid TROPOMI data are similarly screened out from the model output on a daily basis. Urban 
area is defined as the five counties surrounding the largest five cities (Houston, Dallas, Fort Worth, San Antonio, 
and Austin). Rural area is everywhere outside those counties. (Right) The fraction of the NO2 column attributed to 15 
different layers of the atmosphere (below 2 km, above 2 km (attributed to Other), and above 2 km attributed to 
lightning NOX (LNOx)) at six locations (Gulf of Mexico, rural central Texas, Austin, San Antonio, Dallas and 
Houston); the fraction attributed to lightning NOX (LNOx) is calculated as the NO2 addition between the two 
simulations without and with lightning NOX emissions.  

 20 
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3.3 Applying the averaging kernel and re-calculating the air mass factor 

To compare a chemical transport model simulation to satellite data, one must account for the differing assumptions 

about the vertical NO2 distributions between model and satellite. One can either apply the averaging kernel from the 

satellite instrument to the NO2 column from the model simulation or use the NO2 vertical profile from the model 

simulation and the averaging kernel to re-calculate AMF and tropospheric NO2 vertical column of the satellite 5 
measurement. Typically studies either use one of the two methods; similar to Douros et al. (2022) we use both.  

The comparison between the model and model with the tropospheric averaging kernel (AK) applied is shown in the 

left column of Figure 5. Upon application of the AK, the tropospheric column NO2 in the model simulation artificially 

increases in rural areas by +15.4%, while the urban NO2 will artificially decrease. The latter due to most NO2 being 

below 2 km due to large NOX emissions near the surface in urban areas where AK < 1. 10 

Once the tropospheric averaging kernel is applied, it can be compared to the satellite directly (top row of Figure 5). In 

Dallas-Fort Worth and Houston, there are lower amounts of NO2 in the model simulation in the most polluted areas 

of the city, but generally good agreement (+0.4%) when the five urban areas (Dallas, Fort Worth, Houston, San 

Antonio, Austin) are averaged together. In the rural areas of east Texas, there are slightly larger amounts (+10.7%) in 

the model simulation than as observed by TROPOMI, but these absolute differences are small. The largest 15 
disagreements between CAMx and TROPOMI occur in the vicinity of large point sources, which we discuss further 

in Section 3.4 

While applying the averaging kernel to a regional model simulation is an appropriate way to compare model 

simulations with satellite data, it does so by artificially adjusting the high-resolution model simulation to be following 

the coarse resolution (1.0° × 1.0°) of the TM5-MP model simulation used to originally process the AMF. Instead, 20 
incorporating the high-resolution model vertical profiles in the calculation of the AMF, while more computationally 

intensive, results in satellite measurements incorporating higher spatial resolution information; in urban areas this 

yields satellite measurements that have greater spatial heterogeneity. 

In the middle row of Figure 5, we show a comparison between the model and the satellite with the CAMx-derived 

AMF. In this comparison, we get similar conclusions as mentioned earlier: the model has systematically smaller NO2 25 
amounts than TROPOMI in Dallas-Ft Worth and Houston, and larger amounts in rural areas. The agreement between 

the satellite measurement with a new AMF applied and model simulation is marginally different than when the 

averaging kernel is applied to the model simulation and compared to the satellite measurement directly.  The 

percentage difference calculations differ primarily because the denominator (i.e., TROPOMI value) is a different 

magnitude in each case. We attribute this small difference to the rounding errors in the interpolation of the averaging 30 
kernel to the CAMx model pressure levels. 
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Figure 5. (Top row) NO2 tropospheric vertical column amounts from CAMx and TROPOMI v2.3.1 re-processed 
with a priori profiles from the CAMx model with lightning NOx emissions, and difference averaged across April 
through September 2019. (Middle row) NO2 tropospheric vertical column amounts from CAMx with the averaging 
kernel applied, the TROPOMI v2.3.1 product and difference averaged across April through September 2019. (Bottom 5 
row) Difference between top and middle rows. Areas with invalid TROPOMI data are similarly screened out from 
the model out on a daily basis. Urban area is defined as the five counties surrounding the largest five cities (Houston, 
Dallas, Fort Worth, San Antonio, and Austin). Rural area is everywhere outside those counties. 
 
 10 
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3.4 Localized TROPOMI vs. CAMx NO2 comparison 

We evaluate two versions of the TROPOMI seasonal average against the CAMx model simulation: TROPOMI v2.3.1 

and TROPOMI v2.3.1 with CAMx AMFs. In Figure 6, a comparison of these satellite products versus CAMx are 

shown for four metropolitan areas: Dallas (DFW), San Antonio (SAT), Austin (AUS), and Houston (HOU). 

