Reply To Reviewer 2

We would like to again thank Dr. Lambe for his comment. Below we provide our response to the comment

1. L91 - for the reader's reference, please state the lamp voltage values and/or corresponding photon fluxes that were used to offset OH suppression following NOx generation.

Response: We added the following sentences in the main text to provide details about the lamp adjustment and add one more row about the photon flux in the Table S1.

Change:

Section 2.1

[...] We indirectly determined the photon fluxes for each experiment using the measured O₃ decay without any α -pinene and N₂O in the OFR. With the KinSim model developed by Peng and Jimenez (2019), we estimated the photon flux by varying the model input photon flux until the model output O₃ concentration agreed with the measured one. The estimated photon fluxes were $(1.08 \pm 0.14) \times 10^{15}$ and $(2.74 \pm 0.35) \times 10^{15}$ photons cm⁻² s⁻¹ for the low- and high-NO_x cases, respectively. Furthermore, [...]

Table S1. Summary of experimental conditions and results of α -pinene SOA generation

	Low-NO _x	High-NO _x
[VOC] _{OFR} (ppb) ^a	254 ± 11	296 ± 14
[N ₂ O] _{OFR} (%)	N/A	1.82 ± 0.10
[O ₃] _{OFR} (ppm) ^b	9.76 ± 0.31	6.85 ± 0.36
photon flux (10 ¹⁵ photons cm ⁻² s ⁻¹) ^b	1.08 ± 0.14	2.74 ± 0.35
T _{OFR} (°C)	24.66 ± 0.76	28.14 ± 0.91
RH _{OFR} (%)	44.19 ± 2.17	38.74 ± 2.63
nominal residence time (s)	160	160
effective OH exposure (10 ¹² molec cm ⁻³ s) ^c	1.82 ± 0.21	2.45 ± 0.09
$\frac{[RO_2] + [NO]}{[RO_2] + [HO_2]}$	N/A	0.84 ± 0.19

fraction Loss to OH (%)	96	50
fraction Loss to O ₃ (%)	4	1
fraction Loss to NO_3 (%)	0	49
oxygen-to-carbon (O:C) ^d	0.77 ± 0.03	0.74 ± 0.01
oxidation state $(OS_c)^d$	0.05 ± 0.04	0.02 ± 0.02

^a Mixing ratio of α -pinene was corrected with the dilution of O₃-contained flow but without the loss due to pure ozonolysis at the inlet. ^b O₃ was measured at the OFR outlet after 254-nm UV lamps were switched on but without the addition of α -pinene and N₂O. The photon flux was estimated by varying the model input photon flux in the KimSim model (Peng and Jimenez, 2019) until the model output O₃ concentration agreed with the measured one. ^c OH exposure was calculated with the KinSim model (Peng and Jimenez, 2019). ^d The values of the oxygen to carbon ratio (O:C) and the oxidation state (OS_c) were derived from the HR-ToF-AMS measurement data of monodisperse SOA particles which represents the initial particle population used for isothermal evaporation measurements.

References

Peng, Z. and Jimenez, J. L.: Kinsim: A research-grade, user-friendly, visual kinetics simulator for chemical-kinetics and environmental-chemistry teaching, 2019.