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Predicting gridded winter PM2s concentration in east of China
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Abstract. Exposure to high levels of concentration of fine particle matters with diameter <2.5 um (PM2;) can lead to great
threats to human health in east of China. Air pollution control has greatly reduced the PM.s concentration and entered a
crucial stage that required supports like fine seasonal prediction. In this study, we analysed the contributions of emission
predictors and climate variability to seasonal prediction of PMjs concentration. The socioeconomic-PM,s, isolated by
atmospheric chemical models, could well describe the gradual increasing trend of PM.s during the winters of 2001-2012
and the sharp decreasing trend since 2013. The preceding climate predictors have successfully simulated the interannual
variability of winter PM.s concentration. Based on the year-to-year increment approach, a model for seasonal prediction of
gridded winter PMs concentration (10kmX10km) in east of China was trained by integrating of emission and climate
predictors. The area-averaged percentage of same sign was 81.48% (relative to the winters of 2001-2019) in the leave-one-
out validation. In three densely populated and heavily polluted regions, the correlation coefficients were 0.93 (North China),
0.95 (Yangtze River Delta) and 0.88-87 (Pearl River Delta) during 2001-2019 and the root-mean-square errors were 6.58,
4.1-2 and 4.6-7 ug/m®. More important, the significant decrease in PM,s concentration, resulted from implementation of
strict emission control measures in recent years, was also reproduced. In the recycling independent tests, the prediction
model developed in this study also maintained high accuracy and robustness. Furthermore, the accurate gridded PMys

prediction had the potential to support air pollution control on regional and city scales.
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1 Introduction

Exposure to fine particle matters with diameter <2.5 um (PMz2s) can lead to severe respiratory and cardiovascular
diseases (Cohen et al., 2017) and even directly induces DNA damages (Wu et al., 2017). According to the newly
recommended air quality guidelines, the level of annual mean PM2s > 5 pug/m® has the potential to threat human health
(World Health Organization, 2021). In 2020, the average PM, s concentration in cities of China was 33 pug/m?, although the
implementation of strict air quality control measures substantially reduced the emission of primary pollutants (Zhang et al.,
2022). The changes in the emission of air pollutants also resulted in the shift of winter PMys trend in east of China, that is,
the winter PMzs concentration gradually increased during 2000-2012 but has been decreasing since 2013 (Figure 1a).
Evident interannual variation was also be found in the changes of PMas concentration in winter_(December-January-
February), which was largely attributed to climate variability (Yin et al., 2020a, 2020b). Given the severe impact of PM2s

pollution and yearly plan of control action, it is meaningful and urgent to develop prediction models to forecast PMzs
concentration 1~3 months in advance. Furthermore, the predicting results should have high resolution to provide valuable

information on the regional and city levels.

To accurately predict climate anomalies is still a real challenge, while predicting air pollution on seasonal scale is much
harder than predicting routine meteorological elements (Wang et al., 2021). In general, the methods of climate prediction
included numerical climate models and statistical approaches. Despite the great advances in atmospheric chemical models in
recent years, most of these models were not designed for real-time operation of seasonal predictions and lacked the coupling
of the atmospheric chemical composition and the entire earth system (An et al., 2018). Additionally, statistical prediction of
winter PM.s concentration was limited by the short sequences of observed atmospheric composition, because broad
observations only started in 2014 in China. The gray prediction model performed well in dealing with small sample data and
thus was used to forecast PM.s concentration (Wang and Du, 2021; Wu et al., 2019; Xiong et al., 2019). Considering the
strong control measures implemented to improve air quality, the buffer operators can be added to the discrete gray prediction
model to reduce deviations (Dun et al., 2020). These mathematical models showed certain predictive skills, but lacked of

underlying physical mechanisms and long-standing robustness.

Many previous studies employed the long-term observed visibility, air humidity and weather phenomena to reconstruct
data of haze (Xu et al., 2016; Zou et al., 2017; He et al., 2019; Yin et al., 2020b). The change in winter haze days consists of
long-term trend and interannual-decadal variations. The long-term trend of haze was mainly determined by human activities
(i.e., primary pollutants emission and climate change), while its interannual-decadal variations had close relationships with
climate variability (Yin et al., 2020b; Geng et al., 2021a). Besides analysis of climate mechanisms, the number of haze days
was also used as a proxy-predictand of PM2s pollution. Taking advantage of the memory effect in slow-varying climate
forcings (e.g., sea surface temperature and sea ice), the number of haze days was successfully predicted in North China (Yin
and Wang 2016; Yin et al., 2017), Yangtze River Delta (Dong et al., 2021) and Fenwei Plain (Zhao et al., 2021). Chang et al.

