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Abstract: Organic aerosol (OA) makes up a substantial fraction of atmospheric 13 

particulate matter that exerts tremendous impacts on air quality, climate, and human 14 

health. Yet current chemical transport models fail to reproduce both the concentrations 15 

and temporal variations of OA, especially the secondary organic aerosol (SOA), 16 

hindering the identification of major contribution sources. One possibility is that 17 

precursors that are not yet included in the model exist, and intermediate-volatility and 18 

semi-volatile organic compounds (I/SVOCs) are advocated to be one of them. Herein, 19 

we established a high-resolution emission inventory of I/SVOCs and by incorporating 20 

it into the CMAQ model, concentrations, temporal variations, and spatial distributions 21 

of POA and SOA originated from different sources in the Yangtze River Delta (YRD) 22 

region of China were successfully simulated. Compared with the comprehensive 23 

observation data obtained in the region, i.e., volatile organic compounds (VOCs), 24 

organic carbon (OC), primary organic aerosol (POA) and SOA, significant model 25 
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improvements in the simulations of different OA components were demonstrated. 26 

Furthermore, spatial and seasonal variations of different source contributions to OA 27 

production were identified. We found cooking emissions are predominant sources of 28 

POA in the densely populated urban area of the region. I/SVOC emissions from 29 

industrial sources are dominant contributors to the SOA formation, followed by those 30 

from mobile sources. While the former concentrated in eastern, central, and northern 31 

YRD, the latter mainly focused on the urban area. Our results indicate that future control 32 

measures should be specifically tailored on intraregional scale based on the different 33 

source characteristics to achieve the national goal of continuous improvement in air 34 

quality. In addition, local source profiles and emission factors of I/SVOCs as well as 35 

SOA formation mechanisms in model framework are urgently needed to be updated to 36 

further improve the model performance and thus the accuracy of source identifications. 37 

Key words: semi-volatile and intermediate volatility organic compounds; secondary 38 

organic aerosol; emission inventory; source contribution; model simulation 39 

1. Introduction 40 

Organic aerosol (OA) contributes a large fraction (20 to 90%) of atmospheric 41 

submicron aerosol (Zhang et al., 2007; Jimenez et al., 2009) and has negative impacts 42 

on air quality, climate (Shrivastava et al., 2017), and human health (Nault et al., 2021). 43 

OA is composed of primary organic aerosol (POA) directly emitted from fossil fuel 44 

combustion, biomass burning, and other sources, as well as secondary organic aerosol 45 

(SOA) formed through the atmospheric oxidation of gas-phase species emitted from a 46 

wide range of biogenic and anthropogenic sources (Hallquist et al., 2009). 47 

Understanding and identifying the origins of OA is therefore important for elucidating 48 

their health and climate effects and establishing effective mitigation policies. However, 49 

OA is a dynamic system driven by the gas-particle partitioning of organic vapors and 50 

particulate organic material, i.e. POA and SOA, and continuously evolves upon 51 

atmospheric oxidation (Robinson et al., 2007; Donahue et al., 2009; Zhao et al., 2013; 52 

Jathara et al., 2014). Constraints in their precursors and further source identification 53 
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have been facing great challenges. 54 

Great efforts have been made in the identification of OA sources through source 55 

apportionment of the measured OA components, such as positive matrix factorization 56 

(PMF), chemical mass balance (CMB) model or multilinear engine (ME-2). The 57 

Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), has been 58 

proven to be a powerful tool in quantification and chemical characterization of different 59 

OA components in real-time. Coupled with PMF analysis, AMS measurements allow 60 

for the deconvolution of physically meaningful OA factors. Commonly retrieved factors 61 

include three POA sources, i.e. hydrocarbon-like OA (HOA) related to fossil fuel 62 

combustion, biomass burning OA (BBOA), and cooking-related OA (COA), as well as 63 

two SOA components, i.e. less oxidized oxygenated OA (LO-OOA) and more oxidized 64 

oxygenated OA (MO-OOA) (Hayes et al., 2013; Crippa et al., 2014; Sun et al., 2014; 65 

Li et al., 2017). Combining offline AMS and radiocarbon (14C) measurements, Huang 66 

et al. (2014) also identified the contributions of fossil and non-fossil sources to SOA. 67 

Attempts have been made in subsequent studies by coupling the AMS measurement 68 

with a suite of comprehensive and collocated SOA tracer measurements to distinguish 69 

biogenic and major anthropogenic SOA sources, such as traffic and cooking emission 70 

(Xu et al., 2015; Zhang et al., 2018; Zhu et al., 2020; Huang et al., 2021a). However, 71 

due to the complex OA composition and variety of emission sources, further 72 

deconvolution on the contributions of different sources to OA production is challenging. 73 

Besides field measurements, air quality model is another widespread technique, 74 

which advantages in regional-scale OA source apportionment with higher temporal and 75 

spatial resolution. However, the model simulated SOA concentration still has large 76 

gapsis substantially lower than that measured in the atmosphere. On one hand, this is 77 

limited by the model treatment, where multiple-generation oxidation of organic vapors 78 

is not included. The volatility basis set (VBS) scheme is therefore developed, which 79 

lumps organic precursors as well as their oxidation products into different volatility bins. 80 

Upon atmospheric aging, the volatility of these compounds evolves due to the processes 81 



 

4 
 

such as functionalization and fragmentation, which can be accounted for in the models 82 

by shifting the volatility bins of these compounds (Donahue et al., 2006). It has been 83 

widely reported that coupling VBS scheme with air quality models can improve the 84 

model performance on SOA simulation (Tsimpidi et al., 2010; Koo et al., 2014; woody 85 

et al., 2016; Zhao et al., 2016a; Yang et al., 2019). However, there are still some 86 

shortcomings in the modeling of OA with the VBS, for example the lack of 87 

representation of the hydrophilic properties of OA, which assumes SOA condenses onto 88 

an organic phase, whereas SOA may also condense on an aqueous phase (Kim et al., 89 

2011). Another important constraint isOn the other hand, the gaps are still not closed 90 

mainly due to the underestimation missing of intermediate-volatility organic 91 

compounds (IVOCs) and semi-volatile organic compounds (SVOCs) emissions in the 92 

models, which potentially have substantial contributions to SOA budget owing to their 93 

high SOA yields (Presto et al., 2009; Tkacik et al., 2012; Zhao et al., 2014; Liggio et 94 

al., 2016). IVOCs refer to organic compounds with effective saturation concentrations 95 

(C*) between 103 to 106 μg·m-3 at 298 K and 1 atm, while SVOCs refer to organic 96 

compounds with C* between 10-1 to 103 μg·m-3 at 298 K and 1 atm (Robinson et al., 97 

2007). 98 

I/SVOC emission inventories have been developed and applied into air quality 99 

models over the past decade. Most of them were estimated by applying different scaling 100 

factors based on their relationship with POA, volatile organic compounds (VOCs), or 101 

some proxies like naphthalene (Pye and Seinfeld, 2010; Shrivastava et al., 2011; Jathar 102 

et al., 2017; Wu et al., 2019, 2021; Li et al., 2020, 2022; Ling et al., 2022). Yet in 103 

practice, a same scaling factor was applied to most of the sources in previous studies 104 

due to the lack of measurements on I/SVOC emission factors. For example, except 105 

biomass burning (0.75–1.5), Wu et al. (2019) utilized scaling factors of 8–30 for all of 106 

the other emission source categories, which was estimated based on the measurements 107 

of on-road mobile source. Li et al. (2020) assumed scaling factors of 1.5 for on-road 108 

mobile source, and 0.34–1.5 for the other sources, such as industrial and residential 109 
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sources, which were much lower than the estimations in Wu et al. (2020). Huang et al. 110 

(2021) have tried emission factor method to quantify the I/SVOC emissions, yet the 111 

results were 60% lower than the scaling factor method, far from catching the measured 112 

amount of SOA. Obviously, roughly estimating I/SVOC emissions using one or two 113 

emission profiles as surrogates for all emission sources will create large uncertainties. 114 

However, due to the vast number of different I/SVOC components with low 115 

volatility (C* of 10-1 to 106 μg·m-3) and concentrations, qualitative and quantitative 116 

characterization of I/SVOCs in molecular level are difficult. Recent studies have 117 

successively determined the volatility distribution, chemical composition, and emission 118 

factors of I/SVOCs from mobile sources, including gasoline and diesel vehicles, non-119 

road diesel machinery, marine vessel, and aircraft (Presto et al., 2011; Cross et al., 2013; 120 

Zhao et al., 2015, 2016b; Huang et al., 2018; Qi et al., 2019; Drozd et al., 2019). I/SVOC 121 

emission profiles have been reported for nonmobile-sources as well, including coal 122 

combustion, wood-burning, cooking, fuel evaporation, and industrial and residential 123 

volatile chemical products (Huffman et al., 2009; Gentner et al., 2012; May et al., 2013; 124 

Koss et al., 2018; McDonald et al., 2018; Cai et al., 2019; Drozd et al., 2021). Most of 125 

these reported emission profiles have been released in SPECIATE 5.1 (US EPA, 2021), 126 

making the quantification of I/SVOC emissions and their involvement in air quality 127 

models possible. 128 

In China, SOA has been emerging as an important contributor to air pollution. 129 

