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Abstract. Exposure to high levels of concentration of fine particle matters with diameter ≤2.5 μm (PM2.5) can lead to great 12 

threats to human health in east of China. Air pollution control has greatly reduced the PM2.5 concentration and entered a 13 

crucial stage that required supports like fine seasonal prediction. In this study, we analysed the contributions of emission 14 

predictors and climate variability to seasonal prediction of PM2.5 concentration. The socioeconomic-PM2.5, isolated by 15 

atmospheric chemical models, could well describe the gradual increasing trend of PM2.5 during the winters of 2001–2012 16 

and the sharp decreasing trend since 2013. The preceding climate predictors have successfully simulated the interannual 17 

variability of winter PM2.5 concentration. Based on the year-to-year increment approach, a model for seasonal prediction of 18 

gridded winter PM2.5 concentration (10km10km) in east of China was trained by integrating of emission and climate 19 

predictors. The area-averaged percentage of same sign was 81.48% (relative to the winters of 2001–2019) in the leave-one-20 

out validation. In three densely populated and heavily polluted regions, the correlation coefficients were 0.93 (North China), 21 

0.95 (Yangtze River Delta) and 0.88 87 (Pearl River Delta) during 2001–2019 and the root-mean-square errors were 6.58, 22 

4.1 2 and 4.6 7 μg/m3. More important, the significant decrease in PM2.5 concentration, resulted from implementation of 23 

strict emission control measures in recent years, was also reproduced. In the recycling independent tests, the prediction 24 

model developed in this study also maintained high accuracy and robustness. Furthermore, the accurate gridded PM2.5 25 

prediction had the potential to support air pollution control on regional and city scales. 26 

 27 

 28 

 29 
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1 Introduction 30 

Exposure to fine particle matters with diameter ≤2.5 μm (PM2.5) can lead to severe respiratory and cardiovascular 31 

diseases (Cohen et al., 2017) and even directly induces DNA damages (Wu et al., 2017). According to the newly 32 

recommended air quality guidelines, the level of annual mean PM2.5 > 5 μg/m3 has the potential to threat human health 33 

(World Health Organization, 2021). In 2020, the average PM2.5 concentration in cities of China was 33 μg/m3, although the 34 

implementation of strict air quality control measures substantially reduced the emission of primary pollutants (Zhang et al., 35 

2022). The changes in the emission of air pollutants also resulted in the shift of winter PM2.5 trend in east of China, that is, 36 

the winter PM2.5 concentration gradually increased during 2000–2012 but has been decreasing since 2013 (Figure 1a). 37 

Evident interannual variation was also be found in the changes of PM2.5 concentration in winter (December-January-38 

February), which was largely attributed to climate variability (Yin et al., 2020a, 2020b). Given the severe impact of PM2.5 39 

pollution and yearly plan of control action, it is meaningful and urgent to develop prediction models to forecast PM2.5 40 

concentration 1~3 months in advance. Furthermore, the predicting results should have high resolution to provide valuable 41 

information on the regional and city levels.  42 

To accurately predict climate anomalies is still a real challenge, while predicting air pollution on seasonal scale is much 43 

harder than predicting routine meteorological elements (Wang et al., 2021). In general, the methods of climate prediction 44 

included numerical climate models and statistical approaches. Despite the great advances in atmospheric chemical models in 45 

recent years, most of these models were not designed for real-time operation of seasonal predictions and lacked the coupling 46 

of the atmospheric chemical composition and the entire earth system (An et al., 2018). Additionally, statistical prediction of 47 

winter PM2.5 concentration was limited by the short sequences of observed atmospheric composition, because broad 48 

observations only started in 2014 in China. The gray prediction model performed well in dealing with small sample data and 49 

thus was used to forecast PM2.5 concentration (Wang and Du, 2021; Wu et al., 2019; Xiong et al., 2019). Considering the 50 

strong control measures implemented to improve air quality, the buffer operators can be added to the discrete gray prediction 51 

model to reduce deviations (Dun et al., 2020). These mathematical models showed certain predictive skills, but lacked of 52 

underlying physical mechanisms and long-standing robustness.  53 

Many previous studies employed the long-term observed visibility, air humidity and weather phenomena to reconstruct 54 

data of haze (Xu et al., 2016; Zou et al., 2017; He et al., 2019; Yin et al., 2020b). The change in winter haze days consists of 55 

long-term trend and interannual-decadal variations. The long-term trend of haze was mainly determined by human activities 56 

