2

1 Detection of Stratospheric Air Intrusion Events From Ground-based

High-resolution ¹⁰Be/7Be by Accelerator Mass Spectrometry

- Xu-Ke Liu^{1,2,3,5,#}, Yun-Chong Fu^{1,2,4,#,*}, Li Zhang^{1,2}, George S. Burr¹, Yan-Ting Bi⁵, Guo-Qing
 Zhao^{1,2}
- 5 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment,
- 6 Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
- 7 2. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an
- 8 AMS Center of IEECAS, Xi'an 710061, China
- 9 3. University of Chinese Academy of Sciences, Beijing 100049, China
- 10 4. Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- 11 5. Xi'an Institute for Innovative Earth Environment Research, Xi'an, 710061, China
- 12 #The authors contribution equally to this work and should be considered co-first authors
- 13 *Corresponding author: Yun-Chong Fu, E-mail: fuyc@ieecas.cn.
- 14

15 Abstract

Locally rapid stratospheric air intrusions facilitate the transport of stratospheric 16 17 material to the troposphere. Long-term continuous monitoring of such events by traditional techniques, such as sounding technology, is challenging. Beryllium-7 (7Be) 18 and beryllium-10 (¹⁰Be) offer an alternative. These isotopes are formed by cosmic 19 20 rays and are mainly produced in the lower stratosphere and upper troposphere. Due to 21 their similar geochemical properties and substantial difference in half-lives favor 22 relatively high ¹⁰Be/⁷Be ratios in the stratosphere, as compared to the troposphere. 23 Monitoring surface ¹⁰Be/⁷Be ratios affords a potential means to identify stratospheric air intrusions. However, high temporal resolution ¹⁰Be/⁷Be observational records must 24 be taken and corrected for dust-borne ¹⁰Be to identify stratospheric air intrusions. In 25

- this study, we use Accelerator Mass Spectrometry to measure both ⁷Be and ¹⁰Be in 26 rain and aerosol (down to ~ 200 cubic meters air) with an error of $\sim 1.5\%$. We correct 27 for dust-borne ¹⁰Be using soil Al. This method provides precise measurements with 28 daily resolution. We present annual beryllium isotopes (7Be, ¹⁰Be, and ¹⁰Be/7Be ratio) 29 30 record for the Chinese Loess Plateau that includes several regional sites. We show that for the city of Xi'an, the proportion of dust-borne (resuspended) ¹⁰Be was ~24% in 31 32 2020/21. Our results confirm that stratospheric air intrusion events in the Loess Plateau are frequent and rapid throughout the year and are strongest in the spring 33 (March-July), when ¹⁰Be/⁷Be values were observed to increase about a factor of 3. 34 35 Even in winter, weaker stratospheric air intrusion events can be detected. Calculated $\Delta(^{10}\text{Be}/^{7}\text{Be})$ values in winter suggest stratospheric ozone transport can lead to an 36 37 ~25% cumulative increase the surface ozone.
- 38

39 40

41 Key words: Cosmogenic nuclides, Stratospheric air intrusion, ¹⁰Be/7Be ratio,

- 42 Accelerator mass spectrometry, Ozone transport, Loess Plateau
- 43

44 1. Introduction

Stratospheric air intrusions are a vital process in stratosphere-troposphere 45 exchange (STE), providing a transport mechanism for stratospheric materials to the 46 47 ground (Holton et al., 1995; Randel et al., 2010). Local stratospheric air intrusions are difficult to quantify and may have hard-to-capture frequent intrusion events 48 (Hodnebrog et al., 2016;Sudo et al., 2003). Although these local stratospheric air 49 intrusions are relatively weak, they can still facilitate the transport of natural and 50 51 anthropogenic trace chemicals and significantly affects the atmospheric chemistry, atmospheric heat budget, and radiation properties. For example, stratospheric air 52 intrusions can facilitate ozone (O₃) transport to the troposphere (Baylon et al., 2016). 53 Tropospheric O₃ affects human health and ecological environments. Due to the 54 scarcity of observational data in the lower stratosphere and upper troposphere, there 55 are few observational studies on this process. Traditional observation methods of 56 57 stratospheric air intrusion mainly rely on sounding technology with multi-element 58 sensors (Fischer et al., 2008). However, the observation process is complicated, and it 59 is challenging to observe continuously due to the influence of weather, let alone 60 accurate capture of frequent intrusion events in local areas.

Meteoric ⁷Be and ¹⁰Be are produced by cosmic rays interacting with oxygen and
nitrogen, mainly in the lower stratosphere and upper troposphere (Brown et al., 1989).
After their formation, these beryllium isotopes are rapidly absorbed and transported

64	by submicron aerosols (Lal et al., 1958), and it is generally believed that
65	ground-based 7Be analyses offer a means of identifying and tracing stratospheric air
66	intrusions (Bhandari et al., 1966;Hernandez-Ceballos et al., 2017). Using ⁷ Be alone is
67	complicated by tropospheric weather conditions and the latitudinal dependence of ⁷ Be
68	production at different latitudes (Masarik and Beer, 1999). Using ¹⁰ Be/ ⁷ Be ratios can
69	avoid these effects, making it more accurate and sensitive than 7Be concentrations
70	alone to trace stratospheric air intrusions (Jordan et al., 2003). The transport and
71	deposition processes of ⁷ Be and ¹⁰ Be are same, and their production rates ratio at each
72	latitude is consistent (Masarik and Beer, 1999). The two isotopes have different
73	residence times in the stratosphere and troposphere and the very different half-lives:
74	^{7}Be (T _{1/2} = 53.29 d) and ^{10}Be (T _{1/2} = 1.36 Ma). These factors make stratospheric
75	¹⁰ Be/ ⁷ Be ratios much larger than ¹⁰ Be/ ⁷ Be ratios observed near the surface air (Jordan
76	et al., 2003). When stratospheric air intrudes, the ¹⁰ Be/ ⁷ Be ratio in the atmosphere at
77	the earth's surface increases (Brown et al., 1989).

⁷Be and ¹⁰Be are typically measured by gamma spectrometry and accelerator 78 mass spectrometry (AMS), respectively. Due to the low counting efficiency of the 79 gamma spectrometry, large samples are required (> $10^3 \text{ m}^3 \text{ air or} > 10 \text{ L rain}$), as well 80 81 as lengthy measurements (> 1 day) to obtain optimal measurement uncertainties 82 (Tiessen et al., 2019;Yamagata et al., 2019). It is even more challenging to obtain ⁷Be data with low uncertainty at a daily resolution based on gamma spectrometry, 83 especially in short-period field sampling and quickly stratospheric air intrusion event 84 research. Measuring ⁷Be by AMS significantly reduces sample size requirements and 85

86 improves the detection limit by approximately 10-100 times (Raisbeck and Yiou,

87 1988). Hence, we measure both isotopes with AMS.