Comparing TROPOMI v2.3.1 to CAMx directly without application of the averaging kernel (which is not 5 
recommended) suggests a model high bias of +8.4% but moderately good association with each other (r2=0.70). We 

then use the a priori profiles from the CAMx simulation to recalculate the AMF and find that the original model high 

bias in urban areas becomes a low bias of -0.1%, and becomes a larger low bias in the most polluted sections of the 

cities (consistent with our Discussion in Section 3.3). The low model bias is most pronounced in east Houston and the 

downtown area of Dallas. For Dallas-Fort Worth, there also appears to some spatial misallocation: NO2 near the DFW 10 
airport is larger in the model than the satellite, while NO2 in the downtown areas of Dallas and Fort Worth is smaller 

in the model than the satellite. In San Antonio and Austin, there is a small model overestimate, which becomes worse 

near the large point sources on the periphery of the city. Overall, however, there is generally good performance 

between CAMx NO2 and TROPOMI NO2, which is within 20% in most cases. The 20% is well within the expectation 

of TROPOMI accuracy and precision. The nonpoint NOX emissions input into the model simulation (e.g., mobile, 15 
nonroad, and area sources) generally are within the uncertainty of the satellite measurement, and we would not 

recommend a substantial alteration to the inventory for these sector emissions, except in the east Houston 

neighborhood. This exercise demonstrates the importance of utilizing the AMF when comparing satellite data to model 

simulations.  

 20 
Figure 6. NO2 tropospheric vertical column amounts averaged across April through September 2019 from TROPOMI, 
TROPOMI v2.3.1, TROPOMI v2.3.1 with new AMF, and CAMx for the largest four cities (Dallas, San Antonio, 
Austin and Houston). (Right) Scatterplot showing slope and correlation of various TROPOMI configurations and 
CAMx 
 25 
To evaluate the performance of TROPOMI in observing point source emissions, we compare TROPOMI NO2 

measurements at the locations of three power plants with stack measurements: Martin Lake, Limestone and Sam 

Seymour (Figure 7). In each case, TROPOMI substantially underestimates NO2 at the locations of these power plants 
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even when the new algorithm and recalculated AMF are both applied. We have previously found better agreement 

between TROPOMI NO2 and the stack measurements for the Colstrip Power Plant in Montana and San Juan / Four 

Corner complex in New Mexico (Goldberg et al., 2019). The reason for the substantial disagreement in Texas is still 

unknown, but we do not believe this repudiates our prior evaluation for urban areas. NOX emissions from the power 

sector in the U.S. have declined by 76% between 2005 (3.63 million tons) and 2019 (0.86 million tons) 5 
(https://ampd.epa.gov/ampd/). At these lower emission rates, it appears that TROPOMI is having difficulty 

distinguishing NO2 attributed to power plants from the background NO2 concentrations especially in areas, such as 

Texas, with atmospheric conditions that cause short NO2 lifetimes – rapid plume dilution, high oxidation capacity due 

to large amounts of VOCs and water vapor, and high solar elevation angles. Secondarily, the NOX/NO2 ratio in the 

model may be underestimated due to the 4 km grid cell size (Appendix C). The two power plants in New Mexico and 10 
Montana are located in areas with smaller background NO2, lighter wind speeds, less VOCs and water vapor, and 

higher elevations; all of these factors cause the satellite sensor to be more sensitive to the NOX emissions. TROPOMI 

does not have the same difficulty over urban areas because the larger aggregated NOX emissions are more easily 

distinguishable from background concentrations. Please see Appendix D for a discussion on this topic. Future work 

should focus on evaluating the NO2 from power plants and the NOX / NO2 ratio as the plume evolves, such as in situ 15 
measurements from aircraft and ground-based vertical column instruments (e.g., Pandora (Herman et al., 2009)). 

 
Figure 7. NO2 tropospheric vertical column amounts averaged across April through September 2019 from TROPOMI 
v2.3.1, TROPOMI v2.3.1 with new AMF, and CAMx for the largest three power plants in East Texas (Martin Lake 
[Lat: 32.25 º N, Lon: 94.58º W], Limestone [Lat: 31.42º N, Lon: 96.25º W], and Sam Seymour [Lat: 29.92º N, Lon: 20 
96.75º W]). (Right) Scatterplot showing slope and correlation of various TROPOMI configurations and CAMx 
 
 
4 Policy-relevant findings based on TROPOMI-model evaluation  

4.1 TROPOMI NOX emissions 25 

In order to calculate NOX emissions directly, we need to account for the NO2 lifetime and NO2 background 

concentrations. The first technique we use is the exponentially modified Gaussian (EMG) method. We first apply the 

EMG method to the CAMx simulations of the Limestone Power Plant (Latitude: 31.42º N, Longitude: 96.25º W) NOX 

plume. By comparing the known emissions with the inferred top-down emissions, we can evaluate assumptions in the 
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EMG model. The amount of NOX emissions input into the model within a 12 km radius of the facility are 9.8 Gg/yr. 