(i.e., primary pollutants emission and climate change), while its interannual-decadal variations had close relationships with 57 

climate variability (Yin et al., 2020b; Geng et al., 2021a). Besides analysis of climate mechanisms, the number of haze days 58 

was also used as a proxy-predictand of PM2.5 pollution. Taking advantage of the memory effect in slow-varying climate 59 

forcings (e.g., sea surface temperature and sea ice), the number of haze days was successfully predicted in North China (Yin 60 

and Wang 2016; Yin et al., 2017), Yangtze River Delta (Dong et al., 2021) and Fenwei Plain (Zhao et al., 2021). Chang et al. 61 

(2021) used regional stratospheric warming over northeastern Asia in November to predict haze pollution in the Sichuan 62 
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Basin in 5–7 weeks. Information from the preceding autumn El Niño was also extracted to predict winter haze days in South 63 

China (Cheng et al., 2019) and aerosol optical depth over northern India (Gao et al., 2019). In most of these studies, the 64 

predictand is area-averaged number of haze days, which was a bit different from PM2.5 concentration in use and fine spatial 65 

information was missing.  66 

The Tracking Air Pollution (TAP) database combines information from ground observations, satellite retrievals, 67 

emission inventories and chemical transport model simulations based on data fusion. A full-coverage PM2.5 reanalysis 68 

dataset with a spatial resolution of 10km10km from 2000 until present has been released (Geng et al., 2021b). It becomes 69 

feasible to develop statistical prediction model of PM2.5 concentration based on this long-range dataset. Furthermore, as 70 

reviewed by Yin et al., (2022), the predictability of winter haze decreased during after 2014–2020, which was mainly 71 

attributed to the disturbances from super-strict emissions reduction in China. Rapid changes in human activities and changes 72 

in climate anomalies both should be considered and included in PM2.5 prediction models. This is the major motivation of the 73 

present study to build a climate-emission hybrid model for the prediction of gridded PM2.5 concentration in east of China. 74 

The findings of this study have enormous potentials to support fine designs and implements of air pollution control in 75 

advance. 76 

2 Datasets and method 77 

2.1 Data 78 

The monthly sea ice concentration (SI) and sea surface temperature (SST) dataset from 2000 to 2019, with a spatial 79 

resolution of 1°×1°, were provided by the Met Office Hadley Centre (Rayner et al. 2003, 80 

https://www.metoffice.gov.uk/hadobs/hadisst/). Monthly soil moisture (Soilw), snow depth (SD), geopotential height at 81 

500hPa (Z500) and 850hPa (Z850), sea level pressure (SLP) and 10m wind were extracted from the fifth generation 82 

reanalysis product (ERA5) produced by the European Center for Medium Range Weather Forecasts (Hersbach et al. 2020, 83 

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset). Annual emissions of ammonia, nitrogen oxide, BOC, 84 

primary PM2.5, and sulfur dioxide in China were derived from the MEIC model (http://www.meicmodel.org/;Li et al., 2017). 85 

Hourly site-observed PM2.5 concentration during 2014–2020 2019 were also employed in the present study 86 

(https://www.aqistudy.cn/historydata/). The long-term and high-resolution TAP PM2.5 concentration dataset during 2000-87 

2020 2019 can be downloaded from http://tapdata.org (Geng et al. 2021b). The PM2.5 reanalysis data were used as training 88 

data as well as test data in the construction of the prediction model, and the observed PM2.5 concentration were also applied 89 

to verify the prediction skill of the model.  90 

https://www.metoffice.gov.uk/hadobs/hadisst/
http://www.meicmodel.org/
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2.2 Isolation of socioeconomic-PM2.5 91 

We employed the simulated annual-mean PM2.5 concentrations that exclude the meteorological contributions to 92 

represent the impacts of anthropogenic emissions. Compared with direct use of emission inventory of primary pollutants, the 93 

isolated socioeconomic-PM2.5 (SE-PM2.5) involved both results of emission changes and follow-up physical and chemical 94 

reactions in the air. To remove the meteorological influences from the TAP PM2.5 data, we used chemical transport models 95 

and emission inventories to separate the contributions from emission and meteorology changes. Following the approach 96 

proposed by Xiao et al. (2021), we used a ‘fix emission’ scenario to quantify the impacts of interannual meteorological 97 

variation on PM2.5 concentration in Community Multiscale Air Quality (CMAQ) model. Subsequently, a full simulation with 98 

year-by-year emission and meteorology was completed. Differences between the ‘fix emission’ simulation and the full 99 

simulation were considered to be PM2.5 concentrations driven by anthropogenic emissions. This data has been analyzed to 100 

quantify relative influences of different drivers on PM2.5-related deaths in China (Geng et al. 2021b). 101 

