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Abstract: Organic aerosol (OA) makes up a substantial fraction of atmospheric 13 

particulate matter that exerts tremendous impacts on air quality, climate, and human 14 

health. Yet current chemical transport models fail to reproduce both the concentrations 15 

and temporal variations of OA, especially the secondary organic aerosol (SOA), 16 

hindering the identification of major contribution sources. One possibility is that 17 

precursors that are not yet included in the model exist, and intermediate-volatility and 18 

semi-volatile organic compounds (I/SVOCs) are advocated to be one of them. Herein, 19 

we established a high-resolution emission inventory of I/SVOCs and by incorporating 20 

it into the CMAQ model, concentrations, temporal variations, and spatial distributions 21 

of POA and SOA originated from different sources in the Yangtze River Delta (YRD) 22 

region of China were simulated. Compared with the comprehensive observation data 23 

obtained in the region, i.e., volatile organic compounds (VOCs), organic carbon (OC), 24 

primary organic aerosol (POA) and SOA, significant model improvements in the 25 
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simulations of different OA components were demonstrated. Furthermore, spatial and 26 

seasonal variations of different source contributions to OA production were identified. 27 

We found cooking emissions are predominant sources of POA in the densely populated 28 

urban area of the region. I/SVOC emissions from industrial sources are dominant 29 

contributors to the SOA formation, followed by those from mobile sources. While the 30 

former concentrated in eastern, central, and northern YRD, the latter mainly focused on 31 

the urban area. Our results indicate that future control measures should be specifically 32 

tailored on intraregional scale based on the different source characteristics to achieve 33 

the national goal of continuous improvement in air quality. In addition, local source 34 

profiles and emission factors of I/SVOCs as well as SOA formation mechanisms in 35 

model framework are urgently needed to be updated to further improve the model 36 

performance and thus the accuracy of source identifications. 37 

Key words: semi-volatile and intermediate volatility organic compounds; secondary 38 

organic aerosol; emission inventory; source contribution; model simulation 39 

1. Introduction 40 

Organic aerosol (OA) contributes a large fraction (20 to 90%) of atmospheric 41 

submicron aerosol (Zhang et al., 2007; Jimenez et al., 2009) and has negative impacts 42 

on air quality, climate (Shrivastava et al., 2017), and human health (Nault et al., 2021). 43 

OA is composed of primary organic aerosol (POA) directly emitted from fossil fuel 44 

combustion, biomass burning, and other sources, as well as secondary organic aerosol 45 

(SOA) formed through the atmospheric oxidation of gas-phase species emitted from a 46 

wide range of biogenic and anthropogenic sources (Hallquist et al., 2009). 47 

Understanding and identifying the origins of OA is therefore important for elucidating 48 

their health and climate effects and establishing effective mitigation policies. However, 49 

OA is a dynamic system driven by the gas-particle partitioning of organic vapors and 50 

particulate organic material, i.e. POA and SOA, and continuously evolves upon 51 

atmospheric oxidation (Robinson et al., 2007; Donahue et al., 2009; Zhao et al., 2013; 52 

Jathar et al., 2014). It is challenging to constrain the abundance of OA precursors and 53 
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to identify key sources. 54 

Great efforts have been made in the identification of OA sources through source 55 

apportionment of the measured OA components, such as positive matrix factorization 56 

(PMF) (Zhang et al., 2011), chemical mass balance (CMB) model (Zheng et al., 2002) 57 

or multilinear engine (ME-2) (Canonaco et al., 2013). The Aerodyne high-resolution 58 

time-of-flight aerosol mass spectrometer (AMS), has been proven to be a powerful tool 59 

in quantification and chemical characterization of different OA components in real-time 60 

(Canagaratna et al., 2007). Coupled with PMF analysis, AMS measurements allow for 61 

the deconvolution of physically meaningful OA factors. Commonly retrieved factors 62 

include three POA sources, i.e. hydrocarbon-like OA (HOA) related to fossil fuel 63 

combustion, biomass burning OA (BBOA), and cooking-related OA (COA), as well as 64 

two SOA components, i.e. less oxidized oxygenated OA (LO-OOA) and more oxidized 65 

oxygenated OA (MO-OOA) (Hayes et al., 2013; Crippa et al., 2014; Sun et al., 2014; 66 

Li et al., 2017). Combining offline AMS and radiocarbon (14C) measurements, Huang 67 

et al. (2014) also identified the contributions of fossil and non-fossil sources to SOA. 68 

Attempts have been made in subsequent studies by coupling the AMS measurement 69 

with a suite of comprehensive and collocated SOA tracer measurements to distinguish 70 

biogenic and major anthropogenic SOA sources, such as traffic and cooking emissions 71 

(Xu et al., 2015; Zhang et al., 2018; Zhu et al., 2020; Huang et al., 2021a). However, 72 

due to the complex OA composition and variety of emission sources, further 73 

deconvolution on the contributions of different sources to OA production is challenging. 74 

Besides field measurements, air quality modeling is another widespread technique, 75 

which has advantages for regional-scale OA source apportionment with higher temporal 76 

and spatial resolution. However, the model simulated SOA concentration still has large 77 

gaps with that measured in the atmosphere. The volatility basis set (VBS) scheme is 78 

therefore developed, which lumps organic precursors as well as their oxidation products 79 

into different volatility bins. Upon atmospheric aging, the volatility of these compounds 80 

evolves due to the processes such as functionalization and fragmentation, which can be 81 
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accounted for in the models by shifting the volatility bins of these compounds (Donahue 82 

et al., 2006). It has been widely reported that coupling VBS scheme with air quality 83 

models can improve the model performance on SOA simulation (Tsimpidi et al., 2010; 84 

Koo et al., 2014; woody et al., 2016; Zhao et al., 2016a; Yang et al., 2019). However, 85 

there are still some shortcomings in the modeling of OA with the VBS, for example the 86 

lack of representation of the hydrophilic properties of OA, which assumes SOA 87 

condenses onto an organic phase, whereas SOA may also condense on an aqueous phase 88 

(Kim et al., 2011). Another important constraint is the underestimation of intermediate-89 

volatility organic compounds (IVOCs) and semi-volatile organic compounds (SVOCs) 90 

emissions in the models, which potentially have substantial contributions to SOA 91 

budget owing to their high SOA yields (Presto et al., 2009; Tkacik et al., 2012; Zhao et 92 

al., 2014; Liggio et al., 2016). IVOCs refer to organic compounds with effective 93 

saturation concentrations (C*) between 103 to 106 μg·m-3 at 298 K and 1 atm, while 94 

SVOCs refer to organic compounds with C* between 10-1 to 103 μg·m-3 at 298 K and 1 95 

atm (Robinson et al., 2007). 96 

I/SVOC emission inventories have been developed and applied into air quality 97 

models over the past decade. Most of them were estimated by applying different scaling 98 

factors based on their relationship with POA, volatile organic compounds (VOCs), or 99 

some proxies like naphthalene (Pye and Seinfeld, 2010; Shrivastava et al., 2011; Jathar 100 

et al., 2017; Wu et al., 2019, 2021; Li et al., 2020, 2022; Ling et al., 2022). Yet in 101 

practice, a same scaling factor was applied to most of the sources in previous studies 102 

due to the lack of measurements on I/SVOC emission factors. For example, except 103 

biomass burning (0.75–1.5), Wu et al. (2019) utilized scaling factors of 8–30 for all of 104 

the other emission source categories, which was estimated based on the measurements 105 

of on-road mobile source. Li et al. (2020) assumed scaling factors of 1.5 for on-road 106 

mobile source, and 0.34–1.5 for the other sources, such as industrial and residential 107 

sources, which were much lower than the estimations in Wu et al. (2020). Huang et al. 108 

(2021) have tried emission factor method to quantify the I/SVOC emissions, yet the 109 
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results were 60% lower than the scaling factor method, far from catching the measured 110 

amount of SOA. Obviously, roughly estimating I/SVOC emissions using one or two 111 

emission profiles as surrogates for all emission sources will create large uncertainties. 112 

