Supplement of

Sources of organic aerosols in east China: A modeling study with high-resolution intermediate-volatility and semi-volatile organic compound emissions

Jingyu An¹, Cheng Huang^{1*}, Dandan Huang¹, Momei Qin^{2,1}, Huan Liu³, Rusha Yan¹, Liping Qiao¹, Min Zhou¹, Yingjie Li¹, Shuhui Zhu¹, Qian Wang¹, Hongli Wang¹

 State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

Correspondence to: C. Huang (huangc@saes.sh.cn)

^{*} Correspondence to C. Huang (<u>huangc@saes.sh.cn</u>)

	Source		Volatility (C* at 298 K, µg·m ⁻³)									
:			IVOCP6	IVOCP5	IVOCP4	IVOCP3	SVOCP2	SVOCP1	SVOCP0	SVOCN1	IVOCP6ARO	IVOCP5ARO
		to VOCs	106	105	104	10 ³	10 ²	10	1	10-1	106	105
	Oil refinery	0.039	0.759	0.123	0.004	0.110	0.003	0.000	0.000	0.000	0.000	0.000
Industrial process	Chemical production	0.282	0.430	0.230	0.025	0.116	0.199	0.000	0.000	0.000	0.000	0.000
	Pulp and paper	0.140	0.571	0.393	0.028	0.006	0.001	0.001	0.000	0.000	0.000	0.000
	Textile	2.473	0.041	0.448	0.182	0.268	0.040	0.002	0.019	0.000	0.000	0.000
	Leather tanning	0.231	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Timber processing	0.119	0.584	0.416	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
T 1 4 1 1 4	Furniture coating	0.021	0.888	0.112	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Industrial solvent-use	Solvent-based coating	0.177	0.948	0.044	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Water-based coating	0.504	0.096	0.893	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Dry cleaning	0.004	0.885	0.115	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Paint remover	0.072	0.987	0.010	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Gasoline vehicle	0.106	0.206	0.056	0.113	0.098	0.000	0.000	0.000	0.000	0.406	0.121
	Diesel vehicle	1.358	0.331	0.318	0.244	0.095	0.000	0.000	0.000	0.000	0.004	0.007
	Fuel evaporation	0.002	0.841	0.159	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mobile sources	Diesel machinery ^a	0.400	0.282	0.279	0.264	0.102	0.057	0.012	0.003	0.000	0.000	0.000
	Marine vessel ^b	0.300	0.230	0.375	0.193	0.097	0.029	0.000	0.000	0.000	0.077	0.000
	Aircraft	0.482	0.761	0.148	0.063	0.028	0.000	0.000	0.000	0.000	0.000	0.000
	Coal combustion ^c	0.180	0.439	0.439	0.088	0.035	0.000	0.000	0.000	0.000	0.000	0.000
Residential sources	Residential solvent-use	0.240	0.938	0.047	0.003	0.007	0.000	0.003	0.000	0.001	0.000	0.000
	Cooking	0.036	0.554	0.374	0.052	0.015	0.003	0.001	0.000	0.000	0.000	0.000
Agriculture sources	Biomass burning	0.006	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

 Table S1. Gas-phase I/SVOCs-to-VOCs ratios for specific sources and emission profiles used in CMAQ simulations.

2 ^a Qi et al. (2019); ^b Huang et al. (2018); ^c Cai et al. (2019)

3 Table S2. Particle-phase I/SVOCs-to-POA ratios for specific sources and emission profiles used in

	L'ENOC- D	Volatility (C* at 298 K, µg·m ⁻³)							
Sou	1/SVUCS-P	IVOCP3	SVOCP2	SVOCP1	SVOCP0	SVOCN1			
		to POA	10 ³	10 ²	10	1	10-1		
	Gasoline vehicle	0.901	0.000	0.323	0.406	0.073	0.197		
	Diesel vehicle	0.867	0.000	0.419	0.420	0.099	0.063		
Mobile sources	Diesel machinery ^a	0.420	0.455	0.204	0.123	0.131	0.087		
	Marine vessel ^b	0.570	0.636	0.156	0.083	0.074	0.052		
Residential sources	Residential sources Cooking		0.670	0.157	0.003	0.000	0.000		
Agriculture sources	Biomass burning	0.155	0.283	0.140	0.069	0.045	0.305		

4 CMAQ simulations.

5 ^a Qi et al. (2019); ^b Huang et al. (2018)

6

8	Table S3. Source-	-specific emissions	of VOCs and PO.	A for the year 2017	in the Yangtze River Delta
---	-------------------	---------------------	-----------------	---------------------	----------------------------

9 region.

