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Abstract. Black carbon (BC) is one of the most important short lived climate forcers, and atmospheric motions play an 16 

important role in determining its mass concentrations of pollutants. Here an intensive observation was launched in a typical 17 

river-valley city to investigate relationships between atmospheric motions and BC aerosols. Equivalent BC (eBC) source 18 

apportionment was based on an aethalometer model with the site-dependent absorption Ångström exponents (AAEs) and the 19 

mass absorption cross-sections (MACs) retrieved using a positive matrix factorization (PMF) model based on observed 20 

chemical components (i.e. EC, POC, K+, Mg, Al, Si, S, Cl, Ca, V, Mn, Fe, Ni, Cu, As, Se, Br, Sr, Pb, Ga, and Zn) and primary 21 

absorption coefficients at selected wavelengths from λ = 370 to 880nm. The derived AAEs from 370 to 880nm were 1.07 for 22 

diesel vehicular emissions, 2.13 for biomass burning, 1.74 for coal combustion, and 1.78 for mineral dust. The mean values for 23 

eBCfossil and eBCbiomass were 2.46 μg m-3and 1.17 μg m-3 respectively. Wind run distances and the vector displacements of the 24 

wind in 24 h were used to construct a self-organizing map, from which four atmospheric motions categories were identified 25 

(local-scale dominant, local-scale strong and regional-scale weak, local-scale weak and regional-scale strong and regional-scale 26 

dominant). BC pollution was found to be more likely when the influence of local-scale motions outweighed those of regional-27 

scale motions. Cluster analysis for the back trajectories of air mass calculated by Hybrid Single-Particle Lagrangian Integrated 28 

Trajectory model at the study site indicated that the directions of air flow can have different impacts for different scales of 29 

motion. The direct radiative effects (DRE) of source-specific eBCs were lower when the influence of regional-scale motions 30 

outweighed that of the local ones. However, due to chemical aging of the particles during transport,—the DRE efficiencies 31 

under regional scale motions were ~1.5 times higher than those under more local influences. The finding that the DRE 32 

efficiency of BC increased during the regional transport suggested significant consequences in regions downwind of pollution 33 

sources and emphasizes the importance of regionally transported BC for potential climatic effects. 34 
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1 Introduction 193 

Black carbon (BC) is produced by the incomplete combustion of biomass and fossil fuels. The BC aerosol has a strong light 194 

absorption capacity and can cause heating of the atmosphere. In fact, BC is widely recognized as one of the most important 195 

short-lived climate forcers (IPCC, 2021). Due to this high light-absorbing ability, BC has the potential to perturb the radiative 196 

balance between the earth and atmosphere and in so doing cause in the in climate to change and drive ecosystems away from 197 

their natural states (Schroter et all., 2005). Those changes ultimately will affect biodiversity and could threaten humans’ food 198 

security (Ochoa-Hueso et al., 2017; Shindell et al., 2012). Besides heating the atmosphere directly, BC also is important for 199 

nucleating clouds, and that is another way in which the particles can cause indirect climatic effects (Jacobson, 2002). As BC is 200 

heterogeneously distributed in the atmosphere, its climatic effects are highly variable and dependent on its distribution in the 201 

atmosphere, both horizontally and vertically; its radiative properties and how they are affected by of chemical processing; and 202 

its lifetime (IPCC, 2021). 203 

The radiative efficiency of BC can vary due to differences in emission sources and atmospheric aging processes (Bond et al., 204 

2013; He et al., 2015; Cappa et al., 2012). Indeed, BC from different sources can vary in light absorbing abilities (Cheng et al., 205 

2011) which can affect the radiative forcing of climate. In addition to the effects of the sources, regional transport can impact 206 

the light-absorbing ability through chemical processing or aging (Zhang et al., 2019). After BC particles are emitted, they can 207 

stay in the atmosphere for days or a few weeks (IPCC, 2021). During transport, fresh BC can experience a series of physical 208 

and chemical changes, for instance, mixing with other substances that can alter its microphysical and optical properties (Kahnert 209 

and Kanngießer, 2020). The aging processes can be even faster in polluted regions (Peng et al., 2016), and as a result, the light-210 

absorbing ability of BC can be strongly affected. Indeed, the light absorption ability of BC after aging can be as much as 2.4 211 

times that of fresh particles (Peng et al., 2016).  212 

The concentrations of BC are controlled by local emissions and regional transport, but meteorological conditions also are 213 

important because they affect both transport and removal. Normally, local emissions in urban areas are predictable to some 214 

degree because those emission sources are mainly anthropogenic and the concentrations of pollutants follow the diurnal patterns 215 

driven by anthropogenic activities. By contrast, meteorological conditions and regional transport are governed by multiple 216 

scales of motion which result in distinct meteorological impacts on ambient pollutant levels (Levy et al., 2010, Dutton, 1976). 217 

A commonly accepted classification of the scale of motion is based on horizontal distance and time scales. Typically, the time 218 

scale of local-scale motions varies from hours to days and the spatial scale ranges from 102 to 105 m (Oke et al., 2002; Seinfeld 219 

and Pandis, 2006). The local scales of motion are mainly controlled by local factors such as the roughness of the earth’s surface, 220 

orography, land breeze/sea breeze circulation, etc.   (Hewitson and Crane, 2006; IPCC, 2021). Larger scale of motions are 221 

associated with a mesoscale or synoptic scale weather systems, which on the one hand can transport pollutants but on the other 222 

can disperse them (Kalthoff et al., 2000; Zhang et al., 2012).  223 

The relationships between atmospheric motions and pollutant concentrations are complex. Atmospheric motions determine 224 

where and how extensive the pollution impacts are, but of course the rates of pollutant emissions, especially local ones, are 225 

important, too (Dutton, 1976). Liao et al., (2020) found that synoptic-scale flow led to an enhanced PM2.5 in a coastal area of 226 

the Pearl River Delta, while meso/local scale motions led to PM2.5 pollution in an inland area. Levy et al. (2010) showed that 227 

the concentrations of NOx and SO2 were higher under the dominance of smaller-scale motions than under larger scale motions. 228 
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However, few studies have touched on the impacts of different scales of motion on BC and their effects on radiative efficiency 484 

even though the effects could cause rapid climatic effects due to the patchy and constantly changing distributions (IPCC, 2021).  485 

Topography also plays an important role in air pollution (Zhao et al., 2015). River-valley topography is complicated, and it can 486 

have a considerable influence on air pollution and synoptic patterns of flow (Green et al., 2016; Carvalho et al., 2006). The 487 

pollution levels at cities in river-valleys are not only influenced by general atmospheric dynamics  but also strongly impacted 488 

by the local-scale of dynamics (Brulfert et al., 2006). Surface albedo and surface roughness are affected by the the complex 489 

topography of river-valley regions, and those physical factors can affect circulation and cause changes in pollutant mass 490 

concentrations (Wei et al., 2020). Mountains also significantly affect pollution, and once pollutants are generated or transported 491 

into the river-valley regions, their dispersal can be impeded by the blocking effect of the mountains. Instead of being dispersed, 492 

they can be carried by the airflows over the mountains to converge at the bottom of the valley and increase the pollutants along 493 

the river (Zhao et al., 2015). In this way, pollutants can accumulate in valleys and spread throughout the area, thereby 494 

aggravating pollution. In addition, temperature inversions commonly form in river-valleys during the winter, and that, too, can 495 

aggravate pollution problems (Glojek et al., 2022 and Bei et al., 2016). 496 

Thus, we focused our study on the impacts of different scales of motion on source-specific equivalent BCs (eBCs), and we 497 

evaluated radiative effects of eBCs over a river-valley city. The primary objectives of this study were: (1) to quantify the 498 

contributions of fossil fuel combustion and biomass burning to eBC concentrations, (2) to investigate the impacts of different 499 

scales of motion on the source-specific eBC, and (3) to estimate the radiative effects and the radiative efficiency of the source-500 

specific eBC under different atmospheric motion scenarios. The study provides insights into the influence of the specified 501 

atmospheric motions on BC and highlights the effects of those motions on the radiative efficiency and potential climatic effects 502 

of the regionally transported BC. 503 

2 Methodology 504 

2.1 Research site 505 

Baoji is a typical river-valley city, located at the furthest west of the Guanzhong Plain, at an altitude from 450 to 800 m a.s.l. 506 

(Figure S1), Baoji has a complex topography and often suffering from severe pollution in winter. It is surrounded by mountains 507 

to the south, west and north, with the Weihe River as the central axis extending eastward. The shape can be viewed as a funnel, 508 

with large opening to east. The Qinling peaks and the flat Weihe Plain are the main landforms of Baoji. The main peak of the 509 

Qinling Mountains is 3,767 m a.s.l. and it is the highest mountain in the eastern part of mainland China. This terrain causes 510 

divergent flow at local scales, which can impact pollution levels (Wei et al., 2020). Baoji also is an important railway 511 

intersection in China, connecting six railways to the north-west and southwest China. Pollutant levels can be high and pollutants 512 

are not easy to be dispersed in the city due to its special topographic conditions, dense population (total population of 0.341 513 

million, with 63.5% population living in the downtown aera and population density of 6003 people per km2 in 2019 514 