Recent studies have successively determined the volatility distribution, chemical 113 

composition, and emission factors of I/SVOCs from mobile sources, including gasoline 114 

and diesel vehicles, non-road diesel machinery, marine vessel, and aircraft (Presto et al., 115 

2011; Cross et al., 2013; Zhao et al., 2015, 2016b; Huang et al., 2018; Qi et al., 2019; 116 

Drozd et al., 2019). I/SVOC emission profiles have been reported for nonmobile-117 

sources as well, including coal combustion, wood-burning, cooking, fuel evaporation, 118 

and industrial and residential volatile chemical products (Huffman et al., 2009; Gentner 119 

et al., 2012; May et al., 2013; Koss et al., 2018; McDonald et al., 2018; Cai et al., 2019; 120 

Drozd et al., 2021), making the quantification of I/SVOC emissions and their 121 

involvement in air quality models possible. 122 

In China, SOA has been emerging as an important contributor to air pollution. 123 

Field observations reveal that OA contributes significantly (30%) to the PM2.5 124 

concentrations in most parts of China (Tao et al., 2017; Liu et al., 2018b), among which 125 

the SOA contributes up to 80% of OA during haze pollution (Huang et al., 2014; Ming 126 

et al., 2017; Li et al., 2021). SOA formation in China has already been examined in 127 

several modeling studies. They found that by considering the POA aging and I/SVOCs 128 

oxidation in the models, which is realized by the coupling of VBS scheme, the 129 

formation and evolution of SOA can be much better simulated compared to the results 130 

of the two-product SOA modeling framework (Zhao et al., 2016a; Wu et al., 2019; Li 131 

et al., 2020; Yao et al., 2020; Huang et al., 2021). Chang et al. (2022) developed a full-132 

volatility organic emission inventory with source-specific I/SVOC emission profiles for 133 

China, which have greatly improved the model performance on SOA concentrations. 134 

However, large gaps still exist between the observed and modeled SOA. Studies on 135 

high-resolution I/SVOC emission inventory for more specific sources are highly needed. 136 

In this study, taking the Yangtze River Delta (YRD) region, including Jiangsu, 137 
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Zhejiang, Anhui provinces and Shanghai city, as a pilot, we established a high-138 

resolution source specific I/SVOC emission inventory. We then applied the established 139 

inventory into CMAQ v5.3 to evaluate the contributions of I/SVOC emissions to SOA 140 

formation by comparing the results with the observation data collected in the region. 141 

Furthermore, we also run the model in different scenarios to quantify the seasonal 142 

contributions of different sources to POA and SOA formation in the YRD region. 143 

2. Materials and methods 144 

2.1 I/SVOC emission inventory 145 

I/SVOCs commonly exist in both gas- and particle-phase in the atmosphere. 146 

Previous studies usually used POA scaling factors to estimate the I/SVOC emissions, 147 

which may lead to large uncertainties in the estimation of gas-phase organic compound-148 

dominated sources, like oil refinery, chemical production, and industrial solvent-use. 149 

Herein, we compiled both gas-phase I/SVOCs (I/SVOCs-G) and particle-phase 150 

I/SVOCs (I/SVOCs-P) emission inventories and incorporate them into the model. 151 

Detailed process of the inventories is as follows. 152 

(1) Source classification: To refine the I/SVOC emissions from different sources, 153 

we divided the sources into five major categories and then further grouped them into 154 

21 sub-categories. The major categories include industrial process sources, industrial 155 

solvent-use sources, mobile sources, residential sources, and agricultural sources. As 156 

shown in Table S1, the industrial process sources include the sectors such as oil refinery, 157 

chemical production, and pulp and paper production; Industrial solvent-use sources 158 

include textile, leather tanning, timber processing, and various industrial volatile 159 

chemical products use; Mobile sources include gasoline and diesel vehicle emissions, 160 

fuel evaporation, diesel machinery, marine vessel, and aircraft; Residential sources 161 

include coal combustion, residential solvent-use, and cooking emissions; Agricultural 162 

source is specifically referred to biomass burning in household stoves, and open burning 163 

was not included in this study. 164 

(2) Emission estimation: I/SVOCs-G emissions for each specific source were 165 
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estimated by the ratios of total I/SVOC components to anthropogenic VOC (AVOC) 166 

components (I/SVOCs-to-VOCs). Similarly, I/SVOCs-P emissions were estimated by 167 

the ratios of total particle-phase I/SVOC components to POA (I/SVOCs-to-POA). The 168 

I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios for each source were determined 169 

according to their fractions of total I/SVOC species in VOC and POA emissions. Then 170 

we grouped different I/SVOC species into lumped I/SVOC bins based on their C* to 171 

determine the volatility distributions of each source. The I/SVOCs-G emissions were 172 

distributed into four lumped aliphatic IVOC bins across the volatility basis set from 173 

C*=103 to 106 µg·m-3, two aromatic IVOC bins with the C*=105 and 106 µg·m-3, and 174 

four lumped SVOC bins with C* from 10-1 and 102 µg·m-3. The I/SVOCs-P emissions 175 

were distributed into five bins spanning C* from 10-1 and 103 µg·m-3. Source profiles 176 

of I/SVOC species for different sources were referenced from the results in previous 177 

studies. Table S1 and S2 show the I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios 178 

for each specific source and their references. For industrial process, industrial solvent-179 

use, and residential solvent-use sources, only I/SVOCs-G emissions were considered. 180 

Their I/SVOCs-G-to-VOCs ratios and emission profiles were derived from the latest 181 

version of SPECIATE 5.1 database (US EPA, 2021). For gasoline and diesel vehicles, 182 

the I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios and emission profiles were 183 

referenced from a new mobile-source parameterization recommended by Lu et al. 184 

(2020). Those of diesel machinery, marine vessel, and residential coal combustion were 185 

determined by recent measurement results in China (Qi et al., 2019; Huang et al., 2018; 186 

Cai et al., 2019). The I/SVOCs-G-to-VOCs ratios and profiles of cooking and biomass 187 

burning emissions were derived from SPECIATE 5.1 database, while their particle-188 

phase ratios and profiles were referenced from two previous studies (May et al., 2013; 189 

Louvaris et al., 2017). Table S1 and S2 show the I/SVOCs-G-to-VOCs and I/SVOCs-190 

P-to-POA ratios and their emission profiles of each specific source. The base emissions 191 

of AVOCs and POA (See Table S3) were taken from a high-resolution emission 192 

inventory for the year of 2017 developed in our previous study (An et al., 2021). 193 
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(3) Model input: Before being input into the model, the estimated I/SVOC-G and 194 

I/SVOC-P emissions were summed and then redistributed according to their phase 195 

equilibrium under the actual atmospheric state. The formula of phase equilibrium is 196 

shown in Equation (1). 197 

𝐹𝐹p = 𝐶𝐶OA
𝐶𝐶OA+𝐶𝐶∗

        (1) 198 

Where, Fp is the fraction of particle-phase I/SVOC emissions for each volatility bin. 199 

COA represents the OA concentration in the atmosphere. We assumed it to be 10 µg·m-200 

3 in this study. C* is the effective saturation concentration of each volatility bin. After 201 

redistribution, the I/SVOC emissions for each source category were allocated into 4 km 202 

× 4 km grids and hourly temporal profiles using the same method as the criteria 203 

pollutants. 204 

2.2 Model configuration 205 

We used Community Modeling and Analysis System (CMAQ version 5.3.2) to 206 

simulate the concentrations of air pollutants. The domain of the simulation is presented 207 

in Figure 1. The simulations were conducted for three nested grids with horizontal 208 

resolution of 36 km (D1), 12 km (D2) and 4 km (D3), respectively. D1 covers most of 209 