Field observations reveal that OA contributes significantlydominates (30%) the PM2.5 130 

concentrations in most parts of China (Tao et al., 2017; Liu et al., 2018), among which 131 

the SOA contributes up to 80% of OA during haze pollution (Huang et al., 2014; Ming 132 

et al., 2017; Li et al., 2021). SOA formation in China has already been examined in 133 

several modeling studies. They found that by considering the POA aging and I/SVOCs 134 

oxidation in the models, which is realized by the coupling of VBS scheme, the 135 

formation and evolution of SOA can be much better simulated compared to the results 136 

of the two-product SOA modeling framework (Zhao et al., 2016a; Wu et al., 2019; Li 137 
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et al., 2020; Yao et al., 2020; Huang et al., 2021). Chang et al. (2022) developed a full-138 

volatility organic emission inventory with source-specific I/SVOC emission profiles for 139 

China, which have greatly improved the model performance on SOA concentrations. 140 

However, large gaps still exist between the observed and modeled SOA. Studies on 141 

high-resolution I/SVOC emission inventory for more specific sources are highly 142 

needed.large uncertainties still exist in the estimation of I/SVOC emissions used in 143 

previous modeling studies, which has essential impacts on model performance. 144 

Theoretically, the I/SVOC emissions can be obtained quantitatively by applying 145 

different scaling factors to POA emissions from different sources. Yet in practice, a 146 

same scaling factor was applied to most of the sources in previous studies due to the 147 

lack of measurements on I/SVOC emission factors. For example, except biomass 148 

burning (0.75–1.5), Wu et al. (2019) utilized scaling factors of 8–30 for all of the other 149 

emission source categories, which was estimated based on the measurements of on-road 150 

mobile source. Li et al. (2020) assumed scaling factors of 1.5 for on-road mobile source, 151 

and 0.34–1.5 for the other sources, such as industrial and residential sources, which 152 

were much lower than the estimations in Wu et al. (2020). Huang et al. (2021) have 153 

tried emission factor method to quantify the I/SVOC emissions, yet the results were 60% 154 

lower than the scaling factor method, far from catching the measured amount of SOA. 155 

Beyond the aforementioned uncertainties, another obstacle is that I/SVOC 156 

emission profiles have not been taken into account in previous studies. It should be 157 

noted that volatility and chemical composition of I/SVOC emissions vary by source 158 

category (Lu et al., 2018), which matters in model simulation because different I/SVOC 159 

components are of different SOA yields. For example, the SOA yields of n-alkanes 160 

increase with increasing carbon number (Presto et al., 2010) and for a given volatility 161 

bin, the aromatics usually have higher SOA yields than the alkanes (Lim and Ziemann, 162 

2009; Tkacik et al., 2012). In a recent study, Lu et al. (2020) compiled new emission 163 

profiles for I/SVOCs based on the existing mobile-source emission data and 164 

incorporated them into an updated version of the Community Multiscale Air Quality 165 
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model version 5.3 (CMAQ v5.3) to investigate their contributions to SOA formation. 166 

Their results indicated that mobile-source related I/SVOC emissions produced almost 167 

as much SOA as traditional precursors such as single-ring aromatics in southern 168 

California and suggested that the potential contributions of nonmobile-source I/SVOC 169 

emissions were nonnegligible to SOA formation (Lu et al., 2020). 170 

In this study, taking the Yangtze River Delta (YRD) region, including Jiangsu, 171 

Zhejiang, Anhui provinces and Shanghai city, as a pilot, we established a high-172 

resolution source specific I/SVOC emission inventory. We then applied the newly 173 

established inventory into CMAQ v5.3 to evaluate the contributions of I/SVOC 174 

emissions to SOA formation by comparing the results with the observation data 175 

collected in the region. Furthermore, we also run the model in different scenarios to 176 

quantify the seasonal contributions of different sources to POA and SOA formation in 177 

the YRD region. 178 

2. Materials and methods 179 

2.1 I/SVOC emission inventoryestimates 180 

I/SVOCs commonly exist in both gas- and particle-phase in the atmosphere. 181 

Previous studies usually used POA scaling factors to estimate the I/SVOC emissions, 182 

which may lead to large uncertainties in the estimation of gas-phase organic compound-183 

dominated sources, like oil refinery, chemical production, and industrial solvent-use. 184 

Herein, we compiled both gas-phase I/SVOCs (I/SVOCs-G) and particle-phase 185 

I/SVOCs (I/SVOCs-P) emission inventories and incorporate them into the model. 186 

Detailed process of the inventories is as follows. 187 

I/SVOCs-G emissions for each specific source were estimated by the ratios of total 188 

I/SVOC components to VOC components (I/SVOCs-to-VOCs). Similarly, I/SVOCs-P 189 

emissions were estimated by the ratios of total particle-phase I/SVOC components to 190 

POA (I/SVOCs-to-POA). On this basis, we further determined the source profiles of 191 

I/SVOCs for each source. The I/SVOCs-G emissions were distributed into four lumped 192 

aliphatic IVOC bins across the volatility basis set from C*=103 to 106 µg·m-3, two 193 



 

8 
 

aromatic IVOC bins with the C*=105 and 106 µg·m-3, and four lumped SVOC bins with 194 

C* from 10-1 and 102 µg·m-3. The I/SVOCs-P emissions were distributed into five bins 195 

spanning C* from 10-1 and 103 µg·m-3. 196 

(1) Source classification: To refine the I/SVOC emissions from different sources, 197 

we divided the sources into five major categories and then further grouped them into 198 

21 sub-categories. The major categories include In this study, we first divided the 199 

sources into five categories, including industrial process sources, industrial solvent-use 200 

sources, mobile sources, residential sources, and agricultural sources. As shown in 201 

Table S1, the , and then further grouped them into 21 sub-categories. For example, 202 

industrial process sources include the sectors such as oil refinery, chemical production, 203 

and pulp and paper production; Industrial solvent-use sources include textile, leather 204 

tanning, timber processing, and various industrial volatile chemical products use; 205 

Mobile sources include gasoline and diesel vehicle emissions, fuel evaporation, diesel 206 

machinery, marine vessel, and aircraft; Residential sources include coal combustion, 207 

residential solvent-use, and cooking emissions; Agricultural source is specifically 208 

referred to biomass burning in household stoves, and open burning was not included in 209 

this study.  210 

(2) Emission estimation: I/SVOCs-G emissions for each specific source were 211 

estimated by the ratios of total I/SVOC components to anthropogenic VOC (AVOC) 212 

components (I/SVOCs-to-VOCs). Similarly, I/SVOCs-P emissions were estimated by 213 

the ratios of total particle-phase I/SVOC components to POA (I/SVOCs-to-POA). The 214 

I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios for each source were determined 215 

according to their fractions of total I/SVOC species in VOC and POA emissions. Then 216 

we grouped different I/SVOC species into lumped I/SVOC bins based on their C* to 217 

determine the volatility distributions of each source. The I/SVOCs-G emissions were 218 

distributed into four lumped aliphatic IVOC bins across the volatility basis set from 219 

C*=103 to 106 µg·m-3, two aromatic IVOC bins with the C*=105 and 106 µg·m-3, and 220 

four lumped SVOC bins with C* from 10-1 and 102 µg·m-3. The I/SVOCs-P emissions 221 



 

9 
 

were distributed into five bins spanning C* from 10-1 and 103 µg·m-3. Source profiles 222 

of I/SVOC species for different sources were referenced from the results in previous 223 

studies. Table S1 and S2 show the I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios 224 

for each specific source and their references. For industrial process, industrial solvent-225 

use, and residential solvent-use sources, only I/SVOCs-G emissions were considered. 226 

Their I/SVOCs-G-to-VOCs ratios and emission profiles were derived from the latest 227 

version of SPECIATE 5.1 database (US EPA, 2021). For gasoline and diesel vehicles, 228 

the I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA ratios and emission profiles were 229 

referenced from a new mobile-source parameterization recommended by Lu et al. 230 

(2020). Those of diesel machinery, marine vessel, and residential coal combustion were 231 

determined by recent measurement results in China (Qi et al., 2019; Huang et al., 2018; 232 

Cai et al., 2019). The I/SVOCs-G-to-VOCs ratios and profiles of cooking and biomass 233 

burning emissions were derived from SPECIATE 5.1 database, while their particle-234 

phase ratios and profiles were referenced from two previous studies (May et al., 2013; 235 

Louvaris et al., 2017). Table S1 and S2 show the I/SVOCs-G-to-VOCs and I/SVOCs-236 

P-to-POA ratios and their emission profiles of each specific source. The base emissions 237 

of AVOCs and POA (See Table S3) were taken from a high-resolution emission 238 

inventory for the year of 2017 developed in our previous study (An et al., 2021). 239 

(3) Model input: Before being input into the model, the estimated I/SVOC-G and 240 

I/SVOC-P emissions were summed and then redistributed according to their phase 241 

equilibrium under the actual atmospheric state. The formula of phase equilibrium is 242 

shown in Equation (1). 243 

𝐹 ∗        (1) 244 

Where, Fp is the fraction of particle-phase I/SVOC emissions for each volatility 245 

bin. COA represents the OA concentration in the atmosphere. We assumed it to be 10 246 

µg·m-3 in this study. C* is the effective saturation concentration of each volatility bin. 247 

After redistribution, For gasoline and diesel vehicles, the I/SVOCs-G-to-VOCs and 248 

I/SVOCs-P-to-POA ratios and their emission profiles were derived from a new mobile-249 



 

10 
 

source parameterization recommended by Lu et al. (2020). Those of diesel machinery, 250 

marine vessel, and residential coal combustion were determined by recent measurement 251 

results in China (Qi et al., 2019; Huang et al., 2018; Cai et al., 2019). The emission 252 

profiles of other sources were derived from the latest version of SPECIATE 5.1 database 253 