(2021) used regional stratospheric warming over northeastern Asia in November to predict haze pollution in the Sichuan
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Basin in 5-7 weeks. Information from the preceding autumn El Nifo was also extracted to predict winter haze days in South
China (Cheng et al., 2019) and aerosol optical depth over northern India (Gao et al., 2019). In most of these studies, the
predictand is area-averaged number of haze days, which was a bit different from PM2s concentration in use and fine spatial

information was missing.

The Tracking Air Pollution (TAP) database combines information from ground observations, satellite retrievals,
emission inventories and chemical transport model simulations based on data fusion. A full-coverage PM,s reanalysis
dataset with a spatial resolution of 20km X 10km from 2000 until present has been released (Geng et al., 2021b). It becomes
feasible to develop statistical prediction model of PM2s concentration based on this long-range dataset. Furthermore, as
reviewed by Yin et al., (2022), the predictability of winter haze decreased during-after 20142020, which was mainly
attributed to the disturbances from super-strict emissions reduction in China. Rapid changes in human activities and changes
in climate anomalies both should be considered and included in PM3s prediction models. This is the major motivation of the
present study to build a climate-emission hybrid model for the prediction of gridded PM.s concentration in east of China.
The findings of this study have enormous potentials to support fine designs and implements of air pollution control in

advance.

2 Datasets and method

2.1 Data

The monthly sea ice concentration (SI) and sea surface temperature (SST) dataset_from 2000 to 2019, with a spatial

resolution of 11 were provided by the Met Office Hadley Centre (Rayner et al. 2003,
https://www.metoffice.gov.uk/hadobs/hadisst/). Monthly soil moisture (Soilw), snow depth (SD), geopotential height at
500hPa (2500) and 850hPa (Z850), sea level pressure (SLP) and 10m wind were extracted from the fifth generation
reanalysis product (ERAS5) produced by the European Center for Medium Range Weather Forecasts (Hersbach et al. 2020,
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset). Annual emissions of ammonia, nitrogen oxide, BOC,

primary PM, s, and sulfur dioxide in China were derived from the MEIC model (http://www.meicmodel.org/;Li et al., 2017).

Hourly site-observed PM»s concentration during 2014-2020—2019 were also employed in the present study
(https://www.aqistudy.cn/historydata/). The long-term and high-resolution TAP PM;s concentration dataset during 2000-
2020-2019 can be downloaded from http://tapdata.org (Geng et al. 2021b). The PM; s reanalysis data were used as training
data as well as test data in the construction of the prediction model, and the observed PM.5 concentration were also applied

to verify the prediction skill of the model.


https://www.metoffice.gov.uk/hadobs/hadisst/
http://www.meicmodel.org/
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2.2 Isolation of socioeconomic-PMas

We employed the simulated annual-mean PMajs concentrations that exclude the meteorological contributions to
represent the impacts of anthropogenic emissions. Compared with direct use of emission inventory of primary pollutants, the
isolated socioeconomic-PM.s (SE-PM2s) involved both results of emission changes and follow-up physical and chemical
reactions in the air. To remove the meteorological influences from the TAP PM.;s data, we used chemical transport models
and emission inventories to separate the contributions from emission and meteorology changes. Following the approach
proposed by Xiao et al. (2021), we used a ‘fix emission’ scenario to quantify the impacts of interannual meteorological
variation on PM_s concentration in Community Multiscale Air Quality (CMAQ) model. Subsequently, a full simulation with
year-by-year emission and meteorology was completed. Differences between the ‘fix emission’ simulation and the full
simulation were considered to be PM.5 concentrations driven by anthropogenic emissions. This data has been analyzed to

quantify relative influences of different drivers on PM.s-related deaths in China (Geng et al. 2021b).

2.3 Year-to-year increment prediction

The year-to-year increment approach is proposed to improve the skill of climate prediction (Wang et al., 2008), in
which the predicted object is not climate anomalies but is the difference between the current and the previous year (DY).

