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Abstract.  

Clouds in the mixed-phase temperature regime impose a large uncertainty onto climate prediction models, in part due to 

incomplete knowledge of the degree of glaciation affecting cloud radiative properties. To achieve a better representation of 

these clouds, it is crucial to improve the understanding of ice nucleation and growth as well as microphysical properties 20 

determining the cloud phase. In this case study, we provide a rare data set of aircraft in situ measurements in a strong mid-

latitude convective system extending from the boundary layer to the tropopause and aim to extend the sparse database of such 

measurements. Data were obtained with the research aircraft HALO and cloud properties were probed with the Cloud and 

Aerosol Spectrometer (CAS-DPOL) and the Cloud Imaging Probe grayscale (CIPg) during the CIRRUS-HL mission above 

Southern Germany in July 2021. Microphysical properties of the convective cloud system were measured along a 58-minute 25 

stepwise descent between the ground weather stations of Hohenpeissenberg and Munich at temperatures 

of -35 °C, -23 °C, -13 °C, -7 °C, and -1 °C. A phase identification (liquid/ice) of particles with diameters > 50 μm was achieved 

using the particle images of the CIPg. Based on recent work, clouds were categorized into four groups with different 

microphysical properties: Mostly Liquid, Coexistence, Secondary Ice, and Large Ice. High concentrations of large ice crystals 

were observed in upper layers at temperatures between -35 °C and -13 °C, confirming the importance of the Wegener-30 
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Bergeron-Findeisen process for mid-latitude convection. Exceptionally high vertical motions for mid-latitudes of up to 

+/- 4 ms-1 encountered in the convection promote various freezing and ice growth processes, which in this system led to high 

ice water contents of up to ~ 1.2 gm-3 and to instrument icing. In contrast, low-level clouds near -1 °C encountered at lower 

vertical velocities were predominantly composed of liquid droplets and contained precipitated large ice in low concentrations. 

We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical 35 

velocity and variate within the cloud system. Our measurements represent a unique in-flight data set on microphysical cloud 

properties of a strong midlatitude convective event and invite for detailed cloud model evaluations and radar intercomparisons 

with focus on the mixed-phase temperature regime. 

1 Introduction 

Understanding the behavior of clouds requires insight into processes from the large-scale meteorological environment down 40 

to small-scale microphysics. These microphysical processes determine a cloud’s microstructure and particle microphysics 

which in return affect the cloud climate impact. In terms of radiative properties, the degree of glaciation plays an important 

role (Noh et al., 2013). This is especially of interest for clouds in the mixed-phase temperature regime between -38 °C and 

0 °C, where liquid and ice particles can coexist. Cloud liquid of mixed-phase clouds (MPC) in this temperature regime tends 

to be underestimated in climate models (Nam et al., 2014; Zhang et al., 2018), which is mainly due to often misrepresented 45 

microphysical processes taking place and determining the cloud’s phase composition. A false representation of the phase 

composition alone can make a difference of 17 Wm-2 in the radiative effect when it is assumed to be completely liquid versus 

fully composed of ice crystals (Lohmann et al., 2016a).  

Observations of MPCs are difficult to obtain due to sparse spacial and temporal coverage (Tan et al., 2016 ; Jensen et al., 2016), 

which is especially the case for convective clouds (Mülmenstädt et al., 2015). As of now, most airborne measurements of 50 

convective MPCs are conducted in tropical and subtropical latitudes. For instance, Jäkel et al. (2017) conducted measurements 

in deep convective clouds above the Brazilian rainforest, determining the extent and phase composition of the mixed-phase 

layer in clean and polluted conditions. Heymsfield et al. (2005) analyzed homogeneous ice nucleation in deep tropical 

convection and how large particles influence its efficacy. An analyis of mycrophysical processes in Amazonian deep 

convective clouds in clean and polluted environments in the gamma phase space was conducted by Cecchini et al. (2017). 55 

Fewer studies evaluate MPCs in mid-latitude convective systems, e.g., Carey et al. (2008) in altocumulus clouds. Jensen et al. 

(2016) sampled a variety of deep convective events in South-central Oklahoma and compared them to radar reflectivities. Noh 

et al. (2013) evaluated the vertical distribution of ice and liquid water content (LWC) in mid-latitude MPCs and distinguished 

between three different cloud types and Huang et al. (2021) conducted measurements of wintertime shallow convective MPCs 

over the Southern ocean. Generally, evaluations of MPCs are more common for stratiform clouds (Korolev et al., 2007b; Costa 60 

et al., 2017). As an example, Hogan et al. (2002) probed stratiform clouds embeded in convective systems from aircraft and 

polarimetric radar in temperatures between -5 °C and -11 °C, also encountering the Hallett-Mossop process (Sect. 2.5.3). 
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Further, Boudala et al. (2004) parameterized the liquid fraction of stratiform clouds in high and mid-latitudes over 10-second 

intervals, detecting an increase of the liquid fraction with rising temperatures and a liquid fraction minimum between -10 °C 

and -20 °C. A recently published study invesitages aersosol-cloud interactions and optical properties of shallow supercooled 65 

stratiform clouds via ground based remote sensing techniques (Radenz et al., 2021). In Lee et al. (2021) microphysical 

interactions of cloud particles and aerosols, as well as microphysical processes leading to the development of mixed-phase 

stratocummulus clouds above the Seoul area were evaluated using a large-eddy simulation framework to gain deeper 

understanding stratiform MPCs.  

While the majority of data represented in climate models is collected using remote sensing, e.g., satellite, lidar, or radar 70 

retrievals (Heymsfield et al., 2018 ; Hogan et al., 2003 ; Hu et al., 2010), for this work, data are collected in situ. Airborne 

measurements as presented here support the further development of radar retrievals as they supply detailed information about 

the clouds' microphysical properties and processes in less well-understood mixed-phase layers of convective systems (Trömel 

et al., 2021). Furthermore, bulk measurements, i.e., the synergy of in situ and remote sensing techniques, will lead to an 

advanced understanding of globally distributed MPCs (Korolev et al., 2017). The exceptional insight into the clouds' 75 

compositions and particle forms, as well as direct conclusions about real-time microphysical processes provided by in situ 

measurements, will further help to verify and substantiate climate models. It is therefore crucial to widen the database for in 

situ measurements in mixed-phase convective clouds.  

The aim of this study is to provide a comprehensive overview of the influence microphysical processes exert on the phase 

composition of mid-latitude convective clouds for the full temperature range at which MPCs can be encountered. For this 80 

purpose, deep convective clouds are sampled in summertime over land between -36 °C and -1 °C, featuring unusually high 

vertical velocities (W) for mid-latitudes (± 4 ms-1) that are comparable to convective conditions in the tropics (Costa et al, 

2017). It should be noted that in the core of the convective system vertical velocities might have been much higher, but could 

not be probed without compromising flight safety. In addition to vertical velocities, similar values for LWC, RH, T and N are 

also found in tropical MPC measurements conducted by Cecchini et al. (2017). 85 

While there are many approaches for identifying and characterizing MPCs, summarized in Korolev et al. (2017), in this work, 

clouds are defined and characterized based on a process-based approach introduced by Costa et al. (2017). While Costa’s 

classification of MPCs in mid-latitudes mainly focuses on stratocumulus and stratus clouds (low-level stratiform clouds) in 

this work, we measure and classify deep convective cumulus congestus clouds. Costa (2018) serves as a good reference, since 

data were collected with the NIXE-CAPS instrument (Krämer et al., 2016) containing a CAS-DPOL (Baumgardner et al., 90 

2001) and a CIPg, both of which are used in this work as well.  

The cloud classification adapted from Costa et al. (2017) is based on the degree of glaciation, which is determined by the 

prevailing microphysical processes (Fig. 1). The first distinction (Type 1 or 2) is based on the mass modes of a particle size 

distribution (PSD). Here, the presence of a second mode in the PSD indicates high concentrations of ice particles with diameters 

(Dp) larger than 50 µm and thus a Large Ice cloud. While in Costa et al. (2017) Type 2 clouds are also referred to as Wegener-95 

Bergeron-Findeisen/Large Ice  named after the Wegener-Bergeron-Findeisen process (WBF) (Wegener, 1912 ; Bergeron, 
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1928; Findeisen W., 1938), in this study, we base the name on the distinctive cloud particle composition, hence Large Ice.  

Next, Type 1 is subdivided into three groups: Mostly Liquid, Coexistence, and Secondary Ice. The second distinction is more 

elaborate and is based on further microphysical properties derived by images of the CIPg and scattering signals of the CAS-

DPOL. Furthermore, ambient conditions, above all temperature, W and relative humidity with respect to water RHw  and ice 100 

RHi are a crucial part of the differentiation, as they strongly influence cloud microphysical processes (Korolev, 2007b).  

In more detail, Mostly Liquid clouds are characterized by mainly containing small liquid droplets (Dp < 50 μm) and low 

concentrations of large aspherical particles (Dp > 50 μm) (Table 1). Therefore, the PSD solely displays one mass mode, as can 

be seen in Fig. 12. If large particles are present, they most likely sedimented from upper cloud layers. As expected, in this 

study a Mostly Liquid cloud was probed at higher temperatures just below freezing and with RHw near 100 % (Sect. 2.5.2).  105 

With decreasing temperatures, it is more likely for Coexistence clouds to occur. Here, liquid droplets coexist with a larger 

fraction of ice particles, which mostly formed in situ versus through sedimentation as in Mostly Liquid clouds. Number 

concentrations of small droplets (liquid or frozen) still dominate the PSDs, but large ice particles appear more often. Although 

PSDs typically display one mass mode for Dp < 50 µm deviations are found in this work. In this cloud type the freezing process 

already started, but RHw and RHi remain > 100% due to strong vertical updrafts (Costa et al., 2017).  110 

Secondary Ice clouds emerge as a result of secondary ice production at lower temperatures. They contain high concentrations 

of small hydrometeors, which most likely are frozen droplets and irregular shaped ice particles. Similar to Coexistence clouds, 

Fig. 1: Schematic of cloud classification in the mixed-phase temperature regime based on the degree of glaciation. This approach 

was first introduced in Costa (2018) and Costa et al. (2017) for low-level clouds above the UK. Here, the classification is applied for 

deep convective clouds above Southern Germany. 
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PSDs are expected to display a clear mass mode for particles with Dp < 50 µm. In this work however, deviations are found as 

well. At higher W and consequently a more turbulent environment, processes such as riming or splintering also referred to as  

the Hallett-Mossop process (Hallett and Mossop, 1974), as well as drop freezing (Lawson et al., 2015) or ice-ice collisions 115 

(Yano and Phillips, 2011) take place producing secondary ice particles. Furthermore, contact freezing, i.e., ice crystals 

 colliding with supercooled water droplets causing them to freeze and contributing to an advanced glaciation. Contact freezing 

of supercooled droplets can also lead to icing on the instrument’s housing, which occurred during the evaluated flight (Sect. 