The top-down EMG method applied to the CAMx simulation yields a NOX emissions rate of 13.1 Gg/yr. The 

disagreement between the NOX emissions inventory (9.8 Gg/yr) and the inferred CAMx NOx emissions driven by the 

inventory (13.1 Gg/yr), must be due to incorrectly assumed effective wind speed likely driven by the meandering of 

the winds. Winds rarely have a consistent direction and instead meander due to boundary layer turbulence and 5 
frictional effects yielding a slower effective speed in the wind direction over long distances (>10 km). If we assume 

that the effective speed of the NO2 plume to be 25% slower than the unidirectional wind speed, the inferred top-down 

emissions can be made to match the known emissions (9.8 Gg/yr). 

Applying the CAMx-based effective plume speed to analysis of TROPOMI (25% slower than the unidirectional wind 

speed), we find that TROPOMI NO2 v2.3.1 product yields an estimated NOX emissions rate of 5.2 Gg/yr, and increased 10 
to 6.0 Gg/yr when using the TROPOMI v2.3.1 algorithm with a recalculated AMF (Table 2 & Figure 8). Even with 

all known corrections applied, it appears that TROPOMI is not capturing the full magnitude of NOX emissions from 

the power plant and vicinity (9.8 Gg/yr) which is consistent with the discussion in Section 3.4.  

Table 2. NOX emission rates for Dallas – Fort Worth and the Limestone Power Plant from the TCEQ Emissions 
Inventory and various iterations of the TROPOMI NO2 algorithm  15 

Data Source Data Source 
Type 

Dallas-Fort Worth NOx 
emissions (Gg/yr) 

Limestone PP NOx 
emissions (Gg/yr) 

TCEQ Projected 2020 Inventory Bottom-up 55 9.8 

TROPOMI NO2 v2.3.1 Top-down 56 ± 20 5.2 ± 1.9 

TROPOMI NO2 v2.3.1 CAMx AMFs Top-down 62 ± 22 6.0 ± 2.2 
 

For the Dallas – Fort Worth area, if we apply the same method to the CAMx simulation, we get an effective NOX 

emissions rate of 55 Gg/yr from the metropolitan area. This is equivalent to the NOX emissions aggregated within a 

47 km radius of the Dallas – Fort Worth metropolitan area (Latitude: 32.85º N, Longitude: 96.95º W), and is roughly 

equivalent to two-sigma of the Gaussian plume (σ = 23.7 km). 20 

Using the TROPOMI v2.3.1 algorithm, we calculate a top-down NOX emissions rate of 56 Gg/yr and increased to 62 

Gg/yr when a CAMx AMF is used (Table 2 & Figure 8). The difference between the 62 Gg/yr calculated directly from 

the TROPOMI v2.3.1 with a recalculated AMF and the 55 Gg/yr effective emissions rate from CAMx represents a 

small 13% low bias that is within the uncertainty of the satellite and the assumptions made to facilitate the comparison. 

The technique was applied to other urban areas, but those cities have large point sources at the periphery of the urban 25 
areas which adversely affected the calculation of the effective NO2 lifetime needed to calculate the NOX emissions. 
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Figure 8. EMG method to derive NOX emissions from the TROPOMI NO2 v2.3.1 with CAMx AMFs applied to 
(left) Dallas-Fort Worth and (right) Limestone Power Plant. The colorbar for the right panel is halved to better show 
the NO2 plume near Limestone. ERA5 100-m winds are used to rotate daily TROPOMI NO2 plumes. 
 5 
The top-down approach can also calculate effective NO2 lifetimes. Most top-down methods fit both the effective NO2 

lifetime and NOX emissions simultaneously and therefore have a “seesaw relationship” – as lifetime increases, NOX 

emissions decrease given a constant NO2 burden. Here, we visually inspect the plume to ensure that the NO2 effective 

lifetime is reasonable (generally between 0.5 – 5 hours) given the plume decay before proceeding. For Dallas – Fort 

Worth, the method calculates an effective NO2 lifetime of 1.7 hours. The same approach applied to CAMx yields an 10 
effective NO2 lifetime of 1.1 hours. This suggests that the effective NO2 lifetime in CAMx is too short. The effective 

lifetime is a function of the chemical lifetime and dispersion lifetime (de Foy et al., 2014): 