China and the surrounding countries including Japan and South Korea; D2 covers 210 

eastern China and D3 covers the entire YRD region and its surrounding land and waters.  211 

Meteorological fields were provided by the Weather Research and Forecasting 212 

(WRF version 3.7) model with 27 vertical layers extending to the tropopause (100 hpa). 213 

The initial and boundary conditions (ICs, BCs) in the WRF were based on the 1° × 1° 214 

reanalysis data from the National Centers for Environmental Prediction Final Analysis 215 

(NCEP-FNL). Physical options used in the WRF simulation are listed in Table S4.  216 

The Sparse Matrix Operator Kernel Emissions (SMOKE, 217 

https://cmascenter.org/smoke) model was applied to process emissions for input to 218 

CMAQ. CMAQ version 5.3.2 (https://cmascenter.org/cmaq/) was used to simulate 219 

atmospheric pollutants concentrations. ICs and BCs of D1 domain are based on a Model 220 

For Ozone And Related Chemical Tracers (MOZART) global simulation 221 
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(https://acom.ucar.edu/wrf-chem/mozart.shtml). For the inner D2 and D3 domain, ICs 222 

and BCs are extracted from the simulation results of the outer domains. Options selected 223 

for the CMAQ simulations include the SAPRC07 gas phase chemistry, the AERO7 224 

aerosol scheme, the Regional Acid Deposition Model (RADM) model aqueous phase 225 

chemistry, ISORROPIA inorganic particulate thermodynamics. 226 

The emission inventory developed in this study was used to produce the emission 227 

system in the YRD region while emissions beyond YRD were supplied by 228 

Multiresolution Emission Inventory for China (MEIC-2017, http://meicmodel.org), 229 

Shipping Emission Inventory Model (SEIM) (Liu et al., 2016), and the Model Inter-230 

Comparison Study (MIX) emission inventory for 2010 (Li et al., 2017). The I/SVOC 231 

emission inventory outside the YRD region was developed by multiplying the VOCs 232 

and POA emissions with the average I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA 233 

ratios of major source categories like industry, vehicle, marine vessel, and residential. 234 

Biogenic volatile organic compounds (BVOCs) emissions were estimated based on 235 

MEGAN (the Model of Emissions of Gases and Aerosols from Nature) version 2.10 236 

driving by inputs of the leaf area index (LAI) from MODIS product, plant functional 237 

types (PFT) base on remote sensing data, inline coupled emission factors and 238 

meteorology simulated by the WRF model. Detail configurations of MEGAN can be 239 

obtained from our previous study (Liu et al., 2018a). 240 

 241 
Figure 1. Modeling domain and locations of observation sites. The blue marks are meteorological 242 

Domain1

Domain2

Domain3

http://meicmodel.org/
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monitoring sites. The yellow dots represent the national air quality monitoring sites. The purple 243 
crosses are the observation sites with PM2.5 chemical composition measurements. The red star 244 
represents the observation site of AMS measurement. 245 

SOA formed from I/SVOCs was estimated using the parameterization within the 246 

VBS framework in Lu et al. (2020). Specifically, the I/SVOC surrogates react with OH, 247 

generating four oxygenated organic species with volatility spanning from C* = 10-1 to 248 

102 μg·m-3, which may exist in both gas and condensed phase. The rate coefficient (i.e., 249 

kOH) and product yields (i.e., αi, i=1, 2, 3, 4) for each primary I/SVOC species were 250 

derived based on previous laboratory results (Zhao et al., 2015; Zhao et al., 2016b). 251 

Multi-generation oxidation was considered by implementing further oxidation of the 252 

vapors from the initial oxidation, which redistributes the mass across the volatility bins 253 

of C* = 10-2 to 102 μg·m-3, and thus fragmentation and functionalization were included. 254 

Additionally, SOA formation from SVOCs were treated similarly, and more details can 255 

be found in Murphy et al. (2017). POA was treated as semivolatile to account for its 256 

gas-particle partitioning and ageing process and segregated to several particle species, 257 

which varied in their volatility that quantified with the metric C* = 10-1 to 103 μg·m-3 258 

(Donahue et al., 2006). I/SVOCs-P emissions from different sources were then 259 

speciated and input as semivolatile accordingly. The remaining POA emissions 260 

excluding I/SVOCs-P were treated as nonvolatile POC (primary organic carbon) and 261 

PNCOM (primary non-carbon organic matter). 262 

2.3 Model simulations 263 

To investigate the model performance on OA simulations and the contributions of 264 

different sources, we set 14 simulation cases using brute-force method (Zhang et al., 265 

2005). Table 1 shows the settings for these 14 cases. First was BASE simulation case, 266 

in which the I/SVOC emissions was not included and the POA emissions were treated 267 

as non-volatile. The second was the IMPROVE case, which augmented the high-268 

resolution I/SVOC emission inventory established in this study. In addition, the POA 269 

emissions in the IMPROVE simulation were split into both non-volatile and 270 

semivolatile parts. The non-volatile emissions were obtained by subtracting the 271 
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I/SVOCs-P from the total POA. The semivolatile emissions, that was I/SVOCs-P 272 

emissions, were treated with variable gas–particle partitioning and multigenerational 273 

aging in this simulation case. We then used the difference between IMPROVE and 274 

BASE cases to evaluate the OA contributions from I/SVOC emissions. CASE1 to 275 

CASE12 respectively excluded the VOC and I/SVOC emissions from different sources. 276 

We used the differences between IMPROVE and CASE1−12 to quantify the 277 

contribution of each source to OA concentration. 278 

Table 1. Settings of simulation cases. 279 

Name Sources with added I/SVOC emissions 

BASE none 

IMPROVE all 

CASE1 all except industrial process 

CASE2 all except industrial solvent-use 

CASE3 all except mobile sources 

CASE4 all except residential sources 

CASE5 all except biomass burning 

CASE6 all except biogenic sources 

CASE7 without VOCs and I/SVOC emissions 

CASE8 all except gasoline vehicle 

CASE9 all except diesel vehicle 

CASE10 all except diesel machinery 

CASE11 all except marine vessel 

CASE12 all except cooking 

2.4 Model evaluation 280 

To capture the characteristics of OA with different meteorological features in the 281 

YRD region, we selected four periods to represent spring (Mar. 15th to Apr. 15th, 2019), 282 

summer (Jul. 1st to 31st, 2019), autumn (Oct. 15th to Nov. 15th, 2018), and winter (Dec. 283 

1st to 31st, 2018) to conduct the simulations. Evaluations on model performance were 284 

made by comparing the simulation results with the observations obtained in the region, 285 

including 5 meteorological observation sites, 10 PM2.5 chemical composition sites, and 286 

41 national air quality monitoring sites, one in each city. The locations of the 287 

meteorological and air pollutant observation sites are shown in Figure 1. 288 

We also used the observation data of an AMS and a GC-MS/FID system at the 289 
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supersite in Shanghai to further verify the model performance on the simulation of POA, 290 

SOA, and key VOC precursors. Details of AMS measurements and PMF analysis are 291 

provided in our previous study (Huang et al., 2021). A total of 55 PAMS (Photochemical 292 

Assessment Monitoring Stations) species were identified by the GC-MS/FID system 293 

including 27 alkanes, 11 alkenes, acetylene and 16 aromatics. The supersite was located 294 

on the top-floor of an eight-story building in Shanghai Academy of Environmental 295 

Sciences (SAES, 31°10' N, 121°25'E), 30 m above the ground. The site was in a typical 296 

residential and commercial area with significant influence from traffic emission. 297 

Several petrochemical and chemical industrial factories sit around 50 km away from 298 

the site to the south and southwest. 299 

Model performance in simulation of meteorological parameters and major criteria 300 

air pollutants are summarized in Table S5 and S6. The mean bias (MB), mean gross 301 

error (MGE), root-mean-square error (RMSE), and index of agreement (IOA) of 302 

temperature, humidity, wind speed, and wind direction in each season are within the 303 

criteria recommended by Emery et al. (2001). Although the temperature in summer and 304 

winter, and wind speed in autumn and winter were slightly overestimated, their MGE 305 

and IOA values are within the uncertainties as recommended in Emery et al. (2001).  306 