Due to the high abundance of ¹⁰Be in topsoil, resuspended dust-borne ¹⁰Be must 88 be accounted (Czymzik et al., 2018;Yamagata et al., 2010). In particular, corrections 89 90 are necessary for STE studies in high dust areas such as the Chinese Loess Plateau (one of the leading dust source areas in Asia (Zhang et al., 1997)), that reflect 91 92 $^{10}\text{Be}/^7\text{Be}$ from dry deposition (Heikkila et al., 2013). We have devised a means of making these corrections based in part on our previous studies of ¹⁰Be in loess (Beck 93 et al., 2018). In addition, high-precision ⁷Be and ¹⁰Be data can contribute to our 94 95 understanding of atmospheric material transport and circulation (Chham et al., 2019;Liu et al., 2022), solar variability (Adolphi et al., 2014), and paleoclimate (Beck 96 et al., 2018). 97

In this work, we use ground-based 10Be/7Be measurements as a means of 98 documenting stratospheric air intrusion events through time. In order to achieve this, 99 we first developed an AMS measurement method to quantify 7Be and 10Be together 100 101 (named ⁷Be-¹⁰Be-AMS). Next, we identified an analytical means to remove the resuspended dust-borne ¹⁰Be component, ultimately enabling the acquisition of 102 103 ¹⁰Be/7Be records with low uncertainty and high temporal resolution in various environments. We made numerous analyses of aerosol and rain samples (n = 398)104 from the Loess Plateau, and an annual ${\rm ^{10}Be}/{\rm ^7Be}$ record with the daily resolution was 105 obtained for the first time. We show a relationship between these stratospheric air 106 intrusions in winter with surface O₃. 107

108 2. Methods

109 2.1 Sample collection

110 From May 2020 to June 2021, aerosol and rainwater samples from multiple locations were collected. These sampling points include (Fig. S1): Xi'an (XA, 111 112 34°13'20"N, 109°00'18"E) and Qinling (QL, 34°3'43"N, 108°20'48"E) for long-term monitoring. Zhongwei (ZW, 37°30'57"N, 105°11'8"E), Taiyuan (TY, 37°48'26"N, 113 112°34′55″E), Chengdu (CD, 30°56′44″N, 103°40′41″E), Nanning (NN, 22°50′18″N, 114 108°16'51"E), and Lianyungang (LYG, 34°46'4"N, 119°26'55"E) for short-term 115 intermittent monitoring. Aerosols and rainwater were collected at XA and QL, while 116 117 only aerosols were collected at the remaining sampling sites.

118 Total suspended particulate (TSP) samples passed through a large-flow particle 119 collector (TH-1000CII, Wuhan Tianhong Instrument. Co., Ltd.) and a portable 120 small-flow particle collector (TH-150H, Wuhan Tianhong Instrument. Co., Ltd.), prior to collection on polypropylene filter membranes. Each collection period was 24 h and 121 sampled approximately 200-500 m³ air. For rain sample collection, the initial rainfall 122 in the first half-hour was removed to avoid interference from suspended dust. 123 Rainwater samples were collected and stored separately in acidified polyethylene 124 containers to prevent beryllium in the rainwater from adsorbing on the container walls. 125 Detailed rain sample collection information is described elsewhere (Zhang and Fu, 126 127 2017). Among multiple sampling points, the meteorological data collector (HOBO-U30 Station) established at the XA sampling site was used to accurately 128 129 monitor meteorological data such as wind speed, precipitation, and solar radiation

- 130 intensity. Surface O₃ concentration data at the XA site was downloaded from the
- 131 government website https://www.aqistudy.cn/. The sampling times provided in this
- 132 article are based on local time (UTC+8).

133 2.2 Extraction of Be and Al in the sample and preparation of the BeO target

⁷Be and ¹⁰Be targets were prepared according to established experimental 134 procedures for loess ¹⁰Be (Zhou et al., 2007), and rainwater ⁷Be and ¹⁰Be (Zhang and 135 Fu, 2017). The existing experimental process for aerosol samples followed 3 steps 136 (Fig. S2): 1) ⁷Be and ¹⁰Be extraction; 2) ion-exchange separation and purification; and 137 3) BeO preparation. The first step removes organic at 600 °C, and the remaining 138 139 aerosol component is dissolved in acid. Next, Be(OH)2 is obtained by reaction with a weak base (NH₃·H₂O), and the precipitate is oxidized to BeO at 900 °C. The Al 140 141 content of aerosols extracted by acid immersion was measured by ICP-AES 142 (ULTIMA-2, HORIBA Jobin Yvon, France) according to the method proposed by 143 Yamagata et al. (2010).

144 **2.3 AMS analysis of ⁷Be and ¹⁰Be**

⁷Be and ¹⁰Be were analyzed in the same target by the 3 MV multi-nuclide AMS at the Xi'an Accelerator Mass Spectrometry Center, Institute of Earth Environment, Chinese Academy of Sciences. The analysis method follows the approach we established in 2017 (Zhang and Fu, 2017), with some subsequent refinements. In particular, the transmission efficiency after the second stripping foil was substantially improved, reaching approximately 24%, which greatly improved the total transmission efficiency and further improved the analysis precision. ¹⁰Be⁴⁺ or ⁷Be⁴⁺

were analyzed in a gas ionization detector (energy spectrum shown in Fig. S3).
Measurement details are given in the Methods section of the Supplementary
Information.

Data quality was assessed considering chemical preparation, measurement uncertainties, and parallel sample monitoring results. A threshold sample recovery rate for the chemical treatment process is maintained at > 80%. Each measurement batch included a standard sample and a blank sample. Standard samples were used for calibration, and blank samples were used for monitoring procedures. The results for the blank samples were well below measured sample values (~10³ times). The measurement results of parallel samples are consistent within 1 σ (Table S1).

AMS 7Be measurements were cross-checked by gamma spectrometry. Large 162 163 samples (approximately 2000 m³ air) were collected, and polypropylene membranes 164 with high aerosol concentrations were selected for comparison. About 1/4 of them were analyzed by 7Be-AMS. The 7Be in the remaining 3/4 filter membranes were 165 measured using a high purity germanium (HpGe) detector. The results show that the 166 AMS results were consistent with the measurement HpGe detector results (Table S2). 167 Furthermore, for the same samples, the uncertainties for samples measured by AMS 168 169 were uniformly lower than those measured by HpGe detector (detailed measurement information of the HpGe detector is included in the support information). 170

171 **2.4 Quantification of the resuspended dust contribution to ¹⁰Be**

172 The resuspended dust-borne ¹⁰Be contribution was corrected as: 173 $[{}^{10}Be]_{corr} = [{}^{10}Be]_{bulk} - [{}^{10}Be]_{dust}$. The dust proportion was estimated from the

174 aluminum content $P = \frac{[Al]_{aerosol}}{Eff \cdot [Al]_{soil}}$, and this value was used to calculate the dust

175 component from the soil ¹⁰Be: $[{}^{10}Be]_{dust} = P \cdot [{}^{10}Be]_{soil}$ (Yamagata et al., 2010):

176
$$[{}^{10}Be]_{corr} = [{}^{10}Be]_{bulk} - \frac{[Al]_{aerosol}}{Eff \cdot [Al]_{soil}} \cdot [{}^{10}Be]_{soil}$$
(1)

where $[Al]_{aerosol}$ is the aerosol Al concentration extracted by acid dissolution (g·m⁻³). Eff is the acid leaching efficiency of Al in aerosols, which is 51% (Yamagata et al., 2010), as determined by comparisons between leached samples analyzed by ICP-AES and a large number of samples analyzed by NAA. $[Al]_{soil}$ is the Al content of the topsoil (wt%); $f^{10}Be]_{soil}$ is the ¹⁰Be concentration of the topsoil (atoms·g⁻¹).

