
Anonymous Referee #1

General comments

This paper describes a modelling framework based around WRF that will be used with a network of spectrome-
ters for top-down monitoring of greenhouse gases in Munich. The methodology based around WRF-CHEM and
STILT with other datasets for emissions, land cover, boundary conditions etc. and data from the spectrometer net-
work was introduced in a previous paper by the authors. The modelling framework is clearly outlined and some
best practices for top-down emission monitoring are described. In particular, the authors describe some quali-
tative checks for determining when a gradient method may be appropriate for top-down measurements. These
concerns can be of interest to other groups working on urban or regional carbon observations. The paper also
makes some comparisons of their meteorological fields and modelled greenhouse gas signals to measurements
from their networks on a few days in August, 2018. The paper also suggests explanations for discrepancies they
observe between their measurements and model. However, some of these explanations are not strongly supported
and the authors may need to consider some alternative explanations to make this aspect of the paper stronger.

Additionally, although the authors describe two models in their paper, there is no discussion contrasting the
approaches or explaining the differences in results that the authors find with them. The authors also find that
their gradient method is unable to isolate signals from their region of interest during their measurement days. I
think that a discussion of why this is and how such a network could be improved or the challenges creating a
network at a 10’s of km scale in a complex source region would be very useful.

The paper is well-written without many typos and well structured for the most part.

We thank the anonymous Referee #1 for their time and valuable comments to improve this manuscript. We have
improved our explanations following your kind comments and suggestions in this revision. The general and
specific comments are addressed point-by-point in replies below. The referee’s comments have been repeated in
black. The authors’ replies are marked in blue and the edited contents of the manuscript are documented in red in
tables below each comment. Moreover, we set the numbers of the figures in this revision as ‘R’ plus the numbers
(e.g., Figure. R1), while the figures in the manuscript are numbered with ‘M’ plus its numbers (i.e., Figure. M1).

We assume that the “two models” that the reviewer is referring to in the comment above are WRF-Chem and
STILT. We have done our best to address this comments and concerns, making a table to summarize the differ-
ences of these two models (from general objectives to technical details), which we explain replying to the specific
comments below (see Pages 9 & 10).

Following the valuable comments from the referee, we have extended the explanation regarding the model-
measurement biases, especially the part related to the overestimation in the modelled background CO2 concen-
trations. It is true that DCM was not able to isolate the signals from the area of interest. The question of how
measurement networks similar to MUCCnet could be improved, and the challenges in creating a network at the
city level in a complex urban region is beyond the scope of the current study. This is an exploratory analysis,
based on a limited number of measurements (one month measurement campaign). Building on the methods out-
lined in this study, work is currently underway to develop more sophisticated modelling approaches, which will
be the focus of future studies. Furthermore, the MUCCnet data and the related modelling systems are involved in
several ongoing projects. One in particular (ICOS Cities, https://www.icos-cp.eu/projects/icos-cities) is address-
ing the problem of network design directly, by comparing pilot projects in various cities. The outcomes of this
project may provide further guidance for optimal instrumentation and analysis approaches.
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Specific comments

Figure M1: include a scale bar please. I also suggest you remove extraneous land use categories (eg tundra)
from your legend as it is confusing and use a different colour scale (eg greens for vegetation etc.). Jet could
be interpreted as a continuous scale but land cover is discrete and categorical. As the figure is drawn now, it
is difficult to tell what land covers are what colour on your map. I would also indicate your meteorological
reference stations (sondes and surface).

Response: We thank the referee for these suggestions on Fig. M1. As shown in Fig. R1, there are in total 9
LULC categories that are not present D03 and are struck through in red on the X-axis. We have removed these
extraneous categories from the legend of Fig. M1 (see updated version in Fig. R2). Moreover, we have also
defined our own discrete color bar for these LULC categories, as was suggested in the comment. Figure R1 and
relevant information have been added to Sect. S3 of the supplement.

Figure R1: The contribution of each Copernicus land use land cover (LULC) category over Munich (D03). The
categories that are crossed out on the X-axis are absent in D03.

Regarding the two surface stations used for the model-measurement comparison of meteorological fields, they
have been marked as black dots and labelled. The LMU station is quite close to the center site of MUCCnet (i.e.,
TUM), as described in Sect. 3.1 of the manuscript, separated by approximately 600 meters. Thus, in addition
to marking it in the figure, we also changed the text ‘close to the center of Munich’ to ‘close to the center site
of MUCCnet’ in line 169. The other station is located at Munich airport, outside of the city administrative
boundaries.

Lines 176∼177
The first station is located at the Meteorological Institute of the Ludwig Maximilian
University of Munich (LMU; latitude: 48.15 ◦, longitude: 11.57 ◦, altitude: 561 m),
close to the center site of MUCCnet.

The two reference stations of radiosondes from IGRA are not marked in Fig. M1, since they are not located in
the innermost domain (D03, i.e., the right panel of Fig. R2). To see the locations of these two stations, we have
marked them in Fig. M7(b).

Your footprints suggest that you are often sensitive to emissions outside of Munich and you refer to discrepancies
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Figure R2: Topography map for the entire domain area (left panel). The right panel shows the land use classifica-
tion in D03, including the 16 classified IGBP-modified MODIS land-cover types (from 1 to 21, as illustrated in
the color bar and labels), and 6 classified LCZ land-cover categories defined for the urban areas of D03 (numbers
larger than 30, as illustrated in the color bar and labels). The five measurement sites in our MUCCnet campaign
and the surface weather stations used for the model-measurement comparison of meteorological fields are marked
as black dots on the right panel. The national boundaries and coastlines in the left panel are from National Center
for Atmospheric Research (NCAR) Graphics Version 4.1 (© UCAR/NCAR).

in the background concentrations. Therefore a comparison between two stations in Munich to your meteorology
may not be appropriate for evaluating model bias. Including more stations within your domain may be better
(2 would be appropriate if you were isolating signals in Munich but your initial results suggest you aren’t?). I
also think that this section should be combined with your discussion of the radiosonde data and you do a more
holistic comparison of the meteorology based on the two. This section may also be better places after the section
introducing your study area (4.1) so the reader is situated in your field site before discussing the comparison.

Response: Thank you for this valuable comment. We wholeheartedly agree with your point, unfortunately apart
from the data presented in the study, additional meteorological (especially wind observations) data were not
available during the analysis period of this measurement campaign. Overall, we have evaluated the modelled
meteorological fields by comparing them with observations from four stations, two surface measurement stations
and two radiosonde stations from IGRA that provide measurements along a vertical profile. We believe that
these comparisons form a relatively complete analytical assessment of the meteorological data. More stations,
planned within the “ICOS-Cities” project, will become operational in the coming years, allowing for a more
robust evaluations in the future. This information has been added in the outlook (Sect. 6: Conclusion) of the
edited manuscript.
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Lines 592∼595

We are looking forward to conducting further studies in this direction, in particular as
Munich one of the three pilot cities in the EU Horizon 2020 project ICOS Cities. Within
this project, more measurement sites will be operated in and around Munich in the
coming years. More comprehensive comparisons for meteorological parameters can be
expected.

As per the reviewer’s suggestion, we have moved the model-measurement comparison of the two radiosondes to
Sect. 3 of the manuscript (‘Model-measurement comparison for wind fields’). The details can be found in Pages
8-9 of the manuscript.

Line 181: Since your measurements are not available on every day in August, it might be appropriate to also
report the biases on the days when you have measurements as well. Otherwise errors in the wind specific to the
measurement days and relevant to your modelling in this paper may be masked.

Response: Thank you for your suggestion. The purpose of Fig. M2 is to assess the overall quality of the wind
fields reproduced by WRF, and therefore we showed simulated data for the whole period of our measurement
campaign. We did not include a screening for measurement periods, because the EM27/SUN measurements had
not yet been discussed at this point in the analysis. Additionally, limiting the analysis only to the measurement
days also has drawbacks, as the concentration fields in the study area are affected by circulation patterns present
in the previous days as well, making it difficult to define the appropriate comparison period. However, following
your remark, we marked the measurement days in Fig. M2 and re-phased the sentence about the biases on these
days.

