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Abstract. Nitrogen dioxide (NO2) column density measurements from satellites have been widely used in constraining emis-

sions of nitrogen oxides (NOx = NO + NO2). However, the utility of these measurements is impacted by reduced observational

coverage due to cloud cover and by their reduced sensitivity toward the surface. Combining the information from satellites with

surface observations of NO2 will provide greater constraints on NOx emission estimates. We have developed a deep learning

(DL) model to integrate satellite data and in situ observations of surface NO2 to estimate NOx emissions in China. A prior5

information for the DL model was obtained from satellite-derived emissions from the Tropospheric Chemistry Reanalysis

(TCR-2). A two-stage training strategy was used to integrate in situ measurements from the China Ministry of Ecology and

Environment (MEE) observation network with the TCR-2 data. The DL model is trained from 2005 to 2018, and is evaluated

for 2019 and 2020. The DL model estimated a source of 19.4 Tg NO for total Chinese NOx emissions in 2019, which is con-

sistent with the TCR-2 estimate of 18.5±3.9 Tg NO and the 20.9 Tg NO suggested by the Multi-resolution Emission Inventory10

for China (MEIC). Combining the MEE data with TCR-2, the DL model suggested higher NOx emissions in some of the less

densely populated provinces, such as Shaanxi and Sichuan, where the MEE data indicated higher surface NO2 concentrations

than TCR-2. The DL model also suggested a faster recovery of NOx emissions than TCR-2 after the Chinese New Year (CNY)

holiday in 2019, with a recovery time scale that is consistent with Baidu “Qianxi" mobility data. In 2020, the DL-based anal-

ysis estimated about a 30% reduction in NOx emissions in eastern China during the COVID-19 lockdown period, relative to15

pre-lockdown levels. In particular, the maximum emission reductions were 42% and 30% for the Jing-Jin-Ji and the Yangtze

River Delta megaregions, respectively. Our results illustrate the potential utility of the DL model as a complementary tool for

conventional data assimilation approaches for air quality applications.

1 Introduction

Nitrogen oxides (NOx = NO + NO2) are a family of primary air pollutants that are directly involved in the formation of other20

air pollutants, such as tropospheric ozone and secondary inorganic aerosols. NOx is emitted by anthropogenic and natural
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sources on the surface, and it also has sources from lightning in the free troposphere (Murray, 2016). Satellite observations

of tropospheric NO2 column have been widely used during the past two decades to constrain NOx emissions (referred to as

“top-down" emissions). Martin et al. (2003) used a mass balance approach with the GEOS-Chem global chemical transport

model (CTM) to relate changes in the NO2 column to NOx emissions at the surface. They showed that the top-down analysis25

could reduce regional uncertainties in the a priori NOx emissions. Satellite-derived NOx emissions have been obtained by

several subsequent studies using a similar mass balance approach (Bertram et al., 2005; Konovalov et al., 2006; Kim et al.,

2006; Martin et al., 2006; Toenges-Schuller et al., 2006; Boersma et al., 2008). Advanced data assimilation methods have

also been applied to obtain satellite-based emission estimates of NOx. For example, the four-dimensional variational (4D-Var)

method uses a CTM and its adjoint to propagate the differences between satellite data and simulation to the a priori estimate of30

NOx emissions (Müller and Stavrakou, 2005; Kurokawa et al., 2009; Chai et al., 2009; Qu et al., 2019). The Kalman filter is

another widely used method, which employs information about the error covariance in the forecast of the trace gases to update

atmospheric quantities in the CTMs (Napelenok et al., 2008; Miyazaki et al., 2020a; Wu et al., 2020).

Despite the range of inverse modeling approaches used to estimate NOx emissions from satellite observations, they all

suffer from potential limitations associated with the chemical transport models (CTMs) employed in the inversion analyses.35

For example, Lin and McElroy (2010) found that a different scheme for mixing in the planetary boundary layer could lead to

3–14% differences in the top-down NOx emission budgets for East China. Deep convective transport in the free troposphere,

which can be challenging to accurately simulate, could vertically transport NO2 generated by lightning activities, which results

in greater non-linearity between NOx emissions and NO2 columns (Choi et al., 2005; Nault et al., 2017). The lifetime of

NOx varies diurnally and seasonally, and discrepancies in the ability of a CTM to capture these variations will contribute to40

uncertainties in the top-down NOx emission estimates (Beirle et al., 2011; de Foy et al., 2014; Liu et al., 2016).

An additional limitation with the satellite-based top-down emission estimates of NOx is that NO2 is highly concentrated

near the surface, whereas satellite measurements have lower sensitivity near the surface (Boersma et al., 2016). As a result,

it is challenging for satellite observations to capture changes in surface NOx emissions. It has been suggested that satellite

NO2 measurements are blending information from both surface emissions and atmospheric background of NO2 due to the45

low sensitivity of the satellite retrievals to NO2 near the surface (Li and Wang, 2019; Silvern et al., 2019; Qu et al., 2021).

In situ observations of surface NO2 are more representative of local emissions, but typically have more limited observational

coverage. As a result, combining the surface observations with the satellite data could offer greater constraints on NOx emission

estimates.