182 For $[^{10}Be]_{soil}$ in equation (1), XA, QL, and TY belong to the Loess Plateau. According to our previous results, this value is $2.13 \cdot 10^8$ atoms g^{-1} (Zhou et al., 2007). 183 According to survey results of ¹⁰Be in topsoil (Yi et al., (2019b) (Fig. S1), the 184 $[^{10}Be]_{soil}$ values of ZW, LYG, CD, and NN are $11.70 \cdot 10^8$ atoms $\cdot g^{-1}$, $3.75 \cdot 10^8$ atoms $\cdot g^{-1}$, 185 4.45·10⁸ atoms·g⁻¹, and 2.50·10⁸ atoms·g⁻¹, respectively. The [Al]_{soil} contents are 7.41 186 wt% (Xiong et al., 2010), 7.57 wt% (Qiu et al., 2014), 8.32 wt% (Tan et al., 2013), 187 188 and 10.50 wt% (Qiu et al., 2014) on the Loess Plateau, LYG, CD, and NN, respectively. 189

Researchers have shown that removing the initial precipitation (the first half-hour) for rain samples reduces the resuspended dust-borne ¹⁰Be (Graham et al., 2003) and allows for a straightforward estimation of ¹⁰Be from wet deposition. However, in this approach, the particles associated with the STE source are discarded, obscuring the relationship with aerosol ¹⁰Be. Therefore, to verify our dust-borne ¹⁰Be

- 195 corrections, we compare ${}^{10}\text{Be}/{}^{7}\text{Be}$ of aerosols and precipitation.
- 196 3. Results and discussion
- 3.1 Observations of atmospheric ⁷Be and ¹⁰Be deposited on the Chinese Loess
 Plateau

Measured atmospheric and rainwater ⁷Be and ¹⁰Be concentrations, and ¹⁰Be/⁷Be 199 ratios from the XA and QL sites (May 2020 to June 2021) are presented in Fig. 1. At 200 the XA site, the average annual aerosol ⁷Be concentration was $(3.80 \pm 0.06) \cdot 10^4$ 201 atoms·m⁻³, and the average annual aerosol ¹⁰Be concentration was $(8.09 \pm 0.13) \cdot 10^4$ 202 atoms·m⁻³. XA rainwater ⁷Be values averaged (4.00 \pm 0.16)·10⁴ atoms·g⁻¹, and ¹⁰Be 203 values averaged $(6.42 \pm 0.26) \cdot 10^4$ atoms g⁻¹. At the QL site (Fig. 1b), the average 204 annual aerosol ⁷Be concentration was $(4.08 \pm 0.07) \cdot 10^4$ atoms ·m⁻³, and the average 205 206 annual aerosol ¹⁰Be concentration was $(6.76 \pm 0.11) \cdot 10^4$ atoms m⁻³. QL rainwater ⁷Be values averaged (4.86 \pm 0.19) $\cdot 10^4$ atoms $\cdot g^{-1}$, and ^{10}Be values averaged (6.35 \pm 207 $(0.24)\cdot10^4$ atoms \cdot g⁻¹. The average annual 10 Be/⁷Be ratio for XA was 2.22 ± 0.12 , and 208 the average for the ZQL site was 1.62 ± 0.08 (Fig. 1c). The complete dataset is given 209 210 in Tables S3 and S4.

The XA sampling site is a typical high-dust locality on the Loess Plateau, and the QL sampling site is relatively humid with lower dust content. Both sites experience distinct similar seasonal changes. ⁷Be and ¹⁰Be aerosol concentrations show large fluctuations associated with precipitation (Fig. 1a, 2b). The ¹⁰Be concentrations and ¹⁰Be/⁷Be ratio from dry deposition at the XA site are significantly higher than those at the QL site, as well as coastal areas near the same latitude during the same period

217	(such as Dazaifu and Tokyo in Japan (Yamagata et al., 2019)), especially in the dry
218	season of the Loess Plateau, such as spring. QL serves as a control site with relatively
219	higher precipitation and is located in the Qinling National Nature Reserve with a high
220	normalized vegetation index (NDVI) (He et al., 2019). QL is only 60 km away from
221	XA. As shown in Fig. 1c, the ¹⁰ Be/ ⁷ Be ratio of dry and wet deposition at the two
222	sampling sites during wet periods is consistent and reflects the amount of deposition.
223	Aerosol ¹⁰ Be/7Be ratios at the two sites during dry periods are higher than the
224	rainwater ¹⁰ Be/ ⁷ Be from the same period. This phenomenon is more obvious at dusty
225	XA than at QL. Fig. 1d shows that the mean TSP concentration at XA (234.20 $\mu g \cdot m^{\text{-3}}$)
226	was higher than the mean at QL (119.94 $\mu g \cdot m^{-3}).$ The average aerosol Al content at
227	XA (3.6 μ g·m ⁻³) is significantly higher than at QL (1.5 μ g·m ⁻³) and in coastal areas
228	(the mean in Japan is approximately 2.31 $\mu g \cdot m^{\text{-}3}$ (Yamagata et al., 2010)), which
229	confirms that dust from the XA site has a higher probability of re-suspension.

XA is located in a warm temperate area with a semi-humid and semi-arid 230 231 continental monsoon climate. Its rainy seasons are unevenly distributed, and the annual average precipitation is 500-750 mm (Chen et al., 2020b). The East Asian 232 233 winter monsoon and high-altitude westerly jets that carry dust from the western and 234 northern deserts profoundly impact the supply of aeolian materials on the Loess 235 Plateau (Shen et al., 2010). Dust-borne ¹⁰Be from resuspended soil dust contributes significantly to the surface aerosol ¹⁰Be, and obscures atmospheric mass movement 236 information such as the STE (Fig. 1a-c). As expressed in equation (1), to obtain the 237 actual deposition flux and associated ¹⁰Be and ¹⁰Be/7Be, it is necessary to remove 238

239 dust-borne interference, as discussed below.

Fig. 1 ⁷Be and ¹⁰Be concentrations and ¹⁰Be/⁷Be ratios in the atmosphere above the
Loess Plateau. Daily variation in ⁷Be and ¹⁰Be concentrations at XA (a) and at QL (b).
(c). Daily ¹⁰Be/⁷Be ratios (wet and dry deposition) of the Loess Plateau. (d). Daily
atmospheric TSP content and aerosol Al content at XA and QL.

245

246 **3.2** Correction for dust-borne ¹⁰Be on aerosol ¹⁰Be/⁷Be values

Due to its long half-life $(1.36 \times 10^6 \text{ years})$, ¹⁰Be accumulates after being deposited on the ground, and ¹⁰Be abundances per gram of soil are approximately 10⁴ times

higher than corresponding ¹⁰Be abundances in the near-ground atmosphere. In contrast, ⁷Be can not accumulate in the soil due to its relatively short half-life (53.3 days) (Yamagata et al., 2010). Therefore, resuspended dust-borne ¹⁰Be can increase the atmospheric ¹⁰Be concentration and ¹⁰Be/⁷Be ratios. Dust-borne ¹⁰Be can be corrected by considering all of the sources of ¹⁰Be in the bulk measurements:

254
$$[{}^{10}Be]_{bulk} = [{}^{10}Be]_{bg} + [{}^{10}Be]_{STE} + [{}^{10}Be]_{dust}$$
(2)

255
$$[{}^{10}Be]_{corr} = [{}^{10}Be]_{bg} + [{}^{10}Be]_{STE}$$
 (3)

The measured aerosol ¹⁰Be concentration, $[^{10}Be]_{bulk}$ contains three distinct ¹⁰Be components (equation 2). The background value $[^{10}Be]_{bg}$ refers to the ¹⁰Be concentration in the surface-atmosphere at equilibrium with no STE component. $[^{10}Be]_{STE}$ is the ¹⁰Becarried by the STE, and $[^{10}Be]_{dust}$ is resuspended dust-borne ¹⁰Be (all concentrations in atoms·m⁻³). The dust-borne ¹⁰Be must be removed to calculate the corrected value $[^{10}Be]_{corr}$ (equation 3).