2.4).  

Table 1:  Conditions for differentiating between the cloud types in the mixed-phase temperature regime. While the first distinction 120 
(Fig. 1) is based on the mass modes of the particle size distribution (PSD), the second distinction is based on ambient conditions and 

microphysical properties. 

  Type 1 Type 2 

  Mostly Liquid Coexistence Secondary Ice Large Ice 

Distinction 1 Number of PSD 

mass modes 

1: Dp < 50 µm 1: Dp < 50 µm 1: Dp < 50 µm 2: Dp < 50 µm and  

Dp > 50 µm 

Part of 

Distinction 2 

Nsmall (Dp < 50 

µm) 

> 1 cm-3 > 1 cm-3 > 1 cm-3 < 1 cm-3 

Nlarge (Dp > 50 

µm) 

Few, but present. 

(Drizzle drops or 

ice crystals) 

Present (Ice 

crystals) 

Present (Ice 

crystals) 

Present in high 

concentrations (Ice 

crystals, graupel) 

 

Finally, at lower W the RHw might drop below 100% and RHi remain above saturation, initiating the WBF process in Type 2 

clouds. Here, ice crystals grow at the expense of liquid particles finally leading to fully glaciated clouds, which feature large 125 

ice crystals and relatively small concentrations of small particles. In these clouds concentrations of small particles are expected 

to lie below 1 cm-3 (Table 1) (Costa et al., 2017) and while high concentrations of large ice particles are present, hydrometeors 

with Dp< 50 µm still dominate the PSD. 

In the scope of this work, measurements are obtained during the course of the CIRRUS-HL campaign (Sect. 2.1) with the High 

Altitude and Long-Range Research Aircraft (HALO) (Krautstrunk and Giez, 2012). Data of the CAS-DPOL and the CIPg 130 

(Sect. 2.2) mounted on the wings of HALO are evaluated. Convective clouds probed above Southern Germany are analyzed 

regarding their microphysical properties, ice crystal shapes and processes that might have taken place within the cloud leading 

to the probed particle composition (Sect. 2.5). In Sect. 2.6 the results are compared to previous classifications of clouds in the 

mixed-phase temperature regime in mid- and tropical latitudes by Costa et al. (2017) and implications for mid-latitude 

convection are discussed. Finally, Sect. 3 summarizes the study and provides an outlook.  135 
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2 Campaign and instrumentation 

2.1 CIRRUS-HL  

The CIRRUS-HL campaign on cirrus in high latitudes, led by the German Aerospace Center (Deutsches Zentrum für Luft-und 140 

Raumfahrt) (DLR) and the Johannes Gutenberg University Mainz, is a joint atmospheric research project by German research 

centers and universities within the Deutsche Forschungsgemeinschaft (DFG) HALO SPP 1294 framework (https://cirrus-

hl.de/ ; http://www.halo-spp.de/). The campaign is a successor of the ML-CIRRUS campaign (Voigt et al., 2017) and the 

ACCRIDICON campaign (Wendisch et al., 2016). During this HALO mission, in situ and remote sensing cloud instruments 

were combined, providing insights into nucleation, properties, and climate impact of ice clouds in high and mid-latitudes in 145 

June and July 2021. While the project focused on probing cirrus clouds induced by different meteorological regimes, 

convective and mixed-phase clouds were probed as well.  On 8 July 2021, the flight plan (Fig. 2) included flight legs over 

Fig. 2: Flight track of HALO on 8 July, 2021, between 13:12 UTC and 18:04 UTC. The evaluated flight 

section is limited to a shuttle over the Meteorological Institute Munich and the climate reference station 

Hohenpeissenberg Meteorological Observatory between 17:00 UTC and 17:55 UTC. The colorbar 

displays the flight altitude. Values for the altitude were obtained from the Basic HALO Measurement 

And Sensor System (BAHAMAS). 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

7 

 

Southern Germany, Switzerland and Northern Italy. Figure 2 showcases the flight track color coded with the flight altitude. 

Measurements evaluated for this work are limited to a 58-minute flight section, as opposed to the whole flight, shortly before 

the final descent back to Oberpfaffenhofen. The reason for doing so is threefold. First, in this selected section, two radar 150 

stations were passed providing additional and valuable information about the meteorological situation, second, according to 

reports by the flight crew, the convective system was particularly strong and therefore of interest in terms of MPCs, and finally, 

decreasing the data load for evaluation allowed for a comprehensive analysis of the clouds. These MPCs displayed in Fig. 3 

were probed during a shuttle over the Meteorological Institute Munich (MIM) of the Ludwig-Maximilian university (LMU) at 

flight levels (FL) 280, 230, 180 and 150 corresponding to 8873 m, 7303 m, 5707 m and 4783 m altitudes, as well as during a 155 

profile over the climate reference station Hohenpeissenberg Meteorological Observatory (MOHp) at FL 150 and 120 (3840 m). 

Both, MOHp and LMU operate radars.  

2.2 The CAS-DPOL and the CIPg 

For this campaign, HALO was equipped with eight wing probes (Voigt et al., 2017). For evaluation, two of the eight wing 

probes were combined to gain a wider particle size range. The Droplet Measurement Technologies (DMT) light scattering 160 

spectrometer, Cloud Aerosol Spectrometer with Depolarization Unit (CAS-DPOL) (Baumgardner et al., 2001 ; Voigt et al., 

Fig. 3: Image displaying convective clouds as well as the left wing of the HALO 

aircraft with attached cloud probes. Photo was taken by a GoPro camera during the 

CIRRUS-HL flight with HALO above Southern Germany on 8 July 2021 at 17:44:30 

UTC [Image provided by the University of Leipzig]. 
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2021) was positioned at the outer left wing and the Grayscale Cloud Imaging Probe (CIPg), as part of the Cloud Combination 

Probe (CCP) (Weigel et al., 2016) was mounted onto the outer right wing of the aircraft. Even though these instruments were 

located on opposite sides, similar measurement conditions can be assumed.  

In CAS-DPOL, light from a laser beam is scattered by individual particles (0.5 μm to 50 μm) passing through the beam. The 165 

forward-scattered light is registered by a photo detector after passing through collecting optics and a beam splitter (Kleine, 

2019). Particle sizes are determined by assuming Mie Scattering theory with additional assumptions of spherical water droplets, 

a known particle refractive index and wavelength of the incident light (0.658 µm), as well as a particle size range complying 

with the Mie-regime. In addition to the forward scattered light detector, CAS-DPOL also contains a backward scattering light 

detector, which allows for a differentiation between spherical and aspherical particles based on the assumption that liquid 170 

droplets are spherical and ice crystals have aspherical shapes (Järvinen et al., 2016). In this work, only the forward detection 

of particles is analyzed. All particles in the CAS-DPOL size regime are therefore assumed to be spherical. This is justified, 

due to the fact that in clouds, where CAS-DPOL number concentrations are particularly high, e.g., Mostly Liquid and 

Coexistence, particles tend to be liquid and therefore spherical. In Large Ice clouds, most particles with Dp < 50 µm are frozen, 

nonetheless number concentrations in this size range are much lower. Finally, in Secondary Ice clouds a distinction proves to 175 

be more difficult for Dp < 50 µm. However, it was succeeded by evaluating the influence of acting microphysical processes 

via W, RHi, RHw as well as T and additionally taking into account an aspherical fraction analysis by Costa et al., (2017). 

Furthermore, only particles > 3 µm were evaluated, since particles with smaller diameters are referred to as aerosols (Costa et 

al., 2017 ; Righi et al., 2020).   

The CIPg detects particles in a size range between 7.5 µm and 960 µm by capturing the shadow image of particles passing 180 

through a collimated laser beam from a 45 mW, 0.658 µm wavelength diode laser on a linear array of 64 diodes. A particle is 

detected when the light level of a diode is decreased by at least 25 % (Baumgardner et al., 2001). In order to minimize 

uncertainties in the detection of a particle, a depth of field correction (Korolev, 2007a) was applied with the OASIS software 

licensed by DMT (Droplet Measurement Technologies, 2013). The registered changes in the photo detectors are stored at a 

rate consistent to the probe airspeed and size resolution of 15 μm. Furthermore, the CIPg images particles with three gray-185 

scale levels allowing a higher sensitivity to light and therefore an easier detection of out of focus particles (Luebke et al., 2016 ; 

O'Shea et al., 2021 ; O'Shea et al., 2019). The CIPg raw data files are then processed further with the OASIS.  

While the size ranges of the two instruments complement each other, they also overlap, requiring a transition threshold between 

the instruments. Even though the sizing resolution in the upper CAS-sizing bins is higher than in the lower CIPg-sizing bins, 

it is known that better particle sizing statistics in this range are provided by the CIPg, since its sample volume is larger (Luebke 190 

et al., 2016). Therefore, a transition threshold was chosen at 29.5 µm.  

The evaluation of MPCs crucially depends on a method to discriminate ice particles from liquid droplets, as this coexistence 

not only distinguishes MPCs from other cloud types, but also indicates in what stage the cloud was sampled. A particle phase 

identification (liquid/ice) was conducted by analyzing the images taken by the CIPg based on two assumptions: 1) ice particles 

have irregular and non-circular shapes, therefore images differing from circles indicate ice; 2) liquid particles provide circular 195 
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images due to their spherical shapes (Korolev et al., 2017). For this work, it is assumed that the CIPg is able to distinguish 

spherical and non-spherical particles with Dp > 50 μm. This threshold is applied during processing with the OASIS software. 

The exact discrimination of frozen and liquid droplets, especially for particles with Dp < 5 µm, however, remains an unresolved 

and highly debated challenge in the scientific community (Korolev et al., 2017; Järvinen et al., 2016). 

2.3 Methods and uncertainties 200 

Various studies have been performed, during this and previous campaigns, to validate the measurement accuracy of the 

deployed instrumentation. For instance, CAS-DPOL data have been compared to observations by the CCP and the Cloud 

Droplet Probe (CDP) in tropical convection (Andreae et al., 2018 ; Braga et al., 2017a ; Braga et al., 2017b) and an agreement 

better than 20% in N and particle sizes has been found (Braga et al., 2017a). Furthermore, a good agreement was discovered 

between CAS-DPOL and CDP data in low level clouds in Africa (Taylor et al., 2019). To improve the quality of the results of 205 

this study instrument-related measurement uncertainties, i.e., Mie ambiguities (Borrmann et al., 2000; Kleine, 2019), shattering 

(Korolev and Field, 2015), coincidence (Lance et al., 2010), and the Ram Rise Effect (Weigel et al., 2016) were analyzed and 

eliminated.  

Due to the ambiguous resonance structure of the water Mie curve for small particle sizes, values of a detected scattering cross 

section might be assigned to multiple particle diameters. To eliminate this bias, predefined bins with non-differentiable bin 210 

edges were combined into single Mie size bins.  