		VO	Cs	POA		
50	burce	kt	%	kt	%	
	Oil refinery	146.07	3.50	1.49	0.74	
Industrial process	Chemical production	864.99	20.70	1.65	0.82	
	Pulp and paper	0.80	0.02	0.01	0.00	
	Textile	92.90	2.22	0.11	0.06	
	Leather tanning	16.56	0.40	0.02	0.01	
	Timber processing	262.17	6.27	0.10	0.05	
Tu du dui al a a la curá a cura	Furniture coating	62.98	1.51	0.00	0.00	
Industrial solvent-use	Solvent-based coating	978.81	23.42	1.80	0.89	
	Water-based coating	99.80	2.39	0.00	0.00	
	Dry cleaning	5.49	0.13	0.00	0.00	
	Paint remover	0.07	0.00	0.00	0.00	
	Gasoline vehicle	575.15	13.76	9.37	4.64	
	Diesel vehicles	87.96	2.10	28.03	13.90	
Mahila anuma	Fuel evaporation	356.44	8.53	0.00	0.00	
Widdlie source	Diesel machinery	111.80	2.68	11.66	5.78	
	Marine vessel	7.77	0.19	10.23	5.07	
	Aircraft	1.32	0.03	0.00	0.00	
	Coal combustion	15.14	0.36	6.42	3.18	
Residential source	Residential solvent-use	146.77	3.51	0.00	0.00	
	Cooking	223.59	5.35	82.85	41.07	
Agriculture source	Biomass burning	122.13	2.92	47.96	23.78	
Total anthropo	ogenic emissions	4178.70	100.00	201.70	100.00	
Total bioge	enic emissions	2004.7	/	/	/	

Option	Configuration/Data source
Version	WRF-v3.9.1
IC/BC condition	NCEP FNL1°×1°
Microphysical Process	Purdue Lin Scheme
Cumulus Convective Scheme	Grell-3 Scheme
Road Process Scheme	Noah Scheme
Boundary Layer Scheme	Yonsei University (YSU) Scheme
Long-wave and Short-wave radiation sch	eme RRTM and Goddard radiation Scheme

Table S4. Parameterization scheme and inputs for the WRF model.

Table S5. The statistical results of model performance for the meteorological parameters in each

season (MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; IOA: index of

agreement).

Parameters*	Seasons	MB	Criteria	MGE	Criteria	RMSE	Criteria	IOA (-)	Criteria	
	Spr	0.2		1.46	≤2	2.0		0.96		
Temperature (K)	Sum	-1.5	< 10.5	2.26		2.9	-	0.80		
	Aut	0.5	$\leq +0.5$	1.49		2.4		0.89	≥ 0.8	
	Win	1.4		1.87		2.5		0.94		
Humidity (%)	Spr	-8.0		11.03		15.7		0.85		
	Sum	-2.8		7.82		13.2		0.80	> 0.0	
	Aut	-10.9	-	11.79	-	16.9	-	0.82	≥ 0.6	
	Win	-12.2		13.71		19.6		0.73		
	Spr	0.5		1.28		1.7		0.77		
W	Sum	0.2	< 10.5	1.15	-	1.5	≤2	0.75	≥0.6	
wind speed (m·s·)	Aut	0.6	$\leq \pm 0.5$	1.14		1.5		0.75		
	Win	0.9		1.50		1.9		0.75		
	Spr	2.6		31.52		46.7		0.93		
Wind dimention (0)	Sum	1.6	< 10	31.31	< 20	46.0		0.91		
Wind direction (°)	Aut	10.3	$\leq \pm 10$	28.29	≤ 30	42.9	-	0.96	-	
	Win	8.1		26.65		41.2		0.97		

*The units in the brackets are only for MB, MGE and RMSE. IOA is unitless.

Table S6. The statistical results of model performance for major air pollutants in each season. (MB:

26	mean bias; M	GE: mean gross	error; RMSE: root-me	an-square error; MFB:	mean fractional bias;
-	,	0	,		,

			•				
Species	Scenario	Seasons MB ($\mu g \cdot m^{-3}$) MGE ($\mu g \cdot m^{-3}$)		RMSE (µg·m ⁻³)	MFB (%)	MFE (%)	
SO ₂		Spr 8.0 11.0		21.9	33	70	
		Sum	Sum 5.9 9.6		20.5	15	80
	IMPROVE	Aut	9.9	12.5	23.2	43	73
		Win	11.4	14.2	25.0	44	74
NO ₂		Spr	-8.3	18.4	26.2	-37	61
	MADOVE	Sum	5.1	13.7	21.9	7	57
	IMPROVE	Aut	-7.1	17.0	23.1	-29	53
		Win	-10.1	19.1	25.5	-31	53
	IMPROVE	Spr	39.8	45.5	55.0	27	34
0		Sum	29.8	43.7	54.3	17	33
03		Aut	30.0	35.4	43.1	23	29
		Win	19.1	32.5	43.4	14	31
		Spr	2.3	19.6	27.4	5	46
	DACE	Sum	6.1	13.6	20.2	18	52
	BASE	Aut	9.7	21.3	31.2	19	49
D) (Win	3.4	24.6	36.4	6	46
PM2.5		Spr	13.9	24.8	34.7	26	51
	IN ADD ON AT	Sum	13.0	17.5	25.7	37	58
	IMPKOVE	Aut	22.5	29.3	41.5	41	58
		Win	14.1	29.3	43.7	21	49