We measured atmospheric ⁷Be and ¹⁰Be values from different sites (Fig. 2a) and 262 different seasons (Fig. 2b), and used equation (1) to eliminate the influence of soil 263 dust on atmospheric ¹⁰Be (Fig. 2c). The resuspension of terrestrial dust is controlled 264 by dryness and wind power (Zhang et al., 1997). Therefore, we chose representative 265 sampling sites with different atmospheric relative humidity and NDVI characteristics. 266 These sampling sites include ZW (h) in an arid and high-dust area, XA (b) and TY (i) 267 in semi-arid and low-humidity dusty regions, and CD (j), NN (k), LYG (l), and QL (g) 268 in humid and low-dust areas. These areas include typical geographic environments 269 270 such as deserts, coastal regions, humid inland regions, and areas prone to drought.

271

 $7\mathbf{D}_{2}$

The

271	The Be concentration in the atmosphere is minimally disturbed by dust
272	(Yamagata et al., 2010). However, as shown in Fig. 2b, in three different seasons
273	(autumn, winter, and spring), ¹⁰ Be concentration fluctuations caused by the influence
274	of soil dust in different regions in the same season or at different times in the same
275	region are relatively large, which leads to large fluctuations in observed atmospheric
276	¹⁰ Be/ ⁷ Be ratios (darker columns in Fig. 2c). These results show that the drier the area
277	is, the greater the short-term fluctuation of ¹⁰ Be/ ⁷ Be (Fig. 2c). Furthermore, Chen et al
278	(2020b) pointed out that soil ¹⁰ Be in areas with less precipitation (< 1200 mm \cdot a ⁻¹) is
279	more likely to be resuspended and not deposited in the surface soil. This conclusion
280	also shows once again that different amounts of resuspended dust can cause
281	fluctuations in observed atmospheric ¹⁰ Be concentrations.

concentration in the structure is minimally distructed by dust

282 Based on equation (1), after removing the soil dust contribution of each sampling site (contamination rate shown as the black line, the bottom panel of Fig. 2c), the 283 corrected average ¹⁰Be/⁷Be ratios (colored horizontal lines, upper panel of Fig. 2c) 284 from each region are very similar. Among them, the XA ¹⁰Be/⁷Be correction ratio (b) 285 in winter (January) is larger than the average value, caused by local STE events. The 286 287 ¹⁰Be/7Be correction is relatively large, and the relative average value fluctuates significantly in spring (April), because STE events frequently occur in spring. The 288 autumn-winter-spring trend in the average ¹⁰Be/7Be correction value is also consistent 289 with the seasonal variation of the 10Be/7Be ratio. Detailed 7Be and 10Be results are 290 given in Table S5. 291

2 To correct for dust-borne ¹⁰Be concentrations in the atmosphere, the soil erosion

293	conditions for each region need to be considered. Early studies made this correction
294	based on Ca/Mg content (Brown et al., 1989;Mann et al., 2011) or U isotope
295	composition (Monaghan et al., 1986). However, these methods overestimate the
296	effects of dust and rely on assumptions that pose weak constraints on the dust
297	composition (Graham et al., 2003). Zhang et al. (1994) pointed out that the Al
298	provides an excellent means to calculate soil dust flux. Through simultaneous
299	observations in different areas, we confirmed that the Al flux method (equation 1)
300	proceeds an effective correction for atmospheric ¹⁰ Be. The corrected atmospheric ⁷ Be
301	and ¹⁰ Be yielded ¹⁰ Be/ ⁷ Be records that reflected daily subsidence levels as an indicator
302	of surface deposition processes. At the same time, the corrected atmospheric ¹⁰ Be
303	provides a practical observation method for quantifying the ¹⁰ Be atmospheric input
304	(Yi et al., 2019a), and to study East Asian summer monsoon rainfall changes and
305	geomagnetic field changes (Kong et al., 2020).

15

307 Fig. 2 Atmospheric ¹⁰Be/⁷Be observations and the impact of dust-borne ¹⁰Be from each study region. (a). Sample site map with NDVI (modis.gsfc.nasa.gov/), and a 308 satellite image of the entire study area (from © Google Maps). (b). Short-term 309 310 fluctuations in surface aerosol ¹⁰Be concentration during 3 different seasons at each sampling site. (c). Observed aerosol ¹⁰Be/7Be values (darker hollow columns), 311 corrected ¹⁰Be/7Be values (brighter solid columns), and dust contribution (lower panel) 312 313 before and after correction in 3 different seasons and regions. The horizontal lines 314 represent average ¹⁰Be/⁷Be values after correction and the average value contribution rate from dust-borne ¹⁰Be. The color of the columns from dark to light indicates that 315 the relative resuspension amount of dust in various places in the same season 316 gradually decreases. The arrows indicate trends. 317

318 **3.3** Contribution of soil dust ¹⁰Be in aerosols on the Loess Plateau

319 The observed aerosol ¹⁰Be/⁷Be ratios at the XA site during the dry period (blue

320	line in Fig. 3a) deviate significantly from recent rainwater ¹⁰ Be/ ⁷ Be ratios (green line
321	in Fig. 3a). In contrast, aerosol ¹⁰ Be/7Be observations from the relatively low-dust QL
322	site are consistent with rainwater ¹⁰ Be/7Be (Fig. 3a). This result highlights the
323	importance of correcting for resuspended dust-borne ¹⁰ Be.
324	The corrected aerosol ¹⁰ Be/7Be ratios (red line in Fig. 3a) follow the rainfall
325	$^{10}\text{Be}/^7\text{Be}$ trend. Corrected aerosol $^{10}\text{Be}/^7\text{Be}$ values from XA and QL are 0.91-3.73 and
326	0.93-2.56, respectively. The average annual contributions of resuspended dust-borne
327	^{10}Be for XA and QL were ${\sim}24\%$ and ${\sim}12\%,$ respectively (Fig. 3b; Table S3 and S4).
328	The contribution of soil dust from the XA site is much higher than in low dust areas,
329	such as New Zealand (11%) (Graham et al., 2003), Japan (~15%) (Yamagata et al.,
330	2010), or Seville (10%) (Padilla et al., 2019).
331	The corrected aerosol ¹⁰ Be/ ⁷ Be ratios (red line in Fig. 3a) remove abrupt transient
332	changes associated with dust-borne ¹⁰ Be (not STE events. This fluctuation is
333	especially apparent at the XA site and is seen as "V"-shaped changes in the
334	uncorrected record (enlarged view of Fig. 3a). The corrected ¹⁰ Be/ ⁷ Be ratios seen at
335	the XA and QL sites are very similar, as would be expected once the dust-borne ¹⁰ Be

has been removed. In addition, for atmospheric motion information that cannot be 336 captured by rain samples when there is no precipitation, these corrected dry 337 deposition ¹⁰Be/⁷Be ratios are an effective supplement. 338

Fig. 3 Correction of resuspended soil dust in aerosol ¹⁰Be/⁷Be on the Loess Plateau.
(a). Comparison of aerosol ¹⁰Be/⁷Be observations (blue) and corrected values (red),
with rainwater ¹⁰Be/⁷Be (green). (b). The contribution of soil dust ¹⁰Be to aerosol
¹⁰Be/⁷Be at the XA site (green) and QL site (black).