For the simulation of major criteria air pollutants, both mean fractional bias (MFB) 307 

and mean fractional error (MFE) of all pollutants met the criteria recommended by 308 

Boylan and Russell (2006). Since the addition of I/SVOC emissions would change the 309 

PM2.5 simulation results, we thus presented the statistical results for both BASE and 310 

IMPROVE cases in the Table S6. The modeled SO2 was slightly overestimated, which 311 

is likely due to the faster than expected reduction of SO2 emissions, resulting in 312 

overestimation of SO2 emissions in the emission inventory. On the contrast, the 313 

modeled NO2 were underestimated in spring, autumn, and winter, likely due to the 314 

overestimation of wind speed in these seasons. The modeled O3 and PM2.5 were slightly 315 

overestimated in the IMPROVE simulation case. Overall, the simulated meteorological 316 

parameters and major criteria air pollutants are consistent with the observations. 317 
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3. Results and discussion 318 

3.1 I/SVOC emission inventory 319 

3.1.1 Source-specific I/SVOC emissions 320 

Table 2 shows the I/SVOCs-G and I/SVOCs-P emission inventories for detailed 321 

source category for year 2017 in the YRD region. The total I/SVOC-G emission in the 322 

YRD region was 1148.42 Gg in 2017, lower than that in Wu et al. (2021) of 1360 Gg, 323 

but higher than the estimate in Huang et al. (2021b) of 730 Gg. We found industrial 324 

solvent-use was the largest contributor (483.64 Gg, 42.11%) of total S/IVOCs-G 325 

emissions, followed by industrial process sources (244.65 Gg, 21.30%), mobile source 326 

(344.31 Gg, 29.98%), residential source (62.23 Gg, 5.42%), and agriculture source 327 

(13.58 Gg, 1.18%). Specifically, chemical production, textile, and solvent-based 328 

coating were major sectors of I/SVOCs-G emissions in the YRD region, accounting for 329 

20.80%, 19.51%, and 15.07% of the total I/SVOCs-G emission, and their contributions 330 

to AVOC emissions were 20.70%, 2.22%, and 23.42%, respectively (See Table S3). It 331 

is interesting to note that the I/SVOCs-to-VOCs ratios are largely different for different 332 

sources. For example, the textile industry only accounted for 2.22% of the total AVOC 333 

emissions in the YRD region but contributed to 19.51% of the I/SVOC-G emissions 334 

due to its higher I/SVOCs-to-VOCs ratio (2.473). Another example is water-based 335 

coatings, whose VOC emissions were approximately 10.2% of solvent-based coatings, 336 

while their I/SVOC emissions were 29.1% of those from solvent-based coatings. These 337 

findings indicate that reductions in VOC emissions not necessarily corresponds to the 338 

simultaneous reductions in I/SVOCs emissions and subsequent SOA formation, which 339 

should be considered in future control strategies. (Yuan et al., 2010). 340 

For I/SVOCs-G emission of mobile origin, the major contributors were gasoline 341 

vehicle, diesel vehicle, and non-road diesel machinery, accounting for 13.64%, 11.66%, 342 

and 2.11%, respectively. The total I/SVOCs-G emissions from gasoline and diesel 343 

vehicles were 290.57 Gg, much higher than the results reported in Liu et al. (2017) 344 

(29.58 Gg) and Huang et al. (2021b) (16.0 Gg) using the emission factor method, which 345 
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likely underestimates the emission factors of I/SVOCs due to the lack of localized 346 

emission factors. Our tunnel experiment results show that the average IVOCs emission 347 

factors of gasoline and diesel vehicles were 15.3 mg·km-1 and 219.8 mg·km-1 (Tang et 348 

al., 2021), which were significantly higher than those used in the above studies (Liu et 349 

al., 2017; Huang et al., 2021b). More comprehensive localized emission measurements 350 

are advocated to better constrain the I/SVOC emissions from mobile sources. 351 

I/SVOCs-P emissions were 82.96 Gg. The largest contributor of I/SVOCs-P 352 

emissions came from cooking emission and diesel vehicle, accounting for 53.24% and 353 

11.88% of the total, followed by gasoline vehicle (5.23%), marine vessel (2.66%), 354 

diesel machinery (2.54%), and biomass burning (1.75%). Note that the I/SVOCs-P 355 

emissions from coal combustion (e.g. power plants, boilers, etc.), other industrial 356 

processes, and aircraft were not included in this study. On the one hand, the POA 357 

emissions (See Table S3) from these sources were limited, accounting for less than 5%, 358 

which could be expected that their I/SVOCs-P emissions were also relatively low. On 359 

the other hand, the profiles of I/SVOCs-P components of these sources were still 360 

difficult to obtain. More measurements of the I/SVOC emissions from these sources is 361 

very necessary in the future. 362 

Table 2. Source-specific emissions of I/SVOCs for the year 2017 in the YRD region. 363 

Source 
I/SVOCs I/SVOCs-G I/SVOCs-P 

Gg % Gg % Gg % 

Industrial process 

Oil refinery 5.63  0.46  5.62  0.49  0.01  0.01  

Chemical production 243.60  19.78  238.91  20.80  4.69  5.65  

Pulp and paper 0.11  0.01  0.11  0.01  0.00  0.00  

Industrial solvent-use 

Textile 229.78  18.66  224.06  19.51  5.72  6.90  

Leather tanning 3.83  0.31  3.83  0.33  0.00  0.00  

Timber processing 31.08  2.52  31.08  2.71  0.00  0.00  

Furniture coating 1.32  0.11  1.32  0.12  0.00  0.00  

Solvent-based coating 173.02  14.05  173.01  15.07  0.00  0.00  

Water-based coating 50.32  4.09  50.32  4.38  0.01  0.01  

Dry cleaning 0.02  0.00  0.02  0.00  0.00  0.00  

Paint remover 0.01  0.00  0.01  0.00  0.00  0.00  

Mobile source Gasoline vehicle 161.01  13.08  156.67  13.64  4.34  5.23  
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Diesel vehicle 143.76  11.67  133.90  11.66  9.86  11.88  

Fuel evaporation 0.69  0.06  0.69  0.06  0.00  0.00  

Diesel machinery 49.62  4.03  47.51  4.14  2.11  2.54  

Marine vessel 7.12  0.58  4.91  0.43  2.21  2.66  

Aircraft 0.64  0.05  0.64  0.06  0.00  0.00  

Residential source 

Coal combustion 2.73  0.22  2.73  0.24  0.00  0.00  

Residential solvent-use 35.29  2.87  35.20  3.07  0.09  0.11  

Cooking 76.77  6.23  24.30  2.12  52.46  63.24  

Agriculture source Biomass burning 15.04  1.22  13.58  1.18  1.45  1.75  

Total 1231.38  100.00  1148.42  100.00  82.96  100.00  

3.1.2 Volatility distributions of I/SVOCs 364 

Figure 2 shows the volatility distribution of I/SVOC emissions from different 365 

sources as well as their gas-particle distributions. The I/SVOC emissions generally 366 

showed an increasing trend with the increase of volatility. As shown in Figure 2(a), 367 

IVOC emissions (logC* bins at 3−6) accounted for 86% of the total I/SVOCs emissions, 368 

overwhelmingly dominated by industrial process and mobile sources. SVOCs (logC* 369 

bins at 0−2) and low-volatile organic compounds (LVOCs, logC* bins at -1) contributed 370 

to 11% and 3% of the total I/SVOCs emissions. In terms of the contributing sectors, 371 

mobile sources, industrial process, and solvent-use dominated the total I/SVOC 372 

emissions. While the IVOCs were equally contributed by above-listed three sources, 373 

residential and mobile sources dominated the SVOCs and LVOCs emissions.  374 

We further investigated the contributions of different volatility bins to each source 375 

category. The mobile source was dominated by IVOC emission (88%). Note that IVOCs 376 

in vehicle exhaust are dominated by aromatics, which have faster OH reaction rates and 377 

higher SOA yields compared to aliphatics in the same volatility bin (Zhao et al., 2016b; 378 

