

Anonymous Referee #3

Referee comment on "Enhanced sulfur in the UTLS in spring 2020" by Laura Tomsche et al., Atmos. Chem. Phys. Discuss., <https://doi.org/10.5194/acp-2022-274-RC1, 2022>

1) comments from referee

This manuscript provides an overview of the BLUESKY mission during the 2020 COVID-19 lockdown in Europe. The authors present interesting measurement results of SO_2 and SO_4^{2-} , along with other trace gases and aerosols, at UTLS, which have the potential to be an important reference to future chemistry and modeling development. The authors have revised the manuscript with more discussions based on the comments from previous reviewers.

In addition to the comments from previous reviewers, I'm particularly interested in how wildfires contribute to $\text{SO}_2/\text{SO}_4^{2-}$ profile changes. Although the authors cited previous studies that demonstrated smaller amount of SO_2 released from wildfires compared to that from volcanic eruptions, this wouldn't necessarily represent the BLUESKY case since the meteorological conditions may be different between 2019 and 2020. Based on the 2020 EU JRC wildfire report (https://ec.europa.eu/commission/presscorner/detail/en/ip_21_5627), there were still significant wildfire events in Europe, especially in Germany, during May 2020. If those wildfires were intense enough, SO_2 and SO_4^{2-} at UTLS could be influenced. The authors should provide sufficient evidence to convince readers how these "local" wildfires, in addition to long-range transport SO_2 from other continents, didn't contribute significantly to the SO_2 and SO_4^{2-} profile changes during the BLUESKY mission. Additional discussion about wildfires can help improve the manuscript.

1a) author's response

We thank the reviewer for the comments. We revised the manuscript and added details on wildfires and how they contribute or not to the mixing ratios of SO_2 and SO_4^{2-} in the UTLS. In particular, we discussed that "local", i.e. European, fires had probably very low impacts on the May/June 2020 UTLS. Explanations are in section 4 and 5 for SO_2 and SO_4^{2-} , respectively.

1b) manuscript changes

L312-316: "In contrast, the trajectories do not indicate local transport from the central European PBL to the UT, hence the transport of SO_2 from wildfires in Germany in May 2020 (European Commission, 2021) to the UT seems negligible. Even if the transport of the smoke was via self-lofting (Ohneiser et al., 2021), i.e. absorption of sunlight leads to warming of the ambient air and thus lifting of the smoke, the transport is slow and so SO_2 might already been transformed to SO_4^{2-} before reaching the UTLS and does not contribute to the elevated SO_2 in the UT. Moreover, ..."

L388-393: "Ohneiser et al. (2021) discussed self-lofting as a potential transport pathway in the UTLS for these Siberian fires in the absence of strong vertical motion in July 2019. The smoke plume could raise and reach the UT and further ascent into the LS. During the slow ascent, the emissions alter chemically, in the case of SO_2 , it is transformed to SO_4^{2-} . Finally, the SO_4^{2-} could have contributed to the enhanced SO_4^{2-} in the LS. Further, wildfires in central Europe in May 2020 (European Commission, 2021) could also have undergone this self-lofting process as the trajectories do not indicate uplift over Europe and thus might additionally have contributed to elevated SO_4^{2-} in the UTLS."

Minor comments:

2) comments from referee

Ln 22, 124, 125, 128, 353, 358, 359. Keep the number expression consistent. A thin space is suggested before and after the plus-minus sign.

2a) author's response

-> done L22, L12, L125, L127, L359, L364, L365

3) comments from referee

Ln 55. "(46°N, 0.8 Tg SO₂)" is suggested.

3a) author's response

-> done L56

4) comments from referee

Ln 59. Typo: "important source of stratospheric aerosol are intense wildfires, ..." should be "is" instead of "are."

4a) author's response

-> done L59

5) comments from referee

Fig. 1 The bottom axis at 0 longitude seems to have an additional character embedded.

5a) author's response

-> updated Figure 1

6) comments from referee

Ln 64. You may want to spell out COVID at its first appearance in the text. Also, be consistent with using COVID-19 or COVID19 in the manuscript.

6a) author's response

-> done L63 and used COVID-19 (L280, L283)

7) comments from referee

Ln 128. Lower case of N for "nitrous."

7a) author's response

-> done L128

8) comments from referee

Ln 132. This sentence should be combined with the previous sentence.

8a) author's response

-> done L130

9) comments from referee

Ln 137. A proper citation/reference to the GDAS dataset is mandatory.

9a) author's response

-> done L137

10) comments from referee

Ln 159. May replace “will follow” with “is presented.”

10a) author's response

-> done L160

11) comments from referee

Fig.2 caption. “... Plotted are a) SO₂, ..., and f) altitude across longitudes ##°W–##°E.”

11a) author's response

-> done L164/165

12) comments from referee

Fig. 3 caption. Superscripts for 25th and 75th, be consistent with how they are used in the main text.

12a) author's response

-> done L199

13) comments from referee

Ln 205. “... 310 K and 340 K; above the chemical tropopause the sum increases up to ...”

13a) author's response

-> done L207

14) comments from referee

Ln 395. Typo: “were” instead of “where.”

14a) author's response

-> done L386