(US EPA, 2021). Table S1 and S2 respectively show the I/SVOCs-G-to-VOCs and 254 

I/SVOCs-P-to-POA ratios and their emission profiles for specific sources. The base 255 

emissions of anthropogenic VOCs (AVOCs) and POA (See Table S3) were taken from 256 

a high-resolution emission inventory for the year of 2017 developed in our previous 257 

study (An et al., 2021). Tthe I/SVOCs emissions for each source category were 258 

allocated into 4 km × 4 km grids and hourly temporal profiles using the same method 259 

as the criteria pollutants.  260 

2.2 Model configuration 261 

We used Community Modeling and Analysis System (CMAQ version 5.3.2) to 262 

simulate the concentrations of air pollutants. The domain of the simulation is presented 263 

in Figure 1. The simulations were conducted for three nested grids with horizontal 264 

resolution of 36 km (D1), 12 km (D2) and 4 km (D3), respectively. D1 covers most of 265 

China and the surrounding countries including Japan and South Korea; D2 covers 266 

eastern China and D3 covers the entire YRD region and its surrounding land and waters.  267 

Meteorological fields were provided by the Weather Research and Forecasting 268 

(WRF version 3.7) model with 27 vertical layers extending to the tropopause (100 hpa). 269 

The initial and boundary conditions (ICs, BCs) in the WRF were based on the 1° × 1° 270 

reanalysis data from the National Centers for Environmental Prediction Final Analysis 271 

(NCEP-FNL). Physical options used in the WRF simulation are listed in Table S4.  272 

The Sparse Matrix Operator Kernel Emissions (SMOKE, 273 

https://cmascenter.org/smoke) model was applied to process emissions for input to 274 

CMAQ. CMAQ version 5.3.2 (https://cmascenter.org/cmaq/) was used to simulate 275 

atmospheric pollutants concentrations. ICs and BCs of D1 domain are based on a Model 276 

For Ozone And Related Chemical Tracers (MOZART) global simulation 277 
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(https://acom.ucar.edu/wrf-chem/mozart.shtml). For the inner D2 and D3 domain, ICs 278 

and BCs are extracted from the simulation results of the outer domains. Options selected 279 

for the CMAQ simulations include the SAPRC07 gas phase chemistry, the AERO7 280 

aerosol scheme, the Regional Acid Deposition Model (RADM) model aqueous phase 281 

chemistry, ISORROPIA inorganic particulate thermodynamics. 282 

The emission inventory developed in this study was used to produce the emission 283 

system in the YRD region while emissions beyond YRD were supplied by 284 

Multiresolution Emission Inventory for China (MEIC-2017, http://meicmodel.org), 285 

Shipping Emission Inventory Model (SEIM) (Liu et al., 2016), and the Model Inter-286 

Comparison Study (MIX) emission inventory for 2010 (Li et al., 2017). The I/SVOC 287 

emission inventory outside the YRD region was developed by multiplying the VOCs 288 

and POA emissions with the average I/SVOCs-G-to-VOCs and I/SVOCs-P-to-POA 289 

ratios of major source categories like industry, vehicle, marine vessel, and residential. 290 

Biogenic volatile organic compounds (BVOCs) emissions were estimated based on 291 

MEGAN (the Model of Emissions of Gases and Aerosols from Nature) version 2.10 292 

driving by inputs of the leaf area index (LAI) from MODIS product, plant functional 293 

types (PFT) base on remote sensing data, inline coupled emission factors and 294 

meteorology simulated by the WRF model. Detail configurations of MEGAN can be 295 

obtained from our previous study (Liu et al., 2018a). 296 

 297 

Figure 1. Modeling domain and locations of observation sites. The blue marks are meteorological 298 
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monitoring sites. The yellow dots represent the national air quality monitoring sites. The purple 299 
crosses are the observation sites with PM2.5 chemical composition measurements. The red star 300 
represents the observation site of AMS measurement. 301 

SOA formed from I/SVOCs was estimated using the parameterization within the 302 

VBS framework in Lu et al. (2020). Specifically, the I/SVOC surrogates react with OH, 303 

generating four oxygenated organic species with volatility spanning from C* = 10-1 to 304 

102 μg·m-3, which may exist in both gas and condensed phase. The rate coefficient (i.e., 305 

kOH) and product yields (i.e., αi, i=1, 2, 3, 4) for each primary I/SVOC species were 306 

derived based on previous laboratory results (Zhao et al., 2015; Zhao et al., 2016b). 307 

Multi-generation oxidation was considered by implementing further oxidation of the 308 

vapors from the initial oxidation, which redistributes the mass across the volatility bins 309 

of C* = 10-2 to 102 μg·m-3, and thus fragmentation and functionalization were included. 310 

Additionally, SOA formation from SVOCs were treated similarly, and more details can 311 

be found in Murphy et al. (2017). POA was treated as semivolatile to account for its 312 

gas-particle partitioning and ageing process and segregated to several particle species, 313 

which varied in their volatility that quantified with the metric C* = 10-1 to 103 μg·m-3 314 

(Donahue et al., 2006). I/SVOCs-P emissions from different sources were then 315 

speciated and input as semivolatile accordingly. The remaining POA emissions 316 

excluding I/SVOCs-P were treated as nonvolatile POC (primary organic carbon) and 317 

PNCOM (primary non-carbon organic matter). 318 

2.3 Model simulations 319 

To investigate the model performance on OA simulations and the contributions of 320 

different sources, we set 14 simulation cases using brute-force method (Zhang et al., 321 

2005). Table 1 shows the settings for these 14 cases. First was BASE simulation case, 322 

in which the I/SVOC emissions was not included and the POA emissions were treated 323 

as non-volatile. The second was the IMPROVE case, which augmented the high-324 

resolution I/SVOC emission inventory established in this study. In addition, the POA 325 

emissions in the IMPROVE simulation were split into both non-volatile and 326 

semivolatile parts. The non-volatile emissions were obtained by subtracting the 327 
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I/SVOCs-P from the total POA. The semivolatile emissions, that was I/SVOCs-P 328 

emissions, were treated with variable gas–particle partitioning and multigenerational 329 

aging in this simulation case. We then used the difference between IMPROVE and 330 

BASE cases to evaluate the OA contributions from I/SVOC emissions. CASE1 to 331 

CASE12 respectively excluded the VOC and I/SVOC emissions from different sources. 332 

We used the differences between IMPROVE and CASE1−12 to quantify the 333 

contribution of each source to OA concentration. 334 

Table 1. Settings of simulation cases. 335 

Name Sources with added I/SVOC emissions 

BASE none 

IMPROVE all 

CASE1 all except industrial process 

CASE2 all except industrial solvent-use 

CASE3 all except mobile sources 

CASE4 all except residential sources 

CASE5 all except biomass burning 

CASE6 all except biogenic sources 

CASE7 without VOCs and I/SVOC emissions 

CASE8 all except gasoline vehicle 

CASE9 all except diesel vehicle 

CASE10 all except diesel machinery 

CASE11 all except marine vessel 

CASE12 all except cooking 

 336 

Name Emission settings Notes 

BASE with VOC emissions, without I/SVOC emissions base case 

IMPROVE with both VOC and I/SVOC emissions 

to quantify the contributions of VOC 

and I/SVOC emissions to OA by 

comparing with BASE case 

CASE1 only without industrial process VOC and I/SVOC emissions in the region 

to quantify the contributions of VOC 

and I/SVOC emissions from different 

source categories to OA by comparing 

with IMPROVE case 

CASE2 only without industrial solvent-use VOC and I/SVOC emissions in the region 

CASE3 only without mobile VOC and I/SVOC emissions in the region 

CASE4 only without residential VOC and I/SVOC emissions in the region 

CASE5 only without biomass burning VOC and I/SVOC emissions in the region 

CASE6 only without biogenic VOC emissions in the region 
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CASE7 without VOC and I/SVOC emissions in the region 

CASE8 only without gasoline vehicle VOC and I/SVOC emissions in the region 

CASE9 only without diesel vehicle VOC and I/SVOC emissions in the region 

CASE10 only without diesel machinery VOC and I/SVOC emissions in the region 

CASE11 only without marine vessel VOC and I/SVOC emissions in the region 

CASE12 only without cooking VOC and I/SVOC emissions in the region 

2.4 Model evaluation 337 

To capture the characteristics of OA with different meteorological features in the 338 

YRD region, we selected four periods to represent spring (Mar. 15th to Apr. 15th, 2019), 339 

summer (Jul. 1st to 31st, 2019), autumn (Oct. 15th to Nov. 15th, 2018), and winter (Dec. 340 

1st to 31st, 2018) to conduct the simulations. Evaluations on model performance were 341 

made by comparing the simulation results with the observations obtained in the region, 342 

including 5 meteorological observation sites, 10 PM2.5 chemical composition sites, and 343 

41 national air quality monitoring sites, one in each city. The locations of the 344 

meteorological and air pollutant observation sites are shown in Figure 1. 345 

We also used the observation data of an AMS and a GC-MS/FID system at the 346 

supersite in Shanghai to further verify the model performance on the simulation of POA, 347 

SOA, and key VOC precursors. Details of AMS measurements and PMF analysis are 348 

provided in our previous study (Huang et al., 2021). A total of 55 PAMS (Photochemical 349 

Assessment Monitoring Stations) species were identified by the GC-MS/FID system 350 

including 27 alkanes, 11 alkenes, acetylene and 16 aromatics. The supersite was located 351 

on the top-floor of an eight-story building in Shanghai Academy of Environmental 352 