2
KLMMLNOPQL

= 2
KNeLfPNgh

+ 2
KiPjkLljP4m

    (4) 

The effective lifetime could be increased in a model simulation by increasing the NO2 chemical lifetime (e.g. slower 

photolysis, slowing the NO2+OH reaction rate, faster recycling of NOZ (NOZ = Alkyl nitrates, PAN, and HNO3) back 15 
to NO2) or by increasing vertical mixing (less plume meandering at higher altitudes due to less surface frictional 

effects). Chemical NO2 lifetimes are well-constrained by laboratory studies, so we hypothesize that too slow vertical 

transport may be the primary culprit for this disagreement, and is also suggested by the analysis presented in Figure 

3, which suggests a model low bias in the free troposphere using measurements from the SEAC4RS campaign. Future 

vertical NO2 measurements separated by altitude will be critical to answering this question. 20 

The total error associated with the magnitude of the top-down versus bottom-up comparison is calculated to be 36%, 

and is the sum of the quadrature of five potential sources of error: the tropospheric vertical column measurement in 

urban areas (20%), the wind speed & direction (25%) (Appendix B), the “clear-sky” bias (10%) which for these 

purposes is a result of emissions being different on clear-sky days compared to cloudy days, the NOX/NO2 ratio 

(10%) (Appendix C), and the random error of the statistical EMG fit (10%) (de Foy et al., 2014). This total 25 
uncertainty is approximately 20% smaller than similar methods using OMI. For further information on this method 
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or the uncertainties associated with this method, please see other literature (de Foy et al., 2014; Goldberg et al., 

2019a; Lu et al., 2015; Verstraeten et al., 2018). 

We then test the flux divergence method (Beirle et al., 2019, 2021; de Foy and Schauer, 2022) on the same two 

sources: Dallas and Limestone Power Plant. We apply the flux divergence method to the native TROPOMI pixels 

rather than a re-gridded version of the data. Figure 9 shows that TROPOMI columns distinguish between a large 5 
hotspot over Dallas and a smaller one over Fort-Worth. For the Dallas urban area, the algorithm identified 11 separate 

source regions which were each represented by a separate two-dimensional Gaussian. The flux divergence method 

was able to resolve source regions with better detail, with estimates for some of the individual point sources and sub-

areas within Dallas. In particular the area including the Dallas-Fort-Worth International Airport appears as a distinct 

source area. In Table 3, we show the NOX emissions aggregated for these two sources, using both an infinite NO2 10 
lifetime and the effective “short” NO2 lifetime provided by the EMG method (τ =1.7 h for Dallas-Fort Worth and τ = 

0.5 h for Limestone PP). The results from the flux divergence method are consistent with the results from the EMG 

method in the Dallas area provided that a short NO2 lifetime is assumed.  

Table 3. NOX emission rates for Dallas – Fort Worth and the Limestone Power Plant from the TCEQ Emissions 
Inventory and various iterations of the Flux Divergence Method using the TROPOMI NO2 v2.3.1 algorithm 15 

Data Source 
Dallas-Fort Worth 

NOx emissions (Gg/yr) 
Limestone PP  

NOx emissions (Gg/yr) 

TCEQ Projected 2020 Inventory 55  9.8 

TROPOMI NO2 v2.3.1, Infinite NO2 Lifetime 24 ± 9 1.6 ± 0.4 

TROPOMI NO2 v2.3.1, Short NO2 Lifetime 62 ± 16 3.4 ± 1.1 
 

 
Figure 9. Oversampled TROPOMI NO2 in the Dallas-Fort Worth metropolitan areas using the (left) tropospheric 
vertical columns and (right) the flux divergence of the tropospheric vertical columns. Image underlaid is from © 
Google Earth. 20 
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4.2 Evaluating ozone sensitivity using the HCHO-NO2 ratio 

Satellite observations of formaldehyde (HCHO) can be combined with NO2 to determine the ozone sensitivity to NOX 

emissions using the formaldehyde to nitrogen dioxide column density ratio (FNR) (Duncan et al., 2010; Jin et al., 

2017; Jin and Holloway, 2015; Martin et al., 2004). HCHO may be used to estimate short-lived VOC emissions, 

anthropogenic and biogenic combined, which often quickly oxidize to HCHO in the presence of sunlight and the 5 
hydroxyl (OH) radical (Wolfe et al., 2016; Zhu et al., 2017). In a similar manner to NO2, column HCHO can be 

compared to chemical transport models in order to better understand the spatial variability of VOC emissions. Harkey 

et al. (2020) found that a regional model captured the general spatial and temporal behavior of satellite estimates, but 

tended to underestimate column HCHO in the western U.S. TROPOMI HCHO measurements have been rigorously 

evaluated using ground-based spectrometers and the v1.1 algorithm was found to be biased low by approximately 10 
25% (de Smedt et al., 2021). 