Lines 195∼198

Along the time series, the simulated (Fig. 2(b): red crosses) and measured (blue dots)
wind speeds show similar variability, but the model generally overestimates wind speeds
with a root mean squared error (RMSE) of 2.0 m/s and a mean absolute error (MAE) of
1.2 m/s. During the measurement periods (cf. Sect. 4) marked by the grey shaded areas
in Fig. 2(b), the model performs slightly better with a RMSE of 1.6 m/s and a MAE of
1.1 m/s.

Lines 202∼203
Over the measurement periods marked by grey areas, smaller differences between the
WRF and the in situ surface wind directions are found, with a RMSE of 58.2 ◦ and MAE
of 1.8 ◦.

Line 235: The FTS retrieval typically uses a profile based on NCEP for the pressure and temperature profile and
surface pressure from the instrument. Here you use the WRF meteorology to define the model pressure levels
and surface pressure from WRF. I wonder if this discrepancy might introduce a bias in your model-measurement
comparison. It may not but it is worthwhile to consider and discuss briefly.

Response: Thank you for this comment. For the five instruments deployed in MUCCnet, one pressure profile is
used for the measurement retrieval. The WRF model provided pressure and temperature at a much finer spatial
resolution than that of NCEP, at a horizontal resolution of 400 m and with 45 vertical levels. To investigate
whether discrepancies of pressure between the values used in the retrieval and the WRF model values could have
a significant impact, we extracted the pressure and temperature profiles from the “.map” file used in the retrieval
Figure R3 shows the comparison between these retrieval values and the modelled values. In general, only small
difference in temperature and pressure are found above around 10 km. As the modelled pressure profiles match
the vertical structure of the modelled concentration fields, the modelled column concentrations can be calculated
without the need for interpolation. The relevant information has been added in the manuscript as follows:
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Lines 269∼273

Here we use WRF meteorology derived pressure profiles to calculate the weights for
each vertical layer, instead of the pressure profiles used for EM27 retrievals (NCEP).
This is convenient, as the WRF modelled profiles for both pressure and concentrations
have the same vertical structure and no interpolation is necessary. Furthermore, only
slight differences in pressure at higher altitudes was found between the WRF model and
NCEP (see Sect. S10).
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Figure R3: Comparisons of (a) Temperature and (b) Pressure Profiles between the values from NCEP and the
WRF modelled values for five MUCCnet sites at 12:00 UTC of 16 August. The profiles of the MUCCnet sites
coincide such that only the TUM profile (green graph) remains visible in each panel.

Line 260: Here you refer to the WACCM a-priori profile. However, in your section on the EM27, you say you
use the retrieval methodology of Dietrich et al (2021). They say the use GGG2014 for their retrieval and this
software typically calculates its own a-priori profiles during the retrieval. For the calculation of the averaging
kernel correction, you use the a-priori that you use in your retrieval so can you clarify what you used in your
retrieval in your section describing your EM27 measurement? Is it WACCM or the GGG-2014 profile?

Response: Thank you for pointing this out. For the measurement campaign in 2018, the GFIT GGG-2014 al-
gorithm was used for the retrieval. Currently, PROFIT and GGG-2020 are applied in MUCCnet. The GFIT
GGG-2014 algorithm defines its own a-priori profile, instead of using WACCM. We have clarified this informa-
tion in our updated manuscript.

Lines 233∼235

The retrieval algorithm GFIT GGG-2014 (Wunch et al., 2015) was applied during
the measurement campaign of 2018, while currently MUCCnet is using the PROF-
FIT (Hase et al., 2004; Frey et al., 2019) and GGG-2020 algorithms (Laughner et al.,
2023).

Line 286: Note that Gałkowski et al. are about in-situ concentrations. The size of the bias or variability expected
for an in-situ measurement would generally be larger than a column error. Additionally, their analysis would
ignore flaws in your stratospheric column so I think it is appropriate to note in your text that the comparison is
not like to like.

Response: Thank you for this comment. Please note that in their study, Gałkowski et al. have reported the bias
statistics for an elevated layer of the troposphere (3 km - 10 km a.m.s.l.), which based on their observations they
have interpreted as being caused by discrepancies stemming primarily from offsets in far-field contributions.
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Considering that a) most of the measurement sensitivity for both XCO2 and XCH4 is for the tropospheric part of
the column, and b) we find the boundary condition from CAMS (the same product that was used in the quoted
study) to be the primary source of discrepancy between our observations and the model, we believe that the very
good agreement between the numbers from all reported studies (ours, Gałkowski et al. and Tu et al.) is more than
a coincidence. Overall, we agree that that comparison of column variability and that of Gałkowski et al. cannot
be made directly without careful consideration (in particular of the effects of errors in the stratosphere), and we
clarify that in the revised manuscript, as suggested.

Lines 310∼314

Gałkowski et al. (2021) found a similar bias between the CAMS product and airborne
measurements in the free troposphere over Europe, with a MB of 3.7 ± 1.5 ppm, which
they attributed to the far-field contributions to the local signal. While the agreement
between the biases reported in their study and here is excellent, it should be noted that
the numbers are not fully comparable, as the authors of the quoted study evaluated a
limited section of the vertical column (namely between 3 – 10 km a.m.s.l.) using in-situ
data, thus excluding the stratospheric component of the total column.

Lines 325∼329

Comparing CH4 in the CAMS product with in-situ observations in the troposphere,
Gałkowski et al. (2021) also reported a negligible MB, but a relatively large standard
deviation (0 ± 14 ppb) in their setup. As in the case of XCO2, it should be noted that the
comparison between these estimates should not be over-interpreted due to differences
in the vertical coverage of the measurements.

Line 290: I don’t follow why data from the early part of the month aren’t included? Please explain why here.

Response: Regarding the intra-day comparison between the model and the measurement, seven consecutive days
were analyzed in Sect. 4.2.3. Because this was the longest stretch of consecutive measurements, the impact of
intra-day signals could be assessed. Then the rest of the days in August has been shown in the Sect. S7 of the
supplement, and this explanation has been added in the content.

Lines 330∼333

In order to obtain a more detailed view on how the model behaves at higher temporal
resolution, the longest stretch of consecutive measurements in the campaign (i.e., from
16 to 22 August ) are analyzed here. Figures 5 & 6 show the daily curves of XCOS

2,sla

and XCHS
4,sla at five sites for these 7 consecutive days against the corresponding mod-

eled values with hourly temporal resolution.

Re nighttime columns: It is not clear to me how you define a nighttime slant column concentration. Since the
sun is below the horizon, obviously your zenith angles are negative. Additionally, your averaging kernel matrix
is based on retrievals from the day time so it is not clear how you extrapolate it, and I don’t think it makes sense
to do that if you did. I would clarify what exactly you did here and I note that line 298 (“pressure weighted as a
proxy”) is very unclear.

Response: As explained at the beginning of Sect. 4.3.2 in the manuscript (‘Comparison between model and mea-
surements: intra-day concentrations’), the model-measurement comparisons of the total column concentrations
for GHGs are only made during the daytime, from approx. 6:00 UTC to 17:00 UTC. That is, the calculation
of the modelled slant column concentrations are only implemented during the daytime. These modelled slant
column concentrations are referred to as XCOS

2,sla and XCHS
4,sla. To better understand the model performance

over the whole day, and the impact of nighttime signals on the model-data mismatch, the pressure-weighted total
column concentrations along the perpendicular column (i.e., XCO2 & XCH4) are calculated based on the Eq. 1
of the manuscript. We have rephrased four parts in the manuscript for clarity as follows:
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Lines 275∼277
Simulated concentration fields of CO2 and CH4 used for the model-measurement com-
parison in this study must therefore be aggregated along the slant columns from the
ground to the sun during the period of the available measurement dates.

Lines 298∼300

When comparing the simulations to the measurements, the simulated CO2 and CH4

concentration profiles along the slant column during the period of the available mea-
surement dates are aggregated to the AK-smoothed column concentrations (XCOS

2,sla

and XCHS
4,sla) by using Eq. 3.

Lines 337∼339
As mentioned in Sect. 4.2.1, the modelled and observed slant column concentrations
(XCOS

2,sla and XCHS
4,sla) used for the model-measurement comparisons are smoothed

using the SZA-dependent AK based on Eq. 3.