(http://tjj.shaanxi.gov.cn/upload/2021/zk/indexch.htm and https://data.chinabaogao.com/hgshj/2021/042053X932021.html), 515 

and impacts from major highway and railway networks.  516 
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The sampling site was on the rooftop of a building at Baoji University of Arts and Sciences (34°21′16.8″N, 107°12′59.6″717 

E, 569 m a.s.l.) surrounded by commercial and residential buildings, highways, and a river, there were no major industrial 718 

emission sources nearby. The main sources of BC in Baoji were the domestic fuel (coal and biomass) burning as well as the 719 

motor vehicle emissions (Zhou et al., 2018; Xiao et al., 2014). Open fire also can be sources for BC, but there were limited fire 720 

found scattered around the site (Figure S2). The meteorological conditions at Baoji for the four seasons are listed in Table S1, 721 

and the wind roses for the different seasons are shown in Figure S3(data are from the Meteorological Institute of Shaanxi 722 

Province). 723 

2.2 Sampling and laboratory measurements 724 

eBC and the absorption coefficients (babs) at 370, 470, 520, 590, 660, 880, and 950 nm wavelength were measured using an 725 

AE33 aethalometer (Magee Scientific, Berkeley, CA, USA) equipped with a PM2.5 cut-off inlet (SCC 1.829, BGI Inc. USA) 726 

that had a time resolution of 1 min. A Nafion® dryer (MD-700-24S-3; Perma Pure, Inc., Lakewood, NJ, USA) with a flow rate 727 

of 5 L min-1 was used to dry the PM2.5 before the measurement. Briefly, the particles were dried by the Nafion® dryer before 728 

being measured with the AE33 aethalometer, and the deposited particles were irradiated by light-emitting diodes at seven 729 

wavelengths of light-emitting diodes (λ = 370, 470, 520, 590,660, 880, and 950 nm), and the light attenuation was detected. 730 

The non-linear loading issue for filter-based absorption measurement was accounted for in the AE33 by a technique called 731 

dual-spot compensation. The quartz filter (PN8060) matrix scattering effect was corrected by using a factor of 1.39. More 732 

details of AE33 measurement techniques can be found in Drinovec et al. (2015).  733 

The scattering coefficient (bscat) at a single (525) nm wavelength was measured with the use of a nephelometer (Aurora-1000, 734 

Ecotech, USA) that had a time resolution of 5 min. The nephelometer and aethalometer operated simultaneously and used the 735 

same PM2.5 cyclone and Nafion® dryer. The calibration was conducted based on the user guide with a calibration gas R-134. 736 

Zero calibrations were conducted every other day by using clean air without particles. The ambient air was drawn in through a 737 

heated inlet with a flow rate of 5 L min-1. The relative humidity remained lower than 60%.  738 

PM2.5 samples were collected for every 24 hours (h) from 10 a.m. local time to the 10 a.m. the next day from 16th November 739 

2018 to 21st December 2018 with two sets of mini-volume samplers (Airmetrics, USA) , one using quartz fiber filters (QM/A; 740 

Whatman, Middlesex, UK) and the other with Teflon® filters (Pall Corporation, USA), both with a flow rate of 5 L min-1. 741 

Those samples were kept in a refrigerator at 4°C before analysis. The mass concentration of K+ in the PM2.5 quartz sample was 742 

extracted in a separate 15 mL vials containing 10 mL distilled deionized water (18.2 MΩ resistivity). The vials were placed in 743 

an ultrasonic water bath and shaken with a mechanical shaker for 1 h to extract the ions and determined by a Metrohm 940 744 

Professional IC Vario (Metrohm AG., Herisau, Switzerland) with  Metrosep C6-150/4.0 column (1.7 mmol/L nitric acid+1.7 745 

mmol/L dipicolinic acid as the eluent) for cation analysis. A group of elements (i.e. Mg, Al, Si, S, Cl, Ca, V, Mn, Fe, Ni, Cu, 746 

As, Se, Br, Sr, Pb, Ga, and Zn) on the Teflon® filters was were determined by energy-dispersive x-ray fluorescence (ED-XRF) 747 

spectrometry (Epsilon 4 ED-XRF, PANalytical B.V., Netherlands). The X-rays were generated from a gadolinium anode on a 748 

side-window X-ray tube. A spectrum of the ratio of X-ray and photon energy was obtained after 24 minutes of analysis for 749 

each sample with each energy peak characteristic of a specific element, and the peak areas were proportional to the 750 

concentrations of the elements. Quality control was conducted on a daily basis with test standard sample.  751 
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Organic carbon (OC) and elemental carbon (EC) in each sample were determined with the use of a DRI Model 2001 871 

Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). The thermal/optical reflectance (TOR) method and 872 

IMPROVE_A protocol were used for analysis. A punch of a quartz filter sample was heated at specific temperatures to obtain 873 

data for four OC fractions and three EC fractions. Total OC was calculated by summing all OC fractions and the pyrolyzed 874 

carbon (OP) produced. Total EC was calculated by summing all EC fractions minus the OP. Detailed methods and quality 875 

assurance/quality control processes were described in Cao et al., (2003). Primary organic carbon (POC) was estimated by using 876 

the minimum R-squared (MRS) method, which is based on using eBC as a tracer (Text S1). The method uses the minimum R2 877 

between OC and eBC to indicate where the ratio for which secondary OC and eBC are independent. A detailed description of 878 

the MRS method can be found in Wu et al., (2016).  879 

Data for NOx, wind speed, and direction at 12 ground monitoring sites were downloaded from 880 

http://sthjt.shaanxi.gov.cn/hx_html/zdjkqy/index.html. The wind data at 100 meters (m) above the ground and the planetary 881 

boundary layer height were downloaded from https://rda.ucar.edu/datasets/ds633.0. The data used for the HYSPLIT air mass 882 

trajectory analyses was downloaded from Global Data Assimilation System and it had a resolution of 1°×1°(GDAS, 883 

https://www.ready.noaa.gov/gdas1.php). The data and main parameters used in trajectory model are listed in Table S2. 884 

2.3 Optical source apportionment 885 

The positive matrix factorization (PMF) model that was used for the optical source apportionment in this study. PMF solves 886 

chemical mass balance by decomposing the observational data into different source profiles and contribution matrices as 887 

follows: 888 

𝑋ij = ∑ 𝑔ik𝑓kj + 𝑒ij
𝑝
𝑘=1            (1) 889 

where 𝑋𝑖𝑗 denotes the input data matrix; 𝑝 is the number of sources selected in the model; 𝑔𝑖𝑘 denotes the contribution of the 890 

𝑘th factor to the 𝑖th input data; 𝑓kj represents the 𝑘th factor’s profile of the 𝑗th species; and 𝑒ij represents the residual. Both 𝑔ik and 891 

𝑓kj are non-negative. The uncertainties of each species and babs(λ) were calculated by the equation recommended in EPA 892 

PMF5.0  user guideline(Norris et al, 2014) as follows:  893 

𝑈𝑛𝑐 = √(𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑜𝑟 𝑙𝑖𝑔𝑡ℎ 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡))2 + (0.5 × 𝑀𝐷𝐿)2  (2) 894 

𝑈𝑛𝑐 =
5

6
× 𝑀𝐷𝐿            (3) 895 

where MDL is the minimum detection limit of the method. When the concentration of a species was higher than the MDL then 896 

equation (2) was used otherwise equation (3) was used. In equation (2), for calculating the uncertainty of a chemical species, 897 

the error fraction was multiplied the concentration of the species. For calculating the uncertainty of optical data, the error 898 

fractions were multiplied by the light absorption coefficients.  899 

Chemical species data (EC, POC, K+, Mg, Al, Si, S, Cl, Ca, V, Mn, Fe, Ni, Cu, As, Se, Br, Sr, Pb, Ga and Zn) and the primary 900 

absorption (Pabs) data at λ=370nm,470nm,520nm,660nm, and 880nm were used for PMF analysis. The error fraction of offline 901 

measured data was the difference between multiple measurements of the same sample. The error fraction used for optical data 902 

删除了: by 903 

删除了:  different904 

删除了:  produced905 

删除了: pyrolyzed carbon (OP)906 

删除了:  method907 

设置了格式: 非突出显示

删除了: It 908 

删除了: of 909 

删除了: is 910 

删除了: referred to 911 

删除了: The912 

删除了: i913 

删除了: with914 

域代码已更改

删除了: ,915 

删除了: t916 

删除了: HYSPLIT 917 

删除了: were918 

删除了:  919 

删除了:  920 

删除了: (Norris et al, 2014)921 

删除了: 922 

删除了: 923 

带格式的: 两端对齐

删除了: F924 

设置了格式: 上标

删除了: put925 

删除了: in PMF 926 

删除了: is 927 

删除了:  the measured values 928 

http://sthjt.shaanxi.gov.cn/hx_html/zdjkqy/index.html
https://rda.ucar.edu/datasets/ds633.0
https://www.ready.noaa.gov/gdas1.php