Drozd et al., 2019). Lu et al. (2020) therefore defined two additional lumped IVOC 379 

species with logC* bins at 5 and 6 to account for the aromatic IVOCs in vehicle exhaust 380 

according to the measurements in previous studies (Zhao et al., 2015; Zhao et al., 381 

2016b). Here in this study, we also split the aromatic IVOC emissions from mobile 382 

sources and found that aromatic IVOCs accounted for 23% of the total I/SVOC 383 

emissions from the mobile source. The industrial process and solvent-use sources were 384 
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also dominated by IVOC emissions, accounting for 81% and 97%, respectively. The 385 

volatility distribution of residential sources was relatively uniform, with IVOCs, 386 

SVOCs and LVOCs accounting for 40%, 30%, and 30%. Agricultural (i.e., biomass 387 

burning) sources were more concentrated in IVOCs, accounting for 76%, while SVOCs 388 

accounted for 24%. It should be noted that other than mobile sources, the emission 389 

profiles of the other sources were mainly derived from SPECIATE 5.1 database (US 390 

EPA, 2021) in this study, which may be inconsistent with real-world emissions in China. 391 

To further reduce the uncertainty in the I/SVOC emission inventory, measurements of 392 

I/SVOC emissions from different local sources are therefore important and urgently 393 

needed in the future. 394 

 395 
Figure 2. Volatility distributions of I/SVOCs emitted from different sources in the YRD region. 396 

3.1.3 Spatial distributions of I/SVOC emissions in YRD region 397 

Figure 3 compares the spatial distributions of AVOC, IVOC, SVOC, and LVOC 398 

emissions in the YRD region. The IVOC, SVOC, and LVOC emissions were largely 399 

concentrated in city clusters in eastern YRD, and hotspots can also be observed in the 400 

northern agglomerations. The distributions of I/S/LVOC emissions were generally 401 

consistent with that of the AVOC emissions in the region. Compared to the spatial 402 

distributions of I/S/LVOC emissions in Chang et al. (2022), our emissions had similar 403 

spatial distributions but at a higher resolution. Emission hotspots in urban areas can be 404 

captured more clearly in this study, which will help improve the simulation in urban 405 
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areas. 406 

Figure 4 shows the spatial distributions of source-specific I/SVOC emissions in 407 

the YRD region. There were considerable differences in the spatial distributions of 408 

I/SVOC emissions from different sources. The I/SVOC emissions from industrial 409 

sources (including industrial process and industrial solvent-use) were mainly 410 

concentrated in the eastern urban agglomeration, which was related to the developed 411 

industrial activities in the region. The I/SVOC emissions from mobile and residential 412 

sources clustered into multiple hotspots in urban areas, while emissions from 413 

agricultural sources were mainly distributed in northern YRD, where frequent 414 

agricultural activities exist. 415 

We also compare the spatial distributions of I/SVOC emissions with those of POA 416 

and BVOCs. We found that POA emissions were more concentrated in urban centers 417 

associated with mobile and residential sources (See Figure S1). BVOC emissions in the 418 

YRD region were mainly distributed in the southern area, where AVOC and IVOC 419 

emissions were relatively low. The difference in the spatial distributions of I/SVOC, 420 

AVOC, BVOC, and POA emissions implies that the sources of organic components in 421 

different areas of the region are quite different, which will be discussed in the following 422 

sections. 423 
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 424 
Figure 3. Spatial distributions of anthropogenic VOC, IVOC, SVOC, and LVOC emissions in the 425 
YRD region for the year 2017. 426 

 427 
Figure 4. Spatial distributions of I/SVOC emissions from different source categories in the YRD 428 
region for the year 2017. 429 

(a) VOCs (b) IVOCs

(c) SVOCs (d) LVOCs

(a) All anthropogenic sources (b) Industrial process sources (c) Industrial solvent-use sources

(d) Mobile sources (e) Residential sources (f) Agriculture sources

I/SVOCs I/SVOCs I/SVOCs
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3.2 Comparison between model simulation and observation 430 

3.2.1 Simulation results of VOCs and IVOCs 431 

Since model performance on the simulation of VOCs are critical for SOA 432 

estimation, we first compare the modeled concentrations of VOCs with those of the 433 

measured at the SAES supersite for several aromatic VOCs, including benzene, toluene, 434 

and m-/p-/o-xylenes. As shown in Figure S2, the model simulation was able to capture 435 

the hourly variations of these species measured, with Pearson correlation coefficients 436 

(r) of 0.54−0.65, 0.45−0.60, 0.54−0.69 for toluene, xylene, and benzene respectively. 437 

Although the simulation results of toluene were 28% lower and xylene and benzene 438 

were 41% and 22% higher than those of the measured, the model results are within the 439 

uncertainties. Overall, the simulation results of the VOC species showed good 440 

agreements with the observations, which could be further used for the model simulation 441 

of SOA formation. 442 

Long-term continuous observations of I/SVOC concentrations were sparse, so the 443 

simulation results of IVOCs were compared with those obtained from offline 444 

measurements reported in our previous studies (Li et al., 2019; Ren et al., 2020). The 445 

reported IVOC concentrations (sum of gas- and particle-phase concentrations) in 446 

summer and winter Shanghai in 2018 respectively varied between 1.5−17.2 and 447 

2.2−43.1 µg·m-3 with average concentrations of 6.8 ± 3.7 and 18.2 ± 11.0 µg·m-3. In 448 

this study, our modeled average concentrations of IVOCs in spring, summer, autumn, 449 

and winter at the SAES supersite in Shanghai were 12.8 ± 5.6, 9.0 ± 3.2, 12.2 ± 5.2, 450 

and 12.4 ± 7.6 µg·m-3, respectively. Although there was still a deviation of 20%−30% 451 

between the simulation and observation, not to mention the diurnal patterns and spatial 452 

distributions also remained unknown, the simulation results are at least comparable to 453 

those of the measured concentrations, suggesting the modeled I/SVOCs is appropriate 454 

to be used in the estimation of SOA production from different sources. Continuous long-455 

term measurements of I/SVOC at multiple locations are strongly recommended in the 456 

future to improve the model performance and reduce the uncertainties in SOA 457 
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estimation. 458 

3.2.1 Simulation results of OA concentrations 459 

Figure 5 presents the OA concentrations originated from different sources, 460 

including POA and SOA formed from AVOCs, BVOCs, and I/SVOCs, in four seasons 461 

in YRD from both BASE and IMPROVE simulations. Here we used the average of the 462 

modeled concentrations at 41 national air quality monitoring sites (See the yellow dots 463 

in Figure 1) to represent the regional average. The regional average concentration of 464 

OA (8.75 μg·m-3) in the IMPROVE simulation was 22% higher than that from BASE 465 

simulation (7.17 μg·m-3) due to the involvement of I/SVOCs in the IMPROVE 466 

simulation. 467 

The seasonal average concentration of POA was 5.5 μg·m-3 in the BASE case, with 468 

the lowest in summer (3.8 μg·m-3) and the highest in winter (6.9 μg·m-3). High POA 469 

concentrations in winter was mainly induced by the stagnant meteorological conditions 470 

such as low wind speed and boundary layer height, and vice versa in summer. For the 471 

spatial distributions as presented in Figure 6, POA concentrations in northern YRD were 472 

high and mainly concentrated in urban areas, which was consistent with the 473 

distributions of POA emissions (Figure S1). The POA concentrations in the IMPROVE 474 

simulation decreased by 12%−20% compared with the BASE case. In the IMPROVE 475 

simulation, the POA was treated as semi-volatile, where gas–particle partitioning and 476 

multigeneration oxidation were considered (Murphy et al., 2017). Entering into the 477 

atmosphere, more semi-volatile compounds evaporated into gas-phase and then 478 

generated SOA through multigeneration oxidation, which reduced the POA 479 

concentrations relatively. 480 

The seasonal average concentration of AVSOA in the BASE case was only 0.22 481 

μg·m-3. The average AVSOA concentration in the IMPROVE case increased by 17% 482 

compared with the BASE case due to higher OA loading. Nonetheless, AVSOA still 483 

exhibited very limited contribution to the regional OA concentration, whereas average 484 

concentration of BVOC derived SOA (BVSOA, 1.7 μg·m-3 in the IMPROVE 485 
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simulation case) was much higher. Also, evident seasonal variations were observed for 486 