We first compare column HCHO comparison between CAMx and TROPOMI. Tropospheric column TROPOMI 

HCHO measurements using the v1.1 algorithm are biased low by approximately 25% (De Smedt et al., 2021). We 

then create a bias-corrected (b-c) product (multiply by a factor of 1.25) to account for this low bias. In Figure 10, we 

compare the operational TROPOMI HCHO v1.1 product and TROPOMI HCHO v1.1 b-c product to CAMx 15 
tropospheric columns amounts with and without the averaging kernel sampled at coincident timeframes. Since HCHO 

spatial patterns have less heterogeneity than NO2, due to a large fraction of HCHO originating from biogenic 

precursors during warm season months, column HCHO amounts are less sensitive to the application of the AK than 

with NO2. The difference between CAMx and CAMx with the averaging kernel applied is ±2.5% for areawide 

averages. CAMx underestimates HCHO in Central and Western Texas, but in Eastern Texas the magnitude and spatial 20 
patterns match better. The model bias is -7.9% in Eastern Texas and -25.0% in Central Texas compared to the 

TROPOMI HCHO v1.1 b-c product. This model bias, in both cases, is within the uncertainty of the satellite retrieval.  

 
Figure 10. HCHO tropospheric vertical column amounts averaged across April through September 2019 from (a) 
TROPOMI, (b) TROPOMI bias-corrected, (c) the CAMx regional model with TROPOMI averaging kernel (AK) 25 
applied, and (d) CAMx without the AK applied. All model information is shown at the coincident TROPOMI overpass 
time (~19 UTC). Areas with invalid TROPOMI data are similarly screened out from the model out on a daily basis. 
The Eastern and Central Texas areas are denoted by the dashed lines 
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We apply the FNR to TROPOMI and CAMx to determine how well CAMx is representing ozone formation regimes. 

Initial studies showed that when the FNR in a region exceeds 2, the ozone formed is considered to be limited by the 

amount of NOx present in the air.  When the FNR is below 0.5, the ozone formed is considered to be limited by the 

amount of VOCs.  Ratio values between 0.5 and 2 indicate sensitivity to both NOx and VOCs (Duncan et al., 2010). 

More recent studies have demonstrated that the upper bound of the transitional regime could be as high as 4 (or even 5 
higher) depending on regional characteristics (Jin et al., 2017, 2020; Schroeder et al., 2017).  

For this analysis, using the v1.1 HCHO and v1.3 NO2 algorithms is sufficient, since both products have similar biases 

related to the cloud schemes that may cancel out when a ratio is calculated. We use a value of 4 to indicate the transition 

between NOX and VOC sensitivity, while simultaneously noting that this value should not be static in all scenarios.  

In Figure 11, the ratios from the satellite and model for each area are shown directly on the plot.  10 

 
Figure 11. Formaldehyde – NO2 – Ratio (FNR) in Texas averaged across April through September 2019 using the 
(left) operational TROPOMI products (center left) operational TROPOMI HCHO product and TROPOMI NO2 
product with new AMFs and (right) CAMx column amounts. Only CAMx data coincident with the overpass time and 
valid TROPOMI pixels are included. The ratios from the satellite and model for each area are shown directly on the 15 
plot. 

On a regional scale, there is excellent spatial agreement between the satellite and model. Ozone formation conditions 

are NOX-limited (FNR>4) throughout the vast majority of Texas; other studies have found similar conclusions within 

the last five years (Jin et al., 2020; Koplitz et al., 2021). Only along the Houston ship channel, near the DFW airport, 

and in the presence of undiluted power plant plumes are conditions potentially in the transitional regime. When 20 
aggerated on an urban scale, the model ratio values are marginally lower than the satellite derived ratios, especially in 

San Antonio and Austin. This model low bias is improved when the AMF of the NO2 product is recalculated. 

Consistent with the analyses presented in Sections 3.3 and 3.4, the model appears to be capturing both the HCHO and 

NO2 spatial patterns with satisfactory performance and therefore the ozone production regimes are also captured well. 

The only areas of strong disagreement are in the presence of power plant plumes and large point sources, which 25 
TROPOMI appears to be not fully characterizing.  
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The downside of low-earth orbiting instruments is the consistent measurement during the early afternoon. This early 

afternoon measurement time coincides with; 1.) a temporary dip in NOX emission rates, which are largest in the early 

morning and late afternoon, 2.) the peak of the biogenic VOC emissions, which often peak at the time of the maximum 

daily 2-m temperature, and 3.) stronger photolysis rates which affect both NO2 and HCHO.  