After adding the predicted DY to the observed predictand in the year before, the final predicted results_during 2001-2019

were obtained. Based on full use of observations in the previous year, the gradually changing trend and inter-decadal
components can be well reproduced. Anthropogenic-natural-forcing predictand could be represented by Y = YS + YC, where
YS and YC denoted the slowly varying socio-economic and climatic components, respectively. In the DY approach, which

was expressed by:
DY =Y, =Yy = (VS +YC) — (VSe1 +YCy) = (VS = VS ) + (VG — YCiy)

where the subscripts t and t-1 indicated the current and the previous years. Before 2013, the difference between
anthropogenic emissions in two adjacent years was small, Yin and Wang (2016) assumed (YS, — YS;_,) = 0 and proposed
that DY was mainly influenced by climate variability. However, due to significant reduction of anthropogenic emissions
after the implementation of China’s Air Pollution Prevention and Control Action Plan (Zhang and Geng, 2020), the
assumption of (YS, —YS,_;) = 0 was no longer completely valid. Therefore, it is meaningful to consider the information of

rapid emission changes and re-build the prediction model (Yin et al., 2022).

(1) Seasonal prediction model based on SE-PM, 5 (SP-SE): this prediction model unilaterally emphasized the impacts of

human activities and was trained by DY of SE-PM;s in each grid.

(2) Seasonal prediction model based on preceding climate variability (SP-CV): this prediction model was highly

focused on the impacts of climate condition and trained by DY of closely related climate factors.
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(3) Seasonal prediction model based on both SE-PM: 5 and climate (SP-EC): the contributions of emissions and climate

factors are incorporated into one prediction model, i.e., combining the PM2s DY from SP-SE and SP-CV.

In the leave-one-out cross validation, root-mean-square error (RMSE), relative bias and correlation coefficient (CC)
were calculated. When discussing the CC after the detrending, the linear trend was removed by stages (i.e., winters of 2001-
2011 and 2012-2019). The percentage of the same sign (PSS; same sign means the mathematical sign of the fitted and

observed PM; s anomalies was the same) was also computed.

3 Relative contributions of emission and climate predictors

3.1 Roles of emission

Human activities are the major source of haze pollution in east of China (Zhang and Geng, 2020), which implies that a
large proportion of PM2s concentration is predictable. Particularly, the large reduction of anthropogenic emissions since
2013 determined the decreasing trend of winter PM25s concentration (Figure 1a). As aforementioned, the socioeconomic-
PM_s (i.e., SE-PM;5s) isolated by CMAQ could well reflect the impacts of human activities and was a potentially effective
predictor for seasonal prediction of PM2s concentration. As expected, the one-variable linear regression model based on
anomalies of SE-PM s successfully reproduced different slopes of trend during 2001-2007, 2008-2013 and 2014-2019, but
the predicted PM2 s concentration varied too smoothly (Figure S1a). Furthermore, the quantities were underestimated when
observed PM2s concentration increased and overestimated when PMas concentration rapidly decreased. To eliminate the
influence of trend shift, we calculated DY of PM.5s and SE-PM2s. Compared with its anomalies, PM2s DY did not show
significant trend but displayed regularly oscillating characteristic (Figure 1b), and its predictability was much better (Wang
et al., 2008). The SP-SE model was trained by DY of SE-PM3s in each grid to predict PM2s DY. After adding the predicted
PM2s DY to observed PM, 5 in the previous year, the final PM2s concentration was obtained. The CC between predicted and
observed PM; s was 0.87 during 2001-2019 in the east of China. The underestimated (2001-2007) and overestimated (2014—
2019) values in Figure Sla were largely corrected and interannual variation also appeared in the results of SP-SE prediction
(Figure S1b). The staged trends from the SP-SE model almost overlapped with the observed trends, indicating the model

performed well in capturing the changes of trend (Figure S2).

North China (NC; 34-42N, 114-120E), the Yangtze River Delta (YRD; 27-34N, 117-122<E) and the Pearl River
Delta (PRD; 21.5-25N, 112-116E) are three regions that have been experiencing severe PM, s pollution (Yin et al., 2015).
Thus, the performance of the SP-SE model in NC, the YRD and the PRD were validated separately (Table 1, Figure 2 a-c).
The RMSEs were 12.2, 6.2 and 6.8 pg/m®in NC, the YRD and the PRD, respectively (Table 1). Larger RMSE in NC did not
indicate the SP-SE model performs worse in NC than in the YRD and the PRD, because the mean value of PMgys
concentration was the highest in NC. The relative bias (absolute bias/mean) in NC was 8.5%, which was smaller than that in