BVSOA, with the highest in summer (2.27 μg·m-3), followed by spring (1.65 μg·m-3), 487 

autumn (1.62 μg·m-3), and winter (1.11 μg·m-3). Hotspots of BVSOA concentrations 488 

were concentrated in the western and southern YRD. The observed seasonal variations 489 

and spatial distributions of BVOC derived SOA were consistent with those of the 490 

BVOC emissions in YRD (Liu et al., 2018a). 491 

The average concentration of I/SVOC derived SOA (I/SVSOA) in IMPROVE 492 

simulation was 2.18 μg·m-3, with the highest in spring (2.66 μg·m-3) and the lowest in 493 

summer (1.79 μg·m-3), which was a combined effect of emission, oxidation and 494 

meteorological conditions. For example, Qin et al. (2022) suggested that in spring the 495 

enhanced solar radiation and OH oxidation potentially promote the secondary 496 

conversion from I/SVOCs to SOA. The low concentration in summer was likely due to 497 

the better meteorological conditions than the other seasons. By incorporating I/SVOC 498 

emissions into the IMPROVE simulation, the modeled average SOA concentration in 499 

the region increased from 1.66 (BASE) to 4.10 μg·m-3; and high concentrations of 500 

I/SVSOA were observed in central and northern YRD. Overall, the addition of high-501 

resolution I/SVOC emissions significantly increase the SOA concentration by 148%, 502 

which will be further constrained by the observation in next section. 503 

To validate the model performance on regional OA simulation, we compared it 504 

with the measured concentrations of organic carbon (OC) in PM2.5 at multiple sites in 505 

the YRD region (Figure S3). Although both BASE and IMPROVE simulations showed 506 

good correlations with the observation as shown in Figures S3c, S3f, S3i, and S3l, OC 507 

concentrations in IMPROVE simulations in different seasons were all higher than those 508 

in the BASE simulations. In the BASE simulation, the modeled OC concentrations of 509 

each season only explained 51% to 71% of the observations. With the addition of 510 

I/SVOC emissions into IMPROVE simulation, the modeled OC concentrations much 511 

better agreed with the observations, with modeled OC increased to 70% to 91% of the 512 

observations. Details for the statistical evaluation of model performance on OC in 513 
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BASE and IMPROVE simulations are shown in Table S7. 514 

 515 
Figure 5. Comparisons of the regional average concentrations of POA and SOA formed from 516 
AVOCs, BVOCs, and I/SVOCs in different seasons from the BASE and IMPROVE simulations. 517 
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 518 
Figure 6. Spatial distributions of modeled POA and SOA formed from AVOCs, BVOCs, and 519 
I/SVOCs in different seasons in the IMPROVE simulation. 520 

3.2.2 Temporal variations of OA components: simulation vs. AMS observation 521 

To further validate the model performance on the simulations of POA and SOA, 522 

we compared the simulation results with those measured by an AMS at the SAES 523 

supersite. Both simulation and observation results were obtained for PM1 aerosol 524 

particles (aerodynamic diameter < 1 µm). Figure 7 shows that the simulation results of 525 

POA, SOA and OA were similar to the observation results not only in average 526 

concentration levels but also in temporal variations. For POA, the diurnal patterns in 527 

(i) SOA from BVOCs, Spring (j) SOA from BVOCs, Summer (k) SOA from BVOCs, Autumn (l)  SOA from BVOCs, Winter

(m) SOA from I/SVOCs, Spring (n) SOA from I/SVOCs, Summer (o) SOA from I/SVOCs, Autumn (p) SOA from I/SVOCs , Winter

(a) POA, Spring (b) POA, Summer (c) POA, Autumn (d) POA, Winter

(e) SOA from AVOCs, Spring (f) SOA from AVOCs, Summer (g) SOA from AVOCs, Autumn (h) SOA from AVOCs, Winter
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the BASE and IMPROVE simulations agree with each other and both can reproduce 528 

the observed concentrations. The POA concentrations in the IMPROVE simulation 529 

cases decreased by 4%−18% (Figure S4) compared with the BASE case and was closer 530 

to the observations. Similar to the observation results, the simulated POA 531 

concentrations peaked at noon and early evening, which were mainly contributed by 532 

cooking emissions as reported in our previous study (Huang et al., 2021). 533 

For SOA, the average concentrations in spring, summer, autumn, and winter in 534 

BASE simulation were 1.2, 1.6, 0.8, and 0.7 μg·m-3, respectively, which were only 535 

14%−30% of those observed by the AMS (see Figure S4). The SOA simulation was 536 

greatly improved in IMPROVE simulation with the modeled SOA concentrations of 3.8 537 

3.7, 2.7, and 2.3 μg·m-3 in spring, summer, autumn, and winter respectively. The SOA 538 

concentrations in IMPROVE simulation were 2.4−3.6 times higher than those in BASE 539 

simulation, which is 40% to 72% of the observation, indicating the large contributions 540 

of I/SVOCs emissions to SOA production. The IMPROVE simulation also 541 

demonstrated improvements in reproducing the temporal variations of SOA, especially 542 

during the daytime (Figure 7e−7h). Compared with the BASE simulation, evident 543 

increases in SOA concentrations during daytime can be observed in IMPROVE 544 

simulation, which agrees better with the observation, likely driven by photochemistry. 545 

Although the SOA simulations were improved in all four seasons, best simulation 546 

results were found in summer, when both the concentrations and diurnal variations of 547 

SOA were well reproduced.  548 

While our current results presented great improvements in SOA simulation, gaps 549 

were still left between the simulation and observation especially during the nighttime. 550 

The main reasons for the discrepancy between the simulated and measured SOA are: 551 

(1) I/SVOC emissions from outside of the YRD region might be underestimated due to 552 

the lack of detailed base emission inventory, resulting in the corresponding 553 

underestimation of the transported SOA, which were prominent especially in autumn, 554 

winter and spring in Shanghai; (2) current model simulation only consider the oxidation 555 
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processes driven by OH oxidation. However, an increasing body of experimental and 556 

observational evidence suggest that heterogeneous and multiphase reactions also played 557 

important roles in SOA formation especially during pollution episodes (Guo et al., 2020; 558 

Kim et al., 2021). Recent studies also found that nocturnal NO3 oxidation was also an 559 

important route for SOA formation (Yu et al., 2019; Decker et al., 2021). Yet mechanism 560 

and parameterizations of these processes remain unclear, making the involvement of 561 

these processes in the model difficult.  562 

 563 
Figure 7. Diurnal patterns of modeled POA, SOA, and OA concentrations in different seasons and 564 
their comparisons with the observations at the SAES supersite. The boxplots represent the diurnal 565 
patterns of the AMS observations. The blue and red lines respectively represent the diurnal patterns 566 
of the simulation results in BASE and IMPROVE cases. 567 

3.3 OA source contributions 568 

3.3.1 POA and SOA sources in the region 569 

Based on the high-resolution I/SVOC emission inventory established in this study, 570 

we successfully simulated the POA and SOA concentrations from each source. Table 3 571 

summarizes the regional average concentrations of POA and SOA originated from 572 

different sources and their relative contributions. Residential POA dominated the 573 

regional OA, with average concentrations ranged from 1.56 to 2.35 μg·m-3 in different 574 