Here we use a deep learning (DL) model to indirectly integrate satellite data and in situ observations of surface NO2 to50

estimate NOx emissions in China. Deep learning and other machine learning models have been increasingly used in the field

of atmospheric science (Rasp et al., 2018; He et al., 2022; Keller and Evans, 2019). These data-driven methods show high

skill in capturing nonlinear relationship between correlated atmospheric quantities. Compared to conventional data assimila-

tion systems, DL models are free of errors in chemistry and the potential errors associated with defective parameterization

of subgrid-scale processes (Rasp et al., 2018). Moreover, high-resolution data assimilation using conventional approaches is55

computationally expensive especially when dealing with large amounts of data, whereas DL models show much higher com-
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putational efficiency for high-resolution data-rich applications. In the present work, we use a DL model to estimate Chinese

NOx emissions using surface NO2 concentrations. We train the DL model twice with different input information used in each

training stage. We use the two-stage transfer learning strategy to integrate in situ NO2 observations from the China Ministry

of Ecology and Environment (MEE) network with the Tropospheric Chemical Reanalysis (TCR-2) that assimilated satellite60

observations.

We focus on the 2019–2020 period, which overlaps with the COVID-19 pandemic that led to the lockdown of over one-third

of Chinese cities in early 2020. Observations have shown significant reductions of atmospheric abundances of NO2 over China

during this period (Bauwens et al., 2020; Liu et al., 2020). The change in atmospheric NO2 implies an anomalous change in

emission of NOx, which provides a unique opportunity to evaluate the utility of the DL model for estimating NOx emissions.65

We evaluate the performance of the DL model by analyzing the predicted NOx emissions for the normal year 2019 and the

anomalous year 2020. Evaluation of the DL-based system utilized the dependent testing data set from the TCR-2 standard

product (based on data from the Ozone Monitoring Instrument (OMI)), an updated higher-resolution TCR-2 reanalysis product

constrained by the TROPOspheric Monitoring Instrument (TROPOMI) measurements, and the independent Baidu “Qianxi"

mobile data (Kraemer et al., 2020; Zhang et al., 2021).70

The outline of the paper is as follows. Section 2 describes the data sets used in the analysis, the DL model, and the two-stage

training strategy. Section 3 shows the results from the evaluation of the model performance after the two training stages and

the analyses of the Chinese NOx emissions for 2019 and 2020. Conclusions are presented in Section 4.
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2 Data and methods

2.1 TCR-2 chemical reanalysis75

The TCR-2 chemical reanalysis (Miyazaki et al., 2020a) was constructed using a Local Ensemble Transform Kalman Filter

(LETKF) data assimilation system (Hunt et al., 2007), which optimizes both emissions and atmospheric abundance of various

chemical species from assimilation of multi-constituent measurements from multiple satellite instruments. The observational

data are assimilated into the MIROC-CHASER global chemical transport model (Sudo et al., 2002; Sekiya et al., 2018). The

TCR-2 data product has a horizontal resolution of 1.1◦ × 1.1◦, and consists of 27 pressure levels from 1000 to 60 hPa. Details80

about the TCR-2 data assimilation system can be found in Miyazaki et al. (2020a).

The TCR-2 NOx emissions were constrained in part by tropospheric NO2 column retrievals from the QA4ECV version 1.1

level 2 product for Ozone Monitoring Instrument (OMI) NO2 measurements (Boersma et al., 2018). OMI is a spectrometer

on-board the NASA Aura spacecraft that was launched on 15 July 2004. It measures NO2 in the UV-VIS range of the spectrum,

from which vertical column densities (VCD) of NO2 are retrieved. The OMI measurement strategy provides global coverage85

once per day. It should be noted that as a chemical data assimilation system with detailed tropospheric chemistry, TCR-2 also

relies on observational constraints from other NO2-related chemical species (e.g. tropospheric ozone) to optimize tropospheric

NO2 and NOx emissions. For the analysis conducted here, the TCR-2 surface NO2 concentrations and NOx emissions were

averaged to daily fields to train the DL model. In addition to the standard TCR-2 product, we also used an updated version of

the TCR-2 products that assimilated tropospheric NO2 column retrievals from the TM5-MP-DOMINO data product version90

1.2 for TROPOMI (van Geffen et al., 2020) at a higher spatial resolution of 0.5625◦ (referred to as the T213 product Miyazaki

et al. (2020b, 2021)). TROPOMI serves as the continuation and the next generation of the OMI sensor, monitoring air pollutants

at a much higher horizontal resolution (7 km × 3.5 km at nadir), and data have been available since February 2018. Since the

TROPOMI-based TCR-2 T213 product is only available for the last few years of the analysis period considered here, we use it

as an independent data set in the evaluation of the DL model for the year 2020.95

2.2 MEE network

As part of the Chinese government’s Air Pollution Control Action Plan, the Ministry of Ecology and Environment of the

People’s Republic of China have been deploying ground-based stations to monitor air pollution since 2013. Surface NO2

concentration measurements are archived at an hourly frequency, at more than 1500 ground-based stations as of 2019. NO2

concentrations are measured and reported in micro-grams per cubic meter (µg m−3). Special attention is given to the reference100

state for unit conversion. From 2013 to August 31, 2018, the reference state for in situ measurements was 273 K and 1013

hPa, after which it was changed to 298 K and 1013 hPa. To simplify the integration of the MEE data with the TCR-2 chemical

reanalysis, the in situ measurements were aggregated to the 1.1◦×1.1◦ grid of the TCR-2 chemical reanalysis using the nearest

neighbor interpolation method. The locations of the MEE sites as of 2019 are shown in Figure 1. The MEE network has good

coverage over eastern and central China. For western China and northeastern China, the spatial coverage is lower. Han et al.105

(2022) investigated the impact of observational coverage by removing 10% of the grid-averaged observations from the training
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of a similar DL model and found no noticeable performance degradation in the evaluation of the DL model over these regions.