6 

 

was 10% based on Rajesh and Ramachandran (2018). PMF solves the equation (1) by minimizing the Q value, which is the 929 

sum of the normalized residuals’ squares, as follows, 930 

𝑄 = ∑ ∑ [
𝑒ij

𝑢ij
]

2
𝑛
𝑗=0

𝑛
𝑖=1            (4) 931 

where 𝑢𝑖𝑗 represents the uncertainties of each 𝑋𝑖𝑗 and Qtrue/Qexp was used as the indicators for the factor number determination. 932 

2.4 eBC source apportionment 933 

The quantities of eBC generated from biomass burning versus fossil fuel combustion were deconvolved by an aethalometer 934 

model which uses Beer-Lambert’s Law to write the absorption coefficients equations, wavelengths and absorption Ångström 935 

exponents (AAEs) for the two different BC emission sources (Sandradewi et. al., 2008). This approach is widely used for 936 

separating BC from two different sources based on optical data (Rajesh et al., 2018; Kant et al., 2019; Panicker et al., 2010). 937 

However, the traditional aethalometer model could be affected by the light absorbing substances at lower wavelengths such as 938 

dust and secondary formation particles. An improvement to the traditional aethalometer model was made, by explicitly 939 

considering the interference of the babs at a lower wavelength (370nm) caused by dust and secondary OC. Thus, the calculation 940 

of the absorption and source apportionment was based on the following equations (Wang et al., 2020): 941 

𝑏𝑎𝑏𝑠(370)𝑓𝑜𝑠𝑠𝑖𝑙

𝑏𝑎𝑏𝑠(880)𝑓𝑜𝑠𝑠𝑖𝑙
= (

370

880
)−𝐴𝐴𝐸𝑓𝑜𝑠𝑠𝑖𝑙          (5) 942 

𝑏𝑎𝑏𝑠(370)𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑏𝑎𝑏𝑠(880)𝑏𝑖𝑜𝑚𝑎𝑠𝑠
= (

370

880
)−𝐴𝐴𝐸𝑏𝑖𝑜𝑚𝑎𝑠𝑠           (6) 943 

𝑏𝑎𝑏𝑠(880) = 𝑏𝑎𝑏𝑠(880)𝑓𝑜𝑠𝑠𝑖𝑙 + 𝑏𝑎𝑏𝑠(880)𝑏𝑖𝑜𝑚𝑎𝑠𝑠        (7) 944 

𝑏𝑎𝑏𝑠(370) = 𝑏𝑎𝑏𝑠(370)𝑓𝑜𝑠𝑠𝑖𝑙 + 𝑏𝑎𝑏𝑠(370)𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑏𝑎𝑏𝑠(370)𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 + 𝑏𝑎𝑏𝑠(370)𝑑𝑢𝑠𝑡   (8) 945 

𝑒𝐵𝐶𝑓𝑜𝑠𝑠𝑖𝑙 =
𝑏𝑎𝑏𝑠(880)𝑓𝑜𝑠𝑠𝑖𝑙

𝑀𝐴𝐶𝐵𝐶(880)𝑓𝑜𝑠𝑠𝑖𝑙
          (9) 946 

𝑒𝐵𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =
𝑏𝑎𝑏𝑠(880)𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑀𝐴𝐶𝐵𝐶(880)𝑏𝑖𝑜𝑚𝑎𝑠𝑠
          (10) 947 

where 𝐴𝐴𝐸𝑓𝑜𝑠𝑠𝑖𝑙  and 𝐴𝐴𝐸𝑏𝑖𝑜𝑚𝑎𝑠𝑠 are the AAEs for fossil fuel combustion and biomass burning. These were derived from the 948 

optical source apportionment by using PMF as discussed in section 3.1. Further, babs(370) and babs(880) are the total babs 949 

measured by the AE33 at the wavelengths of 370 nm and 880 nm respectively; babs(370)fossil and babs(880)fossil are the babs caused 950 

by emissions from fossil fuel combustion at those two wavelengths; babs(370)biomass and babs(880)biomass are the babs caused by 951 

emissions from biomass burning at those two wavelengths; babs(370)dust refers to the babs contributed by mineral dust at the 952 

wavelength of 370 nm, which was derived from the result of optical source apportionment; babs(370)secondary refers to the babs 953 

caused by the secondary aerosols at the wavelength of 370 nm, which was calculated by the minimum R-squared approach with 954 

eBC as a tracer (Text S1, Wang et al., 2019); eBCfossil and eBCbiomass are the eBCs from fossil fuel combustion and biomass 955 

burning; and 𝑀𝐴𝐶𝐵𝐶(880)𝑓𝑜𝑠𝑠𝑖𝑙  and 𝑀𝐴𝐶𝐵𝐶(880)𝑏𝑖𝑜𝑚𝑎𝑠𝑠 are the mass absorption cross-sections of eBCfossil and the mass 956 

absorption cross-section of eBCbiomass at the wavelength of 880 nm respectively, which were based on the PMF results for the 957 

optical source apportionments. 958 
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2.5 Indicators for the different scales of motion  998 

The mathematical definitions of airflow condition proposed by Allwine and Whiteman (1994) were used in this study. The 999 

definitions quantify the flow features integrally at individual stations. Three variables were quantified, namely the actual wind 1000 

run distance (S) which is the scalar displacement of the wind in 24 h (i.e. the accumulated distance of the wind), the resultant 1001 

transport distance (L) which is the vector displacement of the wind in 24 h (i.e. the straight line from the starting point to the 1002 

end point), and the recirculation factor (R) is based on the ratio of L and S which indicates the frequency of the wind veering 1003 

in 24 h. The influences of different scales of atmospheric motions were assessed based on the method proposed by Levy et al., 1004 

(2010), and for this, we used wind data at 100 m above the sampling site and the wind data from 12 monitoring stations at 1005 

ground level (~15m) to indicate the different scales of motions. The winds at the surface monitoring stations were expected to 1006 

be more sensitive to local-scale turbulence and convection than the winds at 100 m. With less influence from the surface forces, 1007 

the indicators at 100 m would be more sensitive to larger scales of motion. The equations used as follows: 1008 

𝐿𝑛𝜏/𝑏𝑗 = 𝑇 [(∑ 𝑢𝑖
𝑖−𝜏+1
𝑗=𝑖 )

2
+ (∑ 𝑣𝑖

𝑖−𝜏+1
𝑗=𝑖 )

2
]

1/2

         (11) 1009 

𝑆𝑛𝜏/𝑏𝑗 = ∑ (𝑢𝑗
2 + 𝑣𝑗

2)1/2𝑖−𝜏+1
𝑗=𝑖           (12) 1010 

𝑅𝑛𝜏/𝑏𝑗 = 1 −
𝐿𝑖𝜏

𝑆𝑖𝜏
            (13) 1011 

where T is the interval of the data (i.e., 60 min), 𝑖 is the ith the ending time step data, 𝜏 is the integration time period of the wind 1012 

run (24 h), i-τ+1 represents the data at the start time, and n is the number of monitoring stations (a total of 12 in this study). 1013 

The quantities 𝑢 and 𝑣 are the wind vectors. Using the wind data from the 12 monitoring stations covering Baoji, the L and S 1014 

values at the 12 different sites at ground level were calculated. Lnτ and Snτ represent the resultant transport distance and the 1015 

actual wind run distance at the nth (n = 1 to 12) monitoring station at ground level; Rnτ is the recirculation factor at the nth 1016 

monitoring station which is calculated based on Lnτ; and Snτ; Lbj, and Sbj are the resultant transport distance and the actual wind 1017 

run distance at 100 m height above the ground. These represent the flow characteristics in higher atmosphere at the study site, 1018 

and they were calculated by using the wind data at 100 m height. The recirculation factor (Rbj) was calculated for a height of 1019 

100 m.  1020 

As explained in Levy et al., (2010), if local-scale motions are strong and regional-scale motions are weak, the variations in 1021 

winds at each station would not be likely to be uniform due to differences in local factors, and that would result in a relatively 1022 

large standard deviations (Rstd) for Rnτ. By contrast, if the local-scale motions are weak and the regional-scale motion is strong, 1023 

the wind direction would be likely to be more uniform over a large area, and the Rbj and the Rstd should be relatively smaller.  1024 

2.6 Self-organizing map  1025 

A self-organizing map (SOM) developed by Kohonen (1990) is a type of artificial neural network that is widely used for 1026 

categorizing high-dimensional data into a few major features (Stauffer et al., 2016 and Pearce et al., 2014). In particular, this 1027 

approach is widely used for categorizing different meteorological patterns (Liao et al., 2020; Han et al., 2020; Jiang et al., 1028 