the PRD (12.9%). Consistent with its performance in east of China, the SP-SE model also well reproduced the staged trends
5
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in NC, the YRD and the PRD (Figure 2 a-c). However, when the linear trend was removed, the CC between predicted and
observed PM_ 5 significantly decreases in all the three PM_s-polluted regions (NC: from 0.78 to —0.13; YRD: from 0.88 to —
0.28; PRD: from 0.74 to 0.16). That is, the prediction model trained by the socioeconomic-PM,s could well predict the
values and staged linear trends. However, it certainly had no ability to simulate the interannual variability of PMas

concentration.
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Figure 1: Variation in (a) winter PM2s concentration (black; unit: ug/md), (b) PM2s anomalies (gray; compared to the mean of
2000-20192020; unit: ug/m3) and PM2s DY (black; unit: ug/m?). Color lines in panel (a) indicate relative variations in annual
emissions (compared to that in 2008, unit: %) of ammonia (NHs; red), nitrogen oxide (NOx; purple), BOC (green), PM2s (blue),
and sulfur dioxide (SO2; yellow) in east of China. The black dashed line in panel (a) indicates the linear trend of PMzs

concentration.

Table 1: The leave-one-out validated root-mean square errors (RMSE), relative biases (absolute bias mean; %) and percentages of

same sign (PSS) for three statistical models.

RMSE (pg/m®) Relative Bias (%)
NC YRD PRD NC YRD PRD
SP-SE 12.2 6.2 6.8 8.5 6.9 12.9
SP-CV +68.0 478 5.2 5.23 5.96.2 9.79
SP-
ECCE 6.58 412 467 4.85.1 45.91 8.85




171

150 1 (21) NC
o 125 7/_\\_/,_4/_: S o~
2 e \:
= 100 T
754 =—— Obs SP-SE CC=0.78 \\—"'-a-.
A - 20
/\ 7 \—-—.__,/\,/\ \Vih
20
—— Obs (de) SP-SE (de) CC=-0.13
901 (b) YRD
w75
E
W 60 -
=
45 -
304 —— Obs —— SP-SE CC=0.88
L 20
- 20
—— Obs(de) —— SP-SE(de) CC=0.28
c) PRD
604 ©
mE [ - T
@ 40 -
204 = Obs —— SP-SE CC=0.74
- 20
2 s A Sk
. 20
—— Obs(de) —— SP-SE(de) CC=0.16
2000 2004 2007 2010 2013 2016 2019
Year

150 A (d)NC
125 A O\ =\
/\ A_‘J -
100 4 =
\L-‘
75 == Obs SP-CV CC=0.92 +
F 20
X /_/\\—\‘—/ /\ 1,
A%
F—20
— Obs (de) SP-CV (de) CC=0.64
9 4 (e) YRD
75
60
45 1
0] =—— obs —— SP-CV CC=0.94
- 20
W- 0
F 20
—— Obs(de) = SP-CV (de) CC=0.62
PRD
w04 ®
204 = Obs = SP-CV CC=0.83
F 20
AFQAW/- o
. F—20
= (bs (de) == SP-CV (de) CC=0.59
2001 2004 2007 2010 2013 2016 2019
Year