However, the low station densities in some grids could lead to representation errors in the aggregated observations. The MEE

network includes both urban and rural sites and we included data from all sites to increase observational coverage and mitigate

representation errors. The MEE measurements are made using a chemiluminescence analyzer with a molybdenum converter110

that results in an overestimate of NO2 (Lamsal et al., 2008). Following Lamsal et al. (2008), we used the GEOS-Chem model

to simulate NOx, HNO3, peroxyacetyl nitrate (PAN), and alkyl nitrates (AN) to produce correction factors (CFs) for the

measurements using the following relationship

CF =
[NO2]

[NO2] + 0.95[PAN ] + 0.35[HNO3] +
∑

[AN ]
(1)

where
∑

AN is the sum of all ANs. We used version 12.0.2 of GEOS-Chem at a resolution of 2◦ × 2.5◦ to estimate monthly115

mean CFs for 2015. The simulation was conducted with full chemistry and the MIX inventory (Li et al., 2017). The annual

total Chinese emissions in the simulation was 19.0 Tg NO, which is consistent with TCR-2 estimates. These 2015 CFs were

regridded to the 1.1◦ × 1.1◦ resolution of the DL model and applied to the MEE measurements for 2014–2020. The CFs were

close to unity in high emission regions, such as in eastern China, but could be as small as 0.4 in rural regions.

2.3 Baidu “Qianxi" mobile data120

The Baidu “Qianxi" mobile data is generated from the Baidu map service, which is widely used in China as an equivalent

to Google maps. It quantifies the intensity of human mobility as an immigration index (I-index), an emigration index (E-

index), and an intra-city index (C-index). These migration indices have been used by other studies and are shown to have good

correlation with human activities (Wei and Wang, 2020; Kraemer et al., 2020; Zhang et al., 2021). The C-index measures the

movement of people out of their homes in the city, reflecting intra-city movement, and is thus a proxy of human activity. Zhang125

et al. (2021) found that the C-index showed much higher correlation with variations in surface NO2 concentration than the

other two indices (the I-index and the E-index). They found that about 40% of the variance of emission-based NO2 reductions

in 29 magacities (with populations over 8 million) in China could be explained by the C-index. For some megacities in southern

China, the variance explained by the C-index was as large as 70%. The Zhang et al. (2021) results suggest that human mobility

can provide a proxy for NOx emissions. We therefore use the C-index here as the independent data set to evaluate the DL130

model.

2.4 Deep learning model and input variables

The DL model used here is built using convolutional neural networks (CNNs) (Goodfellow et al., 2016) and long short-term

memory (LSTM) units (Hochreiter and Schmidhuber, 1997). Figure 2 shows a schematic diagram of the model. The hybrid

architecture was previously used for predicting summertime surface ozone concentrations in the United States in He et al.135

(2022). The DL model showed great predictive skill in capturing the nonlinear relationship between the predictors and the

model output. This DL architecture is applied here for estimating Chinese NOx emissions using surface NO2 concentrations

and meteorological variables as input predictors. The input variables are forwarded to three sequential convolutional blocks.
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Figure 1. Location of the MEE network stations as of 2019. Blue circles represent the MEE stations. The three metropolitan regions that we

focused on in the analysis are shaded in gray, red and cyan, for Jing-Jin-Ji (JJJ), Yangtze River Delta (YRD), and Pearl River Delta (PRD),

respectively.

Each convolutional block consists of two CNN layers and one max pooling layer. Each CNN layer uses filters that are 3× 3

in size to apply convolutional operations with the data vectors and output so-called latent vectors. The softplus function is140

applied to activate the output from each CNN layer to increase the non-linearity of the DL architecture. The max pooling

layers further condense the dimension of the latent vectors by taking the maximum values within 2× 2 windows. The first

three convolutional blocks were used as an encoder for the extraction of spatial features hidden in the input information. The

output of the last convolutional block was a highly compressed and reshaped latent vector with a size of 30× 1024, which

was then forwarded to two long-short term memory (LSTM) cells, which are recurrent neural networks (RNNs), with 1024145

units to learn the dynamics. The LSTM cell is followed by three up-convolutional layers and seven convolutional layers. The

up-convolutional layers use 2× 2 convolutional filters to up-sample the latent vectors to high-resolution outputs. We applied

residual learning connections (the arrows in Figure 2), which were used to capture the more directly relationship between input

and output variables and to stabilize the performance of the U-net model (Li et al., 2018; He et al., 2015). We used the Adam

optimizer for boosted optimization of the U-net model (Kingma and Ba, 2017). The Dl model was run on the NVIDIA T4150
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Figure 2. Schematic of the U-net model for the prediction of Chinese NOx emissions. The CNN layers with 3×3 filters are shown in orange.