2017). Unlike traditional dimension reduction methods (e.g., principal component analysis), SOM projects high-dimensional 1029 

input data by non-linear projection into user-designed lower-dimensions, which are typically two-dimensional arrays of nodes 1030 
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(Hewitson and Crane, 2006). The performance of SOM in classifying climatological data has been shown to be robust (Reusch 1141 

et al., 2005). Competitive learning algorithms are used to train SOM, and the architecture of SOM consists of two layers; one 1142 

is called the input layer and it contains the high dimensional input data. The other layer is the output layer in which the node 1143 

number is the output cluster number. The working principle of SOM is to convert high dimensional data with complex 1144 

correlations into lower dimensions via geometrical relationships (Ramachandran et al., 2019). After the initial random weights 1145 

are generated, the input data are compared with each weight, and the best match is defined as winning. The winning node and 1146 

the neighboring nodes close to the winning node will learn from the same inputs and the associated weights are updated. After 1147 

multiple iterations, the network to settles into stable zones of features and the weights. More detailed working principles of 1148 

SOM can be found Kangas and Kohonen, (1996) and Kohonen et al., (1996). 1149 

Comparison between the input data and each weight is made by applying Euclidean distances, the best match is defined by the 1150 

following equation: 1151 

‖𝑥 − 𝑚𝑐‖ = 𝑚𝑖𝑛{‖𝑥 − 𝑚𝑖‖}           (14) 1152 

where 𝑥 is the input data, 𝑚𝑐is the best matched weight, 𝑚𝑖is the weights connected with the ith node. 1153 

The weights are updated by following equation: 1154 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)]         (15) 1155 

where the 𝑚𝑖(𝑡 + 1) is the ith weight at t+1 time,  𝑚𝑖(𝑡)is the ith weight at t time, the ℎ𝑐𝑖(𝑡) is the neighborhood kernel defined 1156 

over the lattice points at t time, and c is the winning node location.   1157 

SOM was used to categorize the daily atmospheric motions during the study period and to explore the influences of different 1158 

scales of motion on source-specific eBC. Hourly averages of three sets of data (Rstd, Lbj, and Sbj) were input into SOM. 1159 

Determining the size of the output map is crucial for SOM (Chang et al 2020 and Liu et al., 2021). To reduce the subjectivity, 1160 

the K-means cluster method was used for the decision-making regarding size. The similarity of each item of the input data 1161 

relative to the node was measured using Euclidean distance. The iteration number was set to 2000. For each input data item, 1162 

the node closest to it would “win out”. The reference vectors of the winning node and their neighborhood nodes were updated 1163 

and adjusted towards the data. The “Kohonen” package in R language (Wehrens and Kruisselbrink, 2019) was used to develop 1164 

the SOM model in this study.  1165 

2.7 Estimations of direct radiative effects and heating rate 1166 

The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was used to estimate the direct radiative effects 1167 

(DRE) induced by source-specific eBC. The model has been used in many studies to calculate the DRE caused by aerosols and 1168 

BC (Pathak et al., 2010; Rajesh et al., 2018; Zhao et al., 2019). SBDART calculated DRE based on several well-tested physical 1169 

models. Details regarding the model were presented in Ricchiazzi et al., (1998). The important input data included aerosol 1170 

parameters, including aerosol optical depth (AOD), single scattering albedo (SSA), asymmetric factor (AF) and extinction 1171 

efficiency, surface albedo, and atmospheric profile.  1172 
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The aerosol parameters used in this study were derived by the Optical Property of Aerosol and Cloud (OPAC) model (Hess et 1250 

al., 1998) based on the number concentrations of aerosol components. As the study was conducted in an urban region, the urban 1251 

aerosol profile was used in OPAC, and it included soot (eBC), water-soluble matter (WS), and water-insoluble matter (WIS). 1252 

The number concentrations of soot were derived from the mass concentrations of eBC with the default ratio (5.99E-5 μg m-3/ 1253 

particle.cm-3) in OPAC. The number concentrations of WS and WIS were adjusted until the modeled SSA and babs at 500nm 1254 

in OPAC were close (±5%, see Figure S4) to those values calculated with data from the nephelometer and AE33 (bext(520) = 1255 

bscat(525) + babs(520), SSA= bscat(525)/bext(520)). The DRE of source-specific eBC at the top of atmosphere (TOA) and surface 1256 

atmosphere (SUF) were calculated from the difference between the DREs with or without the number concentrations of the 1257 

source-specific eBC under clear-sky conditions.  1258 

𝐷𝑅𝐸𝑒𝐵𝐶 =  (𝐹 ↓ −𝐹 ↑)𝑤𝑖𝑡ℎ 𝑒𝐵𝐶 −  (𝐹 ↓ −𝐹 ↑)𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝐵𝐶        (16) 1259 

𝐷𝑅𝐸𝑒𝐵𝐶,𝐴𝑇𝑀 =  𝐷𝑅𝐸𝑒𝐵𝐶,𝑇𝑂𝐴 −  𝐷𝑅𝐸𝑒𝐵𝐶,𝑆𝑈𝐹         (17) 1260 

where 𝐷𝑅𝐸𝑒𝐵𝐶  is the DRE of source-specific eBC, F↓ and 𝐹 ↑ are the downward and upward flux, 𝐷𝑅𝐸𝑒𝐵𝐶,𝐴𝑇𝑀 is the DRE of 1261 

the source-specific eBC for the atmospheric column, that is, the DRE at the top of the atmosphere (𝐷𝑅𝐸𝑒𝐵𝐶,𝑇𝑂𝐴) minus that at 1262 

the surface (𝐷𝑅𝐸𝑒𝐵𝐶,𝑆𝑈𝐹). 1263 

3 Results and discussion 1264 

3.1 Calculation of eBCfossil and eBCbiomass 1265 

The PMF model was used for the optical source apportionment, and those results were used to obtain the site-specific AAEs 1266 

and MACs, which in turn were used to calculate the source-specific eBC with the improved aethalometer model. For every 1267 

solution, PMF was run 20 times. The Qtrue/Qexp ratios from the 2- to 7-factor solutions were examined, and the values of a 4-1268 

factor solution were found most stable compared with others because the Qtrue/Qexp values did not drop appreciably after the 1269 

addition of one more factor (Figure S5). Based on these results, the 4-factors solution was determined to be the most 1270 

interpretable. Two diagnostic methods, Bootstrap (BS) and Displacement (DISP) (Norris et al, 2014; Brown et al. 2015) were 1271 

used to validate the robustness and stability of the results. The BS method was used to assess the random errors and partially 1272 

assess the effects of rotational ambiguity while DISP was used to evaluate rotational ambiguity errors. The  results of the BS 1273 

and DISP analyses showed that there was no swap for the 4-factor solution (Table S3). The modelled primary babs(λ) were well 1274 

correlated (r = 0.95–0.96, slope = 0.90~0.95, p < 0.01, Figure S6) with their observed counterparts, which suggested that the 1275 

modelling performance of PMF5.0 was good. The factor profiles obtained from the PMF are shown in Figure 1.  1276 

The first factor  (PC1) had was featured with high loadings of EC (52%), POC (49%), and V (49%) and moderate loadings of 1277 

Mn (33%), Ni (40%), Cu (37%), and Zn (44%). This factor source contributed 27% to 44% of the primary babs(λ). Of the species 1278 

with high loadings on PC1, EC has been found to be associated with vehicular emissions due to incomplete fuel combustion 1279 

(Cao et al., 2013). V and Ni are commonly detected in the particles emitted by diesel-powered vehicles (Lin et al., 2015 and 1280 

Zhao et al., 2021). Mn compounds are commonly used as an antiknock additive for unleaded gasoline to raise octane numbers 1281 

and protect the engine (Lewis et al., 2003; Geivanidis et al., 2003); and Cu and Zn are emitted by the combustion of lubricating 1282 
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oils and from the wear of motor vehicle parts (i.e., brakes and tires) (Thorpe and Harrison, 2008; Song et al., 2006). In addition, 1408 

the EC associated with this factor was found well correlated (r = 0.83, p < 0.01, Figure S7) with the daily averaged NOx which 1409 

is a commonly used tracer of vehicular emissions in the urban areas (Zotter et al., 2017). Recent research on the source 1410 

contributions of BC emissions has shown that most of BC associated with transportation was emitted by on-road diesel vehicles 1411 

in China (Xu et al., 2021). From these results, PC1 was identified as diesel vehicular emissions. The MAC of this factor (MAC 1412 

(880)diesel) was 6.7 m2 g-1. The estimated AAE of this factor (AAEdiesel) was 1.07 (Figure S8), which is comparable with the 1413 

AAE values of vehicle emissions (0.8~1.1) reported in previous studies (Zotter et al., 2017; Kirchstetter et al., 2004). 1414 

The second factor (PC2) was characterized by the high loadings of K+ (51%), Cl (79%), and Br (52%) and moderate amounts 1415 

of EC (26%), POC (28%), and Pb (30%). Of these, K+ is a widely recognized tracers for the biomass burning emissions (Urban 1416 

et al., 2012; Zhang et al., 2015), and high loadings of Cl also can be taken as a signal of biomass burning (Yao et al., 2002; 1417 