2.3 Year-to-year increment prediction 102 

The year-to-year increment approach is proposed to improve the skill of climate prediction (Wang et al., 2008), in 103 

which the predicted object is not climate anomalies but is the difference between the current and the previous year (DY). 104 

After adding the predicted DY to the observed predictand in the year before, the final predicted results during 2001–2019 105 

were obtained. Based on full use of observations in the previous year, the gradually changing trend and inter-decadal 106 

components can be well reproduced. Anthropogenic-natural-forcing predictand could be represented by Y = YS + YC, where 107 

YS and YC denoted the slowly varying socio-economic and climatic components, respectively. In the DY approach, which 108 

was expressed by: 109 

𝐷𝑌 = 𝑌𝑡 − 𝑌𝑡−1 = (𝑌𝑆𝑡 + 𝑌𝐶𝑡) − (𝑌𝑆𝑡−1 + 𝑌𝐶𝑡−1) = (𝑌𝑆𝑡 − 𝑌𝑆𝑡−1) + (𝑌𝐶𝑡 − 𝑌𝐶𝑡−1) 110 

where the subscripts t and t-1 indicated the current and the previous years. Before 2013, the difference between 111 

anthropogenic emissions in two adjacent years was small, Yin and Wang (2016) assumed (𝑌𝑆𝑡 − 𝑌𝑆𝑡−1) ≈ 0 and proposed 112 

that DY was mainly influenced by climate variability. However, due to significant reduction of anthropogenic emissions 113 

after the implementation of China’s Air Pollution Prevention and Control Action Plan (Zhang and Geng, 2020), the 114 

assumption of  (𝑌𝑆𝑡 − 𝑌𝑆𝑡−1) ≈ 0 was no longer completely valid. Therefore, it is meaningful to consider the information of 115 

rapid emission changes and re-build the prediction model (Yin et al., 2022).  116 

(1) Seasonal prediction model based on SE-PM2.5 (SP-SE): this prediction model unilaterally emphasized the impacts of 117 

human activities and was trained by DY of SE-PM2.5 in each grid. 118 

(2) Seasonal prediction model based on preceding climate variability (SP-CV): this prediction model was highly 119 

focused on the impacts of climate condition and trained by DY of closely related climate factors.  120 
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(3) Seasonal prediction model based on both SE-PM2.5 and climate (SP-EC): the contributions of emissions and climate 121 

factors are incorporated into one prediction model, i.e., combining the PM2.5 DY from SP-SE and SP-CV. 122 

In the leave-one-out cross validation, root-mean-square error (RMSE), relative bias and correlation coefficient (CC) 123 

were calculated. When discussing the CC after the detrending, the linear trend was removed by stages (i.e., winters of 2001-124 

2011 and 2012-2019). The percentage of the same sign (PSS; same sign means the mathematical sign of the fitted and 125 

observed PM2.5 anomalies was the same) was also computed.  126 

3 Relative contributions of emission and climate predictors 127 

3.1 Roles of emission 128 

Human activities are the major source of haze pollution in east of China (Zhang and Geng, 2020), which implies that a 129 

large proportion of PM2.5 concentration is predictable. Particularly, the large reduction of anthropogenic emissions since 130 

2013 determined the decreasing trend of winter PM2.5 concentration (Figure 1a). As aforementioned, the socioeconomic-131 

PM2.5 (i.e., SE-PM2.5) isolated by CMAQ could well reflect the impacts of human activities and was a potentially effective 132 

predictor for seasonal prediction of PM2.5 concentration. As expected, the one-variable linear regression model based on 133 

anomalies of SE-PM2.5 successfully reproduced different slopes of trend during 2001–2007, 2008–2013 and 2014–2019, but 134 

the predicted PM2.5 concentration varied too smoothly (Figure S1a). Furthermore, the quantities were underestimated when 135 

observed PM2.5 concentration increased and overestimated when PM2.5 concentration rapidly decreased. To eliminate the 136 

influence of trend shift, we calculated DY of PM2.5 and SE-PM2.5. Compared with its anomalies, PM2.5 DY did not show 137 

significant trend but displayed regularly oscillating characteristic (Figure 1b), and its predictability was much better (Wang 138 

et al., 2008). The SP-SE model was trained by DY of SE-PM2.5 in each grid to predict PM2.5 DY. After adding the predicted 139 