The dark orange regions indicate the application of softplus activation functions. The 2× 2 max pooling layers are shown in red. The two

green circles represent the LSTM cells. The 2×2 up-convolutional layers are shown in light blue, which are concatenated (indicated as grey

boxes) with the transferred latent vectors (shown as dark blue boxes) from the encoder. The arrows indicate the residual connections.

tensor core graphics processing unit (GPU) on the Graham supercomputer of Compute Canada. During the training process,

the convolutional filters, the weight matrices and bias vectors in the LSTM were iteratively optimized using a back-propagation

algorithm. The initial learning rate was 1× 10−5 for both training stages, and the residual sum of squares was used as the loss

function. Other hyper-parameters for the training of the model include the number of epochs, which was 250, and the batch

size, which was 30.155

The meteorological variables were taken from the ERA5 climate reanalysis data product, which is different from the ERA-

Interim data product used in the TCR-2 data assimilation system. We chose the more recent ERA-5 product because of its

higher spatial and temporal resolution, which better represents meso- to synoptic-scale transport processes (Hoffmann et al.,

2019). This could be advantageous for the Stage 2 training, where the MEE in situ observations are used to improve the

NO2-NOx relationship. Table 1 lists the chosen input variables for the U-net model. We treated information of surface NO2160

from days t and t−1 as different channels in the input layer. Considering the short lifetime of surface NOx, we did not include

meteorological variables from day t−1. We included surface NO2 from days t and t−1 for better prediction of NOx emissions.

All the input variables are regridded to 1.1◦ × 1.1◦ grid of TCR-2 using the first-order conservative remapping algorithm. As

mentioned above, the output of the DL model, which is NOx emissions, is at the same 1.1◦ × 1.1◦ grid. To ensure stability of

the training of the DL model, all the input variables were scaled to make sure the values are within a relatively similar range.165

Table 1 gives the details about the input variables selected for the NOx emission inversions.
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Table 1. Input variables for NOx emission inversion using the DL model.

Model input variables Unit1 Data source

Surface NO2 concentrations from days t and t− 1 ppb TCR-2/MEE2

Zonal component of 10-meter wind (U10m) m s−1 ERA5

Meridional component of 10-meter wind (V10m) m s−1 ERA5

2-meter temperature (T2m) K ERA5

Skin temperature (SKT) K ERA5

Surface pressure (SP) khPa ERA5

Shortwave radiation downwards (SRD) kW m−2 ERA5

Boundary layer height (BLH) km ERA5

1Units of the raw data could be different from these units. Multiplicative scaling is done to match these

units before being used by the U-net model.
2TCR-2 surface NO2 concentrations are used for the first training stage. The MEE in situ NO2

measurements are added in the second training stage.

2.5 Two-stage training strategy

For the integration of the MEE in situ data with the TCR-2 reanalysis, we use a two-stage transfer learning strategy (Zhuang

et al., 2020), as depicted in Figure 3. The first training stage focuses on the TCR-2 NO2 concentration and NOx emission

relationship. In this training stage, we train the model using the TCR-2 data pairs of NO2 and NOx, together with the ERA5170

meteorological predictors. The purpose of this training stage is to supervise the DL model with the prior knowledge of the

relationship between surface NO2 concentrations and NOx emissions from the TCR-2 reanalysis. The goal here is to train the

DL model to reproduce the TCR-2 NOx emissions, given the TCR-2 surface NO2 data. The second training stage is conducted

based on the pre-trained DL model from Stage 1. This stage utilizes the transferred TCR-2 knowledge and the pre-trained

DL model weights to provide an a priori for Stage 2. In this second stage, the MEE NO2 data are integrated with the TCR-2175

surface NO2 data and the model retrained with the combined data set. The purpose of Stage 2 is to improve the relationship

between surface NO2 and NOx emissions acquired from TCR-2, given the available surface NO2 observations. Figure 4

shows the annual mean NO2 concentrations from TCR-2 and MEE for 2019 and the mean TCR-2 NOx emissions for 2019.

The distributions of surface NO2 and NOx are spatially consistent. Compared to surface NO2 used in stage 1 training, the MEE

in situ measurements add more information to the stage 2 training. The TCR-2 reanalysis spans from 2005 to 2020, whereas180

the MEE measurements are available beginning in 2014. Therefore, we train the DL model from 2005 to 2018 for Stage 1,

and from 2014 to 2018 for Stage 2. The evaluation of the DL model is conducted for 2019 and 2020. Due to the impact of the

COVID-19 pandemic, year 2020 is anomalous as compared to the training set with normal years. The mean TCR-2 Chinese

NOx emissions for the first 115 days in 2020 are 10% and 23% lower than the same period in 2005 and 2014, respectively,

and the change in emissions was faster than at any point in the training set. Thus, by including 2020 in the testing period, we185

examined the capability of the U-net model to extrapolate the training sample.
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Stage 1:

Stage 2:

Figure 3. The two-stage training strategy used to integrate the in situ data with the TCR-2 chemical reanalysis. In Stage 1, only the ERA5

meteorological fields and the TCR-2 surface NO2 data (represented by the orange boxes) are used as predictors in training the model

(indicated by the yellow symbols) to predict NOx emissions (indicated by the green box). In Stage 2, the two surface NO2 predictors (for

days t and t− 1) are replaced by the MEE in situ NO2 measurements (denoted by the red box) with data gaps filled with the TCR-2 NO2.

Meteorological variables remain the same in both training stages.
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Figure 4. Annual mean (a) TCR-2 surface NO2, (b) MEE surface NO2 with data gaps filled by TCR-2, and (c) TCR-2 NOx emissions for

2019. East China is mostly covered by MEE, but West China has fewer stations and is mostly filled with TCR-2 data in (b).
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Figure 5. Correlation between daily NOx emissions from the TCR-2 reanalysis and the DL analysis for 2019 (the testing period).