Another possible uncertainty is induced by the bursting of ice particles once they hit the probe's surface which is referred to as 

shattering (Korolev and Field, 2015). Once shattered particles enter the instrument’s sample volume small particle 

concentrations may be overestimated. Whether shattering is present or not, can be determined utilizing an “Inter Particle 

Arrival Time” (IPT) analysis (Field et al., 2003; Kleine, 2019). For the optical array probe CIPg this analysis was automatically 215 

applied during processing and shattered particles, if present, were sorted out based on a correction by Korolev and Field (2015). 

In case of CAS-DPOL, the IPT analysis was carried out manually using the particle by particle file and resulted in no apparent 

and distinguishable shattered fragments in most of the flight layers. This might be due to the fact that shattered particles either 

lie in the same size range as intact particles or shattering was not high enough to cause a significant measurement uncertainty. 

In accordance with Korolev and Field (2015), images by the CIPg were used as reference to determine, in which section of the 220 

flight shattering might have occurred the most. Since it is expected that due to differing inlet types CDP counts less shattered 

particles than CAS (Braga et al., 2017a), the instruments’ number concentrations between 0.001 cm-3 and 10 cm-3 for particle 

sizes between 3 µm and 30 µm were compared. Deviations were found in the first two layers, indicating that shattering might 

have occurred at the coldest temperatures. As a result, all particles with IPT < 0.002 s were eliminated from the evaluation of 

the affected layers. A correction for shattered particles inevitably implies sorting out particles based on the assumption of them 225 

not being intact. Since filtering out particles can lead to an elimination of qualified particles and subsequently to an 
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underestimation of particle concentrations, and due to unclear results of the IPT analysis at the remaining layers, no further 

measures were taken for the CAS-DPOL size range (3 µm to 29.5 µm).  

High values of N provoke small spatial distances between particles traversing the laser beam simultaneously, which 

complicates the differentiation of the scattered light of each particle individually and leads to a systematic bias referred to as 230 

coincidence (Lance et al., 2010). The influence of coincidence was estimated based on the works of Lance (2012) and Kleine 

(2019). According to Lance (2012) systematic errors due to concidence, e.g., an undercounting bias of 27 % and an oversizing 

bias of 20 % to 30 %, can be reduced by modifiyng the probes’ optics. Kleine (2019) applies the same method and compares 

the Ns of a modified and unmodified CAS-probe in cross calibration flights. His results, too, demonstrate that a smaller sizer 

pinhole, as part of the optical set up, reduces coincidence biases in the extended sample area. Therefore, CAS-DPOL was 235 

modified with a 600 µm pinhole to reduce the influence of erroneously qualified particles within the extended sample area 

(Lance et al., 2010). Lance (2012) demonstrates that the effect of coincidence is negligible at N < 1100 cm-3 for a modified 

CDP with a pinhole of 800 μm. In Molleker (2014) a different method was used, but the results illustrate that a CAS with a 

500 μm  pinhole provides no indication of coincidence at N < 1500 cm-3. Both of these instruments have very similar optical 

setups and probe housings compared to the CAS-DPOL. Additionally, these two analyses serve as a good reference, since 240 

CAS-DPOL was modified with a pinhole that falls between that of the CDP and CAS. Since maximum Ns of only 200 cm-3 

were reached and based on the conclusions of the aforementioned two studies, no correction of coincidence was necessary in 

this work. While Mie ambiguities mainly affect the correct sizing of particles, shattering and coincidence can affect both, the 

sizing and  counting of particles. With no corrections applied, an uncertainty related to Mie ambiguities is propagated < 10 % 

for particle sizes between 10 µm and 30 µm in McFarquhar et al. (2017) and for counting biases an uncertainty between 10 % 245 

and 30 % is estimated. Since corrections were applied or artefacts could not be detected, an uncertainty of < 10 % is estimated 

for the CAS-DPOL size range. 

Finally, a closer look was taken at the Ram Rise Effect, which in this case refers to an increase in pressure and temperature 

compared to ambient conditions, due to an air compression in the probe's detection region. According to Weigel et al. (2016) 

associated thermodynamic effects are common in open path forward front instruments such as the CIPg and result in an 250 

overestimation of particle concentrations. In order to receive a corrected N, the measured concentration is multiplied with a 

correction factor 𝜉, for aircraft velocities between 60 ms-1 and 250 ms-1. This factor lies between 0.90 and 0.99 for the evaluated 

flight section and strongly depends on the aircraft’s true air speed, i.e., the accuracy of uncorrected measured particle 

concentrations decreases with increasing air speeds.  

N are calculated using an equation provided by Kleine (2019). An equation for the median volume diameter (MVD) and the 255 

LWC is offered in Droplet Measurement Technologies (2014) and the ice water content (IWC) is calculated during processing 

based on the work of Brown and Francis (1995) and  Droplet Measurement Technologies (2013).   

An analysis of the aforementioned measurement biases helps to develop a deep understanding of the probes’ operation 

principles and improves the quality and accuracy of the results. Hence in the evaluation, no artefacts such as unnatural 
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multimodal shapes in the particle size distributions were found that could not be explained by means of natural processes and 260 

conditions in the atmosphere.  

2.4 Characterization of mixed-phase clouds in convective systems over southern Germany 

The meteorological situation over Western Europe on 8 July 2021 was dominated by a large amplitude trough from 

Scandinavia to Corsica. The trough induced a low-pressure system on its front side, as well as a large area of instability. 

Together with the forced orographic lifting of the meridional low-level flow, strong vertical motions occurred which supported 265 

the growth of convective systems over the Alpine regions. These systems featured rapid supersaturation (RH > 100 %) 

conditions and a thick cloud cover, similar to tropical convective systems. Figure 4 features an equidistant Red-Green-Blue 

(RGB) satellite image displaying deep convection as well as the aircraft position at 17:50 UTC (blue) and shortly before (red). 

While satellite images provide a valuable overview of the large-scale meteorological situation, they did not display systems in 

Fig. 4: Equidistant Red-Green-Blue (RGB) image from the EUMETSAT-

DLR MET-10 satellite on 8 July 2021 at 17:50 UTC depicting the deep 

convective system above the Alpine region and Northern Italy. Image was 

created and evaluated by DLR. 
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lower levels beneath the thick cloud tops. Therefore, ground-based MOHp C-Band radar reflectivity cross sections obtained 270 

from range height indicator (RHI) scans were analyzed additionally to gain a more comprehensive overview. A total of 32 

cross sections displaying the measured reflectivity in a two-minute interval are combined in a video and provided as 

supplement (Papke Chica et al., 2022). These, however, were merely used as reference as the aim of this work was not to 

provide an in-depth radar intercomparison. Nevertheless, such a comparison might be subject to future studies as simultaneous 

in-situ and ground based radar station measurements of the same meteorological systems are not encountered very often. Fig. 275 

5 displays a radar cross section at 17:51:16 UTC plotted over the latitude and displayed for altitudes up to 10000 m. The HALO 

flight path was marked in gray and allowed to determine whether the aircraft probed clouds of one or multiple meteorological 

systems. 

Prior to evaluation, the flight section of interest was divided into five horizontal flight layers, with quasi isothermal conditions, 

i.e., constant temperatures, equivalent to the aforementioned flight legs. At these layers, HALO remained at nearly constant 280 

altitudes and temperatures, as can be seen in Fig. 6. In the first layer (8873 m), T remained at -35 °C with  

Fig. 5: Radar reflectivity in dBZ obtained from range height indicator scans by the German weather service (DWD) at the climate 

reference station Hohenpeissenberg Meteorological Observatory (MOHp). Reflectivities are plotted over latitude and for altitudes 

between 0 km and 10 km in a two-minute interval. The orange vertical line marks the LMU radar station that was overpassed during 

this flight as well. The gray line marks the HALO flight path and the black line HALO’s position one minute before the cross section 

is depicted. The full-length animation for the time frame 16:59:16 UTC to 18:01:20 UTC is available as supplement (Papke Chica et 

al., 2022). 
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only minor deviations (± 1 °C), at the second layer (7303 m), T remained around -23 °C, at the third (5707 m) at -13 °C, at the 

fourth (4783 m) at -7 °C and finally, at the last layer (3840 m) at -1 °C. The division was introduced to ensure constant ambient 

conditions when deriving the cloud microphysical properties. The exact mean temperatures and altitudes for each leg were 

obtained from the Basic HALO Measurement And Sensor System (BAHAMAS) (Krautstrunk and Giez, 2012). Since MPCs 285 

mainly appear in a temperature range of -38 °C < T < 0 °C (Lohmann et al., 2016b ; Korolev et al., 2003), the data recorded 

over the course of the descent at T between -36 °C and 0 °C provide an ideal overview of the cloud composition stages 

appearing in the mixed-phase temperature regime. 

In addition to selecting constant ambient conditions, it was important to define at what times the aircraft passed through a 

cloud. For this purpose, a cloud-threshold was implemented for all particles with Dp > 3 μm at a LWC > 0.01 gm-3, which is in 290 

agreement with values chosen in literature (Korolev et al., 2003). Additionally, a video composed of images from a GoPro 

installed in the aircraft by the University of Leipzig helped to determine at which parts of the flight HALO passed through 

clouds. An example of an image featured in the video is displayed in Fig. 3. It also gave an insight into the cloud opacity and 

at what times icing occurred on the probe housing. Ice started accumulating on the instruments' surfaces in layer 2, growing 

larger at layer 3 and then remained until the descent to layer 5. The accumulation of ice reached its peak at layer 3.  295 

The lower panel of  Fig. 6 displays the particle size distribution as well as the total number concentrations N (aspherical and 

spherical particles) over time for each layer. Note that the length of each flight layer differs, depending on the duration the 

plane remained in a cloud. Layer 5, at -1 °C, features the highest number concentrations exceeding 200 cm-3, but mainly 

contains particles with diameters between 3 µm and 40 µm, hence mainly in the CAS-DPOL size range. The first three layers, 

at -35 °C, -23 °C, and -13 °C, depict similarly high N up to 10 cm-3 with occasional concentration peaks (orange) that correlate 300 

with high updrafts (compare to Fig. 10) and higher concentrations of particles with diameters between 20 µm and 40 µm. The 

Fig. 6: Upper panel: Altitude (blue) and temperature (orange) plotter over time showing the five evaluated flight layers (shaded, 

numbered gray) during the descent over Germany. Data were recorded with the Basic HALO Measurement And Sensor System 

(BAHAMAS). Lower panel: Particle size distributions versus time. The number concentration N per size bin is color coded. Data 

were obtained with the Cloud Imaging Probe (CIPg) and the Cloud Aerosol and Precipitation Spectrometer (CAS-DPOL). 
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PSD also depicts the highest concentrations of large particles with Dp < 50 µm. Layer 4 at -7 °C contains the lowest N (1 cm-3) 

and at the same time is the shortest cloud pass out of the five. Moreover, the layers strongly differ in N ranges. While layers 1, 

2 and 3 only contain a moderate number of particles (10-4 cm-3 < N < 10 cm-3), leg 5 exceeds N of 200 cm-3. This indicates 

much denser clouds in the lower layers and optically thin clouds in the upper layers.  305 

Additional differences and similarities of the cloud compositions in the particular layers can clearly be seen when taking a 

look at Fig. 7. It depicts the vertically resolved distribution of N for spherical particles with Dp < 50 μm (CAS-DPOL and 

CIPg) and for aspherical particles with Dp > 50 μm (CIPg). The flight layers are numbered in gray and plotted with respect to 

latitude; Hohenpeissenberg being situated around 47.8 °N. Layers 1 to 3 show similarly high concentrations for ice particles 

(0.1 cm-3) and low concentrations for spherical particles (0.001 cm-3 to 3 cm-3). Even though these legs were probed in different 310 

altitudes, it appears as if they are part of the same convective cloud system. However, radar reflectivity cross sections (Fig. 5) 

suggest that during the first two legs at 8873 m and 7303 m the aircraft probed outflows of the convective system displayed in 

Fig. 4, then at 5707 m the aircraft passed the rear outflow of a storm cell that newly formed above the alpine region.  