Sciences (SAES, 31°10' N, 121°25'E), 30 m above the ground. The site was in a typical 353 

residential and commercial area with significant influence from traffic emission. 354 

Several petrochemical and chemical industrial factories sit around 50 km away from 355 

the site to the south and southwest. 356 

Model performance in simulation of meteorological parameters and major criteria 357 

air pollutants are summarized in Table S5 and S6. The mean bias (MB), mean gross 358 

error (MGE), root-mean-square error (RMSE), and index of agreement (IOA) of 359 
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temperature, humidity, wind speed, and wind direction in each season are within the 360 

criteria recommended by Emery et al. (2001). Although the temperature in summer and 361 

winter, and wind speed in autumn and winter were slightly overestimated, their MGE 362 

and IOA values are within the uncertainties as recommended in Emery et al. (2001).  363 

For the simulation of major criteria air pollutants, both mean fractional bias (MFB) 364 

and mean fractional error (MFE) of all pollutants met the criteria recommended by 365 

Boylan and Russell (2006). Since the addition of I/SVOC emissions would change the 366 

PM2.5 simulation results, we thus presented the statistical results for both BASE and 367 

IMPROVE cases in the Table S6. The modeled SO2 was slightly overestimated, which 368 

is likely due to the faster than expected reduction of SO2 emissions, resulting in 369 

overestimation of SO2 emissions in the emission inventory. On the contrast, the 370 

modeled NO2 were underestimated in spring, autumn, and winter, likely due to the 371 

overestimation of wind speed in these seasons. The modeled O3 and PM2.5 were slightly 372 

overestimated in the IMPROVE simulation case. Overall, the simulated meteorological 373 

parameters and major criteria air pollutants are consistent with the observations. 374 

3. Results and discussion 375 

3.1 I/SVOC emission inventory 376 

3.1.1 Source-specific I/SVOC emissions 377 

Table 2 shows the I/SVOCs-G and I/SVOCs-P emission inventoriesI/SVOC 378 

emission inventories in gas- and particle-phase for detailed source category for year 379 

2017 in the YRD region. The total I/SVOC-G emission in the YRD region was 380 

1148.421128.26 Gg in 2017, lower than that in Wu et al. (2021) of 1360 Gg, but higher 381 

than the estimate in Huang et al. (2021b) of 730 Gg. The I/SVOC emissions in both Wu 382 

et al. (2021) and Huang et al. (2021b) were estimated by the POA scaling factor method. 383 

However, I/SVOCs-G emissions usually have stronger correlation with AVOCs, which 384 

is fully in gas-phase, other than POA in particle-phase (Lu et al., 2018). Especially for 385 

the industrial sectors, where gaseous organics dominate the primary organic emissions, 386 
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there must be considerable uncertainties if POA scaling factor method is used for the 387 

estimation of I/SVOCs-G emissions. 388 

We found industrial solvent-use was the largest contributor (489.383.64 Gg, 389 

43.3842.11%) of total S/IVOCs-G emissions, followed by industrial process sources 390 

(249.34.65 Gg, 2221.1030%), mobile source (320344.40 31 Gg, 2829.4098%), 391 

residential source (58.5762.23 Gg, 5.1942%), and agriculture source (10.563.58 Gg, 392 

0.941.18%). Specifically, chemical production, textile, and solvent-based coating were 393 

major sectors of I/SVOCs-G emissions in the YRD region, accounting for 21.590.80%, 394 

20.3719.51%, and 15.3307% of the total I/SVOCs-G emission, and their contributions 395 

to AVOC emissions were 20.70%, 2.22%, and 23.42%, respectively (See Table S3). It 396 

is interesting to note that the I/SVOCs-to-VOCs ratios are largely different for different 397 

sources. For example, the textile industry only accounted for 2.22% of the total AVOC 398 

emissions in the YRD region but contributed to 20.3719.51% of the I/SVOC-G 399 

emissions due to its higher I/SVOCs-to-VOCs ratio (2.473). Another example is water-400 

based coatings, whose VOC emissions were approximately 10.2% of solvent-based 401 

coatings, while their I/SVOC emissions were 29.1% of those from solvent-based 402 

coatings. These findings indicate that reductions in VOC emissions not necessarily 403 

corresponds to the simultaneous reductions in I/SVOCs emissions and subsequent SOA 404 

formation, which should be considered in future control strategies. (Yuan et al., 2010). 405 

For I/SVOCs-G emission of mobile origin, the major contributors were gasoline 406 

vehicle, diesel vehicle, and non-road diesel machinery, accounting for 13.5264%, 407 

10.5911.66%, and 3.962.11%, respectively. The total I/SVOCs-G emissions from 408 

gasoline and diesel vehicles were 272.0390.57 Gg, much higher than the results 409 

reported in Liu et al. (2017) (29.58 Gg) and Huang et al. (2021b) (16.0 Gg) using the 410 

emission factor method, which likely underestimates the emission factors of I/SVOCs 411 

due to the lack of localized emission factors. Our tunnel experiment results show that 412 

the average IVOCs emission factors of gasoline and diesel vehicles were 15.3 mg·km-413 

1 and 219.8 mg·km-1 (Tang et al., 2021), which were significantly higher than those 414 
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used in the above studies (Liu et al., 2017; Huang et al., 2021b). More comprehensive 415 

localized emission measurements are advocated to better constrain the I/SVOC 416 

emissions from mobile sources. 417 

I/SVOCs-P emissions were 82.96118.39 Gg, occupying 58.70% of the POA 418 

emissions in the region. POA emissions and contributions from different sources can 419 

be found in Table S3. The largest contributor of I/SVOCs-P emissions came from 420 

cooking emissionbiomass burning and diesel vehicle, accounting for 53.24%58.08% 421 

and 11.88%20.53% of the total, followed by gasoline vehicle (5.23%7.12%), marine 422 

vessel (2.66%), diesel machinery (2.54%), and biomass burning (1.75%6.08%), diesel 423 

machinery (4.14%), and marine vessel (4.05%). Note that the I/SVOCs-P emissions 424 

from coal combustion (e.g. power plants, boilers, etc.), other industrial processes, and 425 

aircraft were not included in this study. On the one hand, the POA emissions (See Table 426 

S3) from these sources were limited, accounting for less than 5%, which could be 427 

expected that their I/SVOCs-P emissions were also relatively low. On the other hand, 428 

the profiles of I/SVOCs-P components of these sources were still difficult to obtain. 429 

More measurements of the I/SVOC emissions from these sources is very necessary in 430 

the future. 431 

Table 2. Source-specific emissions of I/SVOCs for the year 2017 in the YRD region. 432 

Source 
I/SVOCs I/SVOCs-G I/SVOCs-P 

Gg % Gg % Gg % 

Industrial process 

Oil refinery 5.63  0.46  5.62  0.49  0.01  0.01  

Chemical production 243.60  19.78  238.91  20.80  4.69  5.65  

Pulp and paper 0.11  0.01  0.11  0.01  0.00  0.00  

Industrial solvent-use 

Textile 229.78  18.66  224.06  19.51  5.72  6.90  

Leather tanning 3.83  0.31  3.83  0.33  0.00  0.00  

Timber processing 31.08  2.52  31.08  2.71  0.00  0.00  

Furniture coating 1.32  0.11  1.32  0.12  0.00  0.00  

Solvent-based coating 173.02  14.05  173.01  15.07  0.00  0.00  

Water-based coating 50.32  4.09  50.32  4.38  0.01  0.01  

Dry cleaning 0.02  0.00  0.02  0.00  0.00  0.00  

Paint remover 0.01  0.00  0.01  0.00  0.00  0.00  

Mobile source Gasoline vehicle 161.01  13.08  156.67  13.64  4.34  5.23  
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Diesel vehicle 143.76  11.67  133.90  11.66  9.86  11.88  

Fuel evaporation 0.69  0.06  0.69  0.06  0.00  0.00  

Diesel machinery 49.62  4.03  47.51  4.14  2.11  2.54  

Marine vessel 7.12  0.58  4.91  0.43  2.21  2.66  

Aircraft 0.64  0.05  0.64  0.06  0.00  0.00  

Residential source 

Coal combustion 2.73  0.22  2.73  0.24  0.00  0.00  

Residential solvent-use 35.29  2.87  35.20  3.07  0.09  0.11  

Cooking 76.77  6.23  24.30  2.12  52.46  63.24  

Agriculture source Biomass burning 15.04  1.22  13.58  1.18  1.45  1.75  

Total 1231.38  100.00  1148.42  100.00  82.96  100.00  

 433 

Source 
I/SVOCs-G I/SVOCs-P 

Gg % Gg % 

Industrial process 

Oil refinery 5.63  0.50    

Chemical production 243.60  21.59    

Pulp and paper 0.11  0.01     

Industrial solvent-use 

Textile 229.78  20.37     

Leather tanning 3.83  0.34    

Timber processing 31.08  2.76    

Furniture coating 1.32  0.12    

Solvent-based coating 173.02  15.33    

Water-based coating 50.32  4.46    

Dry cleaning 0.02  0.00    

Paint remover 0.01  0.00      

Mobile source 

Gasoline vehicle 152.58  13.52  8.44  7.12  

Diesel vehicle 119.45  10.59  24.31  20.53  

Fuel evaporation 0.69  0.06    

Diesel machinery 44.72  3.96  4.90  4.14  

Marine vessel 2.33  0.21  4.79  4.05  

Aircraft 0.64  0.06     

Residential source 

Coal combustion 2.73  0.24     

Residential solvent-use 35.29  3.13    

Cooking 20.55  1.82  68.76  58.08  

Agriculture source Biomass burning 10.56  0.94  7.19  6.08  

Total 1128.26  100.00  118.39  100.00  

3.1.2 Volatility distributions of I/SVOCs 434 

Figure 2 shows the volatility distribution of I/SVOC emissions from different 435 

sources as well as their gas-particle distributions. The I/SVOC emissions generally 436 
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showed an increasing trend with the increase of volatility. With the I/SVOC emission 437 

profiles of each source category (Table S1 and S2), we successfully compiled the 438 

volatility distribution of I/SVOC emissions from different sources as well as their gas-439 

particle distribution (Figure 2). The I/SVOC emissions generally showed an increasing 440 

trend with the increase of volatility. As shown in Figure 2(a), IVOC emissions (logC* 441 

bins at 3−6) accounted for 8986% of the total I/SVOCs emissions, overwhelmingly 442 

dominated by industrial process and mobile sources. SVOCs (logC* bins at 0−2) and 443 

low-volatile organic compounds (LVOCs, logC* bins at -1) contributed to 10% and 1% 444 

of the total I/SVOCs emissions. In terms of the contributing sectors, mobile sources, 445 

industrial process, and solvent-use dominated the total I/SVOC emissions. While the 446 