27 MFE: mean fractional error; IOA: index of agreement)

C	Sites	MB (µg·m ⁻³)		MGE (µg·m ⁻³)		RMSE (µg·m ⁻³)		MFB (%)		MFE (%)	
Seasons	Siles	BASE I	MPROVE	BASEI	MPROVE	BASEI	MPROVE	BASEI	MPROVE	BASE	IMPROVE
	SAES	-5.0	-3.2	5.0	3.2	28.8	14.0	-80	-48	80	48
	Changzhou	-5.5	-3.2	5.5	3.2	32.7	13.2	-82	-42	82	42
	Dianshan Lake	-2.5	-0.4	2.5	1.8	8.6	4.7	-69	-19	70	36
Spring	Chongming Dongtan	-2.5	-1.2	2.5	1.3	7.1	2.7	-88	-44	88	45
	Hefei	-4.2	-3.1	4.2	3.1	20.2	13.4	-79	-52	79	52
	Jinhua	-4.6	-3.7	4.9	3.9	28.5	20.3	-98	-70	104	75
	Qiandao Lake	-1.8	-1.3	2.1	1.6	5.6	3.9	-63	-42	71	50
	Jiaxing	-3.5	-1.0	3.5	1.5	15.3	4.1	-75	-19	75	25
	SAES	-0.6	0.2	1.0	0.9	2.3	1.7	-11	7	26	22
	Changzhou	-4.6	-3.3	4.6	3.3	24.8	14.7	-81	-53	81	54
	Chongming Dongtan	-0.1	0.5	1.1	1.5	2.4	5.6	-45	-28	102	109
Summer	Jinhua	-2.2	-1.5	2.2	2.0	6.6	5.4	-67	-46	68	56
	Qiandao Lake	-1.0	-0.5	1.5	1.6	3.3	3.6	-48	-27	63	57
	Suzhou	-1.8	-0.6	1.8	1.0	4.0	1.4	-44	-15	44	22
	Jiaxing	-1.8	-0.6	1.8	0.9	4.7	1.2	-58	-18	58	23
	SAES	-1.6	-0.3	2.0	1.8	4.9	4.8	-45	-18	50	38
	Changzhou	-3.7	-1.4	3.8	2.3	17.4	7.7	-67	-24	68	34
	Dianshan Lake	-2.0	-0.6	2.0	1.2	4.8	2.4	-62	-24	62	34
	Chongming Dongtan	-1.6	-1.0	1.6	1.1	2.8	1.7	-104	-66	104	69
Autumn	Hefei	-3.2	-0.9	3.2	1.6	12.4	3.8	-71	-23	71	34
	Jinhua	-5.0	-2.8	5.1	3.5	35.0	21.5	-91	-45	93	54
	Nanjing	-0.4	1.6	0.9	1.8	1.3	7.0	-11	23	20	28
	Qiandao Lake	-0.9	1.0	1.3	2.1	2.6	7.2	-36	10	50	54
	Suzhou	-1.3	0.3	1.4	1.0	2.8	2.5	-34	1	36	21
	Jiaxing	-3.7	-1.7	3.7	2.1	15.4	6.4	-82	-37	82	42
	SAES	-1.5	-0.2	4.5	5.6	32.7	46.8	-25	-11	68	74
	Changzhou	-4.3	-1.9	4.3	2.5	25.4	10.5	-63	-25	63	31
	Chongming	-2.7	-2.0	2.7	2.1	10.3	5.6	-125	-101	125	103
Winter	Hefei	-3.9	-1.8	3.9	1.9	18.5	5.9	-69	-31	69	33
	Qiandao Lake	-2.6	-1.2	2.6	1.7	9.6	5.1	-91	-48	91	57
	Suzhou	-2.8	-1.2	2.8	1.8	11.4	5.2	-56	-32	56	38
	Jiaxing	-4.4	-2.2	4.4	2.7	26.6	11.3	-89	-50	89	53

31 Table S6. The statistical results of model performance for organic carbon (OC) in each season.

33 Figure S1. Spatial distribution of I/SVOC, POA, anthropogenic VOC (including benzene, toluene,

34 and xylene), and biogenic VOC emissions in the YRD region for the year 2017.

Figure S2. Comparisons of measured (black dots) and modeled (red lines) concentrations of (a) toluene, (b) xylene, and (c) benzene in different seasons at the SAES
 supersite in Shanghai.

Figure S3. Spatial distributions of modeled OC concentrations in different seasons in BASE and IMPROVE simulations and their comparisons with OC observations. The blue triangle points represent the correlation between the modeled and observed OC in the BASE simulation, and the red dots represent the correlation between the modeled and observed OC in the IMPROVE simulation. The purple crosses in the left figures represent the observation sites of OC.

47 Figure S4. Comparisons of measured (grey dots) and modeled concentrations of (a) POA, (b) SOA, and (c) OA in different seasons in the BASE (bule lines) and

48 IMPROVE (red lines) simulation cases at the SAES supersite in Shanghai.

50 Figure S5. Comparisons of modeled POA and SOA source contributions with PMF results by AMS

51 in different seasons in the BASE and IMPROVE simulations at the SAES supersite in Shanghai.

52