Fig. 7: Graphs of the five flight layers (numbered) described in Sect. 2.4 for the time frame 17:00 - 17:55 UTC. The 

altitude (ALT) is plotted against the latitude (LAT). The color bars display the distribution of the N for spherical 

particles with diameters between 3 µm and 50 µm measured by the CAS-DPOL and the CIPg (upper panel) and for 

aspherical particles with diameters > 50 µm measured by the CIPg (lower panel). 
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Layer 5, however, seems to stand separately and shows high concentrations of spherical particles (200 cm-3) and almost no ice 

particles (N < 0.0004 cm-3). Layer 4, again, differs from the above, with the lowest N of spherical particles (< 1 cm-3) and 315 

moderate N of aspherical particles (0.001 cm-3). Here, radar reflectivities imply that at 4783 m HALO crossed the remaining 

parts of the convective system probed in the first two legs, however it is also possible that this cloud “collided” and mixed  

with the outflow of the storm cell probed in leg 3. In layer 5 (3840 m) newly formed liquid clouds not visible in the radar cross 

section, due to low reflectivities of small particles, mixed with remainders of the old convective system were probed. 

In Fig. 8, N is subdivided into Nsmall for particles with diameters < 50 μm and Nlarge for particles with diameters > 50 μm, which 320 

is equivalent to the phase differentiation threshold, however, Nlarge can still contain large spherical liquid droplets. Nsmall and 

Nlarge are graphically depicted in boxplots including 10 %, 25 %, 50 %, 75 % and 90 % percentiles, as well as mean and medium 

values. Layer 1, at the lowest temperature, contains low concentrations of small particles with a median value at 0.3 cm-3 and 

with increasing temperatures at legs 2 and 3 Nsmall increases to values with medians at 1 cm-3 and 3 cm-3. 

Fig. 8: Boxplots of calculated microphysical parameters measured by the CAS-DPOL and CIPg. Top: Number concentration s of 

particles with Dp < 50 μm (Nsmall) and Dp > 50 μm (Nlarge). Note that Nlarge can still contain large spherical liquid droplets. Center: Median 

volume diameters MVDs for spherical (red) and aspherical (teal) hydrometeors. Bottom: Liquid (orange) and ice water content 

(blue). 
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Unexpectedly, at T = -7 °C Nsmall is much lower than in layer 1 (0.3 cm-3). As expected, the highest concentration of particles 325 

with Dp < 50 μm is found in the warmest layer at T = -1 °C with an arithmetic mean of 80 cm-3. At the same time, this layer 

contains the lowest concentration of particles with Dp > 50 μm; the largest amount is found in layer 3 at -13 °C. MVDs of 

spherical and aspherical particles steadily increase up to layer 4 (-7 °C), which contains liquid or frozen droplets, as well as 

ice with the largest MVDs. At the lowest altitude, droplets with the smallest MVDs and MVDs of aspherical particles with a 

high degree of dispersion between 100 μm and 600 μm were probed. Values of LWCs and IWCs, which depend on MVDs as 330 

well as on N are shown in the two bottom sets of boxplots of Fig. 8. The highest values are measured at -13°C, where particles 

with the largest MVDs and relatively high Ns are found. Respectively at -1 °C, the lowest LWCs and IWCs are found, which is 

due to small MVDs of spherical particles and low ice concentrations. 

MPCs occur in meta-stable environments where supercooled droplets coexist with frozen droplets and/or ice crystals. How 

fast a stable environment, i.e., glaciation, can be reached is determined by various parameters of which RHw, RHi, and W play 335 

an important role. During this flight, subsaturation with respect to water is mostly maintained for layers 1 to 4 (Fig. 9), while 

at layer 5 the atmosphere is saturated with respect to water RHw = 100 %. In this cloud layer, the air remains at an equilibrium 

with the supercooled droplets and the atmosphere is supersaturated with respect to ice (RHi > 100 %). A supersaturation with 

respect to ice mostly prevails during the whole flight section, merely legs 1 and 4 show some longer deviations where both, 

RHi and RHw, drop under the saturation line and likely cause the cloud to partially evaporate. Whether supersaturation can be 340 

maintained is determined by W. Supersaturation, in return, determines what microphysical processes can take place and as a 

result, what particles exist and grow within the cloud. Therefore, the intensity of up- or downdrafts proves to be one of the 

most important parameters determining convective cloud parameters. The highest updraft velocities are recorded by 

BAHAMAS in the first three legs (Fig. 10). Especially at -23 °C and -13 °C a wide range of W values are documented, reaching 

velocities as high as ±3 ms-1 and ±4 ms-1. This wide distribution indicates strong cloud dynamics and a turbulent environment. 345 

Fig. 9: Relative humidity with respect to water (RHwater) and ice (RHice) plotted over time in UTC during the flight section above 

Southern Germany. Saturation at RH = 100 % is marked by a gray dashed line. While data for RHwater were provided by the 

BAHAMAS instruments, RHice was calculated using the saturation vapor pressures obtained by the BAHAMAS.  
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High velocities, as found here, are more common in tropical convective clouds, whereas in mid-latitudes W between ±1 ms-1 

and ±2 ms-1 appear more often. While in mid-latitudes updrafts of 1 ms-1 are considered moderate, updrafts of 2 ms-1 are 

already considered strong (Costa et al., 2017). At the cloud layers with -7 °C and -1 °C, Ws vary between -2 ms-1 and +2 ms-1, 

which are more common for clouds in the probed latitudes.  

In the following section, the described microphysical properties and ambient conditions within the cloud will be evaluated 350 

considering differences and similarities between the flight layers and possible phase determining ice nucleation and growth 

processes. 

2.5 Classification of cloud layers 

2.5.1 Classification of cloud layers 1, 2, 3 (-35, -23, -13 °C) 

The cloud layers are sorted according to their particle size distribution type (Type 1/2), first, and then examined individually. 355 

An example of a Type 2 or Large Ice cloud can be found in flight layer 3. The PSD in Fig. 11 displays a clear second mass 

Fig. 10: Vertical velocities (W) plotted over time for each second of the five flight layers evaluated during the flight section above 

Southern Germany with the HALO aircraft. The high vertical velocities varying between ± 4 ms-1 strongly influence the cloud 

microstructure and emphasize the turbulent environment of this mid-latitude convective system. Data were obtained from the 

meteorological sensor system on HALO (BAHAMAS). 
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mode for aspherical particles with Dp > 100 μm (blue), while smaller spherical particles still dominate (orange). Further, Costa 

et al. (2017) describe that in Large Ice clouds Nsmall typically lie below 1 cm-3 and high concentrations of large ice crystals are 

present. While latter clearly applies for the concentrations found in cloud layer 3, Nsmall still remains > 1 cm-3 at -23 °C 

and -13 °C (Fig. 8). Since shattering in the CIPg and CAS-DPOL is eliminated in layer 1 and 2 and not clearly registered in 360 

the CAS-DPOL at layer 3, it can be assumed that the cloud is not yet fully glaciated in layer 2 and 3 and still contains 

supercooled droplets. The existence of possibly liquid cloud droplets in Large Ice clouds at the given temperatures is not 

specified in Costa (2018) for mid-latitude cumulus clouds. Yet, this phenomenon is described for convective clouds in the 

tropics with higher W similar to those probed during the evaluated flight section. It is also possible that this cloud was probed 

in an intermittent stage between a Large Ice cloud and a Coexistence cloud, since it fits into the transition region between the 365 

two cloud types described by Costa (2018) for temperatures between -10 °C and -20 °C. However, Coexistence clouds maintain 

RHw > 100 %, which is only found in roughly 5 % of the flight leg (Fig. 14) and the characteristic Type 1 PSD is not found in 

this layer.  

The WBF process is assumed to take place at temperatures below -10 °C and at moderate W, predominantly at W < 1 ms-1 

(Korolev, 2007b). If updrafts exceed 2 ms-1 it is assumed that the environment remains supersaturated with respect to water 370 

and ice crystals cannot form at the expense of water droplets (Korolev, 2007b). Even though in this flight layer RHw mostly 

remains just below saturation (RH = 100 %), supersaturated with respect to ice, and the temperature at -13 °C, the environment 

might have been too turbulent for the WBF process to fully develop and glaciate the cloud. It is also very likely that due to 

high updrafts, small particles might have been lifted up from lower cloud layers. At some parts, the ambient conditions are 

Fig. 11: Left: Characteristic particle size distribution (PSD) of a Large Ice cloud at -13 °C. Particles are differentiated 

between spherical (orange) and aspherical (blue) shapes for particles larger than 50 μm. Spherical particles are either 

liquid droplets or frozen spherical particles and aspherical particles represent ice crystals. The evaluated data were 

obtained with the CIPg and CAS-DPOL in cloud layer 3 (Fig. 6) between 17:37:27 and 17:28:52 UTC. Right: Images of 

cloud particles taken by the CIPg. The distance between the vertical lines represent 960 µm. 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

19 

 

subsaturated with respect to water and ice, which correlates with downdrafts (compare Fig. 9 and Fig. 10) and cause the cloud 375 

to evaporate.  