PM2.5 DY to observed PM2.5 in the previous year, the final PM2.5 concentration was obtained. The CC between predicted and 140 

observed PM2.5 was 0.87 during 2001–2019 in the east of China. The underestimated (2001–2007) and overestimated (2014–141 

2019) values in Figure S1a were largely corrected and interannual variation also appeared in the results of SP-SE prediction 142 

(Figure S1b). The staged trends from the SP-SE model almost overlapped with the observed trends, indicating the model 143 

performed well in capturing the changes of trend (Figure S2).  144 

North China (NC; 34–42°N, 114–120°E), the Yangtze River Delta (YRD; 27–34°N, 117–122°E) and the Pearl River 145 

Delta (PRD; 21.5–25°N, 112–116°E) are three regions that have been experiencing severe PM2.5 pollution (Yin et al., 2015). 146 

Thus, the performance of the SP-SE model in NC, the YRD and the PRD were validated separately (Table 1, Figure 2 a-c). 147 

The RMSEs were 12.2, 6.2 and 6.8 μg/m3 in NC, the YRD and the PRD, respectively (Table 1). Larger RMSE in NC did not 148 

indicate the SP-SE model performs worse in NC than in the YRD and the PRD, because the mean value of PM2.5 149 

concentration was the highest in NC. The relative bias (absolute bias/mean) in NC was 8.5%, which was smaller than that in 150 

the PRD (12.9%). Consistent with its performance in east of China, the SP-SE model also well reproduced the staged trends 151 
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in NC, the YRD and the PRD (Figure 2 a-c). However, when the linear trend was removed, the CC between predicted and 152 

observed PM2.5 significantly decreases in all the three PM2.5-polluted regions (NC: from 0.78 to –0.13; YRD: from 0.88 to –153 

0.28; PRD: from 0.74 to 0.16). That is, the prediction model trained by the socioeconomic-PM2.5 could well predict the 154 

values and staged linear trends. However, it certainly had no ability to simulate the interannual variability of PM2.5 155 

concentration. 156 
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 158 

Figure 1: Variation in (a) winter PM2.5 concentration (black; unit: ug/m3), (b) PM2.5 anomalies (gray; compared to the mean of 159 

2000–20192020; unit: ug/m3) and PM2.5 DY (black; unit: ug/m3). Color lines in panel (a) indicate relative variations in annual 160 

emissions (compared to that in 2008, unit: %) of ammonia (NH3; red), nitrogen oxide (NOx; purple), BOC (green), PM2.5 (blue), 161 

and sulfur dioxide (SO2; yellow) in east of China. The black dashed line in panel (a) indicates the linear trend of PM2.5 162 

concentration. 163 

 164 

Table 1: The leave-one-out validated root-mean square errors (RMSE), relative biases (absolute bias mean; %) and percentages of 165 

same sign (PSS) for three statistical models. 166 

 167 

 168 

 169 

 170 

 RMSE (μg/m3) Relative Bias (%) 

 NC YRD PRD NC YRD PRD 

SP-SE 12.2 6.2 6.8 8.5 6.9 12.9 

SP-CV 7.68.0 4.78 5.2 5.23 5.96.2 9.79 

SP-

ECCE 
6.58 4.12 4.67 4.85.1 45.91 8.85 
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 172 

Figure 2: Variations in reanalysis (black) and SP-SE predicted winter PM2.5 concentration in (a) NC (orange), (b) the YRD (blue), 173 

and (c) the PRD (green) from 2001 to 2019 before (upper) and after (lower) detrending. The predicted PM2.5 is dependent on the 174 

leave-one-out validation. (d-f) are the same as (a-c), but for SP-CV. (g-i) are the same as (a-c), but for SP-EC. 175 

3.2 Impacts of climate variability 176 

Decomposition and prediction of dominant modes of climate conditions were applied in short-term prediction of 177 

precipitation (Huang et al., 2022) and surface air temperature (Hsu et al., 2020) in east of China. In this study, we decompose 178 

the first four leading modes of PM2.5 DY during 2001-2019 (accumulated variance contribution=810.5%) produced by 179 