Lines 338∼339
Figures 5 & 6 also illustrate the contributions to the total column concentrations of
CO2 & CH4 (XCO2 & XCH4) from different tracers in the model throughout day and
night, which are calculated based on Eq. 1.

Line 422: The upwind site can’t be used as a relative background if there are sources upwind of it that are still
unmixed. In that case the upwind will see a stronger signal from those sources than the downwind one and they
wouldn’t be removed in a gradient. This seems to be what you are seeing with your data so you should mention
this caveat here.

Response: Thank you for this insightful comment. We have added this caveat to both “preparation of DCM” and
the discussion of concentration gradients.

Lines 471∼472 In addition, in cases where there are emitters located upstream of an upwind site, the
presence of the strong local signal prevents it from being used as a background site.

Lines 529∼532

As a large methane sink over the city is not expected, the most likely cause for this phe-
nomenon is that emission sources located upstream of an upwind site (i.e., somewhere
to the northeast or east of the Garching and Markt Schwaben stations in the case with
NE/E winds) are missing or underestimated in the initial emission inventory.

Line 423: STILT footprints have a magnitude and the footprints generally fall off as you move away from the
instrument. So two footprints can overlap within their 90% contours but the instruments can have different
measurements since one will be more strongly influenced by some sources (and see a higher peak) than the other.
I would keep this in mind when discussing footprint overlap and gradients and think that looking at the difference
in magnitude of the footprints could be more quantitative.

Response: Thank you for your valuable suggestion, we agree with your point. Based on this explorative study,
we expect to be able to track down unknown or underestimated emitters more quantitatively, albeit this would
require a longer observation record as well as some refinements to the modelling approach. Following your
suggestion, we have extended the content in Sect. 5.5 (“Localizing unknown/underestimated emission sources”).

Lines 566∼569

However, with a longer observation record and refinements to the modelling approach,
we see the potential to track down strong emitters of GHGs. It should be noted, however,
that accurate estimation of unknown or underestimated sources needs to be performed
using a combination of observations and a quantitative footprint analysis.

Line 489: You should include a time series of XCH4 gradients similar to figure 9. Without one, it is quite difficult
to follow your logic in this section.

Response: We have included a time series of the XCH4 gradient similar to that in Fig. M9 in the supplement.
The details can be found in Sect. S13 of the supplement.
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Line 499: It is also good to note that your network does not isolate emissions from Munich which is what it
was designed to. I think it would be useful to discuss how performing gradients on a 10’s of km scale and in
a complex source region can complicate isolating signals from an area of interest. This type of limitation is
important for other groups.

Response: Thanks for this suggestion. We are also aware of both limitation of our model framework and the
measurement network, especially for the isolation of CH4 emissions over a complicated source area. The results
of this research could serve as a helpful reference for other organizations seeking to identify the most effective
tools and analytical methods for monitoring urban anthropogenic signals. Following this suggestion, we have
mentioned these limitations in the conclusion of this study:

Lines 583∼588

Despite the continuous total-column measurements surrounding the city center, this
analysis highlighted the challenge of extracting the anthropogenic signal from such
data. Even though our model was not able to fully reproduce the measured gradients
in CH4 over this complicated source region, this exploratory application enabled us to
identify unexpected signals in the measurements and to roughly delineate the potential
uncertain source regions in the inventory. The outcomes of this study may provide guid-
ance for other groups considering the optimal instrumentation and analysis frameworks
for measuring urban anthropogenic signals.

Line 519: Your paper discusses two distinct modelling frameworks under WRF-GHG and STILT but you do not
compare the approaches in terms of their benefits and drawbacks and when one might be more appropriate than
the other. I think incorporating this will add a lot to your paper and be useful for other groups.

Response: Thanks for this comment. Generally, WRF-Chem and STILT are two different types of models and
are rather complementary than comparable. WRF-Chem is an Eulerian model, which combines weather predic-
tion with tracer transport and can reproduce or predict high-resolution meteorological and concentration fields
on a three-dimensional grid as a frame of reference. STILT, in contrast, is a stochastic Lagrangian (moving
frame of reference) model simulating transport with pre-computed (assimilated) meteorological fields as input,
whose calculations are offline and computationally efficient. Lagrangian models are efficient also because they
need only resolve the meteorology along the course of a given advected air parcel. The two models are linked
in this study because the meteorological output of WRF-Chem is used to drive the particle transport model
STILT. Thus, STILT is simply used to derive the footprints, or areas of influence, of the measurements, using
the same meteorological fields (Pillai et al., 2012). While the “direct” extraction of footprints from WRF outputs
is theoretically possible with the adjoint form of WRF, it is considerably more computationally costly and com-
plicated. While there are some differences regarding the representation in the vertical transport between WRF
and STILT, we believe that any inconsistencies are irrelevant for the conclusions of this study. Therefore, using
STILT driven by WRF meteorology for the purpose of this study is simply an efficient approach. Based on our
model-measurement comparison of meteorological fields, particularly winds, we believe that the modelled wind
fields from WRF are adequate for both Eulerian and Lagrangian.

In addition, we have added two tables (Table S5 & S6)in Sect. S11 of the supplement, one for the comparison
between the two models with respect to their features, benefits and drawbacks (see Table R1), and another for
the basic set-up of the models used in our study (see Table R2).

Re your comments about unknown emissions: The TNO inventory you use seems to include point sources,
agriculture, and waste according to your van der Gon et al. (2019) reference. Additionally, it seems like the
sources you plot in figure 10 fall on regions with emissions. So it might not be correct to say there are missing
or unknown sources (e.g., line 365, 394, and in the abstract) that are responsible for your discrepancies without
work to ensure that the sources in the inventory are not responsible for the mismatch you see.

Response: Thank you for the comments. As demonstrated in Sect. M2, the TNO GHGco v1.1 used in our

8



Table R1: Summary of two models used in this study
Name WRF-Chem (Peckham, S., 2017) STILT (Fasoli, B., 2018)
Type of Model
Framework Eulerian framework Lagrangian framework

Background
An extended version of WRF coupled with
Chemistry, including transport of aerosol,
NOx, GHG, etc.

An extension of HYSPLIT (The Hybrid
Single-Particle Lagrangian Integrated Tra-
jectory) model to simplify atmospheric
transport modelling workflows and im-
prove accuracy.

Usage of Model
in this study

Simulation of spatial and temporal distri-
butions of tagged trace gases, driven by the
WRF modelled meteorology.

Simulation of transport of an ensemble of
air parcels at a receptor location backward
in time.

Input/Driver
Global reanalysis coarse meteorological
databases, gridded emission fluxes and
global background concentration profiles.

Global or regional meteorological fields.
Vertical profiles of the horizontal and ver-
tical wind components as key drivers.

Mechanism

Dynamical downscaling by solution of dif-
ferential equations for the meteorological
variables with transport/chemistry added
using a tracer approach.

Transport of particles is directly followed
by using a combination of mean winds
from inputs with stochastic fluctuations
based on a Markov process (turbulent mo-
tions).

Products
Finer meteorological fields and its deriva-
tive products, e.g., spatial and temporal
distribution of CO2.

Particle trajectories and gridded surface
flux footprints (i.e., sensitivities to up-
stream surface emission fluxes).

Benefits

1. Modelled outputs advanced in both spa-
tial and temporal resolution. 2. Simulation
of trace gases simultaneously with the me-
teorology, without time interpolations. 3.
More realistic representation of the atmo-
sphere and numerically more consistent,
with the same grid structure of the mete-
orology. 4. The outputs assessed and used
to interpret a variety of types of observa-
tions, also from satellites.

1. More computational efficiency and easy
extraction of footprints. 2. Concentration
enhancements at the receptor which can be
obtained by convolving the outputs (foot-
prints) with emission inventories.

Weaknesses

1. High computational requirements. 2.
Less flexibility for conducting ensemble
modeling and extracting the footprint in-
formation.

1. Sensitivity of particle transports to the
accuracy of meteorological input fields. 2.
Turbulent transport in STILT is reproduced
by following a stochastic process (Markov
chain), which is highly sensitive to the ver-
tical velocity variance and the Lagrangian
time-scale (Pillai et al., 2012).