IVOCs were equally contributed by above-listed three sources, industrial process and 447 

mobile sources dominated the SVOCs and LVOCs emissions.  448 

We further investigated the contributions of different volatility bins to each source 449 

category. The mobile source was dominated by IVOC emission (88%). Note that IVOCs 450 

in vehicle exhaust are dominated by aromatics, which have faster OH reaction rates and 451 

higher SOA yields compared to aliphatics in the same volatility bin (Zhao et al., 2016b; 452 

Drozd et al., 2019). Lu et al. (2020) therefore defined two additional lumped IVOC 453 

species with logC* bins at 5 and 6 to account for the aromatic IVOCs in vehicle exhaust 454 

according to the measurements in previous studies (Zhao et al., 2015; Zhao et al., 455 

2016b). Here in this study, we also split the aromatic IVOC emissions from mobile 456 

sources and found that aromatic IVOCs accounted for 23% of the total I/SVOC 457 

emissions from the mobile source.Note that we also split the aromatic IVOCs emission 458 

from mobile source using the method in Lu et al. (2020) and found that aromatic IVOCs 459 

accounted for 23% of the total I/SVOC emissions from the mobile source. The 460 

industrial process and solvent-use sources were also dominated by IVOC emissions, 461 

accounting for 81% and 97%, respectively. The volatility distribution of residential 462 

sources was relatively uniform, with IVOCs, SVOCs and LVOCs accounting for 4640%, 463 

2730%, and 2730%. Agricultural (i.e., biomass burning) sources were more 464 



 

20 
 

concentrated in IVOCs, accounting for 7176%, while SVOCs and LVOCs accounted 465 

for 20% and 94%, respectively. Except agricultural sources, I/SVOC emissions from 466 

all sources are dominated by gas-phase species. The agricultural sources were 467 

dominated by particle-phase species, taking up 78% of the total I/SVOC emissions with 468 

the VBS bins concentrated in the logC* range of 0−4. It should be noted that other than 469 

mobile sources, the emission profiles of the other sources were mainly derived from 470 

SPECIATE 5.1 database (US EPA, 2021) in this study, which may be inconsistent with 471 

real-world emissions in China. To further reduce the uncertainty in this newly establish 472 

I/SVOC estimation inventory, measurements of I/SVOC emissions from different local 473 

sources are therefore important and urgently needed in the future. 474 

 475 

 476 

Figure 2. Volatility distributions of I/SVOCs emitted from different sources in the YRD region. 477 

(b) All sources (c) Industrial process (d) Industrial solvent-use

(e) Mobile source (f) Residential source (g) Agriculture source

0

100

200

300

400

500

600

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

Agriculture source
Residential source
Mobile source
Industrial solvent-use
Industrial process

(a) Volatility distribution for various sources

0

100

200

300

400

500

600

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

Particle-phase
Gas-phase (aromatics)
Gas-phase

0

20

40

60

80

100

120

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

0

50

100

150

200

250

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

0
20
40
60
80

100
120
140
160

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

0

10

20

30

40

50

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

yr
-1

)

log10C*

0

20

40

60

80

100

120

140

160

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

0
5

10
15
20
25
30
35
40
45

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

0

100

200

300

400

500

600

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

Agriculture source

Residential source

Mobile source

Industrial solvent-use

Industrial process

(a) Volatility distribution for 
various sources

(b) All sources (c) Industrial process (d) Industrial solvent-use

(e) Mobile sources (f) Residential sources (g) Agriculture sources

0

100

200

300

400

500

600

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

Non-aromatics

Aromatics

0

20

40

60

80

100

120

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*

0

50

100

150

200

250

-1 0 1 2 3 4 5 6

E
m

is
si

on
s 

(G
gꞏ

ye
ar

-1
)

log10C*



 

21 
 

3.1.3 Spatial distributions of I/SVOC emissions in YRD region 478 

Figure 3 compares the spatial distributions of AVOC, IVOC, SVOC, and LVOC 479 

emissions in the YRD region. The IVOC, SVOC, and LVOC emissions were largely 480 

concentrated in city clusters in eastern YRD, and hotspots can also be observed in the 481 

northern agglomerations. The distributions of I/S/LVOC emissions were generally 482 

consistent with that of the AVOC emissions in the region. Compared to the spatial 483 

distributions of I/S/LVOC emissions in Chang et al. (2022), our emissions had similar 484 

spatial distributions but at a higher resolution. Emission hotspots in urban areas can be 485 

captured more clearly in this study, which will help improve the simulation in urban 486 

areas. 487 

Figure 3 4 shows the spatial distributions of source-specific I/SVOC emissions in 488 

the YRD region. There were considerable differences in the spatial distributions of 489 

I/SVOC emissions from different sources. The I/SVOC emissions from industrial 490 

sources (including industrial process and industrial solvent-use) were mainly 491 

concentrated in the eastern urban agglomeration, which was related to the developed 492 

industrial activities in the region. The I/SVOC emissions were largely concentrated in 493 

city clusters in eastern YRD, and hotspots can also be observed in the northern urban 494 

agglomerations. The spatial distribution of total I/SVOC emissions was resulted from 495 

combined emissions from mobile, industrial process and solvent-use sources. The 496 

I/SVOC emissions from mobile and residential sources clustered into multiple hotspots 497 

in urban areas, while emissions from agricultural sources were mainly distributed in 498 

northern YRD, where frequent agricultural activities exist. The distribution of I/SVOC 499 

emissions was generally consistent with that of the VOC emissions in the eastern and 500 

central area of the region. But higher I/SVOC emissions than VOC emissions were 501 

observed in northern YRD (See Figure S1). This can be explained by the difference in 502 

I/SVOCs-G-to-VOCs ratios among different sources. For example, industrial and 503 

mobile sectors are major sources of I/SVOC emissions, yet AVOC emissions were 504 

mainly dominated by industrial sectors.  505 
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We also compare the spatial distributions of I/SVOC emissions with those of POA 506 

and BVOCs. We found that POA emissions were more concentrated in urban centers 507 

associated with mobile and residential sources (See Figure S1). BVOC emissions in the 508 

YRD region were mainly distributed in the southern area, where AVOC and IVOC 509 

emissions were relatively low. The difference in the spatial distributions of I/SVOC, 510 

AVOC, BVOC, and POA emissions implies that the sources of organic components in 511 

different areas of the region are quite different, which will be discussed in the following 512 

sections. 513 

 514 

Figure 3. Spatial distributions of anthropogenic VOC, IVOC, SVOC, and LVOC emissions in the 515 
YRD region for the year 2017. 516 
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 517 

Figure 34. Spatial distributions of I/SVOC emissions from different source categories in the YRD 518 
region for the year 2017. 519 

3.2 Comparison between model simulation and observation 520 

3.2.1 Simulation results of VOCs and IVOCs 521 

Since model performance on the simulation of VOCs are critical for SOA 522 

estimation, we first compare the modeled concentrations of VOCs with those of the 523 

measured at the SAES supersite for several aromatic VOCs, including benzene, toluene, 524 

and m-/p-/o-xylenes. As shown in Figure S2, the model simulation was able to capture 525 

the hourly variations of these species measured, with Pearson correlation coefficients 526 

(r) of 0.54−0.65, 0.45−0.60, 0.54−0.69 for toluene, xylene, and benzene respectively. 527 

Although the simulation results of toluene were 28% lower and xylene and benzene 528 

were 41% and 22% higher than those of the measured, the model results are within the 529 

uncertainties. Overall, the simulation results of the VOC species showed good 530 

agreements with the observations, which could be further used for the model simulation 531 

of SOA formation. 532 

Long-term continuous observations of I/SVOC concentrations were sparse, so the 533 

simulation results of IVOCs were compared with those obtained from offline 534 
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measurements reported in our previous studies (Li et al., 2019; Ren et al., 2020). The 535 

reported IVOC concentrations (sum of gas- and particle-phase concentrations) in 536 

summer and winter Shanghai in 2018 respectively varied between 1.5−17.2 and 537 

2.2−43.1 µg·m-3 with average concentrations of 6.8 ± 3.7 and 18.2 ± 11.0 µg·m3. In this 538 

study, our modeled average concentrations of IVOCs in spring, summer, autumn, and 539 

winter at the SAES supersite in Shanghai were 12.8 ± 5.6, 9.0 ± 3.2, 12.2 ± 5.2, and 540 