# gfm]



172

173
174
175

176

177
178
179
180
181
182
183
184
185
186
187

188
189

1509 () NC 1501 @) NC 1509 (g) NC
- ] Ve, ] J AN
T 125 A SN _../"\__ 125 s/\—,_/._\.._ e g P 125 -/-\-/_r_g__\__’/'\
=i F— N\ s >
£ 100 -\ 100 Swg 100 e
759 == Obs SP-SE CC=0.78 = = 759 == Obs SP-SE CC=0.91 \:“n, 759 = Obs SP-SE CC=0.93 V—‘..
/\ 20 r20 /\ r20
/\\/,--/ \-—\_/\//\\//'O /\/f/\\-—\‘/\//\\,f" 0 /\/ — \-—\\/,\//\v/"O B
<p.§ - -20 Sp.S s -20 o % -20
= Obs (de) SP-SE (de) CC=-0.13 = Obs (de) SP-SE (de) CC=0.63 = Obs (de) SP-SE (de) CC=0.67
901 (b) YRD, 901 (¢) YRD 901 (h) YRD
& 75 1 < ER o 75 e
5 60 1 60 1 N 60 1
= 454 45 N 45 gl
30{ = Obs —— SP-SE CC=0.88 304 = Obs = SP-SE CC=0.94 304 = Obs —— SP-SE CC=0.95
r20 r20 20
WM- 0 WWN 0 RN\ 0 i
— - -20 . e r—20 n—— - -20
= Obs (de¢) = SP-SE (d¢) CC=-0.28 = Obs (d¢) ~— SP-SE (de) CC-0.61 = Obs (d¢) == SP-SE (d¢) CC=0.42
c) PRD f) PRD i) PRD
604© 60-” 604 ®
e ohA=S== e T ) A 2
a_i, 40 404 = 404 - 2
204 = Obs —— SP-SE CC=0.74 204 = Obs = SP-SE CC~0.83 204 = Obs —— SP-SE CC=0.87
r20 k20 20
ﬁW' o WW o M/\/\/ o £
e o r—20 G 55 r—20 & G F—20
—— Obs(de) = SP-SE (d¢) CC=0.16 Obs (de) == SP-SE (d¢) CC=0.64 —— Obs(de) = SP-SE (de) CC=0.67
2001 2004 2007 2010 2013 2016 2019 2001 2004 2007 2010 2013 2016 2019 2001 2004 2007 2010 2013 2016 2019
Year Year Year

Figure 2: Variations in reanalysis (black) and SP-SE predicted winter PM2s concentration in (a) NC (orange), (b) the YRD (blue),
and (c) the PRD (green) from 2001 to 2019 before (upper) and after (lower) detrending. The predicted PM2s is dependent on the
leave-one-out validation. (d-f) are the same as (a-c), but for SP-CV._(g-i) are the same as (a-c), but for SP-EC.

3.2 Impacts of climate variability

Decomposition and prediction of dominant modes of climate conditions were applied in short-term prediction of
precipitation (Huang et al., 2022) and surface air temperature (Hsu et al., 2020) in east of China. In this study, we decompose
the first four leading modes of PM2s DY during 2001-2019 (accumulated variance contribution=810-5%) produced by
Empirical Orthogonal Function (EOF) analysis, built prediction model for each principal component respectively, recalculate
the predicted PM2s DY by projecting the predicted PCs onto the observed EOF spatial patterns, and finally added the
predicted PM2s DY to the observation in previous year to finish the development of SP-CV (Figure S3, Table S1). The
interannual-decadal variation in haze pollution could be well explained by meteorological condition and preceding climate
forcings (Yin et al., 2020b) such as the Arctic sea ice extent (Wang et al., 2015; Yin et al., 2019), Eurasia snow (Zou et al.,
2017) and soil moisture (Yin and Wang 2018), SST in the Pacific (Yin and Wang 2016; He et al., 2019) and Atlantic (Yin
and Zhang 2020a). Prediction signals from these climate anomalies could be observed before winter and owned specific
physical implications.

The first EOF mode of PMjs DY illustrated heavily haze-polluted status in NC (Figure 3a, €). According to the
correlation analysis, the September SST DY in the Southwest Pacific (CC with PC1=-0.736; Figure 4a) and October SST

10



DY in the Sargasso Sea (CC=-0.736; Figure 4b) were selected to be the two predictors for PC1 of PM,s DY (Table S1).
Both of the predictors had close relationships with dipole pattern of Eurasian cyclonic anti-cyclonic-and Northeast Asian
eyelenic-anti-cyclonic circulations (Figure S4b, c), which was identical to those associated with PC1 (Figure S4a) and could
restrain the invasion of irduee-cold air from high latitude into-deviate-frem NC. The second EOF mode of PM,5 DY showed

a ‘north-south’ dipole pattern (Figure 3b, f). The variations of PM,s DY in Huanghuai and the YRD accounted for a large

proportion. The October soil moisture DY in the Indo-China Peninsula (CC with PC23=0.73; Figure 4c) and June-August
SST DY in the Gulf of Alaska (CC=-0.69; Figure 4d) were selected to build prediction model of PC2 (Table S1). The

anomalous atmospheric circulation associated with PC2 and its predictors could enhance cold air invasion to NC (strong

northerlies) but prevented the cold air from moving further south (weak 10m winds in Figure S4 d-f). Fhe-second-EQOF mode

11
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Figure 3: Spatial patterns (a—d) and corresponding PCs (e-h) of the first four EOF modes for winter PM2s DY in east of China

during 2000-201920. The variance accounted for by each EOF mode is given in the panel.
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for PC1 are (a) September SST over the South Pacific Ocean and (b) October SST over the Sargasso Sea. The predictors for PC2
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Peninsula.
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n-Figure-S4-h-p—The third EOF mode indicated a tripoletriple pattern with centers located in the east of Inner Mongolia, the