Empirical Orthogonal Function (EOF) analysis, built prediction model for each principal component respectively, recalculate 180 

the predicted PM2.5 DY by projecting the predicted PCs onto the observed EOF spatial patterns, and finally added the 181 

predicted PM2.5 DY to the observation in previous year to finish the development of SP-CV (Figure S3, Table S1). The 182 

interannual-decadal variation in haze pollution could be well explained by meteorological condition and preceding climate 183 

forcings (Yin et al., 2020b) such as the Arctic sea ice extent (Wang et al., 2015; Yin et al., 2019), Eurasia snow (Zou et al., 184 

2017) and soil moisture (Yin and Wang 2018), SST in the Pacific (Yin and Wang 2016; He et al., 2019) and Atlantic (Yin 185 

and Zhang 2020a). Prediction signals from these climate anomalies could be observed before winter and owned specific 186 

physical implications. 187 

The first EOF mode of PM2.5 DY illustrated heavily haze-polluted status in NC (Figure 3a, e). According to the 188 

correlation analysis, the September SST DY in the Southwest Pacific (CC with PC1=−0.736; Figure 4a) and October SST 189 
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DY in the Sargasso Sea (CC=−0.736; Figure 4b) were selected to be the two predictors for PC1 of PM2.5 DY (Table S1). 190 

Both of the predictors had close relationships with dipole pattern of Eurasian cyclonic anti-cyclonic and Northeast Asian 191 

cyclonic anti-cyclonic circulations (Figure S4b, c), which was identical to those associated with PC1 (Figure S4a) and could 192 

restrain the invasion of induce cold air from high latitude into deviate from NC. The second EOF mode of PM2.5 DY showed 193 

a ‘north-south’ dipole pattern (Figure 3b, f). The variations of PM2.5 DY in Huanghuai and the YRD accounted for a large 194 

proportion. The October soil moisture DY in the Indo-China Peninsula (CC with PC23=0.73; Figure 4c) and June-August 195 

SST DY in the Gulf of Alaska (CC=−0.69; Figure 4d) were selected to build prediction model of PC2 (Table S1). The 196 

anomalous atmospheric circulation associated with PC2 and its predictors could enhance cold air invasion to NC (strong 197 

northerlies) but prevented the cold air from moving further south (weak 10m winds in Figure S4 d-f). The second EOF mode 198 

indicated a tripole pattern with centers located in the east of Inner Mongolia, the Fenwei Plain and South China, respectively 199 

(Figure 3b, f). The Fenwei Plain was highly polluted and gained a great attention in recent years, while the other two centers 200 

have relatively better air quality (Zhao et al., 2021). The October snow depth DY in eastern Siberia (CC with PC2=0.73; 201 

Figure 4c), October sea ice DY in the north to Barents Sea (CC=0.75; Figure 4d) and September-October soil moisture DY 202 

in the Indian Peninsula (CC=0.84; Figure 4e) were considered in the prediction model (Table S1). The predictors possibly 203 

induced atmospheric responses in winter (Figure S4 e-g) that were similar to PC2 (Figure S4 d). The anti-cyclonic anomaly 204 

over the Fenwei Plain restricted horizontal and vertical dispersion of haze particles (Zhong et al., 2019). 205 
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206 

 207 

Figure 3: Spatial patterns (a–d) and corresponding PCs (e–h) of the first four EOF modes for winter PM2.5 DY in east of China 208 

during 2000–201920. The variance accounted for by each EOF mode is given in the panel.  209 
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 210 

Figure 4: CCs between climate predictors and (a-b) PC1, (c-ed) PC2, (ge-fg) PC3, (h-j) PC4 from 2000 to 201920. The predictors 211 

for PC1 are (a) September SST over the South Pacific Ocean and (b) October SST over the Sargasso Sea. The predictors for PC2 212 

are (c) October Soilw over the Indo-China Peninsula and (d) June-August SST over the Gulf of Alaska. (c) October Sd over 213 

eastern Siberia, (d) October SI over the Kara Sea and (e) September-October Soilw over the Indian Peninsula. The predictors for 214 

PC3 are (e) October Sd over eastern Siberia, (f) October SI over the Kara Sea and (g) September-October Soilw over the Indian 215 

Peninsula. (f) October Soilw over the Indo-China Peninsula and (g) June-August SST over the Gulf of Alaska. The predictors for 216 