(a) POA, Spring (b) POA, Summer (c) POA, Autumn (d) POA, Winter

(e) SOA, Spring (f) SOA, Summer (g) SOA, Autumn (h) SOA, Winter

(i) OA, Spring (j) OA, Summer (k) OA, Autumn (l) OA, Winter
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seasons, accounting for 19.47%−25.31% of the total OA, among which cooking 575 

emission is the dominant source (ca. 98%) of residential POA. Other POA sources 576 

include industrial, biomass burning, and mobile sources, accounting for 8.02%−8.63%, 577 

4.45%−8.28%, and 5.03%−5.78% of the total OA, respectively. The cumulative 578 

fraction of POA in total OA from industrial and mobile sources was 13.44%−14.41%, 579 

close to that of HOA (15%) observed by the AMS measurement in Shanghai (Figure 580 

S5). 581 

Industrial sources were the main source of SOA in the YRD region, with average 582 

SOA concentrations of 0.84−1.21 μg·m-3 in four seasons, accounting for 8.98%−15.64% 583 

of the total OA, among which, industrial process and solvent-use sources had almost 584 

equal contributions. Mobile sources were the second largest source of SOA in this 585 

region, with an average concentration of 0.31−0.50 μg·m-3, accounting for 3.36%−6.69% 586 

of the total OA. Among them, the source contribution of gasoline vehicles to SOA was 587 

1.77%−3.07%, and that of diesel vehicles was 1.18%−2.55%. BVSOA showed 588 

significant seasonal differences with concentrations of 0.88, 1.26, 0.70, and 0.11 μg·m-589 

3, respectively in spring, summer, autumn, and winter, accounting for 9.64%, 16.94%, 590 

7.60%, and 1.15% of the total OA.  591 

Overall, cooking emission was the major source of POA in YRD, accounting for 592 

19.14%−24.99% of the total OA, which is consistent with our observations in Shanghai 593 

(Huang et al., 2021; Zhu et al., 2021). Both simulations and observations demonstrated 594 

higher contributions of cooking emission in urban China than those reported overseas 595 

(17%–18%) (Chen et al., 2021), which is attributed to the difference between Asian-596 

style and Western-style cooking. The results emphasize that cooking emission has 597 

become a non-negligible source of non-fossil carbon in urban areas in eastern China. 598 

Contributions from industrial sources were running the second among all sources, 599 

accounting for 17.02%−24.12% of OA and 24.7%–26.8% of SOA, which is attributed 600 

to the high I/SVOC emissions from industrial sources and is consistent with previous 601 

studies (Miao et al., 2021). Other sources mainly include mobile sources (8.76% to 602 
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11.72% of OA) and biomass burning (5.19%−8.87% of OA). Specifically, diesel and 603 

gasoline vehicles were the major contributors among mobile sources, with higher 604 

contribution from the former (3.95%−4.66%) than the latter (3.05%−4.02%), followed 605 

by diesel machinery (1.32%−2.11%) and marine vessels (0.43%−0.93%). The 606 

contribution of biomass burning was highest in winter (8.87%) compared to 607 

contributions of 5.19%−7.28% in other seasons and it was even higher than contribution 608 

of mobile sources (8.76%) in winter. The remaining 14.54%−35.64% of OA was from 609 

super region scale, which represented OA originated from emissions outside the YRD 610 

region. Our results were generally similar with those of Chang et al. (2022) for the YRD 611 

region. We both found the domestic combustion mainly engaged in cooking emissions 612 

had a major contribution to OA. Next was volatile chemical products (VCPs), especially 613 

the use of solvents, paints, and adhesives in industrial sector, also made a high 614 

contribution. Note that industrial process also took up a high fraction in our OA 615 

simulation, while it was lower in Chang et al. (2022)’s study. The difference in I/SVOC 616 

emission estimates was the main reason for this divergence. Mobile sources in both 617 

studies had similar contributions, which accounted for about 10% to total OA. 618 

Comparatively, our source classification was more specific, which will help identify 619 

more specific OA sources to design more refined regional control countermeasures. 620 

Table 3. POA and SOA source contributions of different emission sources in each season in the 621 

YRD region. 622 

Sources 

Spring Summer Autumn Winter 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

POA 4.47  49.19  3.09  41.65  5.05  55.06  6.00  64.29  

    Industrial sources 0.73  8.02  0.63  8.48  0.79  8.63  0.75  8.04  

        Industrial process 0.61  6.71  0.54  7.27  0.67  7.29  0.63  6.77  

        Industrial solvent-use 0.12  1.31  0.09  1.20  0.12  1.34  0.12  1.27  

    Mobile sources 0.49  5.43  0.37  5.03  0.53  5.78  0.50  5.40  

        Gasoline Vehicles 0.09  1.01  0.07  0.96  0.12  1.32  0.12  1.28  

        Diesel Vehicles 0.23  2.58  0.16  2.16  0.26  2.79  0.26  2.77  

        Diesel machinery 0.10  1.06  0.09  1.21  0.10  1.08  0.09  0.95  

        Marine vessel 0.07  0.78  0.05  0.70  0.05  0.59  0.04  0.39  
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    Residential sources 1.77  19.47  1.56  20.95  2.32  25.31  2.35  25.16  

        Cooking 1.74  19.14  1.54  20.72  2.29  24.99  2.31  24.77  

        Other residential 0.03  0.33  0.02  0.23  0.03  0.33  0.04  0.39  

    Biomass burning 0.60  6.65  0.33  4.45  0.60  6.58  0.77  8.28  

    Super region 0.87  9.63  0.20  2.75  0.80  8.75  1.62  17.41  

SOA 4.61  50.81  4.34  58.35  4.13  44.94  3.33  35.71  

    Industrial sources 1.21  13.38  1.16  15.64  1.02  11.10  0.84  8.98  

        Industrial process 0.68  7.53  0.62  8.39  0.61  6.62  0.53  5.64  

        Industrial solvent-use 0.53  5.84  0.54  7.25  0.41  4.48  0.31  3.34  

    Mobile sources 0.49  5.45  0.50  6.69  0.43  4.63  0.31  3.36  

        Gasoline Vehicles 0.25  2.71  0.23  3.07  0.21  2.25  0.16  1.77  

        Diesel Vehicles 0.18  1.95  0.19  2.50  0.16  1.73  0.11  1.18  

        Diesel machinery 0.06  0.66  0.07  0.90  0.05  0.56  0.03  0.37  

        Marine vessel 0.01  0.13  0.02  0.22  0.01  0.09  0.00  0.04  

    Residential sources 0.42  4.68  0.49  6.54  0.43  4.71  0.32  3.39  

        Cooking 0.21  2.34  0.29  3.97  0.26  2.78  0.16  1.71  

        Other residential 0.21  2.34  0.19  2.58  0.18  1.93  0.16  1.68  

    Biomass burning 0.06  0.63  0.06  0.74  0.05  0.59  0.06  0.60  

    Biogenic 0.88  9.64  1.26  16.94  0.70  7.60  0.11  1.15  

    Super region 1.55  17.04  0.88  11.80  1.50  16.30  1.70  18.23  

3.3.2 Spatial distributions of SOA originated from different sources 623 

Figure 8 shows the spatial distributions of modeled SOA originated from different 624 

sources in each season in YRD region. Note that we only considered the SOA formed 625 

from the intraregional VOC and I/SVOC emissions, excluding those transported from 626 

the super region. A large spatial variability was observed for the sources of SOA driven 627 

by emissions. For example, industrial and mobile SOA concentrated in the eastern and 628 

central YRD, where I/SVOC emissions were high (Figure 4). Residential and 629 

agricultural SOA presented a more uniform spatial distribution than industrial and 630 

mobile SOA, with enhanced formation in central and western YRD (Figures 8i-8l).  631 

