1 Supplementary Materials

2 Table S1: The predictors for each PC and associated statistical models.

			model
PC1	x ₁	Sep SST	
		Southwest Pacific (20.5 °-42.5 °S, 115.5 °-142.5 °W)	$y=0.5x_1+0.52x_2$
	X ₂	Oct SST	$y = 0.5x_1 + 0.52x_2$
		Sargasso Sea (30.5 °-40.5 °N, 45.5 °-60.5 °W)	
PC2	x ₁	Oct Snow depth	y=0.38x ₁ +0.38x ₂ +0.39x ₃
		Eastern Siberia (57 °-70 °N, 110 °-170 °E)	
	X ₂	Oct Sea ice	
		North to Barents Sea (82 °-90 °N, 45 °-130 °E)	
	X 3	Sep-Oct Soil moisture	
		India Peninsula (15 °-30 °N, 70 °-90 °E)	
PC3	x ₁	Oct Soil moisture	$y=0.58x_1-0.44x_2$
		Indo-China Peninsula (20 °-30 °N, 92.5 °-100 °E)	
	x ₂	June-Aug SST	
		Gulf of Alaska (35 °–60 °N, 135 °–180 °W)	
PC4	X 1	Oct Sea ice	
		Chukchi Sea (73 °-77 °N, 160 °-180 °W)	
	x ₂	Oct Soil moisture	$y = -0.55x_1 + 0.39x_2 - 0.37x_3$
		Kamchatka peninsula (60 °-67 °N, 160 °-178 °E)	
	X ₃	Aug-Sep SST	
		Arabian Sea (25 S–20 N, 50 °–93 E)	

3

4

Figure S1: Variation in the reanalysis (black) and predicted winter-mean PM_{2.5} (orange) by anomaly model (a) and SP-SE (b) in
east of China from 2001 to 2019.

11 Figure S2: Variation in the reanalysis (black) and predicted winter-mean PM_{2.5} by SP-SE (orange) and SP-CV (green) in east of

- 12 China from 2001 to 2019. The solid lines indicate the linear trend during 2000-2011 and 2012-2020 respectively.
- 13
- 14

Figure S3: Flowchart of steps to build SP-CV model.

19

Figure S4: Correlation coefficients between each predictand (a, d, h, k), their predictors: (b-c, e-g, i-j, l-n) and observed DY of atmospheric circulations in winter. The atmospheric variables involved 10m wind (arrows in panel a-n), Z500 (contours in panel a-j) and Z850 (shading in panel a-g and contours in panel k-n) and SLP (shading in panel h-n). The predictor in panel (j, l, n) was multiplied by –1 before calculating the correlation coefficient. The slashes indicate CCs exceeding the 95% confidence level.