344

345 3.4 Stratospheric air intrusions on the Loess Plateau and their contribution to 346 surface O₃

As shown in Fig. 1a and 1b, high 7Be and 10Be concentrations in winter are 347 caused by the relatively long-term accumulation of surface aerosols during periods of 348 low precipitation (Yamagata et al., 2019). However, ¹⁰Be/⁷Be ratio change relatively 349 350 little in these cases (Fig. 1c). This is because the fixed production rate ratio and the similar geochemical properties make ¹⁰Be/⁷Be resistant to air mass dilution at 351 different latitudes and rain removal. In addition, the large difference in the half-lives 352 of ⁷Be and ¹⁰Be and their fixed production rate lead to stratospheric ¹⁰Be/⁷Be ratios 353 that are significantly larger than in the troposphere. Thus, ¹⁰Be/⁷Be increases seen near 354 the surface air can be used to detect stratospheric air intrusion events. 355

356 Fig. 4a shows a distinct seasonal pattern in ¹⁰Be/⁷Be ratios from the XA and QL

357	sites. This record is consistent with observational records (Jordan et al., 2003). Higher
358	¹⁰ Be/7Be ratios can indicate stratospheric air intrusion events superimposed on an
359	annual mean value of ~ 1 (Fig. 4). In spring and early summer (March to July), the
360	¹⁰ Be/ ⁷ Be values reach a maximum of approximately 3 times higher than the annual
361	average. The increase is mainly affected by the Brewer-Dobson circulation in the
362	northern hemisphere (Butchart, 2014). The monthly ¹⁰ Be/ ⁷ Be variation box plot in the
363	upper right corner of Fig. 4a shows that the ¹⁰ Be/7Be ratio between March and July is
364	relatively large and that the high-frequency positions are scattered. This indicates that
365	the intensity and frequency of stratospheric air intrusions during the "spring leakage"
366	of the atmosphere are higher. Conversely, the frequency and intensity of ¹⁰ Be/ ⁷ Be
367	changes observed in other months are relatively scattered, indicating fewer but
368	distinct stratospheric air intrusion events during other periods of the year.

Sunlight is a natural prerequisite for the photochemical generation of O_3 at the 369 earth's surface (Kondratyev and Varotsos, 1996). The sunlight radiation follows a 370 371 symmetrical intensity law in the spring and autumn at the XA site (Fig. 4c). However, surface O3 concentrations at the XA site (Fig. 4b) are inconsistent with sunlight 372 373 radiation intensity (Fig. 4b blue area). This feature is consistent with the seasonal 374 increase in ¹⁰Be/⁷Be. We suggest that surface O₃ concentration increases reflect an 375 influx of stratospheric O₃, indicated by frequent and relatively large changes in the ¹⁰Be/⁷Be. Similar results have been confirmed during spring in other regions using 376 ground-based lidar observations (Langford et al., 2009), airborne observations 377 (Weigel et al., 2012), and atmospheric models (Zhao et al., 2021). This also explains 378

379 why surface O_3 concentrations are elevated in spring when the light intensity is 380 comparable to that in autumn. With the arrival of summer, the light intensity gradually 381 increases, and O_3 becomes dominated by the photochemical process at the surface 382 (Fig. 4b).

Fig. 4 The ¹⁰Be/⁷Be ratio response to seasonal stratospheric air intrusions, consistent 384 with seasonal surface O₃ production on the Loess Plateau. (a). Seasonal ¹⁰Be/⁷Be 385 variations. Inset shows a box plot (25%-75%) of monthly atmospheric ¹⁰Be/7Be, with 386 the 5%-95% whiskers, and minimum/maximum values indicated by asterisks. (b). 387 388 Seasonal O₃ variations near the surface air at the XA site. Blue box indicates periods of high surface O₃ concentrations that are higher than expected from corresponding 389 sunlight radiation intensities. (c). Seasonal sunlight radiation intensity at the XA site, 390 391 with associated trend line (red dashed line).

392

393 **3.5** Evaluation of stratospheric O₃ intrusion with weak STE in winter

In addition to the strong "spring leakage" stratospheric air intrusion events that 394 occur regularly every year, a number of relatively low-intensity stratospheric air 395 intrusions are known to occur in other seasons. Li et al. (2021) pointed out that O₃ 396 397 pollution during the winter haze season on the North China Plain is increasing. Ozone pollution caused by winter stratospheric air intrusions is particularly serious (Chen et 398 al., 2020a). Although low-intensity and rapid stratospheric air intrusions are less 399 significant than in summer, their adverse effects cannot be ignored. Our study shows 400 that processes can be identified using ground-based ¹⁰Be/⁷Be measurements. 401 402 Traditional gamma spectrometry is less well-suited to obtaining high-precision ⁷Be measurements of low volume air samples. Furthermore, our approach makes it 403 possible to make the daily measurements provide the requisite resolution necessary to 404 405 understand the rapid and transient chemical reactions in the atmosphere (Zheng et al., 2011). 406

We observe frequent low but statistically significant ozone fluctuations in winter 407 408 on the Loess Plateau (pink shaded area, Fig. 4). A comparison with our ¹⁰Be/⁷Be data, 409 suggest low-intensity and rapid stratospheric air intrusions (November to January of the following year) at the XA site (Fig. 5). In the absence of stratospheric air 410 intrusions, surface ozone shows a diurnal pattern with nighttime lows. However, when 411 $^{10}\text{Be}/^7\text{Be}$ increases (blue vertical shaded area in Fig. 5a), surface O₃ concentrations 412 413 increase (Fig. 5b). During these times, especially at night (shaded area in Fig. 5b), surface O_3 concentrations are not observed to decrease, and diurnal ozone pattern 414

disappears. High O₃ concentrations are characteristics of the stratosphere (Kley et al.,
2007). Therefore, these phenomena may be related to stratospheric air intrusions.
Taken alone, the ozone trends can only be considered as indirect evidence for
stratospheric air intrusions. However, considered alongside the ¹⁰Be/⁷Be results at the
XA site, we interpret the covariation in winter to be related to rapid (1-3 days)
stratospheric air intrusions.

421 A fixed relationship between O₃ and ⁷Be during stratospheric air intrusions was 422 proposed by Bazhanov and Rodhe (1997). Because ¹⁰Be/⁷Be avoids the interference 423 of tropospheric variability on ⁷Be concentrations, we substitute Δ (¹⁰Be/⁷Be) for the 424 Δ ⁷Be to interpret surface ozone increases (Δ O₃). The Δ O₃ and Δ (¹⁰Be/⁷Be) values 425 show a significantly positive correlation (R² = 0.889, p < 0.01. Fig. S4), providing a 426 useful estimate of stratospheric ozone to the surface.