Manousakas et al., 2017). Previous studies showed that a large quantity of Br was found in biomass burning aerosols was 1418 

caused by emissions of CH3Br emission during combustion (Manö and Andreae, 1994; Artaxo et al.,1998). Particulate matter 1419 

emitted from biomass burning typically has substantial amounts of OC and EC (Song et al, 2006), and Pb also has been observed 1420 

in biomass-burning aerosols (Amato et al., 2016). Thus, PC2 was identified as emissions from biomass burning. The 1421 

contribution of this factor to primary babs(370) was as high as 50%, but only 33% to primary babs(880), and that was likely 1422 

caused by the brown carbon which is a typically found in biomass-burning aerosols (Washenfelder et al., 2015; Yan et al., 1423 

2015). The MAC of this factor (MAC (880)biomass) was 9.5 m2 g-1. The AAE of this factor (AAEbiomass) was 2.13 (Figure S8), 1424 

which is consistent with the wide range of AAEs reported for biomass-burning (1.2~3.5) (Sandradewi et al., 2008; Helin et al., 1425 

2018; Zotter et al., 2017). 1426 

The third factor (PC3) had significant loadings of S (64%), Se (98%), As (51%), and Pb (53%) and moderate loadings of Ga 1427 

(42%)—all of these elements are commonly associated with coal combustion (Hsu et al., 2016; Tan et al., 2017). For instance, 1428 

coal combustion has gradually become the main source of Pb in PM2.5 after China began to phase out Pb-containing gasoline 1429 

(Xu et al. 2012). Thus, PC3 was assigned to coal combustion. The MAC of this factor (MAC (880)coal) was 7.5 m2 g-1. This 1430 

factor contributed 17%–19% primary babs(λ), and its derived AAEcoal was 1.74 (Figure S8) which is close to the AAE found for 1431 

coal-chunks (Sun et al., 2017).  1432 

The last factor (PC4) was most heavily loaded with Al (68%), Si (76%), Ca (65%), Fe (51%), and Sr (71%). These elements 1433 

are typical crustal elements, and they are abundant in mineral dust (Tao et al., 2016; Tao et al., 2017). Minor amounts of EC in 1434 

crustal dust could be from other EC that had deposited on the ground and later resuspended together with the dust by natural 1435 

or artificial disturbances (e.g., wind and traffic flow). This factor only contributed ~4% of the primary babs(λ). The estimated 1436 

AAEdust was 1.78 (Figure S8) which is close to the AAE of mineral dust reported in previous studies (AAE370~950 = 1.82, Yang 1437 

et al., 2009). 1438 

As elaborated above, the PM2.5 EC over Baoji was mainly from diesel vehicular emissions, biomass burning, and coal 1439 

combustion. The emissions can be further grouped into those from biomass burning and fossil fuel combustion (the sum of 1440 

diesel vehicular emissions and coal combustion). Thus, the AAEfossil (1.26) and MAC (880)fossil (7.1 m2 g-1) were calculated 1441 

was the mass-weighted averages (relative to the total EC) of AAEcoal (MAC (880)coal) and AAEdiesel (MAC (880)diesel) (Table 1442 

S4). The hourly mass concentrations of eBCfossil and eBCbiomass were then calculated using the ‘aethalometer model’ (Eqs. 5–1443 
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10). The results showed that eBCfossil and eBCbiomass were only weakly correlated (r = 0.3, Figure S9), indicating a reasonably 1616 

good separation, and furthermore, their diel variations showed different patterns (Figure 2).  1617 

The mean values of eBCfossil and eBCbiomass were 2.46 μg m-3 and 1.17 μg m-3, respectively. The averaged total eBC mass 1618 

concentration (± standard deviation) was 3.63±2.73μg m-3 , and the eBC ranged from varying from 0.39 to 12.73 μg m-3 during 1619 

the study period, The averaged mass concentration was comparable to that in Lanzhou, another river valley city in China, that 1620 

was sampled in the same season (5.1 ± 2.1, Zhao et al.,2019). The lowest value is comparable to other river valley regions such 1621 

as in Retje in India (Glojek et al., 2022) or in Urumqi River Valley in China (Zhang et al., 2020), however even the highest 1622 

concentration was much lower than that in other urban regions (Table S5).  1623 

The diel variations of eBCfossil (Figure 2a) showed a bimodal pattern with two peaks at 9 a.m. and 7 p.m local time. which are 1624 

typical peak commuting hours, indicating that there were strong influences from traffic emissions. Due to the reduced traffic 1625 

flow from 1 a.m. to 5 a.m., eBCfossil decreased slowly. After 5 a.m. passenger vehicles were allowed on the highways in and 1626 

near Baoji, and eBCfossil started to rise, probably in response to the increased traffic emissions. As the morning commuter traffic 1627 

increased, eBCfossil reached its first peak at 9 a.m. From then until 11 a.m., eBCfossil declined only slightly because the wind 1628 

speeds decreased (Figure 2c), which offset the effects of the decreases in traffic. From 11 a.m. to 3 p.m., the increases in the 1629 

height of the planetary boundary layer (PBLH) (Figure 2d) led to a rapid decrease in eBCfossil. Later the PBLH decreased rapidly, 1630 

resulting in conditions unfavorable for dispersion, and then eBCfossil rose quickly to the second peak at 7 p.m. After passing the 1631 

evening peak in traffic, the eBCfossil decreased dramatically.  1632 

In contrast, the diel variation of eBCbiomass (Figure 2b) showed greater influences from meteorological conditions during the 1633 

daytime, and eBCbiomass showed lower concentrations during the day compared with the night. After 6 p.m., increased biomass 1634 

burning from cooking and residential heating let to the emission of more eBCbiomass and the stable PBLH hindered the dispersion 1635 

of eBCbiomass; these two factors caused the eBCbiomass to reach its peak at 8 p.m. At night, the downslope winds from the 1636 

mountains converged in the valley at night time (Oke et al., 2002) and turned easterly, where the land altitude is lower than at 1637 

Baoji (Zhao et al., 2015). This led to t relatively strong winds (Figure 2c) favored dispersion and caused the measured eBCbiomass 1638 

pollutant levels to decrease. 1639 

3.2 The influence of regional and local atmospheric motion on eBCfossil 1640 

and eBCbiomass  1641 

The K-means results showed that the four-category solution was appropriate for interpretation as explained above (see also 1642 

Figure S10). Thus a 2×2 map size was used for the self organizing map (SOM). The four featured atmospheric motion 1643 

categories given by SOM (Figure S11) were identified as follows (feature values are in Table 1): 1644 

1. Local-scale dominance (LD): This category featured high Rbj and Rstd. As described in section 2.5, high Rstd indicates 1645 

greater divergence of R at the 12 stations due to the strong influence of local-scale turbulence and convection. Lbj and Sbj 1646 

were shorter than 130km implying stagnation (Allwine and Whiteman, 1994).   1647 
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2. Local-scale strong and regional-scale weak (LSRW): For this group, Lbj and Sbj were longer than those for LD, and Rstd 1799 

was slightly lower than that in LD. 1800 

3. Local-scale weak and regional-scale strong (LWRS): As the values suggest, both Rbj and Rstd were lower than those in LD 1801 

and LSRW, especially Rbj. This suggests the winds veered less frequently and the differences of R found in 12 stations 1802 

were smaller than in  the two situations above. This situation shows that the influence of the regional-scale motion was 1803 

greater than that for the previous two categories. 1804 

4. Regional-scale dominance (RD): In this category, wind direction at the study site was nearly uniform (extremely low Rbj) 1805 

suggesting good ventilation (Allwine and Whiteman, 1994). The differences among R found at the 12 stations were even 1806 

smaller than for the LWRS group, implying a strong increased influence of regional-scale motions. Indeed, the influence 1807 

of regional-scale motions far outweighed the local ones for this category, and therefore, this group was considered to be 1808 

dominated by strong regional-scale motions. 1809 

As shown in Table 1, the SOM classified 40% of cases were classified as LD, 29% were classified into RD, 17% and 14% 1810 

were assigned into LSRW and LWRS respectively. These results indicate that most winter days in Baoji were strongly 1811 

influenced by local-scale motions. Under LD, the average mass concentration of eBCfossil (3.08 ± 2.07 μg m-3) and eBCbiomass 1812 

(1.52 ± 1.19 μg m-3) were the highest among all four atmospheric categories noted above and over half (60% for eBCbiomass and 1813 

55% for eBCfossil) of the high values (75th to 100th percentile) were found in this category (Figure 3). In addition, as shown in 1814 

Figure 3, the vast majority of the high values are located in the zone indicating air stagnation (Sbj≤ 130km, shaded yellow). 1815 

