Supplement of

The impact of atmospheric motion on source-specific black carbon and the induced direct radiative effect over a river-valley region

Huikun Liu¹, Qiyuan Wang^{1,2,4*}, Suixin Liu^{1,5}, Bianhong Zhou³, Yao Qu¹, Jie Tian¹, Ting Zhang¹, Yongming Han^{1,2,4}, Junji Cao^{6,5*}

¹State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China

²CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China

³Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, College of Geography & Environment, Baoji University of Arts & Sciences, Baoji 721013, China

⁴Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China

⁵Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Xi'an 710061, China ⁶Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

*Correspondence to: Qiyuan Wang (wangqy@ieecas.cn) and Junji Cao (jjcao@mail.iap.ac.cn)

DISP Diagnostics:					
	Error Code:	0			
	%dQ:	-1.772433856			
	Swaps by Factor:	0	0	0	0
BS Mapping:					
	Base Factor 1	Base Factor 2	Base Factor 3	Base Factor 4	Unmapped
Boot Factor 1	49	0	0	1	0
Boot Factor 2	0	50	0	0	0
Boot Factor 3	0	0	50	0	0
Boot Factor 4	2	0	0	48	0

Table S1. The results of Bootstrap (BS) and displacement (DISP)

	Diesel vehicular emissions	Coal combustion	Biomass burning	Fossil fuel combustion
MAC $(m^2 g^{-1})$	6.7	7.5	9.5	7.1
AAE	1.07	1.74	2.13	1.26

Table S2. The MAC and AAE derived from the positive matrix factorization model

Figure S1. A map of the research site; the red box in the left figure represents Guanzhong Plain; the yellow star in the right figure represents the sampling site.

Figure S2. The difference between the modelled $b_{abs}(500\text{nm})/\text{SSA}$ and the observed $b_{abs}(520\text{nm})/\text{SSA}$.

Figure S3. Variation of the ratio $Q_{true}/Q_{expected}$ for factor selection from 2 to 7 factors. The red triangles are the $Q_{true}/Q_{expected}$ values for each run for different factor solutions.

Figure S4. The linear relationship between the observed $b_{abs}(\lambda)$ and positive matrix factorization modelling $b_{abs}(\lambda)$. λ includes 370nm, 470nm, 520nm, 590nm, 660nm and 880nm. The red line is a linear fitting line.

Figure S5. The correlation between NO_x and the eBC emitted from diesel vehicular emissions (eBC_{diesel}). The red line is a linear fitting line.

Figure S6. The correlation between eBC from biomass burning (eBC_{biomass}) and the eBC emitted from fossil fuel combustion (eBC_{fossil}). The red line is a linear fitting line.

Figure S7. The result of K-means cluster method

Figure S8. The result of the self-organizing map

Figure S9. The diurnal variations of planetary boundary layer height (PBLH, m) under the dominance of regional scale of motion (RD)

Figure S10. 24h-back trajectories (grey lines) and 72h-back trajectories (blue lines), and clusters at the sampling site 100 m above the ground. The green line represents Cluster No. 1, the yellow line represents Cluster No. 2, and the red line represents Cluster No. 3.