Relationship be-
tween models WRF derived meteorological input fields are commonly used to drive STILT.

study contains point and area sources, classified into fourteen sectors. Figure. S2 depicts the vertical profiles for
the point sources from different sectors in this inventory, and Tables S2&S3 show the aggregation of emission
categories for CO2 and CH4 to our model.

Thanks for this correction. Not only could the ‘missing’ or ‘unknown’ sources lead to an underestimation of con-
centration gradients between down- and upwind sites, but also the underestimation in the magnitude of emission
fluxes from the inventory could contribute to this model-measurement bias. We have rephrased all the parts in
which the word ‘underestimated’ was missing in the original manuscript.
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Table R2: Basic set-up of two models used in this study
Name WRF STILT
Horizontal
Resolution 400 m × 400 m 0.01 ◦ × 0.01 ◦ (resolution of footprints)

Vertical layers 45 13 (particles’ release height)

Meteorological
inputs

ERA5 (37 km × 37 km), Emission fluxes
from TNO-MACC, background concentra-
tion profiles from CAMS.

WRF output from the middle domain
(D02; 1 km × 1 km).

Final products
Spatial and temporal distributions of me-
teorological fields and tagged trace gases
(i.e., CO2 and CH4).

Gridded pressure-weighted column foot-
prints for five MUCCnet sites.

Title of Sect. 5.5 Localizing unknown/underestimated emission sources

Lines 441∼442 ...and most importantly for our attempt to locate unknown or underestimated CH4 emis-
sions (Sect. 5.5)

Lines 467∼468
Understanding these differences is a key prerequisite for determining the location of
potential unknown or underestimated GHG sources based on noteworthy signals in the
downwind-upwind concentration gradients.

Lines 474∼475 ...the small non-overlapping parts are potential locations for unknown or or underesti-
mated GHG emitters and sinks to be pinned down.

Additionally, if there are issues with the multinational inventory, it may be good to reference and discuss work
by groups in Toronto (Pak et al., 2021) and California (Cararnza et al., 2018 & Mareklein et al., 2021) to create
a fully resolved and detailed methane inventories in preparation for top-down monitoring. Otherwise, see my
comment about considering other explanations for your discrepancies.

Thank you for the recommendation of the studies related to regional emission inventories. Bottom-up multina-
tional emission inventories of CH4 are generally compiled by scaling emissions using activity data and emission
factors, which results in relatively large uncertainties (Bergamaschi et al., 2022). For the TNO GHGco v1.1
emission inventory used in this study, its point source information was collected on the location of power plants,
large industrial installations, oil and gas production sites, airports and waste treatment locations (e.g. landfills),
mostly from the E-PRTR (European Pollutant and Transfer Register) database. The data are valid for 2015.
Therefore, in addition to the uncertainties due to the quantification of emissions in the inventory mentioned
above, inconsistencies between emission information collected in 2015 or even earlier and actual emissions dur-
ing the study period in 2018, could result in differences. Despite having chosen a high-resolution, state-of-the-art
emission inventory, these uncertainties could contribute to the model-measurement differences.

In the recommended studies, the authors describe methods to generate/optimize customized inventories, which
are quite impressive. However, the generation/optimization of emission inventories is not included in the range
of our objectives for the current study. Nonetheless, our team is currently further developing inverse modelling
approaches by using atmospheric measurement and a transport model (i.e., STILT) to optimize the emissions
from the a-priori inventory. Two pilot cases have been published for Hamburg (Forstmaier et al., 2022) and for
the city of Indianapolis (Jones et al., 2021). This is also being applied for Munich as part of the ICOS-Cities
project.

Following your comments, we have added the causes of the uncertainties in the inventory to the manuscript as
follows,
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Lines 549∼556

In this study, the modelled contributions from human activities are initialized with the
emission fluxes from the emission inventory TNO GHGco v1.1 for the year 2015. The
multinational bottom-up emission inventory holds large uncertainties, due to the large
variability in spatiotemporal distributions of CH4 emissions from different sectors in
different regions that have not yet been fully captured by the emission inventory (Berga-
maschi et al., 2022), the disaggregation from annual emissions to hourly values using
temporal profiles and the temporal inconsistency of emission information from 2015 or
even earlier than the study period in 2018. This could result in missing or underesti-
mated emissions in the inventory, as suggested by the measurements. After delineating
the areas where the uncertain sources could be located, they were further pinpointed
based on the updated database and local knowledge.

For their analysis of the methane gradients, the authors also conclude that there are missing spices on their
inventory but they do not consider alternatives that can affect a column gradient. For example as elevation offsets
(Hedilius et al., 2017), variability in the background signal at each instrument due to time lags in air reaching the
boundary (Jones et al., 2021) or meteorological errors (c.f., Wu et al., 2018). I think the authors should consider
these possibilities and others as well as the idea of missing data in their measurements.

Response: Thank you for this insightful comment, these points are quite helpful. The modelled meteorological
fields could indeed bring about errors in the advection, which would contribute to the biases of absolute methane
concentrations (XCH4) and further to discrepancies in the methane gradients. Furthermore, due to lags in the
time it takes for air to reach the boundary, the variation of the background signals at each instrument could be
large. This is definitely a key point to be considered when the concentration gradients are used for inversions
to optimize the inventories (as in Jones et al., 2021), but it presents significant complexities for our study and
its implementation within the WRF-based framework. In addition to the emission-related causes that lead to
the model-measurement biases of concentrations and their gradients, Hedilius et al.(2017) pointed out that non-
emission factors (like the mixed layer height and topography) would further cause biased results. The importance
of topography is verified as a significant factor in the variations of concentrations beyond the urban area. In our
case, even though the elevations over our innermost domain (DO3, Munich) are rather consistent, i.e. around
550 m above sea level, the area around this domain’s boundaries contains the complex topography of the Alps.
It should be noted, that while it still plays a role, column measurements are less sensitive to mixing layer height
than are in-situ measurements.

The causes discussed here could contribute to errors in the concentration and thus, the gradients. We have
extended the discussion other causes which could contribute to the biases in the model-measurement gradients
as such:

Lines 540∼544

In addition to the errors caused by the uncertainties in the initial emission inventory,
other potential causes could contribute to errors in the concentration and thus, the gra-
dients as well. The bias brought by the modelled meteorological fields can contribute to
the bias of the modelled XCH4, further to discrepancies in ∆XCHS

4,sla, by influencing
on the advection (Wu et al., 2017). Further, our current DCM approach does not take
the transport time into account. Moreover, factors such as the mixed layer height and
topography could also introduce biases (Hedelius et al., 2017).

Re considering alternative explanations: with the preliminary data and model results, the authors suggest reasons
for discrepancies they see in the model. However, in some instances, it seems like the authors do not justify
why they settled on a particular explanation rather than another. For example, the authors attribute a bias in their
XCO2 model to the cams model used to provide boundary and initial conditions. However, they also mention
that results at a sub-diurnal scale suggest a too-high net ecosystem exchange in their model and the authors
suggest there is a flaw in their emission inventory with CH4. How would the authors know if the cams model is
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responsible for the mean bias they observe in the daily data?

Response: Thank you for these comments.

We would like to point out that to answer this question in detail, one needs to consider cases of CO2 and CH4
separately, as even though they are both simulated by the WRF and CAMS models, differences in their flux
spatio-temporal patterns will lead to different biases when comparing to our measurements.

The modelled total column concentration of CO2 (XCO2) is made up of three parts, the background contribution
(Model.(X)CO2 BCK, see Fig. R4), the enhancements induced by human activities (Model.(X)CO2 ANT) and
biogenic activities (Model.(X)CO2 BIO). Each of these components could contribute to the model-measurement
discrepancy. As discussed in the manuscript, the bias in the model-measurement comparison of XCO2 could
be attributed to three main causes: i) overestimation of the modelled background concentration from CAMS,
ii) errors in concentration enhancements brought by anthropogenic fluxes, and iii) errors in simulated biogenic
fluxes.
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Figure R4: Time series of the daily mean measured values over five sites of MUCCnet (black) and
the averaged modeled XCO2 from CAMS (red, CAMS.XCO2 BCK) and WRF over D03 during the day-
time (i.e., 6:00 UTC to 17:00 UTC). The modelled column concentrations are pressure-weighted means
(see Eq. 1 in the manuscript). The error bars represent the standard deviation of the simulated val-
ues over D03 and over the five sites of MUCCnet. The orange curve represents the mean mod-
elled column background concentration (Model.XCO2 BCK). The green curve shows the averaged to-
tal column concentration (Model.XCO2 BCK+Model.XCO2 ANT+Model.XCO2 BIO) and the blue curve
shows the averaged column concentrations considering only the background and anthropogenic activities
(Model.XCO2 BCK+Model.XCO2 ANT), without biospheric fluxes.