A surface O3 record obtained by the above method is shown in Fig. 5c. We 427 428 estimate that surface O3 increased by 25.45% in the XA site during the winter of 2020/21. Chen et al. (2020a) used the hemisphere WRF-CMAQ model to find that the 429 430 contribution of STE to surface O3 in the winter of 2015 in eastern China was approximately 15%-21%. Stratospheric air intrusion in the Qinghai-Tibet Plateau of 431 China has been shown to increase the O₃ concentrations in the troposphere by 432 approximately 53% (Zhang et al., 2021). The influence of weather on surface O_3 in 433 434 China varies by region, season, and year. It may be equivalent to or even more significant than the impact of changes in anthropogenic emissions, of which 435 atmospheric motion has a significant contribution (Liu and Wang, 2020). O₃ brought 436

437 by stratospheric air intrusion seriously affects the chemical balance of the 438 tropospheric atmosphere. For example, increased night-time O_3 (mainly input from 439 the stratosphere under STE) accelerates the conversion of NO_x to nitrate (Tang et al., 440 2021), which has an important impact on atmospheric environmental pollution 441 process. In addition, this study proved that the relatively weak stratospheric air 442 intrusion process is randomly generated, which is an impact that needs to be 443 considered for the future surface O_3 concentration simulation.

Fig. 5 The influence of winter stratospheric air intrusions at the XA site and surface O₃ compared with daily ¹⁰Be/⁷Be measurements. Aerosol ¹⁰Be/⁷Be ratio (a) and surface O₃ concentrations (b) high-frequency variations at the XA site in winter. (c). Surface O₃ concentrations after removing the contribution by stratospheric air intrusions (see text). The purple line segment in Fig. 5a is the baseline of the ¹⁰Be/⁷Be ratio when no STE occurs. The blue shaded areas indicate stratospheric air intrusions

- 451 determined by ¹⁰Be/⁷Be. Shaded areas in Fig. 5b and 5c indicate nighttime. Arrows
- 452 indicate trends.
- 453
- 454 4 Conclusions

455 STE is an important channel for transmitting atmospheric matters, particularly 456 low-intensity and frequent stratospheric air intrusion events that can quickly transmit 457 chemical matters to affect the environment. This work presents annual ground-based 458 ¹⁰Be/⁷Be records documenting stratospheric air intrusions. The main features of these 459 records include the following:

460 • High-sensitivity measurements (error ~ 1.5%) of ⁷Be and ¹⁰Be from single
461 targets prepared from aerosols (down to ~200 m³ air) depending on AMS.

462 • Results in different regions confirm that Al content can be used to correct
463 resuspended dust-borne ¹⁰Be in aerosol ¹⁰Be.

• By measuring both rainwater and aerosols, ¹⁰Be/7Be measurements offer a 464 means of identifying stratospheric air intrusions throughout the year, with daily 465 resolution. The first of such records is presented herein, from the Loess Plateau of 466 China. We document ¹⁰Be/7Be records for 2020-2021 from two sites: 1) XA site -467 rainwater ¹⁰Be/7Be was found to be 0.94-3.24, and the corrected aerosol ¹⁰Be/7Be 468 range was found to be 0.91-3.73 after removal of the regional dust-borne component 469 (~24%); 2) QL site - rainwater ¹⁰Be/7Be was found to be 0.94-2.36, and the corrected 470 aerosol ¹⁰Be/7Be range was found to be 0.93-2.56 after the removal of the regional 471 472 dust-borne component (~12%).

473	• Atmospheric ¹⁰ Be/7Be on the Loess Plateau confirms that stratospheric air
474	intrusions occur frequently and rapidly (1-3 days) throughout the year, with the
475	strongest events in spring (March-July). These have a significant influence on surface
476	ozone. It is shown by $\Delta(^{10}\text{Be}/^7\text{Be})$ that even under weak stratospheric air intrusions in
477	winter, the cumulative contribution to surface ozone at the XA site in 2020/21 is
478	~25%.

479 Data availability

- 480 The author declares that the main data supporting the results of this study can be
- 481 found in the text and its supplementary materials.
- 482 Supplement
- 483 Supplementary information is available for this paper.

484 Author contribution statement

Xuke Liu finished the experiments, wrote the first version manuscript and analysed the data. Yunchong Fu conceived the original idea, performed AMS analysis and revised the initial manuscript. Xuke Liu and Yunchong Fu designed research roadmap. Li Zhang, Yanting Bi, and Guoqing Zhao designed chemical experiments and collected samples. Yunchong Fu assisted in AMS method development and supervised the research project. All the authors discussed the results and commented on the manuscript, and George S. Burr for revising manuscript language.

492 Competing interests

493 The authors declare no competing interests.

494 Acknowledgements

- 495 We thank Weijian Zhou, Feng Xian, Peng Cheng, LuYuan Zhang, and Qi Liu for
- 496 their help in the conducting experiments and discussing the results.

497 Financial support

- 498 This research has been supported by the National Natural Science Foundation of
- 499 China (Grant No. 11975240), the Strategic Priority Research Program of Chinese
- 500 Academy of Sciences (B) (Grant No. XDB40000000), and the Youth Innovation
- 501 Promotion Association CAS (Grant No. Y2021108).

502 References

- Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer, J., Sjolte, J.,
 Bjorck, S., Matthes, K., and Thieblemont, R.: Persistent link between solar
 activity and Greenland climate during the Last Glacial Maximum, Nature
 Geoscience, 7, 662-666, 10.1038/ngeo2225, 2014.
- Baylon, P. M., Jaffe, D. A., Pierce, R. B., and Gustin, M. S.: Interannual Variability in
 Baseline Ozone and Its Relationship to Surface Ozone in the Western US,
 Environmental Science & Technology, 50, 2994-3001, 10.1021/acs.est.6b00219,
 2016.
- 511 Bazhanov, V., and Rodhe, H.: Tropospheric ozone at the Swedish mountain site
 512 Areskutan: Budget and trends, Journal of Atmospheric Chemistry, 28, 61-76,
 513 10.1023/a:1005839313307, 1997.
- 514 Beck, J. W., Zhou, W. J., Li, C., Wu, Z. K., White, L., Xian, F., Kong, X. H., and An,
- Z.: A 550,000-year record of East Asian monsoon rainfall from Be-10 in loess,
 Science, 360, 877-+, 10.1126/science.aam5825, 2018.
- Bhandari, N., Lal, D., and Rama: Stratospheric circulation studies based on natural
 and artificial radioactive tracer elements, Tellus, 18, 391-&,
 10.1111/j.2153-3490.1966.tb00250.x, 1966.

