Supplement of

Chemical Characteristics and Source of PM_{2.5} in Hohhot, a Semi-arid City in Northern China: Insight from the COVID-19 Lockdown

Haijun Zhou^{1,2,3#}, Tao Liu^{4#}, Bing Sun⁵, Yongli Tian⁴, Xingjun Zhou⁴, Feng Hao⁴, Xi Chun^{1,2,3}, Zhiqiang Wan^{1,2,3}, Peng Liu¹, Jingwen Wang¹, Dagula Du⁶

¹College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, China
 ²Provincial Key Laboratory of Mongolian Plateau's Climate System, Inner Mongolia Normal University, Hohhot 010022, China
 ³Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot 010022, China
 ⁴Environmental Monitoring Center Station of Inner Mongolia, Hohhot 010011, China

⁵Hohhot Environmental Monitoring Branch Station of Inner Mongolia, Hohhot 010030, China ⁶Environmental Supervision Technical Support Center of Inner Mongolia, Hohhot 010011, China

Correspondence to: _Haijun Zhou (hjzhou@imnu.edu.cn)

BS Mapping	CC	BB	CD	SIA	VE	CS	Unmapped
CC	100	0	0	0	0	0	0
BB	0	86	0	8	6	0	0
CD	0	0	100	0	0	0	0
SIA	0	0	0	100	0	0	0
VE	0	0	0	0	100	0	0
CS	0	0	0	4	0	96	0
DISP							
Diagnostics							
Error Code:	0						
Largest							
Decrease in	-0.042						
Q:							
%dQ:	-0.0003						
Swaps by Factor:	0	0	0	0	0	0	

Table S1. Summary of error estimation diagnostics from BS and DISP over the year

CC, VE, CS, CD, SIA, and BB present coal combustion, vehicular emission, crustal source, construction dust, secondary inorganic aerosol, and biomass burning, respectively.

Table S2. Summary of error estimation diagnostics from BS and DISP in spring

BS Mapping	VE	CD	SIA	CS	CC	BB	Unmapped
VE	96	2	1	0	1	0	0
CD	2	98	0	0	0	0	0
SIA	0	0	100	0	0	0	0
CS	0	0	0	100	0	0	0
CC	0	0	0	0	100	0	0
BB	0	0	0	0	0	100	0
DISP							
Diagnostics							
Error Code:	0						
Largest Decrease in Q:	-0.0430						
%dQ:	-0.0017						
Swaps by Factor:	0	0	0	0	0	0	

BS Mapping	SIA	Unknown	CS	BB	VE	CC	Unmapped
SIA	100	0	0	0	0	0	0
Unknown	0	98	0	0	2	0	0
CS	1	1	95	0	3	0	0
BB	1	0	0	87	10	1	1
VE	2	0	0	0	95	3	0
CC	5	0	0	0	1	94	0
DISP							
Diagnostics							
Error Code:	0						
Largest	0 1070						
Decrease in Q:	-0.1070						
%dQ:	-0.0045						
Swaps by	0	0	0	0	0	0	
Factor:	0	0	0	0	0	0	

Table S3. Summary of error estimation diagnostics from BS and DISP in summer

Table S4. Summary of error estimation diagnostics from BS and DISP in autumn

BS Mapping	CD	CC	SIA	BB	CS	VE	Unmapped
CD	100	0	0	0	0	0	0
CC	1	99	0	0	0	0	0
SIA	0	0	100	0	0	0	0
BB	2	1	3	90	2	1	1
CS	0	2	0	0	96	2	0
VE	0	0	0	0	0	100	0
DISP							
Diagnostics							
Error Code:	0						
Largest Decrease in Q:	-0.3860						
%dQ:	-0.0109						
Swaps by Factor:	0	0	0	0	0	0	

BS Mapping	BB	SIA	CS	CC	CD	VE	Unmapped
BB	93	1	0	3	1	2	0
SIA	0	100	0	0	0	0	0
CS	0	0	100	0	0	0	0
CC	0	0	0	100	0	0	0
CD	0	0	0	3	90	7	0
VE	0	0	0	0	0	100	0
DISP							
Diagnostics							
Error Code:	0						
Largest Decrease in Q:	-0.0400						
%dQ:	-0.0017						
Swaps by Factor:	0	0	0	0	0	0	