3 Results and discussion

3.1 Analysis of the DL emission in 2019, during the testing period

A comparison of the Stage-1 DL analysis and the TCR-2 NOx emissions for 2019 is shown in Figure 5. The DL-estimated

daily NOx emissions are in good agreement with the TCR-2 "truth" after the first training stage, with a correlation coefficient190

of 0.96 and a slope of 1.02. The annual mean errors in the DL-estimated NOx emissions are within 10%. These results indicate

that the DL model captured well the relationship between surface NO2 and NOx emissions from TCR-2 after the first training

stage. The time series of estimated NOx emissions for three metropolitan regions, five selected provinces, and four major cities

in China are plotted in Figure 6. As can be seen, after Stage 1 the DL model agrees well with the TCR-2 emissions in most

regions. Even on on small scales such as Beijing, which is only one grid box at the 1.1◦ resolution, the inferred emissions after195

Stage 1 are consistent with the TCR-2 emissions. The largest discrepancies after Stage 1 are found in the coastal regions of

the Pearl River Delta (PRD) and the Yangtze River Delta (YRD), which encompass the cities of Guangzhou and Shanghai,

respectively, (see Figure 1 for the locations of the PRD and YRD regions).
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The difficulty of the DL model in reproducing the TCR-2 emissions in the coastal regions, particularly in the the PRD, could

reflect issues in both TCR-2 and the DL model. In the coastal regions in southern China, cloud cover will result in significantly200

reduced observational coverage from the satellites, which would impact TCR-2. For example, in the PRD (and Guangzhou)

TCR-2 exhibits periods, such as around days 50 and 100, with anomalously low and constant NOx emissions, which could be

due to reduced observational coverage. In addition, although both the PRD and the YRD experience heavy rainfall during the

monsoon season, Luo et al. (2013) found that the PRD experience more frequent mesoscale convective systems and greater

rainfall accumulation than the YRD, which they attributed to the mountainous topography of the PRD and the nearby ocean,205

in contrast to the more flat YRD. It is possible that at a resolution of 1.1◦×1.1◦ both TCR-2 and the DL model cannot capture

the complex meteorology (e.g., the sea breeze circulation and its model errors) in the PRD and its impact on the trace gas

distribution, and thus are unable to reproduce the appropriate relationship between the NOx emissions and the atmospheric

NO2 concentrations.

After Stage 2, the NOx emissions calculated by the DL model are still consistent with the TCR-2 emissions in the main210

source emission regions. For Jing-Jin-Ji (JJJ), the DL emissions are 13.8% higher than the TCR-2 emissions, while for the

YRD the DL emissions are 10.0% higher. The seasonal differences in the estimated emissions are given in Table 2. In JJJ,

the differences between the DL and TCR-2 emissions are relatively constant throughout the year, whereas for the YRD the

differences are small in the fall and larger in winter. In general, we find that the DL model suggest modest increases in emissions

in central and eastern China, with relatively larger increases in the less densely populated provinces, such as Sichuan. In215

Sichuan, the estimated DL emissions are 23.2% higher than those in TCR-2 in summer. Comparison of the emissions after

Stages 1 and 2 in Figure 6 shows that these large increases were produced after incorporating the MEE data in Stage 2. Thus,

it is helpful to compare the time series of the TCR-2 and MEE surface NO2 data, which are plotted in Figure 7. In Sichuan,

the MEE observations suggest significantly higher surface NO2 abundances, which could account for the higher DL emission

estimates. For JJJ and the YRD, the TCR-2 NO2 is in good agreement with the MEE data.220

To further evaluate the estimated NOx emissions, in Figure 8 we compare the 2019 TRC-2 and DL emissions with the

recently updated Multi-resolution Emission Inventory for China (MEIC) (Zheng et al., 2021). For total Chinese emissions,

there is good consistency between the three inventories, with TCR-2, the DL model, and MEIC suggesting total Chinese

emissions of 18.5±3.9, 19.4, and 20.9 Tg NO, respectively. However, despite the good agreement on the national scale, there

are regional differences between the inventories. Compared to TCR-2, MEIC suggested higher NOx emissions in JJJ and in225

the Jiangsu province (the northeastern part of the YRD). The DL-estimated emissions are higher than TCR-2 in these regions,

but lower than those of MEIC. In Inner Mongolia, both TCR-2 and the DL model infer higher emissions than MEIC, with

the DL model suggesting more emissions than MEIC and less than TCR-2. For the PRD, TCR-2 NOx emissions are slightly

lower than MEIC, whereas the DL results are slightly higher than MEIC. In less densely populated regions, such as Sichuan

and Yunnan provinces the DL-estimated NOx emissions are higher than both TCR-2 and MEIC.230
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Figure 6. Time series of daily mean NOx emissions in 2019 for three Chinese metropolitan regions (Jing-Jin-Ji, the Yangtze River Delta,

and the Pearl River Delta), five selected provinces (Henan, Shaanxi, Sichuan, Hubei, and Anhui), and four major cities (Beijing, Shanghai,

Guangzhou, and Hefei) for 2019 (the testing period). Shown are the emissions from the TCR-2 reanalysis (black) and the DL analysis after

Stage 1 (blue) and Stage 2 (red). The shaded areas represent the 14-day period after the Chinese New Year.