In addition to evaluating the PSD, a closer look is taken at the particle images captured by the CIPg (Fig. 11). Here, large ice 

aggregates with diameters up to 900 μm prevail, and smaller crystals and possibly large frozen or supercooled droplets can be 

observed. Medium sized ice crystals might have initially formed through depositional growth in the upper cloud layers until 

they reached terminal velocities high enough to fall against the updraft and sediment into the probed layer. On their way down, 380 

particles grew by accretion when colliding with supercooled droplets. This growth, referred to as riming, explains the large 

particle sizes seen in Fig. 11. Growth by aggregation is unlikely in this temperature range since the quasi-liquid layer (QLL) 

that forms on particles’ surfaces and generates a sticking effect is too thin at T < -10 °C (Lohmann et al., 2016b). The high 

concentration of small particles likely also results from ice multiplication through fracturing, when graupel encounters slower 

falling dendritic crystals (Lohmann et al., 2016b), which are common in a temperature range between -10 °C and -20 °C.  385 

Additionally, lightning was observable during the flight which also led to shortening of the flight layer and exiting the cloud 

earlier for the sake of flight safety. In cumulus clouds, the main charge region lies between -10 °C and -20 °C and can have its 

origin in a charge generation between ice crystals moving up, due to high W and graupel moving down (Lohmann et al., 

2016b). Both are given in this cloud layer. Due to large concentrations of ice crystals, these clouds appear thinner with different 

radiative properties than denser Type 1 clouds.  390 

Layers 1 (-35 °C) and 2 (-23 °C) show similar particle size distributions as well as particle images to Layer 3, which is why 

they were categorized as Large Ice clouds as well. Especially the coldest leg fits this classification, as it contains the lowest 

concentration of small particles (Nsmall < 1 cm-3) out of the three legs and more moderate W, also favoring the WBF process. 

Based on an aspherical fraction analysis conducted by Costa (2018), it is very likely that all particles between 20 μm and 50 

μm are ice particles in Type 2 clouds. Due to a temperature of -35 °C it is also possible that the remaining particles froze 395 

homogeneously in layer 1, therefore it can be assumed that this cloud was completely glaciated.  

At some sections within layer 2 supersaturation with respect to water and ice can be observed (Fig. 9) and an analysis of the 

PSDs reveal that Coexistence and Secondary Ice clouds were also present. Additionally, it is very likely that all three upper 

legs contain secondary ice particles due to high vertical up- and downdrafts.  

Within one cloud multiple processes are found which change on irregular time scales. Therefore, it can be assumed that 400 

microphysical growth processes variate within a cloud layer and strongly influence particle concentrations, making it difficult 

to classify a cloud only based on the PSD. 
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2.5.2 Classification of cloud layer 5 (-1 °C) 

A clear example of a Mostly Liquid cloud is presented in flight layer 5. Here, very high N exceeding 100 cm-3 were probed, 

mainly featuring spherical particles with Dp < 50 μm. The main mode of the particle size distribution is located in the small 405 

particle size range (orange), which is characteristic for such clouds (Fig. 12). While ice is still present in low concentrations, 

Nsmall by far dominates. Especially at the end of this layer, only small amounts of ice crystals are found, which can be seen in 

the particle image of CIPg. In spite of being sparse, ice is present in a wide variation of sizes, reaching from MVDs of 100 μm 

to 600 μm (Fig. 8). In this layer, large ice crystals sedimented from upper cloud layers or grew by aggregation, which results 

from ice crystals colliding and clumping together at the QLL. These aggregates are characterized by their highly irregular 410 

shapes and sizes and can be observed in the CIPg images. Additionally, riming occurred when supercooled droplets froze upon 

contact with ice particles. Another process that most likely took place in this supercooled environment is contact freezing, 

resulting from an ice nucleating particle (INP) colliding with a droplet and subsequently freezing. In subsaturated conditions, 

as found here, a special form of contact freezing appears, referred to as "contact nucleation inside out" (Durant and Shaw, 

2005). In this case, evaporating, i.e. shrinking supercooled droplets already contain an INP and freeze upon contact with its 415 

Fig. 12: Left: Characteristic PSD of a Mostly Liquid cloud at -1 °C. Particles are differentiated between spherical 

(orange) and aspherical (blue) shapes for particles larger than 50 μm. Spherical particles are either liquid droplets 

or frozen spherical particles and aspherical particles represent ice crystals. The evaluated data were obtained with 

the CIPg and CAS-DPOL in cloud layer 5 (Fig. 6) between 17:46:46 and 17:51:58 UTC. Right: Cloud particles 

imaged by the CIPg. The distance between the vertical lines represent 960 µm. 
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surface (the air-water interface). Moderate W (≈1 ms-1) and the RHw mainly staying close to the saturation line in this leg also 

support the classification as Mostly Liquid.  

An analysis conducted by Costa et al. (2017) evaluating the aspherical fraction (AF) of particles with diameters between 20 μm 

and 50 μm in Mostly Liquid clouds, reveals that 0 % are frozen. Since the same instrument (CAS-DPOL) was used for the AF 

analysis and the ambient conditions were similar it is assumed that in this layer particles with Dp < 50 µm are also liquid.  420 

The aforementioned processes leading to the growth of a few large ice particles explain the composition of hydrometeors seen 

in the CIPg image. Mostly Liquid clouds are thought to be young clouds after droplet condensational growth (Costa et al., 

2017) and are common in mid-latitudes. 

2.5.3 Classification of cloud layer 4 (-7 °C)  

The next layer’s PSD differs from the other two by neither displaying a distinct mode in the small, nor in the large particle size 425 

range (Fig. 13). Therefore, it was not possible to directly place it into one of the two main cloud groups (Type 1/2). The curtain 

plot of layer 4 at -7 °C (lower panel Fig. 6) presents very few to no particles between 5 μm and 10 μm and low concentrations 

(< 1 cm-3) of particle sizes up to 5 μm and from 10 μm to 50 μm. Due to moderate to high W between 1 ms-1 and 2 ms-1, it is 

possible that a significant amount of ice active INPs were carried into the cloud. At the given temperature, these INPs likely 

are of biological origin, since mineral dust INPs are more likely to initiate freezing at temperatures below -20 °C (Kanji et al., 430 

2017; Augustin-Bauditz et al., 2014 ). The existence of these particles combined with subsaturated conditions with respect to 

water and mostly saturated conditions with respect to ice likely initiated heterogeneous ice nucleation via condensation freezing 

Fig. 13: Left: Particle Size Distribution of a cloud layer measured at -7 °C transitioning from a Secondary Ice to a Large 

Ice cloud. Particles are differentiated between spherical (orange) and aspherical (blue) shapes for particles larger than 

50 μm. Spherical particles are either liquid droplets or frozen spherical particles and aspherical particles represent ice 

crystals. The evaluated data were obtained with the CIPg and CAS-DPOL in cloud layer 4 (Fig. 6) between 17:44:08 

and 17:44:58 UTC.  Right: Cloud particles imaged by the CIPg. The distance between the vertical lines represent 

960 µm. 
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or "contact nucleation inside out". Condensation freezing starts at water subsaturated conditions with an air parcel containing 

an INP and once water saturation is approached ice seeds can form on the INPs surface (Lohmann et al., 2016b). Since water 

saturation was barely reached and water subsaturated conditions caused cloud droplets to evaporate, it is more likely for 435 

"contact nucleation inside out" than for condensation freezing to have occurred in this layer. This type of freezing is more 

likely to happen at higher W (± 2 ms-1), which are given here as well. In addition to this ice nucleating process, riming occurred 

in this cloud, thereby generating large irregular shaped ice crystals as seen in the CIPg images. Larger crystals present in this 

cloud also sedimented from upper cloud layers. A process in this layer that produced small secondary ice in shape of “splinters” 

is the Hallett-Mossop process (Hallett and Mossop, 1974). During this mechanism splinters are produced at temperatures 440 

between -3 °C and -8 °C, while requiring the presence of supercooled droplets with Dp > 35 μm, as well as rimed ice. In this 

cloud layer, supercooled droplets and rimed ice crystals are present in various sizes, including diameters necessary for the 

Hallett-Mossop process to occur, as is displayed in the two middle boxplots of Fig. 8 and in the PSD. While at -7 °C the largest 

MVDs for spherical and aspherical hydrometeors out of the five layers are found, droplets with diameters between 3 µm and 

50 µm are present in high concentrations (Fig. 13). At the given temperature cylindrical ice shapes like columns or needles are 445 

typically found. In this cloud with low RHw, hollow columns and solid prisms are more likely than needles. Due to the relatively 

low resolution of the CIPg compared to other particle imagers, these hollow columns cannot be seen as clearly in Fig. 13, 

nevertheless some hydrometeors are elongated which implies a cylindrical shape. Owing to partially high updrafts, a 

temperature favoring a QLL, a RHi close to saturation, as well as RHw < 100 %, ice crystals might have collided with others, 

stuck together and formed aggregates of columns. Such aggregates of columns are rare and even though it cannot be said with 450 

absolute certainty that such crystals are present in this cloud, the ideal conditions favoring their growth are given. Since Fig. 

13 does feature particle aggregates, it seems reasonable for these to be composed of columns. The CIPg image in Fig. 13 

resembles the CIPg images of Fig. 11, but differs by containing more medium and small sized ice crystals and appearing very 

dense. It is likely that as a result of the described processes, this layer’s composition was dominated by the production of 

secondary ice, typical for Secondary Ice clouds (Costa et al. 2017; Gayet et al. 2012) and might have been probed in an 455 

advanced cloud stage shortly before it was fully glaciated.  

The typical PSD the authors describe for this cloud type, presenting a clear mode for particles with Dp < 50 μm, is most likely 

not found due to the late stage of this cloud's life time, where a lot of particles in this size range either evaporated or settled as 

rime on ice crystals. The image of this cloud conveys a dense distribution of particles with high concentrations of small 

fragments, which based on the backscatter analysis by Costa et al. (2017) are aspherical. Consequently, this Secondary Ice 460 

cloud differs from the other cloud layers in radiative properties. 

2.6 Comparison to previous in situ cloud observations in the mixed-phase temperature regime 

A statement about the probability of cloud occurrences in mid-latitudes as conducted for a total of 38.6 h of data in Costa et 

al. (2017), cannot be made at this point due to lower statistics. Nevertheless, the long flight layers inside clouds during this 
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case study are used to derive a rough estimate of the occurrence of different cloud types within a cloud (Fig. 14). For this 465 

purpose, cloud sections are classified based on the PSD type and the RH. While the PSD type helps to distinguish between a 

Type 1 and 2 cloud, the RH allows for a closer differentiation of the microphysical processes controlling the cloud formation 

and growth. As an example, the Wegener-Bergeron Findeisen Process predominantly occurs when RHw < 100 % and RHi > 

100 %, and the PSD displays an additional mode for aspherical particles with diameters greater than 50 μm (PSD Type 2). The 

results of these estimates for each isothermal flight layer (- 35 °C (238 K), -23 °C (250 K), -13°C (260 K), -7 °C (266 K), -1 470 

°C (272 K)) are visualized in Fig. 14.  Since we find different cloud types within some cloud layers, a coexisting variation of 

microphysical processes can be assumed. Based on the results of this evaluation, the most common cloud group is Large Ice, 

which is observed in three of the five flight layers. Since the WBF process is thought to be the most dominant process in mid-

latitudes (Boucher et al., 2013), this result does not come as a surprise and is also in accordance with Costa et al., (2017).  