Fenwei Plain and South China, respectively (Figure 3c, g). The Fenwei Plain was highly polluted and gained a great

attention in recent years, while the other two centers have relatively better air quality (Zhao et al., 2021). The October snow
depth DY in eastern Siberia (CC with PC32=-0.65; Figure 4e), October sea ice DY in the north to Barents Sea (CC=—0.60;

Figure 4f) and September-October soil moisture DY in the Indian Peninsula (CC=—0.79; Figure 4q) were considered in the

prediction model (Table S1). The predictors possibly induced atmospheric responses in winter (Figure S4 h-j) that were
similar to PC3 (Figure S4 g). The abnormal northerlies over North China and South Chinaanti- enhanced theeyelenie
anomaly-ever-the-Fenwei-Plainrestricted horizontal-and-vertical dispersion of haze particles (Zhong et al., 2019), while the
weak wind speed and surface wind convergence in central China were conductive to the accumulation of pollutants. A

statistical model (Table S1) was also developed to predict the ‘East-West’ dipole shown in the fourth EOF mode (Figure 3d,
h) based on October sea ice DY in the Chukchi Sea (CC=—-0.64; Figure 4h), October soil moisture DY in the Kamchatka
peninsula (CC=0.7272; Figure 4i) and August-September SST DY in the Arabian Sea (CC=—0.7677; Figure 4j). The
atmospheric anomalies in the lower troposphere and near surface, which were associated with the above predictors and PC4,

also had similar impacts on haze pollution (Figure S4 k-n).

As shown in Figure 5, multiple linear regression model demonstrated good performance in simulating the variation in
gach PC. The CCs between observed and predicted 14" PCs were 0.8582, 0.9480, 0.79-75 and 0.93, respectively, all of
which were above the 99% confidence level, indicating that the model successfully reproduced each individual EOF mode.
Meanwhile, the yearly increment approach had the ability to address trend and its changes that were not obviously
mutational (Yin and Wang 2016). The CC between observed and predicted PM; s concentrations before (after) detrending by
stages was 0.92-91 (0.6463) in NC, 0.94 (0.6261) in the YRD and 0.83 (0.5964) in the PRD in the leave-one out validation
(Figure 2 d-f). Thus, the SP-CV model well simulated both the trend and the interannual variation of PM. s concentration in
the east of China. In addition, the RMSEs in NC, the YRD and the PRD were 7:68.0, 4.87 and 5.23 ug/m®and the relative
biases were 5.23%, 56.2% and 59.9%, respectively (Table 1), all of which were obviously smaller than those of SP-SE. The
PSS, which is an important indicator of climate prediction, was also evaluated relative to the winters of 2001-2019. The
area-averaged PSS from SP-CV was 86:179.9% in east of China, which was 8-£7.9% higher than that from SP-SE (Figure 6).
Although the SP-CV model performed better than the SP-SE, especially that it could capture the sharp downward trend after
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2013 in NC and YRD, the RMSEs of the SP-CV simulations for the period 2015-2019 increased up to 11.6%, 6.54 and 5.38
ug/m®in NC, the YRD and the PRD compared to that of the SP-SE simulations. Obvious positive biases were found in the
predictions of PM_s concentration after 2014 (Figure 2 d-f) because the SP-CV model was short of information about the
super-strict emission regulations (Figure S2). Based on different levels of haze pollution, various degrees of air pollution
control were carried out in NC, the YRD and the PRD (Zhang and Geng, 2020). In NC, where anthropogenic emissions were
most prominently restricted, the predicted biases were also the largest (Figure 2d). The predicted biases were the smallest in
the PRD, while that in the YRD were in-between. These results were consistent with different intensities of pollution control
in the three regions (Figure 2e, f), which further indicated the importance to fully take into account the impacts of climate

variability and anthropogenic emissions.
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Figure 5: Scatter plots of normalized observed (x axis) and predicted (y axis) PC1 (blue), PC2 (red), PC3 (green) and PC4 (gray)
from 2000 to 201920. The predicted PCs are dependent on the leave-one-cross validation.