To understand the background-related cause in depth, we analyzed the variations and time series of CAMS it-
self, and compared the modelled and measured values. This part has been included in the edited supplement
(see Sect. S14). As seen from the red and orange curves in Fig. R4, the day-to-day magnitude and variations
in Model.XCO2 BCK are mostly determined by its initialization (CAMS.XCO2). For the simulations of back-
ground concentrations of tracer gas in WRF-Chem, it begins with initializing the 3-D field of the tagged tracer
at the very beginning of the simulation cycle (i.e. 30th July in our study) and it is updated via the lateral bound-
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ary conditions using global tracer fields at a 3-hour interval (using CAMS fields for both). On the basis of
Model.XCO2 BCK (orange), the daily-mean total column concentrations (green) vary slightly with the posi-
tive anthropogenic fluxes (Model.XCO2 ANT) and the carbon sink from biogenic activities during the daytime
(Model.XCO2 BIO). The mean bias between CAMS.XCO2 and Obs.XCO2 (± its standard deviation) is 4.8 ±
0.7 ppm. Even though the overestimation of anthropogenic fluxes from the inventory and the uncertainty in the
estimation of biogenic fluxes by the model could contribute to the model-measurement bias, this overestimation
of CAMS overall plays a dominant role in the magnitude of the model-measurement bias of XCO2. Gałkowski
et al., (2021) & Tu et al., (2020) have supported this assumption that the CAMS (background) could cause a
relatively large offset, rather than local emissions causing errors in excess of more than 3 ppm.

Moreover, a noteworthy dip can be observed in the model on 22 and 23 August (see the pink box in Fig. R4).
This could be caused by the advection of air masses strongly influenced by photosynthetic uptake, coming into
the domain from e.g., Italy, Slovenia, and Croatia, as has been discussed in Sect. 4.2.3 in detail.
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Figure R5: Vertical profiles of (a)Altitudes, averaged modelled CO2 over D03 on (b)16, (c)17, and (d)22, August
2018 from CAMS and WRF-Chem. The red curve represents the values from CAMS, and the others stand for
our model results, with green for the total values, blue for the sum of the background and the human-related
enhancements, and red for the background.

We also checked the vertical distribution of the model values from CAMS and WRF-Chem on 16, 17, and 22
August at 12 UTC (see Fig. R5). In general, the vertical distributions of CAMS CO2 and Model CO2 BCK are
quite similar but slightly differ close to the ground level. This also indicates that the magnitudes and the verti-
cal structure of background initialization of CO2 (CAM.CO2) play a decisive role in the modelled background
(WRF.CO2 BCK) and total concentrations. Furthermore, emissions caused by human activities (blue, Fig. R5)
contribute to the total concentration (green) within the planetary boundary layer (PBL, below approx. 2 km). For
the enhancements associated with biogenic activities (green curve), carbon sources from respiration contribute
significantly to the total concentration of CO2 near ground level, while air masses heavily influenced by photo-
synthetic uptake (with less CO2) and coming from the outer domain play a key role at higher altitude, especially
on 22 August. This could explain the dip on this date (see the pink box in Fig. R4). The animation of biogenic
concentrations over D01 attached in the supplement provides a visual perspective of this phenomenon.

Owing to the relatively large bias of CO2 brought in by CAMS, we considered using the model-measurement
MB over all the measurement dates (i.e., 3.7 ppm) to “correct” the modelled values. This could help to see if the
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model could reproduce similar variations to those seen by the measurements. These variations are determined by
the modelled biogenic effects, initial emission fluxes from the inventory, the modelled advection of air masses
influenced by human and biogenic fluxes, etc.

However, there is no significant model-measurement bias can be found in the daily-mean XCH4 (cf. Fig. 3 (c)
& (d) of the manuscript). Due to the quite weak biogenic activities of CH4 in and around Munich (cf. Fig. 4
of the manuscript), the model-measurement bias of CH4 is mostly caused by the uncertainties in human-related
emissions.

Additionally, at line 302, can you quantify the background variability your model predicts? That information is
useful for interpreting your gradients as any background variability between sites would remain in a gradient.

Thank your for the suggestion. We have added it to the manuscript as follows:

Lines 347∼349

In general, after subtracting the MB between XCOS
2,sla and the measured values over

all the measurement dates (cf. Sect. 4.2.2), there is little difference in the column
background concentrations among the five sites (black lines), with a mean and standard
deviation of 404.8 ± 0.2 ppm over these 7 consecutive days.

Re statistics: the authors report the quality of their model results using the mean bias between the measurements
and model, the root mean square error of the model and the Pearson’s correlation coefficient. However, in a few
places in the manuscript, the authors discuss the variability in their measurements and model (e.g., line 310, 342
and say to the effect that the model captures the variability in the measurements. However in these instances they
refer to the mean bias or RMSE. This is somewhat misleading. Because the range of variation in their data is on
the order of 1-4 ppm for CO2 for example, a bias or RMSE of 1 ppm in the model is actually quite significant and
wouldn’t necessarily represent the model capturing the variation or performing well. In those cases the r2 which
is scaled by the variance in the variables is more appropriate. I suggest that the authors rework their discussion
of the fit of their model to reflect that.

Response: Thank you for your suggestions. Following your suggestions, we have added R2 to the description
and rephrased our content as follows,

Lines 357∼358
The modelled XCOS

2,sla (green +) reproduces the variability in the measurements (pur-
ple o) reasonably, with a RMSE of 1.33 ppm, a MB and its std of -0.79 ± 0.14 ppm, and
a coefficient of determination (R2) of 0.43, as it turns out.

Lines 390∼391 The modelled values show little diurnal variability at all sites compared to the mea-
surements (RMSE: 6.7 ppb, MB ± std: -3.3 ± 5.9 ppb, and R2: 0.31).

Re negative gradients in both directions: it is quite surprising that you find negative gradients in CH4 in both
directions. Does that indicate that emissions from Munich itself are small on the days you measure or just
that it isn’t captured by your network? What are the implications of its emissions being missed during “good”
measurement days in terms of your network design?

Response: The question is valid. We see the negative gradients in both directions for three test days. This means
that the measured signals at the upwind sites are higher than the ones at the downwind site under northeasterly
and northwesterly prevailing winds. This indicates the emissions outside of the city Munich over upstream of the
upwind sites are missing in the initial emission inventory for both northwest and northeast sites. The causes of the
unknown or underestimated sources in the inventory have been discussed above in this revision (see page 10 of
this revision). Thus, in our network design, the implication here is that more emission sources are likely located
over the upstream of the upwind sites in reality (the areas delineated in Fig. M10), while these are missing or
underestimated in the initial inventory.
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Line 318 and 342 and Section 4.2.3: Please clarify why your model XCO2 is consistently lower than your
measurements. Since you removed an overall bias here I would expect the mean bias would be around 0. I also
don’t understand why the MB isn’t 0 since you said above you subtracted it out. In Sect.4.2.3., it is not clear if
the model comparison you’re making in this section has a mean bias removed. Please clarify near the start of the
section how exactly the data is treated.

Response: Thank you for this comment. For CO2, to eliminate the bias which could be mostly caused by the
overestimation of background and to better observe the day-by-day variations in XCO2 (see Fig. M4), we subtract
the MB over the entire available measurement period (i.e., the 15 dates shown in Fig. M4; 3.7 ppm) from the
modelled values for all sites and for each available measurement date. In the manuscript, we chose to show 7
continuous days (from 16 to 22 August) as our key study period (see Sect. M4.3.2), while the rest is included in
the supplement (see Sect. S7). Therefore, the MB discussed in of Sect. M4.2.3 is the remaining mean bias over
these 7 consecutive days, after correcting with the value derived from the full 15 days. To avoid confusion in
Sect. 4.2.3, we have added the following sentence:

Lines 342∼346

As described in Sect. 4.2.2., a MB of 3.7 ppm in CO2 has been found over all the
available measurement dates (see Fig. 4), which is defined to be the difference between
the smoothed and measured daily mean XCO2 and the modelled values. To eliminate
the bias (too high modelled background CO2) and focus on the model-measurement
differences due to other causes, this MB is subtracted from the modelled XCO2 in the
day-by-day model-measurement comparison for all sites and for each simulation date.