12.4 ± 7.6 µg·m-3, respectively. Although there was still a deviation of 20%−30% 541 

between the simulation and observation, not to mention the diurnal patterns and spatial 542 

distributions also remained unknown, the simulation results are at least comparable to 543 

those of the measured concentrations, suggesting the modeled I/SVOCs is appropriate 544 

to be used in the estimation of SOA production from different sources. Continuous long-545 

term measurements of I/SVOC at multiple locations are strongly recommended in the 546 

future to improve the model performance and reduce the uncertainties in SOA 547 

estimation. 548 

3.2.1 Simulation results of OA concentrations 549 

Figure 4 5 presents the OA concentrations originated from different sources, 550 

including POA and SOA formed from AVOCs, BVOCs, and I/SVOCs, in four seasons 551 

in YRD from both BASE and IMPROVE simulations. Here we used the average of the 552 

modeled concentrations at 41 national air quality monitoring sites (See the yellow dots 553 

in Figure 1) to represent the regional average. The regional average concentration of 554 

OA (9.628.75 μg·m-3) in the IMPROVE simulation was 3822% higher than that from 555 

BASE simulation (6.987.17 μg·m-3) due to the involvement of I/SVOCs in the 556 

IMPROVE simulation. 557 

The seasonal average concentration of POA was 5.0 5 μg·m-3 in the BASE case, 558 

with the lowest in summer (3.3 8 μg m-3) and the highest in winter (56.9 μg m-3). High 559 

POA concentrations in winter was mainly induced by the stagnant meteorological 560 

conditions such as low wind speed and boundary layer height, and vice versa in summer. 561 

For the spatial distributions as presented in Figure 56, POA concentrations in northern 562 
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YRD were high and mainly concentrated in urban areas, which was consistent with the 563 

distributions of POA emissions (Figure S1). The POA concentrations in the IMPROVE 564 

simulation decreased by 12%−20% compared with the BASE case.The POA 565 

concentrations in the IMPROVE simulation were -3%−13% apart from those in the 566 

BASE simulation. In the IMPROVE simulation, the POA was treated as semi-volatile, 567 

where gas–particle partitioning and multigeneration oxidation were considered 568 

(Murphy et al., 2017). Entering into the atmosphere, more semi-volatile compounds 569 

evaporated into gas-phase and then generated SOA through multigeneration oxidation, 570 

which reduced the POA concentrations relatively.The differences between these two 571 

cases were then determined by the competitive effects of functionalization and 572 

fragmentation. In summer, more aged products were transferred to higher-volatility bins 573 

to produce SOA and thus reduced POA concentrations.  574 

BASE and IMPROVE simulations show similar results in the average 575 

concentrations of SOA formed from AVOCs (AVSOA). The seasonal average 576 

concentration of AVSOA was only 0.25 22 μg·m-3. The average AVSOA concentration 577 

in the IMPROVE case increased by 17% compared with the BASE case due to higher 578 

OA loading. Nonetheless, AVSOA still, exhibiting exhibited very limited contribution 579 

to the regional OA concentration, whereas average concentration of BVOC derived 580 

SOA (BVSOA, 1.7 μg m-3 in the IMPROVE simulation case) was much higher than 581 

expected. Also, evident seasonal variations were observed for BVSOA, with the highest 582 

in summer (2.482.27 μg·m-3), followed by spring (1.80 65 μg·m-3), autumn (1.36 62 583 

μg·m-3), and winter (1.19 11 μg·m-3). Hotspots of BVSOA concentrations were 584 

concentrated in the western and southern YRD. The observed seasonal variations and 585 

spatial distributions of BVOC derived SOA were consistent with those of the BVOC 586 

emissions in YRD (Liu et al., 2018a). 587 

The average concentration of I/SVOC derived SOA (I/SVSOA) in IMPROVE 588 

simulation was 2.26 18 μg·m-3, with the highest in spring (2.73 66 μg·m-3) and the 589 

lowest in summer (1.87 79 μg·m-3), which is a combined effect of emission, oxidation 590 
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and meteorological conditions. For example, Qin et al. (2022) suggested that in spring 591 

the enhanced solar radiation and OH oxidation potentially promote the secondary 592 

conversion from I/SVOCs to SOA. The low concentration in summer was likely due to 593 

the better meteorological conditions than the other seasons. By incorporating I/SVOC 594 

emissions into the IMPROVE simulation, the modeled average SOA concentration in 595 

the region increased from 1.96 66 (BASE) to 4.22 10 μg·m-3; and high concentrations 596 

of I/SVSOA were observed in central and northern YRD. Overall, the addition of high-597 

resolution I/SVOC emissions significantly increase the SOA concentration by 116148%, 598 

which will be further constrained by the observation in next section. 599 

To validate the model performance on regional OA simulation, we compared it 600 

with the measured concentrations of organic carbon (OC) in PM2.5 at multiple sites in 601 

the YRD region (Figure S3). Although both BASE and IMPROVE simulations showed 602 

good correlations with the observation as shown in Figures S3c, S3f, S3i, and S3l6c, 6f, 603 

6i, and 6l, OC concentrations in IMPROVE simulations in different seasons were all 604 

higher than those in the BASE simulations. In the BASE simulation, the modeled OC 605 

concentrations of each season only explained 4951% to 5971% of the observations. 606 

With the addition of I/SVOC emissions into IMPROVE simulation, the modeled OC 607 

concentrations much better agreed with the observations, with modeled OC increased 608 

to 7570% to 9391% of the observations. Details for the statistical evaluation of model 609 

performance on OC in BASE and IMPROVE simulations are shown in Table S6S7. 610 

 611 
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 612 

Figure 45. Comparisons of the regional average concentrations of POA and SOA formed from 613 
AVOCs, BVOCs, and I/SVOCs in different seasons from the BASE and IMPROVE simulations. 614 
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 616 

Figure 56. Spatial distributions of modeled POA and SOA formed from AVOCs, BVOCs, and 617 
I/SVOCs in different seasons in the IMPROVE simulation. 618 

3.2.2 Temporal variations of OA components: simulation vs. AMS observation 619 

To further validate the model performance on the simulations of POA and SOA, 620 

we compared the simulation results with those measured by an AMS at the SAES 621 

supersite. Both simulation and observation results were obtained for PM1 aerosol 622 

particles (aerodynamic diameter < 1 µm). Figure 6 7 shows that the simulation results 623 

of POA, SOA and OA were similar to the observation results not only in average 624 

concentration levels but also in temporal variations. For POA, the BASE and 625 
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IMPROVE simulations agree with each other (Figure S4) and both can reproduce the 626 

observed concentrations and diurnal variations of POA though a small deviation of 627 

34%−2618% between the simulated and observed concentrations in different seasons 628 

still existed. Similar to the observation results, the simulated POA concentrations 629 

peaked at noon and early evening, which were mainly contributed by cooking emissions 630 

as reported in our previous study (Huang et al., 2021). 631 

For SOA, the average concentrations in spring, summer, autumn, and winter in 632 

BASE simulation were 1.42, 1.6, 0.8, and 0.7 μg·m-3, respectively, which were only 633 

1314%−3130% of those observed by the AMS (see Figure S4). The SOA simulation 634 

was greatly improved in IMPROVE simulation with the modeled SOA concentrations 635 

of 4.23.8, 3.87, 2.7, and 2.4 3 μg·m-3 in spring, summer, autumn, and winter respectively. 636 

The SOA concentrations in IMPROVE simulation were 12.4−23.4 6 times higher than 637 

those in BASE simulation, which is 4340% to 7572% of the observation, indicating the 638 

large contributions of I/SVOCs emissions to SOA production.  639 

The IMPROVE simulation also demonstrated improvements in reproducing the 640 

temporal variations of SOA, especially during the daytime (Figure 6e 7e - 6h7h). 641 

Compared with the BASE simulation, evident increases in SOA concentrations during 642 

daytime can be observed in IMPROVE simulation, which agrees better with the 643 

observation, likely driven by photochemistry. Although the SOA simulations were 644 

improved in all four seasons, best simulation results were found in summer, when both 645 

the concentrations and diurnal variations of SOA were well reproduced.  646 

While our current results presented great improvements in SOA simulation, gaps 647 

were still left between the simulation and observation especially during the nighttime. 648 

The main reasons for the discrepancy between the simulated and measured SOA are: 649 

(1) I/SVOC emissions from outside of the YRD region might be underestimated due to 650 

the lack of detailed base emission inventory, resulting in the corresponding 651 

underestimations of the transported SOA, which were prominent especially in autumn, 652 

winter and spring in Shanghai; (2) current model simulation only consider the oxidation 653 
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processes driven by OH oxidation. However, an increasing body of experimental and 654 

observational evidence suggest that heterogeneous and multiphase reactions also played 655 

important roles in SOA formation especially during pollution episodes (Guo et al., 2020; 656 

Kim et al., 2021). Recent studies also found that nocturnal NO3 oxidation was also an 657 

important route for SOA formation (Yu et al., 2019; Decker et al., 2021). Yet mechanism 658 

and parameterizations of these processes remain unclear, making the involvement of 659 

these processes in the model difficult.  660 

661 

 662 
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Figure 67. Diurnal patterns of modeled POA, SOA, and OA concentrations in different seasons and 663 
their comparisons with the observations at the SAES supersite. The boxplots represent the diurnal 664 
patterns of the AMS observations. The blue and red lines respectively represent the diurnal patterns 665 
of the simulation results in BASE and IMPROVE cases. 666 