The measurements in mid-latitudes of Costa (2018) were conducted above the UK and mainly focused on stratus and 475 

stratocumulus clouds in February and March, whereas the data in this work was collected in deep convective cumulus clouds 

above Southern Germany in July. An explanation for differing cloud types within the cloud layers of this convective system 

Fig. 14: Cloud group occurrences within a probed flight layer during the CIRRUS-HL flight above Southern Germany 

on 8 July 2021 between 17:00 and 17:55 UTC. In total five flight layers at quasi constant temperatures (272, 266, 260, 

250 and 238 K) were probed and classified into four groups (Mostly Liquid, Coexistence, Secondary Ice, Large Ice). The 

classification was based on ice nucleating and growth processes and microphysical cloud properties measured with the 

CAS-DPOL and CIPg. Within some of the flight layers multiple cloud groups were found, as depicted in this figure.  
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compared to Costa’s measurements in mid-latitudes are higher and more variable W. While Type 2 clouds dominate they 

cannot be classified as clearly, since N for small particles mostly remain > 1 cm-3. These Nsmall indicate the existence of 

supercooled cloud droplets and small ice particles with 20 μm < Dp < 50 μm. An explanation might be the more turbulent 480 

environment given in this flight that hinders the WBF process from fully developing. This presents a major difference to the 

results of Costa et al. (2017), where the existence of possibly liquid cloud droplets in Type 2 clouds was only observed in 

tropical latitudes. This emphasizes the importance of accounting for W when classifying MPCs.  

At higher temperatures between -10 °C and -20 °C, Coexistence clouds appear when high updrafts cause the RHw to remain 

near to and slightly above 100 %. Costa (2018) refers to this temperature range as a transition region between Coexistence and 485 

Large Ice clouds. During this flight, Coexistence clouds are only found in small sections within clouds at -23 °C and -13 °C 

(Fig. 14). A classification of these sections based on the PSD expecting a clear mode for particle sizes < 50 μm, does not 

always reveal the anticipated Type 1. However, the requirement of supersaturation with respect to water and ice (correlating 

with higher W) is met suggesting that the clouds might have been probed at a transition between Type 1 and 2. This implies 

the presence of a variety of ice nucleating and growth processes within a cloud layer, rather than just one. These strongly 490 

depend on W and RH, thereby making it difficult to classify the overlapping process-based cloud type and composition solely 

based on the modes of the particle size distributions. This highly variable distribution and interaction of microphysical 

processes within a convective system and cloud layer seen here, is one of the major difficulties when it comes to quantifying 

MPCs in climate and cloud models, because they directly affect and cause variations of the cloud particle composition and 

radiative properties. At even higher temperatures (255 K, 260 K, 265 K) Costa (2018) describes the appearance of Secondary 495 

Ice clouds that are generally less frequent in mid-latitudes than in the tropics and correlate with moderate to high updrafts. 

While again, a clear classification based on the PSD type is not possible for this cloud group in this work, it is still found at -

7 °C based on other parameters (Sect. 2.5.3). When comparing the resulting occurrences of different cloud types, Secondary 

Ice clouds occur more often than previously found by Costa et al., (2017) in mid-latitudes.  

The lowest layer with the highest temperature of the probed convective system was classified as Mostly Liquid, which is 500 

equivalent to the results of Costa (2018). Therefore, it can be assumed that the particle composition of the lowest layer of 

convective clouds is very similar to stratocumulus or stratus clouds.  

To conclude this comparison, estimates of different process- and composition-based cloud type occurrences within the probed 

mid-latitude convective system in this case study lie between previous results for mid-latitudes and the tropics.  

3 Summary and outlook 505 

In situ observations of strong convective clouds in the mixed-phase temperature regime are rare and hence MPCs are likely to 

be misrepresented in climate and cloud models, often underestimating the cloud supercooled droplet fraction. In order to 

broaden the database of airborne in situ measurements in the mixed-phase temperature regime, mid-level convective clouds 

were probed above Southern Germany with the Cloud and Aerosol Spectrometer (CAS-DPOL) and the Cloud Imaging Probe 
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(CIPg). The meteorological situation over Western Europe on 8 July 2021 featured a thick cloud cover with deep convective 510 

cells almost comparable to tropical systems, with vertical velocities up to ± 4 ms-1.  

In this study, four process- and composition-based types of clouds with different liquid and ice fractions and hence differing 

radiative properties are found and classified according to Costa et al. (2017): Secondary Ice, Coexistence, Mostly Liquid, and 

Large Ice. Microphysical properties of particles between 3 µm and 960 µm were analyzed during descent along five different 

stepwise flight layers, altitudes, and temperatures within the mixed-phase temperature range (-38 °C to 0 °C).  Clouds enclosed 515 

in the first three flight layers (-35 °C, -23 °C, -13 °C) were mostly classified as Type 2 or Large Ice, since the majority of these 

layers' particle size distributions display a clear second mode for large aspherical particles with Dp > 50 μm. Furthermore, 

particle images recorded by CIPg feature very large ice aggregates with diameters up to 900 μm. In layer 2 and 3 

(-23 °C, -13 °C) higher concentrations of small particles (Nsmall > 1 cm-3) compared to the first layer (-35 °C) were found, 

indicating that the WBF process was not fully developed due to high updraft velocities. Other explanations for high Nsmall 520 

(Dp < 50 µm) include the presence of the Coexistence type within the cloud layer or fracturing, causing high concentrations of 

secondary ice. A Mostly Liquid cloud was classified in layer 5 (-1 °C) with N exceeding 100 cm-3 and a clear main mode for 

small particle diameters. Here, CIPg images display a large amount of supercooled liquid droplets and only few irregular 

shaped ice aggregates that precipitated from upper cloud layers. Additionally, sintering and riming contributed to the growth 

of ice particles in this dense cloud. Cloud layer 4 at -7 °C differs from the other cloud types. The dense accumulation of small, 525 

medium, and large sized ice particles presented in this layer's particle image implies a Secondary Ice cloud, which was evoked 

by fracturing and the Hallett-Mossop process and thus the production of splinters. It is also possible that rare column aggregates 

formed, as the probed conditions were optimal for this type of ice crystal growth. To summarize, cloud layer 4 was probed in 

a late stage of Secondary Ice, where a lot of small particles already evaporated or settled as rime on large ice crystals.  

A comparison to a previous study also demonstrates that, while the classification of Mostly Liquid clouds in low-level stratus, 530 

stratocumulus or cumulus clouds is fairly clear, a classification of the remaining composition-based cloud types in convective 

systems is difficult, due to strong up and downdrafts. The wide distribution of vertical velocities found in this system indicate 

strong cloud dynamics as are also found in tropical systems causing a strong fluctuation of relative humidities. As a result, a 

complex variation of temperature, relative humidity, and vertical velocity dependent processes initiating ice nucleation and 

growth, as opposed to just one, determine the phase composition within the cloud layers. This study provides a comprehensive 535 

evaluation of underlying cloud mechanisms as well as a characterization of microphysical properties and the ice and liquid 

fractions within convective systems and suggests the WBF process might not be as prominent as assumed for MPCs in mid-

latitudes.   

Over the past years, there have been many contributions and advancements in the classification and phase identification of 

MPCs. There are however, still many uncertainties associated with instrument-related measurement biases as well as the 540 

discrimination between liquid and ice particles. Especially the latter proves to be difficult as it assumes that ice particles are 

irregularly shaped, which excludes frozen droplets and heavily relies on the optical array probe size resolution. For further 

evaluations, it is therefore highly recommended to additionally analyze the backscatter signal of the CAS-DPOL to further 
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differentiate particle shapes in a size range between 10 μm and 50 μm. However, an uncertainty remains for the phase of 

particles with sizes < 10 μm, which are assumed to be liquid droplets and the exact distinction, especially for particles sizes < 545 

5 μm, remains an unresolved technical challenge. 

The observations and results of this unique case study contribute to the database of in situ measurements in MPCs and 

additionally provide insights into less frequently evaluated mixed-phases in convective clouds in mid-latitudes. Nevertheless, 

it is important to obtain more statistics on microphysical processes and properties in this cloud species for mid-latitudes, as 

this study was limited to a specific system and probed in unusually high updraft conditions. Additional comparisons to low 550 

layer MPCs might also prove valuable, as phase-determining processes can diverge due to differences in vertical velocities 

and relative humidities. The descent and parts of the cloud measurements were performed near the ground weather observation 

stations of Hohenpeissenberg and Munich and thus invite for intercomparison with radar and lidar measurements.  Further 

evaluations and comparisons of in situ measurements of clouds in the mixed-phase temperature regime will help to improve 

the understanding of cloud glaciating-mechanisms, hydrometeor sizes and shapes, as well as the phase distribution of liquid 555 

and ice within different cloud species. This can enable a more accurate representation of MPCs and their radiative properties 

in cloud and climate models.  

 

Data availability  

Data are available at the HALO data base at https://halo-db.pa.op.dlr.de/. 560 

 

Competing interests  

Some authors are members of the editorial board of journal Atmospheric Chemistry and Physics. The peer-review process was 

guided by an independent editor, and the authors have also no other competing interests to declare. 

 565 

Acknowledgements 

We thank the DLR flight crews for excellent flight operations in the strong convection eventually encountering icing 

conditions. Thank you as well to the Leipzig Institute of Meteorology team for providing the GoPro images of the flight. This 

work was supported by the DLR Aeronautics Research Programme, and by the German Science Foundation within SPP-1294 

HALO (contract no VO1504/6-1 and VO1504/7-1) as well as the CRC TP-Change 301. M.P and C.V. were supported by the 570 

Helmholtz excellence programme (grant number W2/W3-060).   

References 

Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., 

Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, 

T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., 575 

Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

27 

 

Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere 

over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, 2018. 

Augustin-Bauditz, S., Wex, H., Kanter, S., Ebert, M., Niedermeier, D., Stolz, F., Prager, A., and Stratmann, F.: The 

immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts, 580 

Geophys. Res. Lett., 41, 7375–7382, https://doi.org/10.1002/2014GL061317, 2014. 

Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation 

spectrometer: a new instrument for cloud investigations, Atmospheric Research, 59-60, 251–264, 

https://doi.org/10.1016/s0169-8095(01)00119-3, 2001. 

Bergeron, T.: Über die dreidimensional verknüpfende Wetteranalyse., Geophys. Norv., 1928. 585 

Borrmann, S., Luo, B., and Mishchenko, M.: Application of the T-Matrix method to the measurement of aspherical 

(ellipsoidal) particles with forward scattering optical particle counters, Journal of Aerosol Science, 31, 789–799, 

doi:10.1016/S0021-8502(99)00563-7, 2000. 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., 

Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate 590 

Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of 

International Panel on Climate Change, edited by: IPCC, Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA, 571–657, 2013. 