Re Meteorological validation: Wu et al. (2018) found that the boundary layer height can have an impact on
column measurements in addition to the 3d winds. Are you able to assess how your model performs in terms of
boundary layer height?

Response: WRF provides the planetary boundary layer height (PBLH) as an output parameter but we lack obser-
vations to assess the performance of the modelled PBLH. Figure R6 shows the variation of the WRF-modelled
PBLH. The modelled PBLH varies from a few hundred meters (morning and night) to over one thousand meters
(midday), spanning a range from the first vertical layer (morning and night) to the 23rd layer (noon).

Figure R6: Diurnal variation of PBLH on 16 August. The deep blue line represents the median modelled values
for each hour and the shaded blue area shows the corresponding inter-quartile ranges of the modelled PBLH.
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Minor comments

Line 5: suggest you change “and interpret” to “attempt preliminary interpretation” to reflect that your conclusions
on the model measurement mismatch are still preliminary.

Response: Thank you for this valuable comment, it has been adapted. We have rephrased the sentence accord-
ingly:

Lines 4∼6

We set up a modelling framework using the Weather Research and Forecasting (WRF)
model applied at a high spatial resolution (up to 400 m) to simulate the atmospheric
transport of GHGs and attempt a preliminary interpretation of the observations pro-
vided by the Munich Urban Carbon Column Network (MUCCnet).

Line 10: I would alter or clarify the phrase “1 to 30 August” to clarify that you are only able to use measurements
on a limited subset of days rather than the full month.

Response: Thanks for pointing this out. The measurement campaign in this study was operated continuously
during the entire period, i.e., 1 to 30 August, 2018. Meanwhile, our WRF model results are provided over the
entire campaign period. With the restriction of measurement conditions and data quality, the measurements are
filtered, leaving a limited amount which can be used in the further model-measurement comparison. If here the
”limited subset” was used in the abstract, it might lead to confusions, that is, only these selected days in which
the observations and the model were performed in the study. To avoid the misleading mentioned in this comment,
we have re-phased this sentence as follows,

Lines 10∼11 The measurements were provided by the instruments of MUCCnet and the campaign
was carried out from 1 to 30 August, 2018.

Based on your discussion, it seems that the CO2 signals are not well captured by the model so I suggest you
change this line to reflect the different results between CO2 (poor match) and CH4 (good match) in your WRF-
GHG analysis.

Response: Thanks for this comment. The sentence has been rephrased as follows:

Lines 12∼15

In general, the model is able to reproduce the measured slant column concentrations
of CH4 and their variability, while for CO2, a difference in the slant column CO2 of
around 3.7 ppm is found in the model. This can be attributed to the initial and lateral
boundary conditions used for the background tracer.

Because the variability in your measured XCO2 is on the order of 1 ppm, I would note that the 3.7 ppm bias you
observe is quite large and could be taken to indicate a poor model fit for your initial WRF-GHG fields.

Response: Indeed, the overall bias of 3.7 ppm of XCO2 is large when compared to the amplitude of the variability
measured. However, this bias was found to be rather constant over time (e.g., in Fig. R4), and as such does not
impact the modelled gradients. This large offset can be explained by an offset in the initial and lateral boundary
background CO2 concentrations provided by CAMS. A detailed discussion related to the background tracer can
be found on page 12-13 of this revision.

In your write up you say that some of the error in CO2 may be attributable to flaws in your biogenic CO2 flux but
here you say it’s due to the initial and background conditions. Please clarify this?
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Response: Thank you for the comment. Following the detailed discussion in the CO2 bias on page 11-13 of this
revision, both the background and the biogenic fluxes could contribute to the bias in the slant column of CO2.
While the background fields are responsible for offsetting a rather large (and relatively constant) bias, the bio-
genic fluxes are found to account for mismatches in both the diurnal cycle and interdiel variability over the seven
consecutive days analyzed in Sect. 4.2.3. We have added the bias in the modelled slant column concentration of
CO2 caused by biogenic activities in the abstract.

Lines 14∼15 Additional mismatches in the diurnal cycle could be explained by an underestimation
of nocturnal respiration in the modelled CO2 biogenic fluxes.

Your abstract is missing a discussion of your CH4 results with WRF-GHG or STILT.

Response: Some mention was made of the CH4 results with WRF-GHG and STILT in the original abstract (e.g.
Lines 18-19: Combining these footprints with knowledge of local emission sources, we find evidence of CH4

sources near Munich that are missing or underestimated in the emission inventory used), and the references to
GHG concentrations did not always make it clear that both CH4 and CO2 were included in the study. This has
now been made more explicit in previous edits to the abstract.

Lines 12∼15

In general, the model is able to reproduce the measured slant column concentrations of
CH4 and their variability, while for CO2, a difference in the slant column CO2 of around
3.7 ppm is found in the model. This can be attributed to the initial and lateral boundary
conditions used for the background tracer. Additional mismatches in the diurnal cycle
could be explained by an underestimation of nocturnal respiration in the modelled CO2

biogenic fluxes.

Line 13: In your write up you say that you can’t interpret the XCO2 gradients because of the biogenic fluxes so
you may want to add that in your abstract as the way it is written now makes it sounds like you do interpret them?

Response: Thank you for this suggestions and we have added the content in the abstract to interpret the CO2 bias
related to the underestimation of biogenic fluxes (see lines 14-15 of the manuscript, also shown above).

Line 25: adaption should be mitigation.

Response: Thank you for pointing it out, it has been corrected in line 28 of the manuscript.

Line 59: I think that you should also note that top-down emissions have uncertainty due to their own spatial and
temporal representativeness (cf Vaughn et al., 2018) in addition to the other reasons you list. Those issues need
to be carefully treated to interpret emissions from top-down.

Response: Thanks for this comment and we have extended the text accordingly:

Lines 59∼64

Inversion models still show considerable potential for improvement, owing to limited
knowledge about the characteristics and spatial distribution of emission sources (e.g.,
missing or underestimated sources, inner-city traffic), uncertainties in background con-
centrations, and the difficulty of modelling transport in complex urban environments.
Furthermore, emissions that are highly heterogeneous in time and space are challeng-
ing to be assessed using atmospheric measurements and models (e.g., Vaughn et al.
(2018)).

Line 82: Jones et al. (2021) doesn’t do a bayesian inversion using biogenic signals so I don’t understand your
reference here. They do an inversion for CH4 in an urban area.
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Response: Thank you for this comment. Jones et al. (2021) is cited to support the phrase “Bayesian inversion
model”. This is why the citation is located directly after the phrase, instead of the end of the sentence. We
are developing a CO2 Bayesian inversion framework based on the structure described in Jones et al.(2021).
Specifically, based on Jones’ inversion framework and the biogenic products from WRF-GHG, we attempt to
further develop an inverse modeling approach to estimate CO2 surface emissions. This is an ongoing project and
there are no publications available for citation at this time. We note that the expression in this sentence, especially
the present perfect tense, is misleading, and we have changed it to the present progressive tense:

Lines 86∼89

For instance, highly-resolved meteorological fields can drive particle transport models
(Fasoli et al., 2018). These Lagrangian footprints can then be used for inversion studies,
similar to Heerah et al. (2021), who optimized dairy CH4 emissions across the San
Joaquin Valley using WRF-STILT inversions. Currently, an adapted Bayesian inversion
model based on Jones et al. (2021) is being developed to infer anthropogenic CO2

emissions, with the consideration of biogenic fluxes.

Line 115: not sure what you mean by morphological, you just used specific land use correct?

Response: Thank you for pointing it out and it has been rephased in the content.