3.3 OA source contributions 667 

3.3.1 POA and SOA sources in the region 668 

Based on the high-resolution I/SVOC emission inventory established in this study, 669 

we successfully simulated the POA and SOA concentrations from each source. Table 3 670 

summarizes the regional average concentrations of POA and SOA originated from 671 

different sources and their relative contributions. Residential POA dominated the 672 

regional OA, with average concentrations ranged from 1.90 56 to 3.512.35 μg·m-3 in 673 

different seasons, accounting for 23.7919.47%−32.6625.31% of the total OA, among 674 

which cooking emission is the dominant source (ca. 9498%) of residential POA. Other 675 

POA sources include industrial, biomass burning, and mobile sources, accounting for 676 

8.02%−8.63%, 4.45%−8.28%, and 5.03%−5.78%7.25%−8.67%, 4.94%−10.23%, and 677 

3.42%−4.35% of the total OA, respectively. The cumulative fraction of POA in total 678 

OA from industrial and mobile sources was 13.44%−14.41%10.67%−12.86%, close to 679 

that of HOA (15%) observed by the AMS measurement in Shanghai (Figure S5). 680 

Industrial sources were the main source of SOA in the YRD region, with average 681 

SOA concentrations of 0.84−1.210.91−1.38 μg·m-3 in four seasons, accounting for 682 

8.98%−15.64%8.71%−13.65% of the total OA, among which, industrial process and 683 

solvent-use sources had almost equal contributions. Mobile sources were the second 684 

largest source of SOA in this region, with an average concentration of  685 

0.31−0.500.37−0.57 μg·m-3, accounting for  3.36%−6.69%3.42%−6.09% of the total 686 

OA. Among them, the source contribution of gasoline vehicles to SOA was 687 

1.77%−3.07%1.80%−2.84%, and that of diesel vehicles was 688 

1.18%−2.55%1.20%−2.44%. BVSOA showed significant seasonal differences with 689 

concentrations of 0.88, 1.26, 0.70, and 0.110.76, 1.61, 0.59, and 0.12 μg·m-3, 690 

respectively in spring, summer, autumn, and winter, accounting for 9.64%, 16.94%, 691 
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7.60%, and 1.15%7.40%, 20.20%, 6.21%, and 1.14% of the total OA.  692 

Overall, cooking emission was the major source of POA in YRD, accounting for 693 

19.14%−24.99%27.69%−32.45% of the total OA, which is consistent with our 694 

observations in Shanghai (Huang et al., 2021; Zhu et al., 2021). Both simulations and 695 

observations demonstrated higher contributions of cooking emission in urban China 696 

than those reported overseas (17%–18%) (Chen et al., 2021), which is attributed to the 697 

difference between Asian-style and Western-style cooking. The results emphasize that 698 

cooking emission has become a non-negligible source of non-fossil carbon in urban 699 

areas in eastern China. Contributions from industrial sources were running the second 700 

among all sources, accounting for 17.02%−24.12%16.51%−21.64% of OA and 24.7%–701 

26.8%23.33%–28.57% of SOA, which is attributed to the high I/SVOC emissions from 702 

industrial sources and is consistent with previous studies (Miao et al., 2021). Other 703 

sources mainly include mobile sources (8.76% to 11.72%7.77% to 9.68% of OA) and 704 

biomass burning (5.19%−8.87%5.63%−11.15% of OA). Specifically, diesel and 705 

gasoline vehicles were the major contributors among mobile sources, with higher 706 

contribution from the former (3.95%−4.66%3.98%−4.68%) than the latter 707 

(3.05%−4.02%2.79%−3.73%), followed by diesel machinery 708 

(1.32%−2.11%0.86%−1.06%) and marine vessels (0.43%−0.93%0.15%−0.30%). The 709 

contribution of biomass burning was highest in winter (8.87%11.15%) compared to 710 

contributions of 5.19%−7.28%5.63%−7.29% in other seasons and it was even higher 711 

than contribution of mobile sources (8.76%7.77%) in winter. The remaining 712 

14.54%−35.64%15.44%−27.03% of OA was from super region scale, which 713 

represented OA originated from emissions outside the YRD region. Our results were 714 

generally similar with those of Chang et al. (2022) for the YRD region. We both found 715 

the domestic combustion mainly engaged in cooking emissions had a major 716 

contribution to OA. Next was volatile chemical products (VCPs), especially the use of 717 

solvents, paints, and adhesives in industrial sector, also made a high contribution. Note 718 

that industrial process also took up a high fraction in our OA simulation, while it was 719 
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lower in Chang et al. (2022)’s study. The difference in I/SVOC emission estimates was 720 

the main reason for this divergence. Mobile sources in both studies had similar 721 

contributions, which accounted for about 10% to total OA. Comparatively, our source 722 

classification was more specific, which will help identify more specific OA sources to 723 

design more refined regional control countermeasures. 724 

Table 3. POA and SOA source contributions of different emission sources in each season in the 725 

YRD region. 726 

Sources 

Spring Summer Autumn Winter 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

POA 4.47  49.19  3.09  41.65  5.05  55.06  6.00  64.29  

    Industrial sources 0.73  8.02  0.63  8.48  0.79  8.63  0.75  8.04  

        Industrial process 0.61  6.71  0.54  7.27  0.67  7.29  0.63  6.77  

        Industrial solvent-use 0.12  1.31  0.09  1.20  0.12  1.34  0.12  1.27  

    Mobile sources 0.49  5.43  0.37  5.03  0.53  5.78  0.50  5.40  

        Gasoline Vehicles 0.09  1.01  0.07  0.96  0.12  1.32  0.12  1.28  

        Diesel Vehicles 0.23  2.58  0.16  2.16  0.26  2.79  0.26  2.77  

        Diesel machinery 0.10  1.06  0.09  1.21  0.10  1.08  0.09  0.95  

        Marine vessel 0.07  0.78  0.05  0.70  0.05  0.59  0.04  0.39  

    Residential sources 1.77  19.47  1.56  20.95  2.32  25.31  2.35  25.16  

        Cooking 1.74  19.14  1.54  20.72  2.29  24.99  2.31  24.77  

        Other residential 0.03  0.33  0.02  0.23  0.03  0.33  0.04  0.39  

    Biomass burning 0.60  6.65  0.33  4.45  0.60  6.58  0.77  8.28  

    Super region 0.87  9.63  0.20  2.75  0.80  8.75  1.62  17.41  

SOA 4.61  50.81  4.34  58.35  4.13  44.94  3.33  35.71  

    Industrial sources 1.21  13.38  1.16  15.64  1.02  11.10  0.84  8.98  

        Industrial process 0.68  7.53  0.62  8.39  0.61  6.62  0.53  5.64  

        Industrial solvent-use 0.53  5.84  0.54  7.25  0.41  4.48  0.31  3.34  

    Mobile sources 0.49  5.45  0.50  6.69  0.43  4.63  0.31  3.36  

        Gasoline Vehicles 0.25  2.71  0.23  3.07  0.21  2.25  0.16  1.77  

        Diesel Vehicles 0.18  1.95  0.19  2.50  0.16  1.73  0.11  1.18  

        Diesel machinery 0.06  0.66  0.07  0.90  0.05  0.56  0.03  0.37  

        Marine vessel 0.01  0.13  0.02  0.22  0.01  0.09  0.00  0.04  

    Residential sources 0.42  4.68  0.49  6.54  0.43  4.71  0.32  3.39  

        Cooking 0.21  2.34  0.29  3.97  0.26  2.78  0.16  1.71  

        Other residential 0.21  2.34  0.19  2.58  0.18  1.93  0.16  1.68  

    Biomass burning 0.06  0.63  0.06  0.74  0.05  0.59  0.06  0.60  

    Biogenic 0.88  9.64  1.26  16.94  0.70  7.60  0.11  1.15  
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    Super region 1.55  17.04  0.88  11.80  1.50  16.30  1.70  18.23  

 727 

Sources 

Spring Summer Autumn Winter 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

conc. 

(µg·m-3) 

ratio 

(%) 

POA 5.38 52.71 3.39 42.40 5.59 58.86 7.21 67.11 

    Industrial sources 0.83 8.10 0.58 7.25 0.82 8.67 0.84 7.80 

        Industrial process 0.73 7.19 0.52 6.54 0.73 7.74 0.75 6.98 

        Industrial solvent-use 0.09 0.91 0.06 0.71 0.09 0.93 0.09 0.82 

    Mobile sources 0.42 4.11 0.27 3.42 0.40 4.19 0.47 4.35 

        Gasoline Vehicles 0.10 0.99 0.07 0.89 0.09 0.99 0.11 0.99 

        Diesel Vehicles 0.26 2.53 0.16 2.01 0.25 2.61 0.30 2.78 

        Diesel machinery 0.04 0.42 0.03 0.40 0.04 0.45 0.05 0.48 

        Marine vessel 0.02 0.17 0.01 0.13 0.01 0.14 0.01 0.10 

    Residential sources 2.63 25.75 1.90 23.79 2.93 30.88 3.51 32.66 

        Cooking 2.44 23.92 1.85 23.15 2.80 29.54 3.18 29.61 

        Other residential 0.19 1.82 0.05 0.64 0.13 1.34 0.33 3.05 

    Biomass burning 0.70 6.88 0.39 4.94 0.56 5.90 1.10 10.23 

    Super region 0.80 7.88 0.24 3.00 0.87 9.22 1.30 12.07 

SOA 4.83 47.29 4.60 57.60 3.90 41.14 3.53 32.89 

    Industrial sources 1.38 13.54 1.09 13.65 0.91 9.56 0.94 8.71 

        Industrial process 0.71 6.94 0.53 6.58 0.51 5.38 0.54 4.99 

        Industrial solvent-use 0.67 6.61 0.57 7.08 0.40 4.18 0.40 3.71 

    Mobile sources 0.57 5.57 0.49 6.09 0.38 3.98 0.37 3.42 

        Gasoline Vehicles 0.28 2.70 0.23 2.84 0.18 1.88 0.19 1.80 

        Diesel Vehicles 0.22 2.15 0.20 2.44 0.15 1.56 0.13 1.20 

        Diesel machinery 0.06 0.59 0.05 0.66 0.04 0.45 0.04 0.38 

        Marine vessel 0.01 0.13 0.01 0.14 0.01 0.09 0.01 0.05 

    Residential sources 0.39 3.78 0.36 4.54 0.26 2.78 0.31 2.84 

        Cooking 0.39 3.78 0.36 4.54 0.26 2.78 0.31 2.84 

        Other residential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Biomass burning 0.04 0.41 0.06 0.69 0.01 0.11 0.10 0.92 