Boudala, F. S., Isaac, G. A., Cober, S. G., and Fu, Q.: Liquid fraction in stratiform mixed-phase clouds from in situ 

observations, Q. J. R. Meteorol. Soc., 130, 2919–2931, https://doi.org/10.1256/qj.03.153, 2004. 595 

Braga, R. C., Rosenfeld, D., Weigel, R., Jurkat, T., Andreae, M. O., Wendisch, M., Pöhlker, M. L., Klimach, T., Pöschl, U., 

Pöhlker, C., Voigt, C., Mahnke, C., Borrmann, S., Albrecht, R. I., Molleker, S., Vila, D. A., Machado, L. A. T., and 

Artaxo, P.: Comparing parameterized versus measured microphysical properties of tropical convective cloud bases 

during the ACRIDICON–CHUVA campaign, Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-

7365-2017, 2017a. 600 

Braga, R. C., Rosenfeld, D., Weigel, R., Jurkat, T., Andreae, M. O., Wendisch, M., Pöschl, U., Voigt, C., Mahnke, C., 

Borrmann, S., Albrecht, R. I., Molleker, S., Vila, D. A., Machado, L. A. T., and Grulich, L.: Further evidence for CCN 

aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon 

basin, Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, 2017b. 

Brown, P. R. A. and Francis, P. N.: Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe, 605 

Journal of Atmospheric and Oceanic Technology, 12, 410–414, https://doi.org/10.1175/1520-

0426(1995)012<0410:IMOTIW>2.0.CO;2, 1995. 

Borrmann, S., Luo, B., and Mishchenko, M.: Application of the T-Matrix method to the measurement of aspherical (ellipsoidal) 

       particles with forward scattering optical particles counters, Journal of Aerosol Science, 31, 789–799, doi:10.1016/S0021- 

       8502(99)00563-7, 2000. 610 

Carey, L. D., Niu, J., Yang, P., Kankiewicz, J. A., Larson, V. E., and Haar, T. H. V.: The Vertical Profile of Liquid and Ice 

Water Content in Midlatitude Mixed-Phase Altocumulus Clouds, Journal of Applied Meteorology and Climatology, 47, 

2487–2495, https://doi.org/10.1175/2008JAMC1885.1, available at: 

https://journals.ametsoc.org/view/journals/apme/47/9/2008jamc1885.1.xml?tab_body=pdf, 2008. 

Cecchini, M. A., Machado, L. A. T., Wendisch, M., Costa, A., Krämer, M., Andreae, M. O., Afchine, A., Albrecht, R. I., 615 

Artaxo, P., Borrmann, S., Fütterer, D., Klimach, T., Mahnke, C., Martin, S. T., Minikin, A., Molleker, S., Pardo, L. H., 

Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., and Weinzierl, B.: Illustration of microphysical processes in 

Amazonian deep convective clouds in the gamma phase space: introduction and potential applications, Atmos. Chem. 

Phys., 17, 14727–14746, doi:10.5194/acp-17-14727-2017, 2017. 

CIRRUS-HL – Research campaign on ice clouds in high latitudes, https://cirrus-hl.de/, last access: 10 September 2021, 620 

2021. 

Costa, A.: Mixed-phase and ice cloud observations with NIXE-CAPS, Dissertation, Fakultät für Mathematik und 

Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, 2018. 

Costa, A., Meyer, J., Afchine, A., Luebke, A., Günther, G., Dorsey, J. R., Gallagher, M. W., Ehrlich, A., Wendisch, M., 

Baumgardner, D., Wex, H., and Krämer, M.: Classification of Arctic, midlatitude and tropical clouds in the mixed-phase 625 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

28 

 

temperature regime, Atmos. Chem. Phys., 17, 12219–12238, https://doi.org/10.5194/acp-17-12219-2017, available at: 

https://acp.copernicus.org/articles/17/12219/2017/, 2017. 

Deutsche Forschungsgemeinschaft: HALO-SPP, http://www.halo-spp.de/, last access: 7 October 2021, 2021. 

Droplet Measurement Technologies: Optical Array Shadow Imaging Software (OASIS) 1.0: User Manual, Boulder, CO 

USA, 2013. 630 

Droplet Measurement Technologies: Output Channel Details - LWC (Liquid Water Content) in g/m^3: PADS Help, 2014 

(request availability at DMT). 

Durant, A. J.: Evaporation freezing by contact nucleation inside-out, Geophys. Res. Lett., 32, 

https://doi.org/10.1029/2005GL024175, 2005. 

Field, P. R., Wood, R., Brown, P. R. A., Kaye, P. H., Hirst, E., Greenaway, R., and Smith, J. A.: Ice Particle Interarrival Times 635 

Measured with a Fast FSSP, Journal of Atmospheric and Oceanic Technology, 20, 249{261, https://doi.org/ 10.1175/1520-

0426(2003)020<0249:IPITMW>2.0.CO;2, 2003. 

Findeisen W.: Kolloid-meteorologische Vorgänge bei Neiderschlagsbildung, Meteor. Z., 1938. 

Hallett, J. and Mossop, S. C.: Production of secondary ice particles during the riming process, Nature, 249, 26–28, 

https://doi.org/10.1038/249026a0, available at: https://www.nature.com/articles/249026a0, 1974. 640 

Heymsfield, A., Bansemer, A., Wood, N. B., Liu, G., Tanelli, S., Sy, O. O., Poellot, M., and Liu, C.: Toward Improving Ice 

Water Content and Snow-Rate Retrievals from Radars. Part II: Results from Three Wavelength Radar–Collocated In 

Situ Measurements and CloudSat–GPM–TRMM Radar Data, Journal of Applied Meteorology and Climatology, 57, 

365–389, https://doi.org/10.1175/JAMC-D-17-0164.1, 2018. 

Heymsfield, A. J., Miloshevich, L. M., Schmitt, C., Bansemer, A., Twohy, C., Poellot, M. R., Fridlind, A., and Gerber, H.: 645 

Homogeneous Ice Nucleation in Subtropical and Tropical Convection and Its Influence on Cirrus Anvil Microphysics, 

Journal of the Atmospheric Sciences, 62, 41–64, https://doi.org/10.1175/JAS-3360.1, 2005. 

Hogan, R. J., Illingworth, A. J., O'Connor, E. J., and PoiaresBaptista, J. P. V.: Characteristics of mixed-phase clouds. II: A 

climatology from ground-based lidar, Q. J. R. Meteorol. Soc., 129, 2117–2134, https://doi.org/10.1256/qj.01.209, 2003. 

Hogan, R. J., Field, P. R., Illingworth, A. J., Cotton, R. J., and Choularton, T. W.: Properties of embedded convection in 650 

warm-frontal mixed-phase cloud from aircraft and polarimetric radar, Q. J. R. Meteorol. Soc., 128, 451–476, 

https://doi.org/10.1256/003590002321042054, 2002. 

Hu, Y., Rodier, S., Xu, K., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.: Occurrence, liquid water content, and 

fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, 

https://doi.org/10.1029/2009JD012384, 2010. 655 

Huang, Y., Siems, S. T., and Manton, M. J.: Wintertime In Situ Cloud Microphysical Properties of Mixed‐Phase Clouds 

Over the Southern Ocean, Geophys Res Atmos, 126, https://doi.org/10.1029/2021JD034832, 2021. 

Jäkel, E., Wendisch, M., Krisna, T. C., Ewald, F., Kölling, T., Jurkat, T., Voigt, C., Cecchini, M. A., Machado, L. A. T., 

Afchine, A., Costa, A., Krämer, M., Andreae, M. O., Pöschl, U., Rosenfeld, D., and Yuan, T.: Vertical distribution of the 

particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements, 660 

Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, 2017. 

Järvinen, E., Schnaiter, M., Mioche, G., Jourdan, O., Shcherbakov, V. N., Costa, A., Afchine, A., Krämer, M., Heidelberg, 

F., Jurkat, T., Voigt, C., Schlager, H., Nichman, L., Gallagher, M., Hirst, E., Schmitt, C., Bansemer, A., Heymsfield, A., 

Lawson, P., Tricoli, U., Pfeilsticker, K., Vochezer, P., Möhler, O., and Leisner, T.: Quasi-Spherical Ice in Convective 

Clouds, Journal of the Atmospheric Sciences, 73, 3885–3910, https://doi.org/10.1175/JAS-D-15-0365.1, available at: 665 

https://journals.ametsoc.org/view/journals/atsc/73/10/jas-d-15-0365.1.xml, 2016. 

Jensen, M. P., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D., Cecil, D. J., Collis, S. M., Del Genio, A. D., 

Dolan, B., Gerlach, J., Giangrande, S. E., Heymsfield, A., Heymsfield, G., Kollias, P., Lang, T. J., Nesbitt, S. W., 

Neumann, A., Poellot, M., Rutledge, S. A., Schwaller, M., Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., and Zipser, 

E. J.: THE MIDLATITUDE CONTINENTAL CONVECTIVE CLOUDS EXPERIMENT (MC3E), Bulletin of the 670 

American Meteorological Society, 97, 1667–1686, https://doi.org/10.1175/BAMS-D-14-00228.1, 2016. 

Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice 

Nucleating Particles, Meteorological Monographs, 58, 1.1-1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-

0006.1, available at: https://journals.ametsoc.org/view/journals/amsm/58/1/amsmonographs-d-16-0006.1.xml, 2017. 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

29 

 

Kleine, J.: Flugzeuggetragene Messungen von Eis- und Rußpartikeln in Kondensstreifen bei Verwendung konventioneller 675 

und synthetischer Treibstoffe, Dissertation, Physik, Mathematik, Informatik, Johannes Gutenberg-Universität, Mainz, 

2019. 

Korolev, A. and Field, P. R.: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering 

artifacts in cloud particle probe measurements, Atmos. Meas. Tech., 8, 761–777, https://doi.org/10.5194/amt-8-761-

2015, 2015. 680 

Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., Williams, E., Abel, S. J., Axisa, D., 

Borrmann, S., Crosier, J., Fugal, J., Krämer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch, M.: 

Mixed-Phase Clouds: Progress and Challenges, Meteorological Monographs, 58, 5.1-5.50, 

https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1, 2017. 

Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.: In situ measurements of liquid water content 685 

profiles in midlatitude stratiform clouds, Q. J. R. Meteorol. Soc., 133, 1693–1699, https://doi.org/10.1002/qj.147, 2007. 

Korolev, A.: Reconstruction of the Sizes of Spherical Particles from Their Shadow Images. Part I: Theoretical 

Considerations, J. Atmos. Oceanic Technol., 24, 376–389, doi:10.1175/JTECH1980.1, 2007a. 

Korolev, A.: Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds, Journal 

of the Atmospheric Sciences, 64, 3372–3375, https://doi.org/10.1175/JAS4035.1, available at: 690 

https://journals.ametsoc.org/view/journals/atsc/64/9/jas4035.1.xml?tab_body=pdf, 2007b. 