One difference that the 75th to 100th percentile eBCbiomass tended to cluster at Rbj ≤ 0.2 indicates that under LD circumstances, 1816 

pollutants were likely coming from the same directions as where the main pollution sources were agglomerated, but eBCfossil, 1817 

in contrast, evidently originated from more scattered locations (Rbj ≥ 0.4). Under LSRW, the averaged mass concentrations of 1818 

eBCfossil and eBCbiomass were 2.79 ± 1.73 μg m-3and 1.06 ± 0.83 μg m-3 respectively (Table 1), which were both lower than those 1819 

for the LD situation. When the regional scale of motion became stronger (i.e., LWRS and RD), the average mass concentration 1820 

of eBCfossil (2.15 ± 1.62 μg m-3 and 1.69 ± 1.36 μg m-3) and eBCbiomass (0.86 ± 1.58 μg m-3 and 0.93 ± 0.72 μg m-3) were lower, 1821 

presumably because strong winds cause the pollutants to mix with cleaner air. Interestingly, 19% of the total 75th to 100th  1822 

percentile eBCbiomass was found under RD, and 55% of that was when ventilation was good (Sbj ≥ 250km, Rbj ≤ 0.2, Figure 3, 1823 

shaded grey). These findings imply that the high mass concentrations of eBCbiomass were carried by regional-scale airflow to 1824 

the site.  1825 

Figure 4 portrays the mass concentrations of eBCfossil and eBCbiomass during the daytime and night time respectively under the 1826 

four atmospheric motion categories specified earlier. As shown in Figure 4 (a) and (c), the mean values of both types of source-1827 

specific eBCs during daytime were the highest (3.02 ± 2.12 μg m-3 and 1.15 ± 0.8 μg m-3) under LD and the lowest (1.36 ± 1828 

1.00 μg m-3 and 0.58 ± 0.53 μg m-3) under RD. Meanwhile, the average mass concentrations of both types of eBC decreased 1829 

when the influences of the regional scale of atmospheric motion getting were stronger. This suggests that eBC pollution was 1830 

apt to accumulated under the dominance of local-scale motions and dispersed under the dominance of regional-scale motions 1831 

during the daytime. Similar to the variations in the daytime, the mean values of eBCfossil (3.00 ± 2.04 μg m-3) and eBCbiomass 1832 

(1.76 ± 1.33 μg m-3) under LD were also the highest during the night. However, unlike eBCfossil, the mass concentrations of 1833 

eBCbiomass did not decrease when the influence of regional-scale atmospheric motions was stronger (Figure S12). The mean 1834 

删除了:  average Lbj = 106.9 km, Sbj = 164.8 km, Rbj=0.33, 1889 
Rstd = 0.23.1890 

删除了: In these circumstances… Lbj and Sbj were longer 1891 
than those forunder…LD, and.1892 ...

删除了: average Lbj =159 km, Sbj = 183.4 km, Rbj=0.13, Rstd 1893 
= 0.20. 1894 

删除了: particularly the1895 

设置了格式: 非突出显示

删除了: for1896 

删除了: compared with that in the1897 

删除了:  average Lbj =235.6km, Sbj = 246.4 km, Rbj= 0.05, 1898 
Rstd = 0.18.1899 

删除了: of…R found at thein…12 stations were even 1900 
smaller than for the LWRS group, implying a 1901 
strongfurther…increased influence of regional-scale 1902 
motions. Indeed, tT…e influence of regional-scale motions 1903 
far outweighs …utweighed the local ones forin…this 1904 
category, and t. T…erefore, this groupone1905 ...

删除了: Presented…in Table 1, t…he SOM classifiedhe 1906 
SOM result showed that…40% of cases were classified 1907 
LD, 29% were classified into RD, 17% and 14% were 1908 
assigned into LSRW and LWRS respectively, … These 1909 
results indicate that suggesting …ost winter days in Baoji 1910 
were strongly greatly…influenced by local-scale motions in 1911 
Baoji…1912 ...

删除了: under1913 

删除了:  1914 

删除了: The1915 

删除了: Oneis 1916 

删除了:  1917 

删除了: , which1918 

删除了: pollution was1919 

删除了: .1920 

删除了: By contrast, …BCfossil … in contrast, evidently 1921 
originated may come 1922 ...

删除了: under 1923 

删除了: encourages 1924 

删除了: r1925 

删除了:  it under…good ventilation1926 ...

删除了: , which…implyies1927 ...

删除了: was 1928 

删除了:  featured…atmospheric motion categories specified 1948 
earlier. As shown in Figure 4 (a) and (c), the mean values of 1949 
both types of source-specific eBCs during daytime were the 1950 ...

删除了: higher 1946 

删除了: enhanced1947 

设置了格式: 非突出显示



13 

 

value of eBCbiomass under RD was the second highest (1.17 ± 0.73 μg m-3). The nocturnal PBHL which was higher than 100m 1951 

(Figure S13) for the RD group, and therefore, the high nocturnal eBCbiomass may have been caused by the eBCbiomass transported 1952 

to the site from upwind regions. 1953 

3.3 Impacts of air mass directions 1954 

Atmospheric motions can not only cause the dispersal of pollution but also bring polluted air to the site from distant sources. 1955 

Indeed, air mass movements can mean the difference between no pollution and severe pollution at a receptor site. To examine 1956 

the impacts caused by air masses from different directions, the hourly 24h-back trajectories were calculated at 100 m above the 1957 

ground using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (Draxler and Hess, 1998, Text S2). Then the 1958 

trajectories were clustered by using an angle-based distance statistics method (Text S2) to show the general directional features. 1959 

This method determines the direction from which the air masses reach the site and has been widely used for air mass trajectory 1960 

clusters. A detailed method description can be found in Sirois and Bottenheim (1995). Three air-mass trajectory clusters were 1961 

identified (Figure S14), 45% of total trajectories associated with Cluster No.1, which originated from the north. Cluster No.2 1962 

accounted for 36% of the trajectories, and those were from the east direction while Cluster No.3 composed 19% of the total 1963 

trajectories and displayed origins from southwest. 1964 

Hourly trajectories were assigned into the four featured atmospheric motions. The varying concentrations of the source-specific 1965 

eBCs associated with different clusters indicate the divergent impacts of air mass direction on the pollution level at the sampling 1966 

site. As shown in Table 1, LD was mainly connected with the air masses from Cluster No.2 (52%) and Cluster No.1 (45%). 1967 

The average mass concentrations of eBCfossil and eBCbiomass associated with Cluster No.1 were 2.82 ± 1.59 μg m-3 and 1.34 ± 1968 

1.07 μg m-3. In comparison, Cluster No.2 was associated with a higher mean eBCfossil (3.2 ± 1.73 μg m-3) and the highest mean 1969 

eBCbiomass (1.72 ± 1.29 μg m-3) of the three clusters. This could be attributed to more intensive emissions in the eastern parts of 1970 

Baoji because 75% of the total population of Baoji is located in this area 1971 

(http://tjj.baoji.gov.cn/art/2020/10/15/art_9233_1216737.html, accessed on 25 September 2021, in Chinese). Several highways 1972 

and railways are located in the south and southwest of Baoji, but the population is sparse with only ~4% of the total population 1973 

residing in those areas. Thus, Cluster No.3 was associated with the highest mean eBCfossil concentration (3.64 ± 0.67 μg m-3) 1974 

but the lowest mean eBCbiomass (0.67 ± 0.87 μg m-3). It is important to point out, however, that only 3% of the total trajectories 1975 

came from this cluster. 1976 

Under LSRW, 56% of the trajectories were from Cluster No.1, 33% from Cluster No.2, and 11% from Cluster No.3. Although 1977 

the total averaged mass concentrations (Table 1) of two types of eBC generally showed that the regional-scale motions favored 1978 

dissipation of eBC compared with LD, the eBCfossil (3.43 ± 1.17 μg m-3) associated with Cluster No.2 and eBCbiomass associated 1979 

with Cluster No.3. (1 ± 0.64 μg m-3) were higher by 0.23 μg m-3 and 0.33μg m-3 respectively relative to the LD case. The rise 1980 

of eBCfossil associated with Cluster No.2 was possibly caused by the enhanced regional influence of pollutants brought from 1981 

adjacent regions. According to previous studies (Wang et al., 2016; Xu et al., 2016), severe BC pollution in winter is caused 1982 

by fossil fuel combustion in Xi’an which is to the east of Baoji. Studies also have reported that high EC emitted from biomass 1983 

burning was found to have originated from Sichuan Province (Wu et al., 2020; Cai et al., 2018; Huang et al., 2020) which is to 1984 

the southwest of Baoji. Combined with the phenomenon that the mass concentration of eBCbiomass associated with Cluster No.3 1985 
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rose with regional scales of motion, it is reasonable to conclude that the increase of eBCbiomass associated with Cluster No.3 was 2105 

likely influenced by pollution transport from the southwest.  2106 

Under LWRS, 42% of the trajectories were from Cluster No.1., 36% from Cluster No.3, and 22% from Cluster No.2. With 2107 

stronger regional scales of motion, the mean values of eBCfossil and eBCbiomass associated with all clusters were lower than those 2108 

under LD, except for eBCbiomass associated with Cluster 3 which increased by 0.52 μg m-3. As mentioned before, this increase 2109 

could have been caused by regional transport. 2110 

In the last category (RD), 41% of the trajectories were from Cluster No.1., 39% from Cluster No.3, and 20% from Cluster No.2. 2111 