Although absolute source-dependent SOA concentrations differ in different 632 

seasons, low spatial variabilities were observed for different seasons. Industrial, mobile, 633 

and residential sources were the predominant contributors to SOA formation in eastern 634 

and central YRD, especially for the area along the Hangzhou Bay and Yangtze River 635 

driven by the enhanced I/SVOC emissions. The spatial distributions of BVSOA have 636 
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been discussed above and will not be detailed here. 637 

 638 
Figure 8. Spatial distributions of modeled SOA concentrations from different sources in each season 639 
in YRD region. 640 

3.3.3 Predominant OA sources in sub-regions of YRD 641 

To characterize the source contributions in different parts of the region, we 642 

(a) Industrial SOA, Spring (b) Industrial SOA, Summer (c) Industrial SOA, Autumn (d) Industrial SOA, Winter

(e) Mobile SOA, Spring (f) ) Mobile SOA, Summer (g) Mobile SOA, Autumn (h) Mobile SOA, Winter

(i) Residential SOA, Spring (j) Residential SOA, Summer (k) Residential SOA, Autumn (l) Residential SOA, Winter

(m) Agricultural SOA, Spring (n) Agricultural SOA, Summer (o) Agricultural SOA, Autumn (p) Agricultural SOA, Winter

(q) Biogenic SOA, Spring (r) Biogenic SOA, Summer (s) Biogenic SOA, Autumn (t) Biogenic SOA, Winter
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categorized the simulation region into six sub-regions: northern YRD, western YRD, 643 

central YRD, eastern YRD and southern YRD. And six representative cities in theses 644 

six regions were further selected for detailed comparison in source contributions, 645 

including Xuzhou (XZ), Hefei (HF), Nanjing (NJ), Hangzhou (HZ), Shanghai (SH) and 646 

Jinhua (JH). Figure 9 shows their locations and OA source contributions during summer 647 

and winter. 648 

In Northern YRD, represented by XZ, enhanced contribution from super-regional 649 

scale to the local OA was observed for both winter (64.6%) and summer (27.7%) and 650 

the contributions from industrial processes (14.0% in winter and 21.0% in summer) 651 

were also higher than other sub-regions. Other major sources include biogenic (12.0%) 652 

and cooking emissions (14.1%) in summer and cooking (8.3%) in winter. Taken 653 

together, super-regional transportation and industrial processes are predominant 654 

contributors of OA in northern YRD, accounting for 78.6% and 48.7% in summer and 655 

winter respectively, followed by cooking emissions. 656 

In western YRD, represented by HF, cooking emission was the largest contributor 657 

to OA with contributions of 17.8% and 26.3% in both summer and winter respectively, 658 

followed by super-regional contributions of 15.7% (summer) and 29.2% (winter). Other 659 

major sources also include mobile source of 15.5%, biogenic source in summer (17.8%) 660 

and industrial processes in both summer (12.3%) and winter (8.9%). In central YRD, 661 

represented by NJ and HZ, the relative source contributions were very similar to those 662 

in western YRD, with predominant contributions from cooking (22.8%-32.6%), 663 

followed by super-regional transportation (7.4%-31.8%), industrial processes (11.3%-664 

18.4%) and mobile source (13.1%-16.3%). 665 

In eastern YRD, represented by SH, the largest OA source was cooking emission, 666 

account for 24.3% and 36.6% of OA in summer and winter respectively, followed by 667 

mobile sources of 19%, super-regional transportation of 11.5% (summer) and 22.2% 668 

(winter) and industrial processes of 17.3% (summer) and 11.4% (winter). In southern 669 

YRD, represented by JH, while biogenic contribution was prevailing in summer 670 
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(38.2%), super-regional transportation was significant in winter (31.8%). Similar to 671 

other sub-regions, other major sources also included the contributions of cooking 672 

emission of 12.2% (summer) and 11.4% (winter), industrial processes of 12.9% 673 

(summer) and 17.9% (winter) and mobile sources of 13%. Yet southern YRD presented 674 

more evident increase in the contribution from industrial solvent-use compared with 675 

other sub-regions. 676 

To summarize, cooking, super-regional transportation, industrial process and mobile 677 

sources were the predominant sources of OA in all sub-regions regardless of the season, 678 

albeit enhanced contributions from biogenic sources to the OA formation in summer 679 

was observed, especially in southern YRD. High contributions of cooking sources were 680 

in accordance with the distributions of populations and high contributions of mobile 681 

sources were somewhat expected, especially in the city centers. Source contributions of 682 

OA varies in the intraregional scale implies that more targeted control measures need 683 

to be designed according to the emission features of each city. Specifically, for densely 684 

populated area, it is necessary to strengthen the future control strategy of cooking 685 

emissions; special attention needs to be paid to the I/SVOC emissions from industrial 686 

sources in eastern, central, and northern YRD region; mobile sources show its 687 

significance in urban aera of the region, dominated by the equal contributions from 688 

gasoline and diesel vehicles, indicating further reductions on the I/SVOCs from vehicle 689 

emissions are therefore critical for pollution control on city scale. 690 
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 691 
Figure 9. Source contributions of modeled OA concentrations from different sources during summer 692 
and winter in different cities of the region. 693 

4. Conclusions 694 

In this study, we established a high-resolution I/SVOC emission inventory with 695 

detailed source profiles and applied it into CMAQ v5.3 to simulate POA and SOA 696 

formation in YRD region of China. With the addition of I/SVOC emissions, simulation 697 

results show significant improvements on both temporal variations and spatial 698 

distributions of OA. Compared with the BASE simulation, where I/SVOC emissions 699 

were not included, the simulated SOA increased by 1.5 times in IMPROVE simulation, 700 

highlighting the significant contributions of I/SVOC emissions to SOA production. The 701 

remaining 10%−30% underestimation of OA indicates that future work is still needed 702 

in bridging the gap between simulation and observations, such as, measuring local 703 

emission factors and source profiles of I/SVOC from various local sources, updating 704 
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SOA formation mechanisms in model framework.  705 

With the addition of source specific I/SVOC emissions, we successfully quantified 706 

the contribution of each source to POA and SOA concentrations in YRD. For POA, 707 

cooking emission is the predominant source, which concentrates in urban area of YRD 708 

in accordance with the population distribution. For SOA, for the first time, we 709 

demonstrate that I/SVOCs from industrial sources are dominant contributor, followed 710 

by those from mobile sources. In summer, the contributions of biogenic emission to 711 

total SOA are also non-negligible, especially for the cities in southern YRD. Spatial and 712 

seasonal variations in the source contributions suggest that control strategies for OA 713 

pollution should vary by cities and seasons. On regional scale, cooking emissions has 714 

been emerging as an important POA source, not to mention their impacts on SOA 715 

formation are not yet certain. Our results suggest the control measures on the cooking 716 

emissions should be strengthened in the future for the further reduction of POA. We 717 

also found that SOA in the region is primarily contributed by industrial I/SVOC 718 

emissions, which urges in-depth studies of emission factors and source profiles of 719 

I/SVOC emissions from industrial sources as well as the corresponding control 720 

measures. On intraregional scale, for urban area, continuous reduction in I/SVOC 721 

emissions from mobile sources, especially gasoline and diesel vehicles, are effective 722 

measures in the mitigation of urban air pollution, which is also technically feasible as 723 

has been demonstrated in Qi et al. (2021). Continuous improvement in emission 724 

standards is one way to promote the reduction of motor vehicle related SOA. 725 

Data availability 726 

The gridded emissions of I/SVOCs from various sources for the YRD region 727 

developed by this study at a horizontal resolution of 4 km × 4 km can be downloaded 728 

from the following website (https://doi.org/10.6084/m9.figshare.19536082.v1). 729 

Additional related data are available upon request by contacting the corresponding 730 

author (Cheng Huang; huangc@saes.sh.cn). 731 
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