PC4 are (h) October SI over the Chukchi Sea, (i) October soil moisture over the Kamchatka Peninsula and (j) August-September 217 
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SST over the Arabian Sea and the Bay of Bengal. The slashes indicate CCs exceeding the 95% confidence level. The black boxes 218 

indicate the regions over which the predictors are calculated. 219 

The third EOF mode of PM2.5 DY showed a ‘north-south’ dipole pattern (Figure 3c, g). The variations of PM2.5 DY in 220 

Huanghuai and the YRD accounted for a large proportion. The October soil moisture DY in the Indo-China Peninsula (CC 221 

with PC3=0.74; Figure 4f) and June-August SST DY in the Gulf of Alaska (CC=–0.66; Figure 4g) were selected to build 222 

prediction model of PC3 (Table S1). The anomalous atmospheric circulation associated with PC3 and its predictors could 223 

enhance cold air invasion to NC (strong northerlies) but prevented the cold air from moving further south (weak 10m winds 224 

in Figure S4 h-j). The third EOF mode indicated a tripoletriple pattern with centers located in the east of Inner Mongolia, the 225 

Fenwei Plain and South China, respectively (Figure 3c, g). The Fenwei Plain was highly polluted and gained a great 226 

attention in recent years, while the other two centers have relatively better air quality (Zhao et al., 2021). The October snow 227 

depth DY in eastern Siberia (CC with PC32=−0.65; Figure 4e), October sea ice DY in the north to Barents Sea (CC=−0.60; 228 

Figure 4f) and September-October soil moisture DY in the Indian Peninsula (CC=−0.79; Figure 4g) were considered in the 229 

prediction model (Table S1). The predictors possibly induced atmospheric responses in winter (Figure S4 h-j) that were 230 

similar to PC3 (Figure S4 g). The abnormal northerlies over North China and South Chinaanti- enhanced thecyclonic 231 

anomaly over the Fenwei Plain restricted horizontal and vertical dispersion of haze particles (Zhong et al., 2019), while the 232 

weak wind speed and surface wind convergence in central China were conductive to the accumulation of pollutants. A 233 

statistical model (Table S1) was also developed to predict the ‘East-West’ dipole shown in the fourth EOF mode (Figure 3d, 234 

h) based on October sea ice DY in the Chukchi Sea (CC=−–0.64; Figure 4h), October soil moisture DY in the Kamchatka 235 

peninsula (CC=0.7172; Figure 4i) and August-September SST DY in the Arabian Sea (CC=−–0.7677; Figure 4j). The 236 

atmospheric anomalies in the lower troposphere and near surface, which were associated with the above predictors and PC4, 237 

also had similar impacts on haze pollution (Figure S4 k-n).  238 

As shown in Figure 5, multiple linear regression model demonstrated good performance in simulating the variation in 239 

each PC. The CCs between observed and predicted 1st–4th PCs were 0.8582, 0.9180, 0.79 75 and 0.93, respectively, all of 240 

which were above the 99% confidence level, indicating that the model successfully reproduced each individual EOF mode. 241 

Meanwhile, the yearly increment approach had the ability to address trend and its changes that were not obviously 242 

mutational (Yin and Wang 2016). The CC between observed and predicted PM2.5 concentrations before (after) detrending by 243 

stages was 0.92 91 (0.6463) in NC, 0.94 (0.6261) in the YRD and 0.83 (0.5964) in the PRD in the leave-one out validation 244 

(Figure 2 d-f). Thus, the SP-CV model well simulated both the trend and the interannual variation of PM2.5 concentration in 245 

the east of China. In addition, the RMSEs in NC, the YRD and the PRD were 7.68.0, 4.87 and 5.23 μg/m3 and the relative 246 

biases were 5.23%, 56.2% and 59.9%, respectively (Table 1), all of which were obviously smaller than those of SP-SE. The 247 

PSS, which is an important indicator of climate prediction, was also evaluated relative to the winters of 2001–2019. The 248 

area-averaged PSS from SP-CV was 80.179.9% in east of China, which was 8.17.9% higher than that from SP-SE (Figure 6). 249 

Although the SP-CV model performed better than the SP-SE, especially that it could capture the sharp downward trend after 250 
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2013 in NC and YRD, the RMSEs of the SP-CV simulations for the period 2015-2019 increased up to 11.61, 6.54 and 5.38 251 