13



Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

20

40

Jing-Jin-Ji

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

10

20

30

Yangtze River Delta

TCR-2
MEE in situ (corrected)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

10

20

30
Pearl River Delta

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

20

40

Henan

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

10

20

30 Shaanxi

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

5

10

15

Sichuan

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

10

20

30
Hubei

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

10

20

30

Anhui

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
0

50

100
Beijing

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
0

50

100

Shanghai

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Month

0

50

100

Guangzhou

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Month

20

40

Hefei

Su
rfa

ce
 N

O
2 

(p
pb

)

Figure 7. Time series of daily mean surface NO2 concentrations in 2019 for the three Chinese metropolitan regions, selected provinces, and

major cities shown in Figure 6. The corresponding TCR-2 NO2 data sampled at MEE sites are shown in blue, whereas the MEE ground-

based NO2 observations are indicated by the dashed red line. The shaded areas represent the 14-day period after the Chinese New Year.
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Table 2. Mean percentage difference between the estimated seasonal NOx emissions from the DL model (after Stage 2) and TCR-2 for 2019.

Positive values represent that DL emissions are higher.

Region/city DJF MAM JJA SON

China 5.6 7.6 7.2 2.4

Jing-Jin-Ji 16.9 12.9 11.2 14.3

Yangtze River Delta 15.3 9.8 11.4 3.9

Pearl River Delta 12.3 34.3 21.5 0.5

Henan 8.5 4.9 14.4 -1.8

Shaanxi 3.2 2.4 14.2 2.7

Sichuan -10.1 0.5 23.2 3.7

Hubei 12.7 7.6 25.6 7.3

Anhui 18.6 18.1 23.4 9.4

Beijing 9.1 19.1 54.8 11.1

Shanghai 5.0 2.3 20.0 8.8

Guangzhou 15.3 6.8 34.2 6.7

Hefei 36.3 16.4 33.3 19.0
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Figure 8. Annual NOx emissions (Tg NO) for 2019 estimated by (a) TCR-2 reanalysis, (b) the DL analysis and (c) the MEIC inventory. The

DL minus TCR-2 emission differences are shown in (d).
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3.2 Recovery of NOx emissions after the CNY holiday in 2019

Chinese NOx emissions typically decrease around January and February every year due to reduced human activity during

the CNY holidays. After the 1-week holiday, Chinese NOx emissions gradually recover to pre-holiday levels. This annual

variation in NOx emissions is well captured by the TCR-2 reanalysis, as shown in Figure 9. Starting from 10 days before

the holidays, the Chinese NOx emissions decrease rapidly by 20% relative to emissions 20 days before the CNY, reaching235

a minimum shortly after CNY. The interannual spread in TCR-2 emissions was about ± 5% for the 2005–2019 period, as

similarly demonstrated by Miyazaki et al. (2020b), and the 2019 NOx emissions were consistent with the multi-annual mean.

The CNY-related variation in NOx emissions was captured in TCR-2 in all three of the megaregions, Jing-Jin-Ji, the Yangtze

River Delta, and the Pearl River Delta.

The DL analysis from Stage 2 was in good agreement with the TCR-2 reanalysis before the 2019 CNY for China and for240

JJJ and YRD regions. However, after the holiday the DL-based NOx emissions recovered 50% of the post-holiday reductions

within 10–20 days, which was faster than in TCR-2 NOx. The faster recovery in the DL-based NOx emissions can be clearly

seen for China and the YRD. The largest discrepancy between the DL model and TCR-2 was for the PRD region, where the

variations in the the DL-based NOx emissions did not match that in TCR-2 before nor after the CNY. For example, TCR-2

exhibited large variations in the emissions, which the DL model does not capture. As discussed above, the DL model has245

difficulty reproducing the TCR-2 emissions in the Pearl River Delta throughout 2019 even after Stage 1 of the training, when

the model is trained solely on TCR-2 data, so the discrepancy between TCR-2 and the DL model in the signal of the CNY in

the PRD emissions is consistent with the results shown in Figure 6.

To validate the faster post-holiday recovery in the DL-based NOx emissions we use the C-index from the Baidu “Qianxi"

data, which is also shown in Figure 9. During the 2019 CNY period, the average C-index over the whole country rapidly250

decreased by 10% from 4.5 to 4.1. It should be noted that the relationship between the C-index and NOx emissions is not linear,

as a 20% decrease in NOx emissions does not necessarily correspond to a comparable decrease in the C-index. However, as

a measure of human activity and a proxy for NOx emissions, the timing of the recovery in the C-index could provide useful

information to evaluate the performance of the models in capturing the relative variations in NOx emissions, especially from

transportation source sectors. As shown in Figure 9, the faster recovery of the DL model is consistent with the C-index. This is255

particularly evident for China, JJJ, and the YRD. Figure 10 shows the estimated time (in days) for the DL model, the TCR-2

NOx emissions, and the C-index to recover to 50% of the averaged values five days before the CNY for China, the three

Chinese megaregions, and all Chinese provinces. For all provinces, the recovery of the C-index took 9.5± 5.2 days after the

CNY (Figure 10b). In comparison, the recovery of the NOx emissions in the DL model and TCR-2 took 14.4± 8.4 days

and 23.0± 11.1 days, respectively. For JJJ and the YRD, the DL model suggested a recovery time of 15 days and 16 days,260

respectively, whereas the C-index recovery took 9 days (Figure 10a). For the PRD, the DL model recovered after 15 days,

whereas the C-index recovered after 18 days.