4 PMzs prediction with integrated factors

As aforementioned, the SP-SE model trained by the SE-PM.s DY considered the impacts of emission changes one-
sidedly and could well simulate the values and staged trends. However, it completely failed to reproduce the interannual
variation of winter PM2 s concentration in east of China (Figure 2 a-c). Differently, the predictors of climate variability could

introduce the interannual variation of winter PM2s and the yearly increment approach had the ability to bring in the slow
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trend. The SP-CV model successfully predicted most of the trend and interannual variation in PM25 concentration (Figure 2

d-f) but underestimated the sharp decreasing trend (Figure S2), which led to positive forecast biases after 2013 (Figure 2d-f).

To fully contain predictive signals of human activities and climate anomalies, the predicted PM25 DY from SP-SE and
SP-CV model for the current year were added up and the sum was added to PM2s observations in the previous year to
develop the final prediction model, i.e., the SP-EC model. As expected, the performance of SP-EC model was better than
that of both SP-SE and SP-CV models. Area-averaged PSS was 81.48% in east of China (Figure 6). The CC between
observed and SP-EC-predicted PM2s concentrations before (after) detrending was 0.96 (0.748) in east of China; the RMSE
was 2.757 ug/m?, which was 43.87% (32.53%) smaller than the RMSE of SP-SE (SP-CV) in the leave-one out validation.
That is, the trend simulated by the SP-EC model almost overlapped with the trend of observations (similar to results of SP-
SE) and the interannual variation was also reproduced (similar to results of SP-CV). The CCs between observed and SP-EC-
predicted PM25s concentrations before (after) detrending were 0.93 (0.678) in NC, 0.95 (0.424) in the YRD and 0.88-87
(0.6667) in the PRD (Figure 2g-i). The RMSEs were 6.5-8 in NC, 4.2 in YRD and 4.76 pg/m®in PRD, which were 446.37%
(154.05%), 323.39% (12.58%) and 302.94% (911.65%) smaller than that of SP-SE (SP-CV), indicating greater
improvements in NC than in the other two regions (Table 1). According to the relative biases, the SP-EC model also
demonstrated a better skill in NC (4-85.1%) than that in the YRD (4.95:1%) and the PRD (8.85%) in the leave-one out
validation. As shown in Figure 7, the decreases in PMys resulted from the implementation of strict emission control
measures in recent years were also reproduced by the SP-EC model. The evident and positive biases in the SP-CV results
were largely corrected in east of China, NC, the YRD and the PRD (Figure 7).
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Figure 7: Scatter plots of the reanalysis (x axis) and predictions of (y axis) PM2s concentration by SP-CV (green) and SP-EC (blue)
in (a) east of China, (b) NC, (c) the YRD and (d) the PRD. The points during 2012-2019 are filled and the short lines between SP-
CV and SP-EC pointes indicate the calibrations.

High spatial resolution was one of the advantages of the seasonal prediction model developed in this study. That is, the
SP-EC model could predict winter PM2s concentration at each 10km X 10km grid in east of China. When only considering
emission predictors (i.e., SP-SE), RMSEs>12 pg/m®were found in middle part of the study region and the PSS was lower
than 60% in South China and the Inner Mongolia (Figure 6a). When only considering climate predictors (i.e., SP-CV),
RMSEs>12 pg/meexisted in Beijing and its surrounding areas and PSS significantly increased compared to the result of SP-
SE (Figure 6b). When integrating both of the emission predictors and climate predictors (i.e., SP-EC), the RMSE in each
grid further decreased and the PSS also increased (Figure 6¢). In middle part of the study region, the PSS was higher than

80%. In view of gaps between site observations and model simulations, the SP-EC-predicted PM2s concentrations were
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304  compared with site observations (Figure 8). NC was the most severely polluted area and the SP-EC model could capture the
05 PM2s values and interannual differences. Particularly, the SP-EC model reproducee the sudden rebound of PM3 s pollution in
06 2018 (Figure 8e) that was mainly resulted from climate anomalies (Yin and Zhang 2020a). However-the-meodel-failed-to
07  well-predictthe-evident PM, s-drops-in-east-of China(Figure-8f)-caused-by-COVID-19-guarantines{(¥in-et-al-20
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Due to the limitation of short sequence of data, recycling independent tests (RIT) were designed to further verify the
performance of the SP-EC model. In the RIT predictions, the prediction model was trained by samples from 2001 to the
expiration year of training data and the PM,s anomalies from the next year to 2019 were independently predicted. For
example, the prediction model trained by the data from 2001 to 2014 can produce independent predictions from 2015 to
2019. The expiration year of the training data moved forward from 2015 to 2019, so there were 15 independent predictions.
The PMys concentration was independently predicted 5 times for 2019, 4 times for 2018, and so on. The PSS of PM3s