Korolev, A. V., Isaac, G. A., Cober, S. G., Strapp, J. W., and Hallett, J.: Microphysical characterization of mixed-phase 

clouds, Q. J. R. Meteorol. Soc., 129, 39–65, https://doi.org/10.1256/qj.01.204, 2003. 

Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J., Zöger, M., Smith, J., Herman, R. L., 

Buchholz, B., Ebert, V., Baumgardner, D., Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to 695 

cirrus clouds – Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 

2016. 

Krautstrunk, M. and Giez, A.: The Transition From FALCON to HALO Era Airborne Atmospheric Research, in: 

Atmospheric Physics, Springer, Berlin, Heidelberg, 609–624, https://doi.org/10.1007/978-3-642-30183-4_37, 2012. 

Lance, S., Brock, C. A., Rogers, D., and Gordon, J. A.: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-700 

flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683–1706, 

https://doi.org/10.5194/amt-3-1683-2010, 2010. 

Lance, S.: Coincidence Errors in a Cloud Droplet Probe (CDP) and a Cloud and Aerosol Spectrometer (CAS), and the 

Improved Performance of a Modified CDP, Journal of Atmospheric and Oceanic Technology, 29, 1532–1541, 

https://doi.org/10.1175/JTECH-D-11-00208.1, available at: https://journals.ametsoc.org/view/journals/atot/29/10/jtech-705 

d-11-00208_1.xml?tab_body=fulltext-display, 2012. 

Lawson, R. P., Woods, S., and Morrison, H.: The Microphysics of Ice and Precipitation Development in Tropical Cumulus 

Clouds, Journal of the Atmospheric Sciences, 72, 2429–2445, https://doi.org/10.1175/JAS-D-14-0274.1, 2015. 

Lee, S. S., Ha, K.-J., Manoj, M. G., Kamruzzaman, M., Kim, H., Utsumi, N., Zheng, Y., Kim, B.-G., Jung, C. H., Um, J., 

Guo, J., Choi, K. O., and Kim, G.-U.: Midlatitude mixed-phase stratocumulus clouds and their interactions with 710 

aerosols: how ice processes affect microphysical, dynamic, and thermodynamic development in those clouds and 

interactions?, Atmos. Chem. Phys., 21, 16843–16868, doi:10.5194/acp-21-16843-2021, 2021. 

Lohmann, U., Henneberger, J., Henneberg, O., Fugal, J. P., Bühl, J., and Kanji, Z. A.: Persistence of orographic mixed-phase 

clouds, Geophys. Res. Lett., 43, 10,512-10,519, https://doi.org/10.1002/2016GL071036, 2016a. 

Lohmann, U., Lüönd, F., and Mahrt, F.: An introduction to clouds: From the microscale to climate, Cambridge University 715 

Press, Cambridge, United Kingdom, 391 pp., 2016b. 

Luebke, A. E., Afchine, A., Costa, A., Grooß, J.-U., Meyer, J., Rolf, C., Spelten, N., Avallone, L. M., Baumgardner, D., and 

Krämer, M.: The origin of midlatitude ice clouds and the resulting influence on their microphysical properties, Atmos. 

Chem. Phys., 16, 5793–5809, https://doi.org/10.5194/acp-16-5793-2016, 2016. 

McFarquhar, G. M., Baumgardner, D., Bansemer, A., Abel, S. J., Crosier, J., French, J., Rosenberg, P., Korolev, A., 720 

       Schwarzoenboeck, A., Leroy, D., Um, J., Wu, W., Heymsfield, A. J., Twohy, C., Detwiler, A., Field, P., Neumann, A., 

       Cotton, R., Axisa, D., and Dong, J.: Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging 

       Probes: Fundamentals, Uncertainties, and Efforts toward Consistency, Meteorological Monographs, 58, 11.1-11.33, 

       doi:10.1175/AMSMONOGRAPHS-D-16-0007.1, 2017. 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

30 

 

Molleker, S.: Charakterisierung von optischen Partikelspektrometern und in situ Messungen zur Mikrophysik der polaren 725 

Stratosphärenwolken, Johannes Gutenberg-Universität Mainz, 2014. 

Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.: Frequency of occurrence of rain from liquid-, mixed-, and ice-

phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502–6509, 

https://doi.org/10.1002/2015GL064604, 2015. 

Nam, C. C. W., Quaas, J., Neggers, R., Siegenthaler-Le Drian, C., and Isotta, F.: Evaluation of boundary layer cloud 730 

parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data, J. Adv. 

Model. Earth Syst., 6, 300–314, https://doi.org/10.1002/2013MS000277, 2014. 

Noh, Y.-J., Seaman, C. J., Vonder Haar, T. H., and Liu, G.: In Situ Aircraft Measurements of the Vertical Distribution of 

Liquid and Ice Water Content in Midlatitude Mixed-Phase Clouds, Journal of Applied Meteorology and Climatology, 

52, 269–279, https://doi.org/10.1175/JAMC-D-11-0202.1, 2013. 735 

O'Shea, S., Crosier, J., Dorsey, J., Gallagher, L., Schledewitz, W., Bower, K., Schlenczek, O., Borrmann, S., Cotton, R., 

Westbrook, C., and Ulanowski, Z.: Characterising optical array particle imaging probes: implications for small-ice-

crystal observations, Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, 2021. 

O'Shea, S. J., Crosier, J., Dorsey, J., Schledewitz, W., Crawford, I., Borrmann, S., Cotton, R., and Bansemer, A.: Revisiting 

particle sizing using greyscale optical array probes: evaluation using laboratory experiments and synthetic data, Atmos. 740 

Meas. Tech., 12, 3067–3079, https://doi.org/10.5194/amt-12-3067-2019, 2019. 

Papke Chica, M., Ewald, F., Gergely, M., Voigt, C.: Animation of Hohenpeissenberg radar reflectivity cross 

       sections (C-band), Zenodo, https://doi.org/10.5281/zenodo.6351715, 2022. 

Radenz, M., Bühl, J., Seifert, P., Baars, H., Engelmann, R., Barja González, B., Mamouri, R.-E., Zamorano, F., and 

Ansmann, A.: Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol 745 

and dynamics with ground-based remote sensing, Atmos. Chem. Phys., 21, 17969–17994, doi:10.5194/acp-21-17969-

2021, 2021. 

Righi, M., Hendricks, J., Lohmann, U., Beer, C. G., Hahn, V., Heinold, B., Heller, R., Krämer, M., Ponater, M., Rolf, C., 

Tegen, I., and Voigt, C.: Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model, 

Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020, 2020. 750 

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on mixed-phase clouds imply higher climate sensitivity, 

Science, 352, 224–227, https://doi.org/10.1126/science.aad5300, 2016. 

Taylor, J. W., Haslett, S. L., Bower, K., Flynn, M., Crawford, I., Dorsey, J., Choularton, T., Connolly, P. J., Hahn, V., Voigt, 

C., Sauer, D., Dupuy, R., Brito, J., Schwarzenboeck, A., Bourriane, T., Denjean, C., Rosenberg, P., Flamant, C., Lee, J. 

D., Vaughan, A. R., Hill, P. G., Brooks, B., Catoire, V., Knippertz, P., and Coe, H.: Aerosol influences on low-level 755 

clouds in the West African monsoon, Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, 

2019. 

Trömel, S., Simmer, C., Blahak, U., Blanke, A., Doktorowski, S., Ewald, F., Frech, M., Gergely, M., Hagen, M., Janjic, T., 

Kalesse-Los, H., Kneifel, S., Knote, C., Mendrok, J., Moser, M., Köcher, G., Mühlbauer, K., Myagkov, A., Pejcic, V., 

Seifert, P., Shrestha, P., Teisseire, A., Terzi, L. von, Tetoni, E., Vogl, T., Voigt, C., Zeng, Y., Zinner, T., and Quaas, J.: 760 

Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of 

cloud and precipitation processes, Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, 

2021. 

Voigt, C., Kleine, J., Sauer, D., Moore, R. H., Bräuer, T., Le Clercq, P., Kaufmann, S., Scheibe, M., Jurkat-Witschas, T., 

Aigner, M., Bauder, U., Boose, Y., Borrmann, S., Crosbie, E., Diskin, G. S., DiGangi, J., Hahn, V., Heckl, C., Huber, F., 765 

Nowak, J. B., Rapp, M., Rauch, B., Robinson, C., Schripp, T., Shook, M., Winstead, E., Ziemba, L., Schlager, H., and 

Anderson, B. E.: Cleaner burning aviation fuels can reduce contrail cloudiness, Commun Earth Environ, 2, 

https://doi.org/10.1038/s43247-021-00174-y, 2021. 

Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, 

L., Costa, A., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., 770 

Fütterer, D., Giez, A., Graf, K., Grooß, J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., 

Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., 

Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., 

Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 

31 

 

Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M.: ML-CIRRUS: 775 

The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft 

HALO, Bulletin of the American Meteorological Society, 98, 271–288, https://doi.org/10.1175/BAMS-D-15-00213.1, 

2017. 

Wegener, A.: Thermodynamik der Atmosphäre, Nature, 90, 31, https://doi.org/10.1038/090031a0, 1912. 

Weigel, R., Spichtinger, P., Mahnke, C., Klingebiel, M., Afchine, A., Petzold, A., Krämer, M., Costa, A., Molleker, S., 780 

Reutter, P., Szakáll, M., Port, M., Grulich, L., Jurkat, T., Minikin, A., and Borrmann, S.: Thermodynamic correction of 

particle concentrations measured by underwing probes on fast-flying aircraft, Atmos. Meas. Tech., 9, 5135–5162, 

https://doi.org/10.5194/amt-9-5135-2016, 2016. 

Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., 

Abdelmonem, A., Afchine, A., Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., 785 

Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, 

F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., 

Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., 

Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., 

Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., 790 

Schnaiter, M., Schneider, J., Schulz, C., Souza, R. A. F. de, Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, 

D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: ACRIDICON–

CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New 

German Research Aircraft HALO, Bulletin of the American Meteorological Society, 97, 1885–1908, 

https://doi.org/10.1175/BAMS-D-14-00255.1, 2016. 795 

Yano, J.-I. and Phillips, V. T. J.: Ice–Ice Collisions: An Ice Multiplication Process in Atmospheric Clouds, Journal of the 

Atmospheric Sciences, 68, 322–333, https://doi.org/10.1175/2010JAS3607.1, available at: 

https://journals.ametsoc.org/view/journals/atsc/68/2/2010jas3607.1.xml, 2011. 

Zhang, D., Wang, Z., Kollias, P., Vogelmann, A. M., Yang, K., and Luo, T.: Ice particle production in mid-level stratiform 

       mixed-phase clouds observed with collocated A-Train measurements, Atmos. Chem. Phys., 18, 4317–4327, 800 

       doi:10.5194/acp-18-4317-2018, 2018. 

 

https://doi.org/10.5194/acp-2022-255
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.