520	Brown, L., Stensland, G. J., Klein, J., and Middleton, R.: Atmospheric deposition of
521	Be-7 and Be-10, Geochimica Et Cosmochimica Acta, 53, 135-142,
522	10.1016/0016-7037(89)90280-9, 1989.
523	Butchart, N.: The Brewer-Dobson circulation, Reviews of Geophysics, 52, 157-184,
524	10.1002/2013rg000448, 2014.
525	Chen, L., Xing, J., Mathur, R., Liu, S. C., Wang, S. X., and Hao, J. M.: Quantification
526	of the enhancement of PM2.5 concentration by the downward transport of ozone
527	from the stratosphere, Chemosphere, 255, 10.1016/j.chemosphere.2020.126907,
528	2020a.
529	Chen, P., Yi, P., Czymzik, M., Aldahan, A., Ljung, K., Yu, Z. B., Hou, X. L., Zheng,
530	M. J., Chen, X. G., and Possnert, G.: Relationship between precipitation and
531	Be-10 and impacts on soil dynamics, Catena, 195, 10.1016/j.catena.2020.104748,
532	2020b.
533	Chham, E., Milena-Perez, A., Pinero-Garcia, F., Hernandez-Ceballos, M. A., Orza, J.
534	A. G., Brattich, E., El Bardouni, T., and Ferro-Garcia, M. A.: Sources of the
535	seasonal-trend behaviour and periodicity modulation of Be-7 air concentration in
536	the atmospheric surface layer observed in southeastern Spain, Atmospheric
537	Environment, 213, 148-158, 10.1016/j.atmosenv.2019.06.011, 2019.
538	Czymzik, M., Muscheler, R., Adolphi, F., Mekhaldi, F., Drager, N., Ott, F., Slowinski,
539	M., Blaszkiewicz, M., Aldahan, A., Possnert, G., and Brauer, A.: Synchronizing
540	Be-10 in two varved lake sediment records to IntCal13 C-14 during three grand
541	solar minima, Climate of the Past, 14, 687-696, 10.5194/cp-14-687-2018, 2018.
542	Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille,
543	L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A.,
544	Koopman, R., Langen, J., Lopez-Puertas, M., Mosner, P., Nett, H., Oelhaf, H.,
545	Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an
546	instrument for atmospheric and climate research, Atmospheric Chemistry and
547	Physics, 8, 2151-2188, 10.5194/acp-8-2151-2008, 2008.
548	Graham, I., Ditchburn, R., and Barry, B.: Atmospheric deposition of Be-7 and Be-10

549	in New Zealand rain (1996-98), Geochimica Et Cosmochimica Acta, 67, 361-373,
550	10.1016/s0016-7037(02)01092-x, 2003.
551	He, Y., Qiu, H. J., Song, J. X., Zhao, Y., Zhang, L. M., Hu, S., and Hu, Y. Y.:
552	Quantitative contribution of climate change and human activities to runoff
553	changes in the Bahe River watershed of the Qinling Mountains, China,
554	Sustainable Cities and Society, 51, 10.1016/j.scs.2019.101729, 2019.
555	Heikkila, U., Beer, J., Abreu, J. A., and Steinhilber, F.: On the Atmospheric Transport
556	and Deposition of the Cosmogenic Radionuclides (Be-10): A Review, Space
557	Science Reviews, 176, 321-332, 10.1007/s11214-011-9838-0, 2013.
558	Hernandez-Ceballos, M. A., Brattich, E., Lozano, R. L., and Cinelli, G.: Be-7
559	behaviour and meteorological conditions associated with Be-7 peak events in
560	Spain, Journal of Environmental Radioactivity, 166, 17-26,
561	10.1016/j.jenvrad.2016.03.019, 2017.
562	Hodnebrog, O., Myhre, G., Forster, P. M., Sillmann, J., and Samset, B. H.: Local
563	biomass burning is a dominant cause of the observed precipitation reduction in
564	southern Africa, Nature Communications, 7, 10.1038/ncomms11236, 2016.
565	Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and
566	Pfister, L.: Stratosphere-troposphere exchange, Reviews of Geophysics, 33,
567	403-439, 10.1029/95rg02097, 1995.
568	Jordan, C. E., Dibb, J. E., and Finkel, R. C.: Be-10/Be-7 tracer of atmospheric
569	transport and stratosphere-troposphere exchange, Journal of Geophysical
570	Research-Atmospheres, 108, 10.1029/2002jd002395, 2003.
571	Kley, D., Smit, H. G. J., Nawrath, S., Luo, Z., Nedelec, P., and Johnson, R. H.:
572	Tropical Atlantic convection as revealed by ozone and relative humidity
573	measurements, Journal of Geophysical Research-Atmospheres, 112,
574	10.1029/2007jd008599, 2007.
575	Kondratyev, K. Y., and Varotsos, C. A.: Global total ozone dynamics - Impact on
576	surface solar ultraviolet radiation variability and ecosystems .1. Global ozone
577	dynamics and environmental safety, Environmental Science and Pollution

578	Research, 3, 153-157, 10.1007/bf02985523, 1996.
579	Kong, X. H., Zhou, W. J., Beck, J. W., Xian, F., Qiang, X. K., Ao, H., Wu, Z. K., and
580	An, Z. S.: Loess magnetic susceptibility flux: A new proxy of East Asian
581	monsoon precipitation, Journal of Asian Earth Sciences, 201,
582	10.1016/j.jseaes.2020.104489, 2020.
583	Lal, D., Malhotra, P. K., and Peters, B.: On the production of radioisotopes in the
584	atmosphere by cosmic radiation and their application to meteorology, Journal of
585	Atmospheric and Terrestrial Physics, 12, 306-328,
586	10.1016/0021-9169(58)90062-x, 1958.
587	Langford, A. O., Aikin, K. C., Eubank, C. S., and Williams, E. J.: Stratospheric
588	contribution to high surface ozone in Colorado during springtime, Geophysical
589	Research Letters, 36, 10.1029/2009gl038367, 2009.
590	Li, K., Jacob, D. J., Liao, H., Qiu, Y. L., Shen, L., Zhai, S. X., Bates, K. H., Sulprizio,
591	M. P., Song, S. J., Lu, X., Zhang, Q., Zheng, B., Zhang, Y. L., Zhang, J. Q., Lee,
592	H. C., and Kuk, S. K.: Ozone pollution in the North China Plain spreading into
593	the late-winter haze season, Proceedings of the National Academy of Sciences of
594	the United States of America, 118, 10.1073/pnas.2015797118, 2021.
595	Liu, X., Fu, Y., Wang, Q., Bi, Y., Zhang, L., Zhao, G., Xian, F., Cheng, P., Zhang, L.,
596	Zhou, J., and Zhou, W.: Unraveling the process of aerosols secondary formation
597	and removal based on cosmogenic beryllium-7 and beryllium-10, Science of the
598	total environment, 153293, 10.1016/j.scitotenv.2022.153293, 2022.
599	Liu, Y. M., and Wang, T.: Worsening urban ozone pollution in China from 2013 to
600	2017-Part 1: The complex and varying roles of meteorology, Atmospheric
601	Chemistry and Physics, 20, 6305-6321, 10.5194/acp-20-6305-2020, 2020.
602	Mann, M., Beer, J., Steinhilber, F., Abreu, J. A., Christl, M., and Kubik, P. W.:
603	Variations in the depositional fluxes of cosmogenic beryllium on short time
604	scales, Atmospheric Environment, 45, 2836-2841,
605	10.1016/j.atmosenv.2011.03.005, 2011.