We use the CAMx model to investigate the temporal variation in the FNR. In Figure 12, we show diurnal cycles of 5 
column NO2, column HCHO, and the FNR. The NO2 diurnal cycle has a minimum in the early afternoon driven mostly 

by the higher photolysis rates and secondarily by the relatively lower NOX emission rates compared to the early 

morning and late afternoon. HCHO has broad peak in the afternoon, which is likely related to biogenic emissions and 

secondary formation. However, the HCHO diurnal cycle is flatter than we expected; this may be due to model 

difficulties in representing complex VOC chemistry for secondary HCHO production (Schroeder et al., 2016; 10 
Schwantes et al., 2022).  

According to CAMx, the FNR has a temporary maximum in urban areas around 14:00 local time and a minimum 

around 8:00 local time, with a secondary minimum around 20:00 local time. In the rural areas of East Texas, the 

variation of the FNR is even more substantial than in the urban areas, and even in these rural areas, ozone production 

might be VOC-limited during early morning hours. Therefore, an early afternoon satellite measurement suggesting 15 
NOX-limited conditions does not eliminate the possibility of VOC-limited ozone formation conditions in the early 

morning. This suggests that targeted VOC controls in urban areas of Texas between 6:00 – 10:00 local time could be 

an effective way to further reduce ozone concentrations, in addition to expanded NOX controls at all hours. Upcoming 

observations from the Tropospheric Emissions Monitoring of POllution (TEMPO) instrument, which will be located 

in geostationary orbit, which further help answer this question.  20 

 
Figure 12. Diurnal cycles of column NO2, column HCHO, and the HCHO/NO2 ratio from CAMx for these regions in 
our model domain: Houston, Dallas-Fort Worth and Rural East Texas (Cass County). The approximate TROPOMI 
overpass time of 13:30 local time is denoted by the dotted line. 
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5 Conclusions  

In this study, we find that TROPOMI NO2 columns offer a valuable means to validate NOx emissions inventories, 

with important limitations. When using locally resolved inputs, simulated urban NO2 columns in Texas agree with 

TROPOMI to within 20% in most areas. Using data from the newest TROPOMI NO2 algorithm (v2.3.1) generally 

showed better agreement with the model. We find some evidence that NOX emissions in certain sections of Dallas – 5 
Fort Worth, TX and Houston, TX may be underestimated, but the underestimates are within the uncertainty of the 

methods presented herein. 

In the rural areas of east Texas, we find generally good agreement to within 20% in most circumstances between the 

model and TROPOMI NO2, when lightning NOX emissions are included. In rural regions of east Texas, >50% of the 

column NO2 appears to be above 2 km in altitude demonstrating the influence of the free tropospheric NO2, including 10 
lightning. Lightning NOX emission can represent up to 24% of the column NO2 in our east Texas domain, and 

presumably would be larger in more isolated tropical regions. Since free tropospheric NO2 has an outsized effect in 

rural areas, it is critical to have an accurate estimate of free tropospheric NO2 before conducting a model to satellite 

comparison in these regions (Shah et al., 2022). More aircraft measurements between the top of the boundary layer 

and the stratosphere-troposphere interface would be helpful to better understand and quantify free tropospheric NO2. 15 

Over large power plant plumes, however, we find statistically significant differences between the model and satellite 

measurements. Because the NOX emissions from these power plants are directly measured, we conclude that 

TROPOMI cannot distinguish NO2 attributed to power plants from the background NO2 concentrations in Texas. This 

limitation may be due to short NO2 lifetimes characteristic of that region, and secondarily the NOX/NO2 ratio in the 4 

km model simulation. More work should be dedicated to investigating NO2 and NOy partitioning near power plant 20 
plumes, including aircraft and vertical profilers (e.g. Pandora). 

In our comparison between TROPOMI and modeled HCHO, we find excellent agreement in far eastern Texas and the 

Ozarks, but an underestimate in central Texas. This is consistent with Harkey et al. (2020), which showed a model 

underestimate in the Western U.S. More work should be done to evaluate HCHO and VOCs in areas with assumed 

small amounts of biogenic emissions. 25 

In a last step, we evaluate the ozone formation regimes at the time of the early afternoon TROPOMI overpass. We 

find that ozone production is NOx-limited almost everywhere in the domain except near the Houston Ship Channel, 

near the DFW airport, and in the presence of power plant plumes. There are likely NOx-saturated ozone formation 

conditions in the early morning hours that TROPOMI cannot observe.  