Similar to the results for LWRS, the average mass concentration of eBCfossil and eBCbiomass associated with Cluster No.1 were 2112 

only 35% and 48% of the respective values for LD. The average mass concentrations of eBCfossil and eBCbiomass associated with 2113 

Cluster No.2 were 32% and 51% of the eBCfossil and eBCbiomass under LD. As for Cluster No.3, the average mass concentration 2114 

of eBCfossil associated with this cluster was also the lowest of allclusters. However, interestingly, the mean value of eBCbiomass 2115 

associated with Cluster No.3 was highest compared with other categories of Cluster No.3. Under strong influences of a regional 2116 

scale of motions, the value of eBCbiomass was 1.9 times as high as that under LD.  2117 

3.4 Radiative effects 2118 

Figure 5a shows the DREs at top of the atmosphere (DREeBC, TOA), surface (DREeBC, SUF), and the whole atmosphere (DREeBC, 2119 

ATM) of eBCfossil and eBCbiomass. The DREeBC, TOA and DREeBC, SUF of eBC were 13 W m-2 and -22.9 W m-2, which were lower 2120 

than that reported in Lanzhou (21.8 W m-2 and -47.5 W m-2 for DREeBC, TOA and DREeBC, SUF) – which is another a river valley 2121 

city in China (Zhao et al., 2019). This could be due to fact that the eBC mass concentration in Baoji was lower than in Lanzhou 2122 

(Table S5). As for the DREeBC, TOA and DREeBC, SUF per an unit mass of BC,  the results of the two studies were comparable. 2123 

The DREeBC, TOA of eBCfossil (DREeBCfossil, TOA) and eBCbiomass (DREeBCbiomass, TOA) were 9.4 ± 7.5 W m-2 and 3.6 ± 3.4 W m-2 2124 

indicating a warming effect at the top of the atmosphere. The DREeBC, SUF of eBCfossil (DREeBCfossil, SUF) and eBCbiomass 2125 

(DREeBCbiomass, SUF) were -16.5 ± 13.5 W m-2 and -6.4 ± 6.2 W m-2 showing a cooling effect at the surface. The DREeBC, ATM of 2126 

eBCfossil (DREeBCfossil, ATM) and eBCbiomass (DREeBCbiomass, ATM) were 25.9 ± 20.8 W m-2 and 10 ± 9.5 W m-2 in the atmosphere, 2127 

indicating a heating effect.  2128 

Figure 5 also shows the DREeBC, ATM of the source-specific eBC for different atmospheric motions. In general, the changes of 2129 

DREeBC, ATM are in accordance with those of the eBC mass concentrations. The DREeBCfossil, ATM under LD was the largest with 2130 

a mean value of 30.4 ± 23 W m-2, followed by LSRW (28.7 ± 20.7 W m-2). As the mass concentration of eBCfossil was low 2131 

when  regional scales of motion were stronger, the DREeBC, ATM under LWRS and RD also were lower compared with those 2132 

under LD or LSRW. By contrast, the DREeBC, ATM of eBCbiomass under LSRW was the highest (11.5 ± 11.8 W m-2), but  it is 2133 

only 0.3 W m-2 higher than that under LD. . When the regional scale of motions became stronger, the DREeBCbiomass, ATM declined 2134 

as expected due to the lower eBCbiomass mass concentrations (Figure 4c). The DREeBC, ATM of eBCbiomass under LWRS and RD 2135 

were 8.6 ± 8.5 W m-2 and 7.9 ± 7.4 W m-2 respectively.  2136 

Although DREeBC, ATM declined with increased influences from the regional scale of motion, the DREeBC, ATM efficiency 2137 

(DREeBC, ATM per mass concentration) was found to increase with greater regional-scale motion. Furthermore, the DRE 2138 

efficiencies of both types of eBC under LD and LSRW were comparable, around 10 W m-2 (Table 2). In contrast, the efficiencies 2139 
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varied more when the regional-scale motions were stronger. Under LWRS, the efficiencies of eBCfossil and eBCbiomass were 13.5 2279 

± 6.7 and 14.7 ± 8.1 (W m-2)/(μg m-3) respectively. Under RD, the efficiencies were even higher, 15.6 ± 8.9 (W m-2)/(μg m-2280 

3) for eBCfossil and 15.5 ± 8.4 (W m-2)/(μg m-3)  for eBCbiomass, which are > 1.5 times those recorded under LD. The higher eBC 2281 

efficiencies may have been caused by  the increases in the BC MAC during the regional transport. Studies have confirmed that 2282 

the aging processes in the atmosphere can enhance the light-absorbing ability of BC (Chen et al., 2017; Shen et al., 2014), and 2283 

regional transport can provide sufficient time for BC aging (Shiraiwa, et al. 2007; Cho et al., 2021). Therefore, the nonlinear 2284 

change between mass concentration and DRE efficiency was very likely caused by the strong regional-scale motions that 2285 

dispersed fresh BC from local emissions but also brought aged BC to the area from the upwind regions. As a result, under these 2286 

conditions, the transported BC reached a receptor site with a higher light-absorbing ability which led to a higher DRE efficiency 2287 

of BC at the sampling site. This strongly implies regionally transported BC can greatly perturb climate, particularly at the river-2288 

valley city in our study where dispersion was weak (Zhao et al., 2015; Wang et al., 2013).  2289 

4 Conclusions  2290 

This study derived site-specific AAEs using a PMF model for which chemical and optical data collected from a river-valley 2291 

city during winter were used as the inputs. Based on the calculated AAEs, source-specific eBCs (i.e., eBCfossil and eBCbiomass) 2292 

were then apportioned using an aethalometer model. Finally, the impacts of different scales of atmospheric motions on the 2293 

mass concentrations of the source-specific eBCs and the induced DREs were investigated. Four sources of eBC were identified: 2294 

which are diesel vehicular emissions, biomass burning, coal combustion, and mineral dust. The derived AAEs were 1.07 for 2295 

diesel vehicular emissions, 2.13 for biomass burning, 1.74 for coal combustion, and 1.78 for mineral dust. The mean values of 2296 

eBCfossil and eBCbiomass were 2.46 μg m-3and 1.17 μg m-3, respectively. 2297 

The self-organizing map indicated that there were four types of atmospheric motions during the sampling period that affected 2298 

the mass concentrations of source-specific eBCs. Of these, the local-scale motions were the main influence on most winter 2299 

days. The eBCfossil and eBCbiomass under those identified atmospheric motions showed that over half of the 75th to 100th percentile 2300 

values for the entire data set were found in LD group (60% for eBCbiomass and 55% for eBCfossil). This illustrates that the BC 2301 

pollution was more severe under the influences of local-scale motion outweighed regional-scale motions. However, even 2302 

though regional-scale motions were associated with lower eBCs, 19% of the high values of eBCbiomass values occurred under 2303 

RD, especially when there was good ventilation. Furthermore, the air masses from different directions also had impacts on the 2304 

source-specific eBCs that varied relative to the different atmospheric motions. eBCfossil most likely accumulated under the 2305 

influence of strong local-scale motions, but eBCbiomass also was found to be increased with the enhanced regional scale of 2306 

motions when the air masses from the southwest; this indicates that there were impacts from regional transport. 2307 

Similar to the mass concentrations, the DREs of the two types of eBC were both lower when the regional scale of motions were 2308 

greater than the local ones. However, the changes in mass concentrations and DREs were not proportionate because the 2309 

regional-scale of motions carried the fresh BC away from the local site but brought the aged BCs to the site from the upwind 2310 

regions. As a result, the DRE efficiency of eBC was ~1.5 times higher when the regional scale of motion was stronger. This 2311 

study showed that different scales of air motions affected the mass concentrations of source-specific eBCs and their DRE 2312 
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efficiencies. More specifically our study highlights importance of regional transport for the BC radiative forcing and shows 2509 

how the enhancement of BC radiative effects caused by aging during regional transport could have especially significant 2510 

implications for sites in river valleys. The relationships between BC and atmospheric scales of motion should be evaluated for 2511 

other environments besides river valley cities because quantitative information on the relative importance of locally emitted 2512 

versus regionally transported materials will be useful for developing pollution controls and for predicting future changes in 2513 

climate. 2514 
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Table 1. The mass concentration of eBC from fossil fuel combustion (eBCfossil) and eBC from biomass burning (eBCbiomass) associated with different clusters 2865 

under four featured atmospheric motions 2866 

Motion category Local scale dominance (LD) (40%) Local scale strong and regional scale weak (LSRW) (17%) 

 