606 Masarik, J., and Beer, J.: Simulation of particle fluxes and cosmogenic nuclide

607	production in the Earth's atmosphere, Journal of Geophysical
608	Research-Atmospheres, 104, 12099-12111, 10.1029/1998jd200091, 1999.
609	Monaghan, M. C., Krishnaswami, S., and Turekian, K. K.: The global-average
610	production rate of Be-10, Earth and Planetary Science Letters, 76, 279-287,
611	10.1016/0012-821x(86)90079-8, 1986.
612	Padilla, S., Lopez-Gutierrez, J. M., Manjon, G., Garcia-Tenorio, R., Galvan, J. A., and
613	Garcia-Leon, M.: Meteoric Be-10 in aerosol filters in the city of Seville, Journal
614	of Environmental Radioactivity, 196, 15-21, 10.1016/j.jenvrad.2018.10.009,
615	2019.
616	Qiu, S. F., Zhu, Z. Y., Yang, T., Wu, Y., Bai, Y., and Ouyang, T. P.: Chemical
617	weathering of monsoonal eastern China: implications from major elements of
618	topsoil, Journal of Asian Earth Sciences, 81, 77-90, 10.1016/j.jseaes.2013.12.004,
619	2014.
620	Raisbeck, G. M., and Yiou, F.: Measurement of Be-7 by accelerator mass
621	spectrometry, Earth and Planetary Science Letters, 89, 103-108,
622	10.1016/0012-821x(88)90035-0, 1988.
623	Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone,
624	C., and Pumphrey, H.: Asian Monsoon Transport of Pollution to the Stratosphere,
625	Science, 328, 611-613, 10.1126/science.1182274, 2010.
626	Shen, C. D., Beer, J., Kubik, P. W., Sun, W. D., Liu, T. S., and Liu, K. X.: Be-10 in
627	desert sands, falling dust and loess in China, Nuclear Instruments & Methods In
628	Physics Research Section B-Beam Interactions with Materials and Atoms, 268,
629	1050-1053, 10.1016/j.nimb.2009.10.095, 2010.
630	Sudo, K., Takahashi, M., and Akimoto, H.: Future changes in
631	stratosphere-troposphere exchange and their impacts on future tropospheric
632	ozone simulations, Geophysical Research Letters, 30, 10.1029/2003gl018526,
633	2003.
634	Tan, Y. L., Qiao, Y. S., Zhao, Z. Z., Wang, Y., Qi, L., Fu, J. L., Liu, Z. X., Yao, H. T.,
635	Wang, S. B., and Jiang, F. C.: Geochemical Characteristics of Eolian Deposits in

640

- 636 the Chengdu Plain of Sichuan Province and the Implications for Provenance,
- 637 Acta Geologica Sinica-English Edition, 87, 1712-1723,
- 638 10.1111/1755-6724.12171, 2013.
- 639 Tang, G. Q., Wang, Y. H., Liu, Y. S., Wu, S., Huang, X. J., Yang, Y., Wang, Y. M., Ma,

J., Bao, X. L., Liu, Z. R., Ji, D. S., Li, T. T., Li, X., and Wang, Y. S.: Low

- particulate nitrate in the residual layer in autumn over the North China Plain,
 Science of the Total Environment, 782, 10.1016/j.scitotenv.2021.146845, 2021.
- Tiessen, C., Bemmerer, D., Rugel, G., Querfeld, R., Scharf, A., Steinhauser, G., and
 Merchel, S.: Accelerator mass spectrometry (AMS) for beryllium-7
 measurements in smallest rainwater samples, Journal of Radioanalytical and
 Nuclear Chemistry, 319, 965-973, 10.1007/s10967-018-6371-6, 2019.
- Weigel, K., Hoffmann, L., Gunther, G., Khosrawi, F., Olschewski, F., Preusse, P., 647 Spang, R., Stroh, F., and Riese, M.: A stratospheric intrusion at the subtropical jet 648 649 over the Mediterranean Sea: air-borne remote sensing observations and model 650 results, Atmospheric Chemistry and Physics, 12, 8423-8438, 10.5194/acp-12-8423-2012, 2012. 651
- 652 Xiong, S. F., Ding, Z. L., Zhu, Y. J., Zhou, R., and Lu, H. J.: A similar to 6 Ma chemical weathering history, the grain size dependence of chemical weathering 653 654 intensity, and its implications for provenance change of the Chinese loess-red 655 clay deposit, Quaternary Science Reviews, 29, 1911-1922, 10.1016/j.quascirev.2010.04.009, 2010. 656
- Yamagata, T., Sugihara, S., Morinaga, I., Matsuzaki, H., and Nagai, H.: Short term
 variations of Be-7, Be-10 concentrations in atmospheric boundary layer, Nuclear
 Instruments & Methods In Physics Research Section B-Beam Interactions with
 Materials and Atoms, 268, 1135-1138, 10.1016/j.nimb.2009.10.117, 2010.
- Yamagata, T., Nagai, H., Matsuzaki, H., and Narasaki, Y.: Decadal variations of
 atmospheric Be-7 and Be-10 concentrations between 1998 and 2014 in Japan,
 Nuclear Instruments & Methods In Physics Research Section B-Beam
 Interactions with Materials and Atoms, 455, 265-270,

- 665 10.1016/j.nimb.2018.12.029, 2019.
- Yi, P., Yu, Z., Chen, P., Aldahan, A., Hou, X., Fan, Y., Chen, L., Possnert, G., 666 Muscheler, R., Zhou, W., Sudicky, E., Schwartz, F., and Murad, A.: Late 667 668 Holocene pathway of Asian Summer Monsoons imprinted in soils and societal implications, Quaternary Science Reviews, 215, 35-44, 669 10.1016/j.quascirev.2019.05.002, 2019a. 670 671 Yi, P., Yu, Z. B., Chen, P., Aldahan, A., Hou, X. L., Fan, Y. K., Chen, L., Possnert, G., Muscheler, R., Zhou, W. J., Sudicky, E., Schwartz, F., and Murad, A.: Late 672 Holocene pathway of Asian Summer Monsoons imprinted in soils and societal 673 implications, Quaternary Science Reviews, 215, 35-44, 674 10.1016/j.quascirev.2019.05.002, 2019b. 675 Zhang, J. Q., Li, D., Bian, J. C., and Bai, Z. X.: Deep stratospheric intrusion and 676
- Russian wildfire induce enhanced tropospheric ozone pollution over the northern
 Tibetan Plateau, Atmospheric Research, 259, 10.1016/j.atmosres.2021.105662,
 2021.
- Zhang, L., and Fu, Y. C.: Preliminary study of Be-10/Be-7 in rainwater from Xi'an by
 Accelerator Mass Spectrometry, Chinese Physics C, 41,
 10.1088/1674-1137/41/1/018201, 2017.
- Zhang, X. Y., An, Z. S., Chen, T., Zhang, G. Y., Arimoto, R., and Ray, B. J.: Late
 Quaternary Records of the Atmospheric Input of Eolian Dust to the Center of the
 Chinese Loess Plateau, Quaternary Research, 41, 35-43, 10.1006/qres.1994.1004,
 1994.
- Zhang, X. Y., Arimoto, R., and An, Z. S.: Dust emission from Chinese desert sources
 linked to variations in atmospheric circulation, Journal of Geophysical
 Research-Atmospheres, 102, 28041-28047, 10.1029/97jd02300, 1997.
- Zhao, K. H., Hu, C., Yuan, Z. B., Xu, D. N., Zhang, S., Luo, H. H., Wang, J. T., and
 Jiang, R. S.: A modeling study of the impact of stratospheric intrusion on ozone
 enhancement in the lower troposphere over the Hong Kong regions, China,
- 693 Atmospheric Research, 247, 10.1016/j.atmosres.2020.105158, 2021.

694	Zheng, X. D., Wan, G. J., and Tang, J.: Source characteristics of O3 and CO2 at Mt.
695	Waliguan Observatory, Tibetan Plateau implied by using Be-7 and Pb-210,
696	Science China-Earth Sciences, 54, 550-560, 10.1007/s11430-010-4121-x, 2011.
697	Zhou, W. J., Chen, M. B., Xian, F., Song, S. H., Wu, Z. K., Jull, A. J. T., and Liu, W.
698	G.: The mean value concept in mono-linear regression of multi-variables and its
699	application to trace studies in geosciences, Science In China Series D-Earth
700	Sciences, 50, 1828-1834, 10.1007/s11430-007-0123-8, 2007.
701	

33