Table S5. Summary of error estimation diagnostics from BS and DISP in winter

T 4 ⁹			PM _{2.5}				Percenta	ge (%)				Deferrer	
Location	Date type	period	$(\mu g/m^3)$	ОМ	SO4 ²⁻	NO ₃ .	$\mathbf{NH_4}^+$	Cľ	EC	MD	others	Keterence	
		pre-LD	108.7	27.8	24.4	22.9	8.0	2.9	4.6	4.7	4.7		
II.11.4		LD	68.3	30.5	17.2	18.0	4.9	3.9	5.4	11.8	8.2	T1	
Honnot	Offline	post-LD	32.6	35.0	9.5	10.2	1.8	2.8	7.5	18.9	14.2	This study	
		anuual	42.6	31.5	13.4	12.3	3.3	2.5	6.6	14.2	16.1		
V:?	1'	pre-LD	102.0	42	7	30	13	3	-	-	8	(Tian et al., 2021)	
Afan	online	LD	60.2	48	8	25	12	3	-	-	7		
		LD	-	10.6	9.8	20.2	9.7	2.8	3.1	-	43.8		
Tianjin	online	Same period in 2019	-	13.7	8.3	14.5	8.2	4.0	3.6	-	47.7	(Ding et al., 2021)	
Cuanazhau	1 :	pre-LD	-	18.2 ^a	19.5	37.8	21.4	-	3.1	-	-	$(W_{app} \text{ at al} 2021)$	
Guangzhou	omme	LD	-	35.2 ^a	20.3	18.7	22.1	-	3.8	-	-	(wang et al., 2021)	
Dailing	1.	pre-LD	32.2	18.3	12.1	22.2	14.2	3.6	3.0	-	26.5 ^c		
Deijing	omme	LD	50.0	15.8	16.1	26.1	16.1	3.0	2.6	-	20.4 ^c		
Noniina	onling	pre-LD	68.2	12.3	18.0	34.4	15.8	1.9	2.5	-	15.3 ^c	(Bon at al. 2021)	
Nanjing	omme	LD	44.0	17.9	21.5	24.7	14.1	3.2	1.9	-	16.8 ^c	(Ken et al., 2021)	
Changsha	onling	pre-LD	59.6	16.8	11.3	26.7	12.7	1.2	2.2	-	29.0 ^c		
	omme	LD	36.6	20.8	12.5	14.2	9.2	1.5	1.3	-	40.5 ^c		
		pre-LD	60.9	23.5 ^b	18.6	37.5	19.3	1.2	-	-	-		
Shanghai	online	LD	41.2	39.5 ^b	21.0	29.4	18.4	1.7	-	-	-	(Chen et al., 2020)	
		post-LD	34.0	25.5 ^b	27.4	26.6	19.1	1.5	-	-	-		

Table S6. Comparison of chemical composition of PM_{2.5} in Hohhot and other cities.

^a The sum of POC and SOC. ^b Sum of oxygenated and hydrocarbon-like organic aerosols. ^c Sum of trace elements and unidentified. "-" present no date available in the reference. Pre-LD, LD, and post-LD present pre-lockdown, lockdown, and post-lockdown period, respectively.