    Biogenic 0.76 7.40 1.61 20.20 0.59 6.21 0.12 1.14 

    Super region 1.69 16.59 0.99 12.44 1.76 18.51 1.70 15.86 

3.3.2 Spatial distributions of SOA originated from different sources 728 

Figure 7 8 shows the spatial distributions of modeled SOA originated from 729 

different sources in each season in YRD region. Note that we only considered the SOA 730 

formed from the intraregional VOC and I/SVOC emissions, excluding those transported 731 
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from the super region. A large spatial variability was observed for the sources of SOA 732 

driven by emissions. For example, industrial and mobile SOA concentrated in the 733 

eastern and central YRD, where I/SVOC emissions were high (Figure 34). Residential 734 

and agricultural SOA presented a more uniform spatial distribution than industrial and 735 

mobile SOA, with enhanced formation in central and western YRD (Figures 7i8i-7l8l).  736 

Although absolute source-dependent SOA concentrations differ in different 737 

seasons, low spatial variabilities were observed for different seasons. Industrial, mobile, 738 

and residential sources were the predominant contributors to SOA formation in eastern 739 

and central YRD, especially for the area along the Hangzhou Bay and Yangtze River 740 

driven by the enhanced I/SVOC emissions. The spatial distributions of BVSOA have 741 

been discussed above and will not be detailed here. 742 
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743 
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 744 
Figure 78. Spatial distributions of modeled SOA concentrations from different sources in each 745 
season in YRD region. 746 

3.3.3 Predominant OA sources in sub-regions of YRD 747 

To characterize the source contributions in different parts of the region, we 748 

categorized the simulation region into six sub-regions: northern YRD, western YRD, 749 
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central YRD, eastern YRD and southern YRD. And six representative cities in theses 750 

six regions were further selected for detailed comparison in source contributions, 751 

including Xuzhou (XZ), Hefei (HF), Nanjing (NJ), Hangzhou (HZ), Shanghai (SH) and 752 

Jinhua (JH). Figure 8 shows their locations and OA source contributions during summer 753 

and winter. 754 

In Northern YRD, represented by XZ, enhanced contribution from super-regional 755 

scale to the local OA was observed for both winter (64.6%53.2%) and summer 756 

(27.7%28.9%) and the contributions from industrial processes (14.0%23.4% in winter 757 

and 21.0%18% in summer) were also higher than other sub-regions. Other major 758 

sources include biogenic (12.0%12.6%) and cooking emissions (14.1%14.7%) in 759 

summer and cooking (14.1%9.3%) and other residential emissions (8.3%10.4%) in 760 

winter. Taken together, supe-regional transportation and industrial processes are 761 

predominant contributors of OA in northern YRD, accounting for 78.6% and 48.7%76.6% 762 

and 46.9% in summer and winter respectively, followed by cooking emissions. 763 

In western YRD, represented by HF, cooking emission was the largest contributor 764 

to OA with contributions of 17.8% and 26.3%21.4% and 32.5% in both summer and 765 

winter respectively, followed by super-regional contributions of 15.7% 17.4% (summer) 766 

and 29.2%25.8% (winter). Other major sources also include mobile source of 767 

15.5%14%, biogenic source in summer (17.8%17.5%) and industrial processes in both 768 

summer (12.3%12.6%) and winter (8.9%10.5%). In central YRD, represented by NJ 769 

and HZ, the relative source contributions were very similar to those in western YRD, 770 

with predominant contributions from cooking (22.8%-32.6%24.3%-38%), followed by 771 

super-regional transportation (7.4%-31.8%8.8%-27.8%), industrial processes (11.3%-772 

18.4%10.9%-18.4%) and mobile source (13.1%-16.3%10%-13%). 773 

In eastern YRD, represented by SH, the largest OA source was cooking emission, 774 

account for 24.3%25.5% and 36.6%43.6% of OA in summer and winter respectively, 775 

followed by mobile sources of 19%16%, super-regional transportation of 11.5%13.4% 776 

(summer) and 22.2%25.8% (winter) and industrial processes of 17.3%19.4% (summer) 777 
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and 11.4%10.5% (winter). In southern YRD, represented by JH, while biogenic 778 

contribution was prevailing in summer (38.2%37%), super-regional transportation was 779 

significant in winter (31.8%28.7%). Similar to other sub-regions, other major sources 780 

also included the contributions of cooking emission of 12.2%14.8% (summer) and 781 

11.4%14.3% (winter), industrial processes of 12.9%8.7% (summer) and 117.9% 7.4% 782 

(winter) and mobile sources of 13%. Yet southern YRD presented more evident increase 783 

in the contribution from industrial solvent-use compared with other sub-regions. 784 

To summarize, cooking, super-regional transportation, industrial process and mobile 785 

sources were the predominant sources of OA in all sub-regions regardless of the season, 786 

albeit enhanced contributions from biogenic sources to the OA formation in summer 787 

was observed, especially in southern YRD. High contributions of cooking sources were 788 

in accordance with the distributions of populations and high contributions of mobile 789 

sources were somewhat expected, especially in the city centers. Source contributions of 790 

OA varies in the intraregional scale implies that more targeted control measures need 791 

to be designed according to the emission features of each city. Specifically, for densely 792 

populated area, it is necessary to strengthen the future control strategy of cooking 793 

emissions; special attention needs to be paid to the I/SVOC emissions from industrial 794 

sources in eastern, central, and northern YRD region; mobile sources show its 795 

significance in urban aera of the region, dominated by the equal contributions from 796 

gasoline and diesel vehicles, indicating further reductions on the I/SVOCs from vehicle 797 

emissions are therefore critical for pollution control on city scale. 798 
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 800 

Figure 89. Source contributions of modeled OA concentrations from different sources during 801 
summer and winter in different cities of the region. 802 

4. Conclusions 803 

In this study, we established a high-resolution I/SVOC emission inventory with 804 

detailed source profiles and applied it into CMAQ v5.3 to simulate POA and SOA 805 

formation in YRD region of China. With the addition of I/SVOC emissions, simulation 806 

results show significant improvements on both temporal variations and spatial 807 

distributions of OA. Compared with the BASE simulation, where I/SVOC emissions 808 

were not included, the simulated SOA increased by 1.2 5 times in IMPROVE simulation, 809 

highlighting the significant contributions of I/SVOC emissions to SOA production. The 810 

remaining 10%−30%20% underestimation of OA indicates that future work is still 811 

needed in bridging the gap between simulation and observations, such as, measuring 812 

local emission factors and source profiles of I/SVOC from various local sources, 813 
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updating SOA formation mechanisms in model framework.  814 

With the addition of source specific I/SVOC emissions, we successfully quantified 815 

the contribution of each source to POA and SOA concentrations in YRD. For POA, 816 

cooking emission is the predominant source, which concentrates in urban area of YRD 817 

in accordance with the population distribution. For SOA, for the first time, we 818 

demonstrate that I/SVOCs from industrial sources are dominant contributor, followed 819 

by those from mobile sources. In summer, the contributions of biogenic emission to 820 

total SOA are also non-negligible, especially for the cities in southern YRD. Spatial and 821 

seasonal variations in the source contributions suggest that control strategies for OA 822 

pollution should vary by cities and seasons. On regional scale, cooking emissions has 823 

been emerging as an important POA source, not to mention their impacts on SOA 824 

formation are not yet certain. Our results suggest the control measures on the cooking 825 

emissions should be strengthened in the future for the further reduction of POA. We 826 

also found that SOA in the region is primarily contributed by industrial I/SVOC 827 

emissions, which urges in-depth studies of emission factors and source profiles of 828 

I/SVOC emissions from industrial sources as well as the corresponding control 829 

measures. On intraregional scale, for urban area, continuous reduction in I/SVOC 830 

emissions from mobile sources, especially gasoline and diesel vehicles, are effective 831 

measures in the mitigation of urban air pollution, which is also technically feasible as 832 

has been demonstrated in Qi et al. (2021). Continuous improvement in emission 833 

standards is one way to promote the reduction of motor vehicle related SOA. 834 

Data availability 835 

The gridded emissions of I/SVOCs from various sources for the YRD region 836 

developed by this study at a horizontal resolution of 4 km × 4 km can be downloaded 837 

from the following website (https://doi.org/10.6084/m9.figshare.19536082.v1). 838 

Additional related data are available upon request by contacting the corresponding 839 

author (Cheng Huang; huangc@saes.sh.cn). 840 
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