We are encouraged by the future observational strategies that could help tackle some of the remaining questions 30 
presented herein. In early 2023, TEMPO will be acquiring column NO2 and HCHO measurements during all daylight 

hours in the presence of low amounts of clouds. When coupled with the current ground monitoring network, this will 
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elucidate some of the unknown NO2 and HCHO diurnal cycles, giving us more confidence in our understanding of 

NOX emissions, NO2 chemistry, and satellite retrievals.  
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Appendix A. CAMx model simulation performance  

We evaluated CAMx NOx and ozone surface concentrations using data collected at TCEQ Continuous Air Monitoring 

Stations (CAMS). We evaluated performance by five geographical sub regions: Austin, San Antonio, Waco, Tyler, 

and Dallas-Fort Worth. NOx monitors deployed for routine monitoring have limitations for NO2. These monitors 

measure NO and consequently NO2 is chemically converted to NO for measurement. The converter also captures other 5 
compounds including peroxyacyl nitrate (PAN) and a portion of HNO3 (Dickerson et al., 2019). These NOx monitors 

have a detection limit of around 1 ppb but differentiation between NO and NO2 is less accurate near the detection 

limit. Therefore, we compare both CAMx NOx (i.e., NO + NO2) and NOy (i.e., NO + NO2 + PAN compounds + 

HNO3) to monitored NOx in Figure A1. Hourly ozone measurements were aggregated to 8-hour maximum daily 

averages (MDA8) and hourly NO2 measurements were aggregated to early afternoon averages (12-3 PM CST) to 10 
correspond with TROPOMI overpass time. 

Figure A1 displays the O3 and NO2 performance in the CAMx simulation compared to ground monitors. High 

observed NOx detected by ground monitors in urban areas (e.g. > 10 ppb) are not resolved at the 4 km CAMx 

horizontal grid resolution. As discussed in (Souri et al., 2022), care is needed when comparing pointwise 

measurements to concentrations spatially averaged over large (>1 km) grid cells. For example, Dallas Hinton St 15 
(CAMS 0401) is located 0.9 km from a major freeway interchange and 200 m from a busy road (Mockingbird Lane). 

In contrast, Tyler Airport (CAMS 0082) is in a rural location removed from busy roads and the nearby airport is 

regional and not highly trafficked. When compared with monitored NOx in less polluted areas (i.e. < 10 ppb), CAMx 

NOx tends to be lower than measured NOx whereas CAMx NOy tends to be higher than measured NOx. We therefore 

conclude that CAMx is consistent with the ambient NOx measurements within limitations of the monitoring 20 
equipment capabilities and siting.  

We present similar scatter plots for maximum daily 8-hour average (MDA8) ozone in Figure A1. CAMx shows skill 

in identifying low and high ozone days, with R2 values from 0.56 (Austin) to 0.61 (Tyler). CAMx displays a positive 

ozone bias across all five regions, with mean bias (MB) ranging from 4.8 ppb (Waco) to 10.1 ppb (San Antonio). 

Emery et al. (2017) defines the criteria standards for MDA8 ozone as ± 15% for normalized mean bias (NMB) and < 25 
25% for normalized mean error (NME). Only Waco and Dallas-Fort Worth meet the criteria standard for NMB, while 

all regions except San Antonio meet the criteria standard for NME. 
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Figure A1. CAMx model performance for (left) maximum daily averaged 8-hour ozone (MDA8 O3) and (right) 
midday 12 – 3 PM local time NOX and NOy. Model output is compared to the EPA AQS ground observations for five 
regions of interest in our east Texas domain (Austin, San Antonio, Tyler, Waco, and Dallas-Fort Worth) 

 5 
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Appendix B. ERA5 Winds 

To justify, the use of the ERA5 100-m winds (as opposed to another vertical level or interval), we use the NO2 

column information from CAMx to determine the weighted column mid-point. Using the shape profiles described in 

Figure 3, we find that 50% of the tropospheric NO2 column in the Dallas - Fort Worth area is below 227 m in 

altitude (and therefore 50% is above this); this is the weighted column mid-point. Using the WRF simulation, we 5 
find that the 100-m wind speed is 6% slower than the 227 m wind speed in Dallas – Fort Worth. However, as we 

discuss in Section 4.1, errors due to wind meandering (~25%) are far more critical.  

We can then apply uncertainty bounds to this. In the most polluted sections of the city, the column mid-point would 

be lower (10s of m), and in the least polluted sections of the city the column mid-point can be as high as 500 m. 

While neither of these are appropriate for an areawide average, they can constrain the uncertainties of the column 10 
midpoint. Using the WRF simulation, we find that winds at 500 m are 15% larger and surface winds are 24% lower 

than the 100 m wind speed.  