Lesster	Date	M. 1.1	PM _{2.5}			S	ource contri	bution (%)				D	
Location	type	Model	$(\mu g/m^3)$	period	CC	VE	DS	SIA	BB	SS	IP - - - - - 5 4 20.2 -	– keierence	
Hohhot C			32.4	Spring	56.1	17.0	22.6 ^a	4.2	-	-	-		
			24.3	Summer	24.0	48.4	19.7 ^a	5.3	2.6	-	-		
	Offline	e PMF	37.0	autumn	38.9	33.8	16.1 ^a	11.1	-	-	-	This study	
				80.8	winter	65.4	14.3	6.8 ^a	10.5	-	-	-	
			42.6	annual	38.3	35.0	13.5 ^a	11.4	1.7	-	-		
Tianjin	Offline	PMF	60.1	annual	25	21	7	30	-	2 ^b	5	(Tian et	
	Online	PMF	54.3	annual	24	18	4	38	-	1^{b}	4	al., 2021)	
Shanghai	Offline	PMF	73.7	annual	2.4	18.3	4.6	31.6	12.3	10.6 ^c	20.2	(Feng et al., 2022)	
Beijing	Offline	PMF	-	annual	11.1	24.7	4.3	48.1 ^d	11.7	-	-	(Z kov áet al., 2016)	

Table S7. Comparison of source contribution of PM_{2.5} in Hohhot during pre-LD, LD, post-LD, and over the year.

CC, VE, DS, SIA, BB, SS, IP present coal combustion, vehicular emission, dust source, secondary inorganic aerosol, biomass burning, sea salt, and industrial process, respectively. "-" present no date available in the reference. ^a Sum of CS and CD contributions in this study. ^b Sum of SS and BB. ^c Ship emission. ^d Sum of secondary sulfate and secondary nitrate. Pre-LD, LD, and post-LD present pre-lockdown, lockdown, and post-lockdown period, respectively.

Figure S1. Comparison of air pollutants in Hohhot during the LD period with the same period in 2017-2019.

Figure S2. Monthly variation of (a) RH, (b) WS, (c) T, and (d) P in Hohhot during the sampling period.

Figure S3. Source profiles of PMF for annual.

Figure S4. Source profiles of PMF for spring.

Figure S5. Source profiles of PMF for summer.

Figure S6. Source profiles of PMF for autumn.

Figure S7. Source profiles of PMF for winter.

References:

- Chen, H., Huo, J., Fu, Q., Duan, Y., Xiao, H., and Chen, J., 2020. Impact of quarantine measures on chemical compositions of PM_{2.5} during the COVID-19 epidemic in Shanghai, China, Science of The Total Environment, 743, 140758, <u>https://doi.org/10.1016/j.scitotenv.2020.140758</u>.
- Ding, J., Dai, Q., Li, Y., Han, S., Zhang, Y., and Feng, Y., 2021. Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown, Journal of Environmental Sciences, 109, 45-56, https://doi.org/10.1016/j.jes.2021.02.022.
- Feng, X., Feng, Y., Chen, Y., Cai, J., Li, Q., and Chen, J., 2022. Source apportionment of PM_{2.5} during haze episodes in Shanghai by the PMF model with PAHs, Journal of Cleaner Production, 330, 129850, <u>https://doi.org/10.1016/j.jclepro.2021.129850</u>.
- Ren, C., Huang, X., Wang, Z., Sun, P., Chi, X., Ma, Y., Zhou, D., Huang, J., Xie, Y., Gao, J., and Ding, A., 2021. Nonlinear response of nitrate to NOx reduction in China during the COVID-19 pandemic, Atmospheric Environment, 264, 118715, <u>https://doi.org/10.1016/j.atmosenv.2021.118715</u>.
- Tian, J., Wang, Q., Zhang, Y., Yan, M., Liu, H., Zhang, N., Ran, W., and Cao, J., 2021. Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown, Environment International, 150, 106426, <u>https://doi.org/10.1016/j.envint.2021.106426</u>.
- Wang, N., Xu, J., Pei, C., Tang, R., Zhou, D., Chen, Y., Li, M., Deng, X., Deng, T., Huang, X., and Ding, A., 2021. Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: Two different responsive mechanisms to emission reductions in China, Environmental Science & Technology, 55, 5721-5730, <u>https://doi.org/10.1021/acs.est.0c08383</u>.
- Z kov á N., Wang, Y., Yang, F., Li, X., Tian, M., and Hopke, P. K., 2016. On the source contribution to Beijing PM_{2.5} concentrations, Atmospheric Environment, 134, 84-95, <u>https://doi.org/10.1016/j.atmosenv.2016.03.047</u>.