anomalies was 100%, not only relative to winters of 2001-2019 but also 2015-2019, indicating a high accuracy of prediction
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in east of China. The predicted values for each year did not vary much (Figure 6d), indicating a high reliability and
robustness of the model. For example, when the SP-EC model was trained by the samples only from 2000 to 2014, the
predicted PM2s anomalies for 2018 and 2019 were also close to the results of leave-one-out validations and the

measurements.

5 Conclusions and discussion

The change of haze pollution consisted of long-term trend, interannual-decadal variations, synoptic disturbances and so
on. Seasonal prediction was-focused on predicting long-term trend and interannual-decadal variations 1~3 months in advance
(Wang et al., 2021). Because of the limitation of short observational period, many previous studies employed the number of
haze days as proxy of PM. s pollution to build statistical prediction model (Yin and Wang 2016; Yin et al., 2017; Dong et al.,
2021; Zhao et al., 2021; Chang et al., 2021). Since 2020, several high-resolution PM.s reanalysis datasets have been
successively released, which greatly increased the possibility for direct seasonal prediction of PM2s concentration that is

more familiar to decision makers and the public (Yin et al., 2021).

In this study, two seasonal prediction models were separately trained by emission factor (i.e., SP-SE) or preceding
climate predictors (i.e., SP-CV) to discuss their relative contributions. The SP-SE model could simulate the slow rising trend
of PM25 concentration before 2012 and the strong downward trend after 2012. However, it was incapable of importing the
interannual component. The SP-CV model benefited from the year-to-year increment approach and could introduce a large
portion of the linear trend except the sharp decrease of winter PM2s concentration from 2013. Furthermore, the SP-CV
model performed well in predicting the obvious interannual variation of PM2 s concentration. We integrated the emission and
climate factors to establish the final prediction model (i.e., SP-EC), which could well reproduce both the trend and the
interannual variation of PM; s concentration. The area-averaged PSS was 81.84% in east of China and CC between observed
and predicted PM. 5 concentrations before (after) the detrending was 0.96 (0.748). The RMSEs were 6.85 in NC, 4.21 in the
YRD and 4.76 ug/m®in the PRD, which were 44.3% (15.0%), 32.3% (12.5%) and 30.9% (9.6%) 46-7%{14.5%)-33.9%
{£2.8%)-and-32.4%(11.5%)-smaller than that the results of SP-SE (SP-CV). Due to the implementation of the super-strict

emission control measures, the air quality has been substantially improved and this improvement was also perfectly

predicted by the SP-EC model. During recycling independent tests, the PSS of PM,s anomalies was 100%, demonstrating
high accuracy and robustness. The high-resolution PM; s prediction could provide scientific supports for air pollution control
at the regional and city levels._Censideringthe severe impaetof haze pollutionFor example, real-time PM,selimate
prediction is highly demanded for-the purpese-te determininge how to reduce anthropogenic emissions and how much should

be reduced; 10kmXx10km gridded PM,s information also had potentials to support finely and dynamically regional

managements and collaborations.
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This study mainly focused on the-developments of seasonal PM, s prediction model. FheRelated theories and methods
for seasenal prediction-of PM, s-concentration-are still exploratory and need further discoveries. Although the SP-EC model

was proved to be skilled, the underlying physical mechanisms of climate predictors were not sufficiently explained and

needed further in-deep studies. As shown in Figure 8f, the SP-EC model failed to well predict the evident PMy s drops in east
of China caused by COVID-19 quarantines in the winter of 2019 (especially February in 2020) (Yin et al., 2021). Therefore,

such sudden fluctuations of PM.s_concentration were not involved in the established prediction model. Furthermore, the

EOF pattern of PM,s possibly changed under climate change and must influence the climate component of PM2s, which
should be updated in time. Furthermore;-althoughAlthough the SP-EC model had high spatial resolution, it could only output

winter-mean PMys concentration. It was meaningful to build menthhy—sub-seasonal models to provide more detailed

predictions. tr-additien,—-mModern weather and climate forecasts were heavily dependent on numerical prediction models.

Thus, it is imperative to design and develop numerical models that target at routine seasonal prediction of air pollution (Yin
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