Table B1. Wind speeds at Dallas – Fort Worth for the April – Sept 2019 average at various vertical levels in 
comparison to the 100-m wind speed 

Wind fields Ratio to 100-m wind speed 
10-m winds 0.76 

100-m winds 1 

227-m winds 1.06 

500-m winds 1.15 

 15 
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Appendix C. NOX/NO2 ratio 

To further investigate whether the NOX/NO2 ratio used in our study is appropriate, we probe the CAMx simulation 

to calculate the NOX/NO2 ratio for the partial columns below 2 km. The NOX/NO2 ratio above 2 km is inappropriate 

for use in the EMG method since the column above 2 km represents “background conditions” and is subtracted out 

when using the EMG method. 5 

The NOX/NO2 ratio for the partial column below 2 km in urban areas is 1.31 ± 0.02 (Dallas: 1.33, Austin 1.30, San 

Antonio: 1.32, Houston: 1.295). For urban areas, this represents an uncertainty in the NOX/NO2 ratio of less than 

10%. Our original assumption of using a NOX/NO2 ratio of 1.32 is warranted.  

However, the NOX/NO2 ratio can vary more substantially near large point sources. In the grid cells of the large point 

source itself, the NOX/NO2 ratio can be as large as 1.52. It is possible that the NOx/NO2 ratio in the model may be 10 
underestimated due to the emissions being equally spread out across the 4 km grid cell. NOx/NO2 ratios can be as 

large as 2 within 100 m downwind of major NOX sources, especially under low ozone (< 30 ppb) conditions 

(Kimbrough et al., 2017). However, further downwind (>4 km) of these large point sources, the NOX/NO2 ratio 

quickly converges back to a value of ~1.31.  

 15 

Figure C1. The NOX/NO2 ratio at 1 PM local time for April – Sept 2019 for partial NO2 columns below 2 km in 
altitude, as simulated by CAMx. 
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Appendix D. Daily TROPOMI NO2 

Daily images of the TROPOMI NO2 vertical column densities are shown in Figure D1. The top set of panels show the 

daily images over Dallas – Fort Worth during July 2019. These daily images document that a NO2 plume can be 

observed on every day in which there are no clouds. We also plot the daily ERA5 wind speed and direction on each 

daily panel. ERA5 winds appear to correctly identify the urban plume direction on each day. 5 

The middle and bottom set of panels (Martin Lake, TX and Colstrip, MT respectively), demonstrate the capability of 

TROPOMI in observing daily plumes from power plants during July 2019. For Colstrip (13,600 tons NOx/yr), a plume 

signature can be visually located on every cloud-free day. However, in Martin Lake, TX (9,500 tons NOx/yr), a plume 

signature cannot be visually located on every cloud-free day, even though NOX emissions are of a similar order of 

magnitude as Colstrip. This suggests that the location and atmospheric conditions in Texas are causing TROPOMI to 10 
not fully observe Martin Lake’s NOX emissions.  
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 Dallas – Fort Worth, TX 

 
 
Martin Lake, TX 

 5 
 
Colstrip, MT 

 
Figure D1. Daily TROPOMI NO2 vertical column densities over three locations (Dallas – Fort Worth, Martin Lake 
Power Plant, and Colstrip Power Plant) during each day of July 2019; the July 2019 monthly average is denoted in the 10 
top left panel of each location aggregate.  
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Data availability  

TROPOMI NO2 v1.3 data (doi: 10.5270/S5P-s4ljg54) and TROPOMI HCHO v1.1 data (doi: 10.5270/S5P-tjlxfd2) 

can be freely downloaded from the Copernicus Open Access Hub (https://s5phub.copernicus.eu/dhus/) or NASA 

Earthdata Hub (https://disc.gsfc.nasa.gov/datacollection/S5P_L2__NO2____1.html & 

https://disc.gsfc.nasa.gov/datacollection/S5P_L2__NO2____HiR_1.html; 5 
https://disc.gsfc.nasa.gov/datacollection/S5P_L2__HCHO___1.html  & 

https://disc.gsfc.nasa.gov/datacollection/S5P_L2__HCHO___HiR_1.html). TROPOMI NO2 v2.3.1 data can be 

freely downloaded from the S5P-PAL Data Portal (https://data-portal.s5p-pal.com/products/no2.html). NASA 

SEAC4RS data can be downloaded from NASA data archive (doi: 10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-

Cloud), and was acquired by the UC-Berkeley Cohen research team. ERA5 re-analysis hourly data on single levels 10 
(doi: 10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/#!/home). IDL code to re-grid and process the data is available upon request.  
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