The validation of the DL estimates here provide insights about the limitations of the satellite-derived NOx emissions. Insuf-

ficient space-based observational constraints can limit the representation of short-term changes in NOx emissions. The OMI
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Figure 9. Time series of the percentage change in Chinese NOx emissions and the C-index Baidu mobile data as a function of days from

the CNY. The differences are plotted relative to 20 days before the 2019 CNY. Shown are time series comparisons for (a) China, (b) the

Jing-Jin-Ji region, (c) the Yangtze River Delta region, and (d) the Pearl River Delta region. The black line represents the TCR-2 mean for

2005–2019. The C-index is smoothed by a 7-day window to remove weekly variability.

observational coverage is limited especially during winter over China due to cloudy or rainy conditions, and the relatively265

large retrieval uncertainty could prevent rapid a posteriori emission changes in the top-down analysis. This limitation could

be mitigated by further optimization of the background error covariances in the top-down analysis to better reflect individual

measurements. In addition, the use of more dense and accurate observations, such as from TROPOMI (see Section 3.3) could

provide an improved representation of daily emission changes.
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Figure 10. Comparison of the timing of the recovery of the NOx emissions and Baidu C-index data back to 50% of the averaged values five

days before the CNY in 2019. (a) The scatter plot of NOx emission recovery dates versus the C-index recovery dates. Each circle represents a

province and special markers correspond to the larger regions as indicated by the legend. (b) Box whisker plots and the normalized distribution

of the recovery dates for the C-index, TCR-2 NOx emissions, and the DL-based NOx emissions, calculated based on all provinces in China.
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3.3 Analysis of the 2020 COVID-19 pandemic period270

Since the COVID-19 pandemic lockdown led to a significant and unexpected perturbation to human activity, we examine the

ability of the DL model to quantify changes in NOx emissions during the lockdown period in China in 2020. Here we use the

TROPOMI-based higher-resolution analysis using TCR-2 (hereafter referred to as T213 data) as an independent data set for the

evaluation of the DL model. The standard OMI-based TCR-2 data product is hereafter referred to as T106 data. The T213 data

were used to study detailed spatial and temporal changes in NOx emissions during the COVID lockdowns (Miyazaki et al.,275

2020b, 2021). The T213 product is expected to better capture variability in NOx emissions, compared to the T106 product,

because of the greater observational constraints from TROPOMI and the higher spatial resolution and coverage. The time

series of the relative changes in NOx emissions around the 2020 CNY are shown in Figure 11. We choose the reference date

to be 10 days before the 2020 CNY to avoid spin-up issues in the T213 data. On the national scale, all three NOx emission

estimates decreased at roughly the same rate until about 10 days after the 2020 CNY, after which the DL-based emission began280

increasing. The T106 and T213 NOx emissions continued to decrease for about an additional 10 days after CNY, with the

T213 data suggesting a smaller over all reduction than T106. All three NOx emission estimates suggested that a full recovery

took 60 days after CNY. However, of the three, the DL-based estimates suggested the smallest overall reduction in Chinese

NOx emissions. For JJJ, the DL-based and T106 emissions estimates were fairly consistent, but the T213 estimates suggested

a faster recovery.285

Comparison of the NOx emission time series with the C-index in Figure 11 shows distinct differences in the timing of the

minimum in the data after the 2020 CNY. As noted above, we do not expect there to be a linear relationship between the

C-index and the NOx emissions, but since the reduction in emissions is in part driven by the lockdown, we anticipate that

the minimum in the migration data should closely correspond to the minimum in emissions. For China, as listed in Table 3,

the C-index reached a minimum 14 days after the CNY, whereas the DL model, the T213 data, and the T106 data reached290

a minimum within 13, 21, and 23 days, respectively. The DL model reproduced well the timing of the minimum for JJJ and

the YRD. However, it significantly underestimated the timing for PRD (3 days for the DL model compared to 12 days for the

C-index). But as we noted above, the DL model has difficulty simulating the PRD, and the timing of the minimum for the PRD

is not well defined, as the signal is noisy and exhibits a fairly broad minimum. We find that the timing of the minima in the

T213 emissions more closely match that of the C-index than T106, which suggested delayed minima.295

The timing of the recovery of the post-holiday reductions to 50% of the averaged values 5 days before the holiday for the C-

index and the estimated NOx emissions are listed in Table 4. For China, the C-index took 31 days to recover in 2020, whereas

the DL model and the T213 data took 31 days and 37 days, respectively, to recover. The recovery time in T106 data was 41

days. For JJJ, the time required for the 50% recovery was 34 days for the C-index, whereas for the DL model, the T213 data,

and the T106 data it was 34 days, 36 days, and 31 days, respectively. For the YRD, both reanalysis data products took over 40300

days to recover, which is more than 20 days longer than the C-index and more than 10 days longer than the DL model. In the

PRD, all of the estimated NOx emissions took more than 20 days longer to recover than the C-index.
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Table 3. Timing (in days) of the minimum in the migration data and NOx emissions during 30 days after the 2020 CNY.

Regions C-Index DL Model T213 T106

China 14 13 21 23

Jing-Jin-Ji 12 13 20 28

Yangtze River Delta 12 13 17 27

Pearl River Delta 12 3 13 20

Table 4. Time (in days) for the migration data and NOx emissions to recover to 50% of the pre-CNY level in 2020.