Lines 120∼122

To better capture the urban landscape features and improve the urban model perfor-
mance (Ching et al.,2018; Mughal, 2020), extra urban land use land cover categories
are provided for the innermost domain (D03, area of Munich), which enables us to use
the urban canopy multi-layer scheme in WRF (Brousse et al., 2016).

Line 119: refer to a specific part of the supplement.

Response: Here the reference is to Sect. S3 of the supplement, and we have added it in line 125 of the manuscript:

Lines 125 More information regarding this procedure can be found in Sect. S3 of the supplement.

Line 120: Later in your write up you refer to the background signals as CAM so I would strongly suggest you
introduce and use that acronym here for clarity. As written now, I was confused if IFS and CAM later on were
different.

Response: Thanks for this comment. In this study, the IFS Cycle 45rl is used for the initialization of background
concentration fields. This database is generated as a product of the global Copernicus Atmosphere Monitoring
System (CAMS). CAMS makes use of the Integrated Foresting System (IFS) from the European Center for
Medium-Range Weather Forecasts (ECMWF). The experiment ID of this product is ‘gqpe’.

Lines 128∼130
The IFS Cycle 45rl is operated by the European Center for Medium-Range Weather
Forecasts (ECMWF) as part of the Copernicus Atmosphere Monitoring Service
(CAMS). The IFS cycle 45rl is referred to as CAMS for simplicity.

Line 188: How do you treat wind direction differences that occur across the cut in wind directions (i.e., 179
and -179 are only 2 degrees apart but would be 358 degrees with a simple difference). Additionally, since you
mention the standard deviation in the wind direction and since this is a proxy for stability which is important for
transport modelling, it might be appropriate to include that as a panel.

Response: Thanks for your question. We do consider this situation when calculating the evaluation parameters
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of wind direction. We treat them following the method presented in Jiménez et al., 2013. The difference ∆wd
between the modelled and measured wind directions are defined as,

∆wd =

 wdmodel − wdobs if wdmodel − wdobs ≤ |180|
wdmodel − wdobs − 360 if wdmodel − wdobs > 180
wdmodel − wdobs + 360 if wdmodel − wdobs < −180

This definition assigns a positive (negative) difference to the wind direction when the modelled wind direction is
rotated clockwise (counter-clockwise) with respect to the observations. The value of ∆wd ranges between -180 ◦

and 180 ◦. Thus, RMSE, MAE and other representatives errors can be calculated accordingly.

We have also added the content in the manuscript as follows,

Lines 194∼195 The evaluation of wind directions are treated following the method presented in Jiménez
and Dudhia (2013).

Figure 2: I would suggest you adopt an unambiguous date time format in your x axis as the mm/dd/yy is the
standard in America but not elsewhere.

Response: Thanks for pointing this out. The date format has been changed to dd/MM/YY in Fig. M2.

Line 204: The reference to Hedilus et al. (2016) is incorrect. I would suggest Gisi et al. (2012) as the paper to
refer to for the EM27/sun operating principles.

Response: Thanks for pointing it out, it has been amended.

Lines 230∼231 By using the sun as a light source, the EM27/SUN measures near-infrared solar spectra
(Gisi et al., 2012).

Line 205: the final product of the standard retrieval for the EM27/SUN is typically a total column average dry
air mole fraction not an abundance so it might be better to change the word “abundance”.

Response: Thank you for pointing this out. To avoid any ambiguity, we changed “abundance of CO2 and CH4 in
column” to “column averaged dry-air mole fractions of CO2 and CH4”.

Lines 231∼233

In MUCCnet, the recorded interferograms are automatically transformed to spectra,
converted to column averaged dry-air mole fractions (DMF) of CO2 and CH4 between
the instrument and the end of the atmosphere in the direction towards the sun, and
further uploaded to the official website of MUCCnet.

Line 205: Do you use GGG or PROFIT to fit your spectra? I would include that information and cite the relevant
software.

Response: For the measurement campaign of 2018 discussed in this study, the GFIT GGG-2014 algorithm was
applied for the retrievals, while currently, the PROFIT and GGG-2020 algorithms are used in MUCCnet. We
have clarified this part in the manuscript.

Lines 233∼235

The retrieval algorithm GFIT GGG-2014 (Wunch et al., 2015) was applied during
the measurement campaign of 2018, while currently MUCCnet is using the PROF-
FIT (Hase et al., 2004; Frey et al., 2019) and GGG-2020 algorithms (Laughner et al.,
2023).
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Line 218: I don’t think that Vogel et al. is the appropriate citation for saying the FTS is influenced by meteo-
rology. Their work is more of an application rather than an error or bias assessment and Gisi et al. (2012) or
Hediulus et al. (2016) may be more appropriate. If you meant that you’re adopting their measurement screening
it might be better to say “We screened the measurement days following Vogel et al. (2018).”

Response: Thank you for pointing this out, and for the valuable suggestion. Obviously, the EM27/SUN could
only operate in sunny daylight conditions, since it uses sun light as sources. We agreed with your suggestion and
decided to delete this citation here (see lines 246-247 of the updated manuscript).

Line 219: I think changing the phrase “measurement performance” to something like measurement quantity may
be a good idea because the number of spectra is the only aspect of performance that you seem to assess.

Response: Thanks for your suggestion and we decide to change the phase ’measurement performance’ to ’char-
acteristics of measurement days’. This is because in Table. S4, we include not only the quality of the measure-
ments (i.e., number of observations, overall quality ranking, temporal coverage), but also information on the
wind. Moreover, this phase is also used in Hase et al. (2015). The head of Table. S4 can be found in Fig. R7,
and the change to the text is shown with lines 248-252 in a previous response. In the supplement we changed the
heading of the section to ”Measurement days – data-quality characteristics”, and the introductory sentence was
changed to match the new table caption.

Lines 249∼252

By assessing the main characteristics of the measurement days during the campaign,
we selected fifteen days in total with good measurement conditions (i.e. with a quality
level better than ’++’, cf. Table S4 and Sect. S6 of the supplement) to make the model-
measurement comparison: 4-6, 9, 11, 16-22 and 27-29 August, 2018.

Figure R7: The new head of Table. S4 in the supplement.

Line 246: I don’t understand why you cite Borsdorff et al here. If I understand your write up correctly you use
the methodology in Zhao et al. and they don’t mention using methods explicitly from this paper.

Response: Thanks for this question. In line 246 where Borsdorff et al. (2014) is cited, we would like to point out
that AK stands for the altitude-dependent column sensitivity. Even though the purpose of Borsdorff et al. (2014)
is to show a new algorithm as an extension to calculate total column AK, the relation between AK and altitude,
even under different cloud fractions is discussed.

Line 263: I’m not sure if the reference to Tu et al. is right, it seems like they used a different cut off and if you
just meant to refer to the fact that the retrieval becomes worse at higher air mass, Gisi et al. (2012) may be more
appropriate.

Response: Thanks for this comment. You are right that Tu et al. (2020) uses another cutoff which is SZA > 80
◦. This paper is cited because they stated that a cutoff was applied to filter out measurements, in order to reduce
uncertainties associated with spectra recorded at high air masses (Sect. 2 of Tu et al., (2020)). Gisi et al. (2012)
used a cutoff of 70 ◦. Following your suggestion, we have added ‘Gisi et al. (2012)’ in Line 263 as you suggested
(see lines 295-297 of the updated manuscript).
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Lines 297∼298
Specifically, to reduce uncertainties caused by high air masses, measurements are dis-
carded when they are observed at SZA larger than 75 degrees (Tu et al., 2020; Gisi et
al., 2012).

Figure 3: For clarity I think it would be better to use different colour maps for the different locations and to
represent dates in your scatter plots. Someone glancing at the plots could be confused as to what your scatter
plot colours refer to (time rather than site).

Response: Thank you for your suggestion. For the scatter plots in Fig. M4, the color map represents the date,
following its color map on the right-hand side. To avoid confusion when people glance at the plot, we have
changed the colors used to represent different sites in Fig. M4(a)&(c), which do not belong to the rainbow color
map. In addition, we moved the legend for (a)&(c) to the place below panel c, making the legend visible.