L
bj

 = 70.9 km, S
bj

 = 107.8 km,  

R
bj

 = 0.35, R
std

 = 0.25 

L
bj

 = 106.9 km, S
bj

 = 164.8 km,  

R
bj

=0.33, R
std

 = 0.23 

 Cluster 1 Cluster 2 Cluster 3 Total average Cluster 1 Cluster 2 Cluster 3 
Total 

average 

Trajectory percentage (%) 45 52 3 100 56 33 11 100 

eBC
fossil 

(μg m
-3

) 2.82
a
 ± 1.59

b
 3.2 ± 1.73 3.64 ± 0.67 3.08 ± 2.07 2.42 ± 1.00 3.43 ± 1.17 2.89 ± 1.00 2.79 ± 1.73  

eBC
biomass

(μg m-3) 1.34 ± 1.07 1.72 ± 1.29 0.67 ± 0.87 1.52 ± 1.19  1.0 ± 0.85 1.17 ± 0.84 1.00 ± 0.64 1.06 ± 0.83  

Lbj—resultant transport distance, Sbj—actual wind run distance at 100 m, Rbj —recirculation factor at 100 m, Rstd—standard deviation for 2867 

recirculation factor. a and b: Mean ± Standard deviation. 2868 

 2869 

Table 1 (continued) 2870 

Motion category 
Local scale weak and regional scale strong (LWRS) 

(14%) 
Regional scale dominance (RD) (29%) 

 

L
bj

 =159 km, S
bj

 = 183.4 km,  

R
bj

=0.13, R
std

 = 0.20 

L
bj

 =235.6 km, S
bj

 = 246.4 km,  

R
bj

= 0.05, R
std

 = 0.18 

 Cluster 1 Cluster 2 Cluster 3 Total average Cluster 1 Cluster 2 Cluster 3 Total average 

Trajectory percentage (%) 42 22 36 100 41 20 39 100 

eBC
fossil 

(μg m
-3

) 1.32
a
 ± 0.67

b
 2.02 ± 0.73 3.16 ± 1.19 2.15 ± 1.62 1.00 ± 0.64 1.02 ± 0.88 2.75 ± 1.26 1.69 ± 1.36 

eBC
biomass

(μg m-3) 0.67 ± 0.49 0.73 ± 0.47 1.19 ± 0.60 0.86 ± 0.58 0.64 ± 0.63 0.87 ± 0.69 1.26 ± 0.68 0.93  ± 0.72 

Lbj—resultant transport distance, Sbj—actual wind run distance at 100 m, Rbj —recirculation factor at 100 m, Rstd—standard 2871 

deviation for recirculation factor. a and b: Mean ± Standard deviation. 2872 
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Table 2. Direct radiative forcing efficiencies for equivalent black carbon (eBC) from fossil fuel combustion (eBCfossil) and the eBC from biomass burning 2880 
(eBCbiomass) under four atmospheric motion categories 2881 

 Atmospheric motion category 

 
 

DRE
eBCfossil, ATM

 efficiency 

((W m
-2

)/(μg m
-3

))  

DRE
eBCbiomass, ATM

 efficiency 

((W m
-2

)/(μg m
-3

)) 

Local scale dominance (LD) 10.2a ± 4.2b 10.3 ± 4.4 

Local scale strong and regional scale weak (LSRW)  10.6 ±5.7 10.2 ± 5.8 

Local scale weak and regional scale strong (LWRS) 13.5 ± 6.7 14.7 ± 8.1 

Regional scale dominance (RD) 15.6 ± 8.9 15.5 ± 8.4 

a and b: Mean ± Standard deviation 2882 
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Figure captions: 2895 

Figure 1. Four factors identified by source apportionment. Concentration (μg m-3) of the chemical species and primary 2896 

absorption (pabs) (λ) at six wavelengths (λ = 370, 470, 520, 590, 660, or 880nm) (M m-1) for each source are shown in grey. 2897 

The blue square represents the contribution of each chemical species to the four different factors. 2898 

Figure 2. (a) Diel variations of the eBC from fossil fuel combustion (eBCfossil) and (b) the eBC from biomass burning 2899 

(eBCbiomass), (c) wind speed (m s-1) and (d) planetary boundary layer height (m). The black bars of each hourly-averaged point 2900 

show the standard deviation. 2901 

Figure 3. (a) The 75th – 100th percentile mass concentrations of the eBC from fossil fuel combustion (eBCfossil) and (b) the eBC 2902 

from biomass burning (eBCbiomass) under local scale dominance (LD, red circle), local scale strong and regional scale weak 2903 

(LSRW, green circle), local scale weak regional scale strong (LWRS, purple circle) and regional scale dominance (RD, blue 2904 

circle). Sbj is actual wind run distance at 100m height, Rbj is the recirculation factor, the grey area indicates good ventilation 2905 

(Sbj ≥ 250km, Rbj ≤ 0.2), the yellow area indicates air stagnation (Sbj 130km).  2906 

Figure 4. Mass concentrations of the eBC from fossil fuel combustion (eBCfossil) and  the eBC from biomass burning (eBCbiomass) 2907 

during daytime (a, c) and  nighttime (b, d) under local scale dominance (LD); local scale strong and regional scale weak 2908 

(LSRW); local scale weak regional strong (LWRS); and regional scale dominance (RD).2909 
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 2929 

Figure 5. Direct radiative effect (DRE) of the eBC from fossil fuel combustion (eBCfossil) shaded in grey and the eBC from 2930 

biomass burning (eBCbiomass) shaded in grey yellow (a) in the top atmosphere (TOA), surface (SUF), and the atmosphere 2931 

atmospheric column (ATM) and (b) the DREeBC,ATM of two types of eBC under local dominance (LD) shaded in light grey 2932 

labeled as LD, local strong and regional weak (LSRW) shaded in light blue labeled as LSRW, local weak regional strong 2933 

(LWRS) shaded in light grey labeled with LWRS and regional dominance (RD) shaded in light blue labeled as RD (c) DRE 2934 

efficiencies of eBCbiomass (shaded in yellow) and eBCfossil (shaded by grey) in TOA, SUF and ATM (d) DRE efficiencies of 2935 

eBCbiomass and eBCfossil at ATM under LD (shaded in light grey labeled as LD), LSRW (shaded in light blue labeled as LSRW), 2936 

LWRS (shaded in light grey labeled as LWRS) and RD (shaded in light blue labeled with RD).2937 
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  2977 

Figure 1. Four factors identified by source apportionment. Concentration (μg m-3) of the chemical species and primary 2978 

absorption coefficients (pabs) (λ) at six wavelengths (λ = 370, 470, 520, 590, 660, or 880nm) (M m-1) for each source are shown 2979 

in grey. The blue square represents the contribution of each chemical species to the four different factors. 2980 
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 2987 

Figure 2. (a) (a) Diel variations of the eBC from fossil fuel combustion (eBCfossil) and (b) the eBC from biomass burning 2988 

(eBCbiomass), (c) wind speed (m s-1) and (d) planetary boundary layer height (m). The black bars of each hourly-averaged point 2989 

show the standard deviation..2990 
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 2998 

Figure 3. (a) The 75th – 100th percentile mass concentrations of the eBC from fossil fuel combustion (eBCfossil) and (b) the eBC 2999 

from biomass burning (eBCbiomass) under local scale dominance (LD, red circle), local scale strong and regional scale weak 3000 

(LSRW, green circle), local scale weak regional scale strong (LWRS, purple circle) and regional scale dominance (RD, blue 3001 

circle). Sbj is actual wind run distance at 100m height, Rbj is the recirculation factor, the grey area indicates good ventilation 3002 

(Sbj ≥ 250km, Rbj ≤ 0.2), the yellow area indicates air stagnation (Sbj ≤130km)..3003 
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 3015 

Figure 4. Mass concentrations of the eBC from fossil fuel combustion (eBCfossil) and  the eBC from biomass burning (eBCbiomass) 3016 

during daytime (a, c) and  nighttime (b, d) under local scale dominance (LD); local scale strong and regional scale weak 3017 

(LSRW); local scale weak regional strong (LWRS); and regional scale dominance (RD).3018 
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 3027 

Figure 5. Direct radiative effect (DRE) of the eBC from fossil fuel combustion (eBCfossil) shaded in grey and the eBC from 3028 

biomass burning (eBCbiomass) shaded in yellow (a) in the top atmosphere (TOA), surface (SUF), and the atmosphere atmospheric 3029 

column (ATM) and (b) the DREeBC,ATM of two types of eBC under local dominance (LD) shaded in light grey labeled as LD, 3030 

local strong and regional weak (LSRW) shaded in light blue labeled as LSRW, local weak regional strong (LWRS) shaded in 3031 

light grey labeled with LWRS and regional dominance (RD) shaded in light blue labelled as RD (c) DRE efficiencies of 3032 

eBCbiomass (shaded in yellow) and eBCfossil (shaded by grey) in TOA, SUF and ATM (d) DRE efficiencies of eBCbiomass and 3033 

eBCfossil at ATM under LD (shaded in light grey labeled as LD), LSRW (shaded in light blue labeled as LSRW), LWRS (shaded 3034 

in light grey labeled as LWRS) and RD (shaded in light blue labeled with RD). 3035 
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