Regions C-Index DL Model T213 T106

China 34 32 38 41

Jing-Jin-Ji 37 33 37 31

Yangtze River Delta 25 32 47 46

Pearl River Delta 27 24 65 52

The spatial distribution of the DL-estimated changes in Chinese NOx emission 20–30 days after the 2020 CNY, relative to

10–20 days prior to the CNY, are shown in Figure 12. The DL analysis shows over 30% reduction in NOx emissions 20–30

days after the 2020 CNY for the heavily polluted regions in northern and eastern China. In JJJ, the DL analysis suggested305

a maximum reduction in NOx emissions of 42% during the lockdown period, whereas the T106 and T213 data indicated

a maximum reduction of 49% and 41%, respectively. Using a regional model to assimilate the MEE data to estimate NOx

emissions for January–March 2020, Feng et al. (2020) estimated a reduction of 42% in NOx emissions for JJJ. For the YRD,

the DL model and the T106 data suggested comparable reductions of 30% and 31%, respectively, which were roughly 10%

smaller than the reductions in the T213 data and in Feng et al. (2020) of 40% and 41%, respectively. The comparison here310

shows that the impact of the lockdown on NOx emissions in the higher resolution T213 data, in contrast to the T106 data,

is more consistent with Feng et al. (2020). This confirms that the emission analysis at T106 resolution (1.1◦) constrained by

the OMI measurements may not provide sufficient information to capture rapid regional variations in NOx emissions. The

four analyses exhibited the largest disagreement in the PRD, where Feng et al. (2020) estimated a 50% maximum reduction

in emissions, whereas the T106 and T213 data suggested maximum reductions of 39% and 35%, respectively. The DL model315

significantly underestimated the emission reduction in the region, with a maximum reduction of 24%. Overall, the comparison

with the migration data and with the Feng et al. (2020) results indicate that, with the exception of the PRD, integrating the

MEE and TCR-2 data results in an improved relationship between surface NO2 concentrations and NOx emissions.
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Figure 11. Time series of percentage changes in NOx emissions and the C-index Baidu mobility data, relative to 10 days before the 2020

CNY, as a function of days from the CNY. Shown are the time series for (a) China, (b) the Jing-Jin-Ji region, (c) the Yangtze River Delta,

and (d) the Pearl River Delta.
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Figure 12. DL-estimated percent changes in Chinese NOx emissions averaged 20–30 days after the 2020 CNY compared to 20–10 days

before the 2020 CNY. Results for grid boxes with NOx emissions less than 1× 10−11 kgN m−2 s−1 are not shown.
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4 Conclusions

We developed a DL model to estimate Chinese NOx emissions using surface NO2 concentration and meteorological predictors,320

based on the integration of MEE in situ NO2 observations with TCR-2 NO2 chemical reanalysis data. To that end, we applied

a multi-stage training strategy for the transfer learning of the chemical relationship between surface NO2 and NOx emissions

in the TCR-2 data set. We found that the integration of the MEE in situ data with TCR-2 suggested NOx emissions from China

for 2019 to be 19.4 Tg NO, which is consistent with the 18.5±3.9 Tg NO estimated by TCR-2. The DL model and TCR-2 were

both consistent with the suggested Chinese source of 20.9 Tg NO in the MEIC inventory (Zheng et al., 2021). For the JJJ and325

YRD megaregions in China, the DL-based NOx emissions were higher than TCR-2 by 13.8% and 10.0%, respectively. The DL

model particularly increased emissions in the less densely populated provinces, where the MEE observations indicated higher

surface NO2 abundances than in TCR-2. He et al. (2022) suggested that inversions using satellite observations to estimate NOx

emissions have the potential to blend information from background NOx and surface emissions at coarse spatial resolutions. It

is possible that much higher resolution than the 1.1◦ × 1.1◦ of TCR-2 is needed for the satellite-based assimilation system to330

capture the surface NO2 signal in these less densely populated provinces. We also found that the DL model could not reproduce

the TCR-2 relationship between NOx emissions and surface NO2 in the PRD, and integration of the MEE data resulted in large

adjustments in the NOx emissions in the region. During the monsoon season, southern China experiences heavy and frequent

rainfall, and the mountainous topography of the PRD and its proximity of the ocean could make it challenging for TCR-2 and

the DL model to accurately account for the influence on surface NO2 of the complex meteorology in the region at a resolution335

of 1.1◦ × 1.1◦.

Analysis of the DL-based NOx emissions focused around the CNY holiday in 2019 showed a faster recovery of the Chinese

NOx emissions after the 2019 CNY, which was consistent with the Baidu “Qianxi" mobile data (Kraemer et al., 2020; Zhang

et al., 2021). During the 2020 lockdown period for COVID-19 pandemic, the DL model estimated maximum reductions in NOx

emissions 42% for JJJ and 30% for the YRD. These estimates were consistent with the TCR-2 T106 data (with reductions of340

49% for JJJ and 31% for the YRD), the high resolution TCR-2 T213 data (with reductions of 41% for JJJ and 40% for the

YRD), and with Feng et al. (2020) (who estimated reductions of 42% for JJJ and 41% for the YRD). For the PRD, the DL

model estimated a significantly smaller maximum reduction in NOx emissions of 24%, which is likely due to the model bias

in the region.

The analysis during the 2020 lockdown period showed that the DL model has the ability to extrapolate outside the regime345

of the training data set. Our results showed the potential of this DL model as a good complementary tool for conventional data

assimilation approaches. The flexibility of the model is such that it could be adapted to provide near-real time estimates of

NOx emissions for air quality forecasts and chemical reanalysis systems. The high computational efficiency of the DL model

in integrating large amounts of observational data from multiple sources would be advantageous in the emerging era with

geostationary satellites that will significantly enhance observational coverage for air quality applications.350
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