Line 269: It is unclear what you mean by ”We have considered the limited measurement period”

Response: Thanks for pointing this out. Here we would like to show that we take the limited measurement
period of the day into account, i.e., from around 6 am to 5 pm, when calculating the modelled daily-averaged
concentrations. Specifically, we average the modelled concentration values over the measurement period of the
day, instead of a simple daily average. To avoid confusion, we improved this sentence as follows:

Lines 305∼306 When producing daily-averaged modelled values, we have considered the limited mea-
surement period on each day, that is, from around 6:00 UTC to 17:00 UTC.

Line 292: Do you mean the unselected days?

Response: Thanks for this comment, but in this sentence, we still mean the rest of the selected days. As stated
in Sect. 4.1 of the manuscript (i.e., lines 249-251), in total we selected fifteen days with good measurement
conditions (with a quality level better than ”++”, c.f. Table S4 and Sect. S6 in the supporting information). Then
seven consecutive days were featured in the manuscript (i.e., “selected”), and the rest of the days with good data
(i.e., “unselected”) are found in the supplement (see Sect. S7 of the supplement).

Line 308: I would note here that the period you refer to is the time you are actually measuring.

Response: Thank you for the note, we have edited it in Line 308 as follows:

Lines 355∼356
There is no obvious difference between the modelled values with and without smoothing
during the daytime from around 6:00 UTC to 17:00 UTC, which covers most of the
period of the day during which measurements can be made.

Line 310: If you’re talking about variability, an r2 might be more appropriate than the mean bias. Since you
already removed some of the bias with your diurnal average analysis, it is not very surprising that the bias is low.

Response: Thanks for your suggestion, we have added the R2 in the manuscript for both CO2 and CH4 (see lines
358 & 391). This has been discussed in the general comments above.

Line 310: Additionally, given that the variability in your measurements is on the order of 1 ppm, a bias of .8 ppm
could be taken as being quite large.

Response: We do agree with your point and one of the key reasons for this big MB is caused by the discrepancy
between the model and measurement for 22 August. This cause is mentioned in the explanation of the CO2 bias
in the general comments (see Pages 11-13 of this revision) and has been discussed in depth in lines 368-375 of
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the updated manuscript.

Line 316: It would be useful and add to your argument to quantify the size in terms of ppm that this respiration
effect might have on your data.

Response: In the WRF-GHG output, we could only obtain concentration fields caused by both photosynthesis
and respiration effects as a whole with a unit of ppm. That is, when estimating the biogenic related concen-
tration enhancements, the biogenic fluxes do not partition into GEE and RES. As photosynthesis is not active
at nighttime, the biogenic fluxes is entirely contributed by night respiration. We could obtain the concentration
enhancements induced by respiration effect (ppm) at nighttime. Gourdji et al. (2021) showed night-time daily
mean NEEs over the year provided by five different versions of VPRMs. As photosynthesis is not active at night-
time, the biogenic fluxes is entirely contributed by night respiration. The modelled NEE from the traditional
VPRM which is the same as what used in this study, varied from 1 (in winter) to 3 (in summer) µmol/(m2 · s),
while the values from the improved VPRM can be over 6 µmol/(m2 · s) in summer. This could provides us with
an estimate for such underestimations due to the underestimated respiration fluxes in the traditional VPRM. We
have added this information in the discussion of the manuscript.

Lines 363∼364
Gourdji et al. (2021) found the differences of RES at nighttime in summertime be-
tween the improved and traditional (use in this study) VPRMs can reach more than 3
µmol/(m2 · s), depending on vegetation types.

Line 375: if you mean accounting for differences in the wind vectors with height I think you should say account-
ing “for wind shear” rather than “differences in wind shear”.

Response: We really thank you for pointing this out and we have edited it in the text (see line 424 of the updated
manuscript).

Line 408: In your write up about WRF-GHG, you note that you were careful to use realistic release heights for
your sources. In STILT, sources are assumed to be in the lower half of the boundary layer so saying surface
emissions could be a little confusing.

Response: Thanks for this remark. Surface emission fluxes are well known to be close to the ground and generally
released from the emitters near the surface. This is shown in Fig. S2 of the supplement). Specifically, the model
provides us with the sensitivity of the analyzed slant columns to emissions in lower half of the PBL. To avoid
confusion here, we have re-phased the sentence as follows,

Lines 457∼458 Specifically, the model provides us with the sensitivity of the analysed slant columns to
emissions in lower part of the planetary boundary layer height.

Line 417: Jones et al. used NCEP pressure weights. Do you do the same or use your WRF field pressure weights?

Response: In our study, we followed the calculation stated in Jones et al. (2021) to obtain the pressure weights
used for the calculation of column footprints (see Sect. S1 of Jones et al. (2021)).

Figure 8: red curve missing in panel c.

Response: The reason for the absence of the red curve in panel C is the lack of measurement data in the IGRA.
An explanation for the missing panel has been added in the title of Fig. M3.

Line 460: See note about consolidating your wind comparisons.

Response: Thank you for this valuable suggestion. As discussed in the general commend (page 3), we have
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moved the model-measurement comparison of the two radiosondes to Sect. 3 of the manuscript, which can be
found on pages 8-9 of the manuscript.

Line 485: The underestimate is only in some sites in figure 9 so specify that.

Response: Thanks for this suggestion and we have specified the sites with the underestimation of modelled
gradients in the manuscript.

Lines 523∼525
However, the modelled and measured concentration gradients show some differences,
e.g., the modelled concentration gradients between Höhenkirchen and Weßling before
10:00 UTC on 22 August were underestimated compared to the observations.

Line 601: Is there a link to this reference.

Response: The link to reference has been added.

Line 641: Link to reference?

Response: The link to reference has been added.

Figure 10: include natural gas pipeline in legend.

Response: It has been included in the updated version of Fig. M11 in the manuscript.

Line 715: link to reference and DOI for dataset?

Response: This is a report from the EU project CHE, without a DOI. The link to this report has been added in
the reference.

SI Table S4: you mention the wind speed variability in your text but don’t include it here.

Response: Thanks for this comment. Indeed, Table S4 at the moment only shows averaged wind information
based on WS30 and WD30. We intended to have this comment on variability as a qualitative assessment which
the reader will understand looking at the figure included in the main paper, and would indeed tend to leave it at
this level. If the referee is of another opinion, we will however be happy to re-iterate it.

SI Figure S11: It appears to me that the 18th and 19th (for some instruments) also have a visual overlap in the
footprints but are excluded. Can you explain your reasoning for the exclusion more? Additionally, why are the
early month days excluded from the footprint analysis

Response: Thanks for this question. The cause why 18 and 19 are excluded in the discussion is that not all sites
for these two days meet the criteria to be selected as either downwind or upwind sites based on Table M1 under
the wind conditions of that day. In classical DCM, the air masses should theoretically pass by the upwind site and
further arrive at the downwind site with a relatively stable wind, after travelling through an urban area in which
most of emissions are located. As shown in Fig. S14(c), under such a prevailing wind of (i.e., northeasterly),
Weßling (West) should be selected as the downwind sit for the calculation of concentration gradients. But some
part of the upstream at this downwind site did not overlap the upstream of the other three upwind sites, shown
in Table M1. Specifically, some air does not pass the upwind sites (mainly from the south/southeast region of
Munich) and arrives at Weßling together with other airs that pass the upwind sites. This is also the case for 17
and 20 August (see Fig. S14(a)&(d)).

In terms of 18 August, under the prevailing winds (northwesterly, see Table S4 & Fig. S10), the upwind site is
supposed to be Weßling (west), while the other three sites should be the downwind sites based on Table M1. But
as shown in Fig. S14(b), the in-flowing airs reaching Weßling (red line) are mainly from the northern region of
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Munich, and could not further pass the other three downwind site. This detailed explanation for the exclusion
has been added to the supplement (see Sect. S10).

References

Bergamaschi, P., Segers, A., Brunner, D., Haussaire, J.-M., Henne, S., Ramonet, M., Arnold, T., Biermann, T.,
Chen, H., Conil, S., Delmotte, M., Forster, G., Frumau, A., Kubistin, D., Lan, X., Leuenberger, M., Lindauer,
M., Lopez, M., Manca, G., Müller-Williams, J., O’Doherty, S., Scheeren, B., Steinbacher, M., Trisolino, P.,
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