μg/m3 in NC, the YRD and the PRD compared to that of the SP-SE simulations. Obvious positive biases were found in the 252 

predictions of PM2.5 concentration after 2014 (Figure 2 d-f) because the SP-CV model was short of information about the 253 

super-strict emission regulations (Figure S2). Based on different levels of haze pollution, various degrees of air pollution 254 

control were carried out in NC, the YRD and the PRD (Zhang and Geng, 2020). In NC, where anthropogenic emissions were 255 

most prominently restricted, the predicted biases were also the largest (Figure 2d). The predicted biases were the smallest in 256 

the PRD, while that in the YRD were in-between. These results were consistent with different intensities of pollution control 257 

in the three regions (Figure 2e, f), which further indicated the importance to fully take into account the impacts of climate 258 

variability and anthropogenic emissions.  259 

 260 

Figure 5: Scatter plots of normalized observed (x axis) and predicted (y axis) PC1 (blue), PC2 (red), PC3 (green) and PC4 (gray) 261 

from 2000 to 201920. The predicted PCs are dependent on the leave-one-cross validation. 262 

4 PM2.5 prediction with integrated factors 263 

As aforementioned, the SP-SE model trained by the SE-PM2.5 DY considered the impacts of emission changes one-264 

sidedly and could well simulate the values and staged trends. However, it completely failed to reproduce the interannual 265 

variation of winter PM2.5 concentration in east of China (Figure 2 a-c). Differently, the predictors of climate variability could 266 

introduce the interannual variation of winter PM2.5 and the yearly increment approach had the ability to bring in the slow 267 
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trend. The SP-CV model successfully predicted most of the trend and interannual variation in PM2.5 concentration (Figure 2 268 

d-f) but underestimated the sharp decreasing trend (Figure S2), which led to positive forecast biases after 2013 (Figure 2d-f).  269 

To fully contain predictive signals of human activities and climate anomalies, the predicted PM2.5 DY from SP-SE and 270 

SP-CV model for the current year were added up and the sum was added to PM2.5 observations in the previous year to 271 

develop the final prediction model, i.e., the SP-EC model. As expected, the performance of SP-EC model was better than 272 

that of both SP-SE and SP-CV models. Area-averaged PSS was 81.48% in east of China (Figure 6). The CC between 273 

observed and SP-EC-predicted PM2.5 concentrations before (after) detrending was 0.96 (0.748) in east of China; the RMSE 274 

was 2.757 μg/m3, which was 43.87% (32.53%) smaller than the RMSE of SP-SE (SP-CV) in the leave-one out validation. 275 

That is, the trend simulated by the SP-EC model almost overlapped with the trend of observations (similar to results of SP-276 

SE) and the interannual variation was also reproduced (similar to results of SP-CV). The CCs between observed and SP-EC-277 

predicted PM2.5 concentrations before (after) detrending were 0.93 (0.678) in NC, 0.95 (0.424) in the YRD and 0.88 87 278 

(0.6667) in the PRD (Figure 2g-i). The RMSEs were 6.5 8 in NC, 4.21 in YRD and 4.76 μg/m3 in PRD, which were 446.37% 279 

(154.05%), 323.39% (12.58%) and 302.94% (911.65%) smaller than that of SP-SE (SP-CV), indicating greater 280 

improvements in NC than in the other two regions (Table 1). According to the relative biases, the SP-EC model also 281 

demonstrated a better skill in NC (4.85.1%) than that in the YRD (4.95.1%) and the PRD (8.85%) in the leave-one out 282 

validation. As shown in Figure 7, the decreases in PM2.5 resulted from the implementation of strict emission control 283 

measures in recent years were also reproduced by the SP-EC model. The evident and positive biases in the SP-CV results 284 

were largely corrected in east of China, NC, the YRD and the PRD (Figure 7).  285 
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 286 

Figure 6: Distributions of PSS (shadings) and RMSE (dots) from (a) SP-SE, (b) SP-CV, and (c) SP-EC. The boxes represent NC, 287 

the YRD and the PRD respectively, and the arrows point to the SP-EC predicted PM2.5 in recycling independent tests (bars) and 288 

observations (dashed lines) corresponding to the area. The subscript in the legend of panel (d) indicates the model trained from 289 

2000 to this year, and the PM2.5 from the next year to 2019 are independently predicted. 290 
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 292 

Figure 7: Scatter plots of the reanalysis (x axis) and predictions of (y axis) PM2.5 concentration by SP-CV (green) and SP-EC (blue) 293 

in (a) east of China, (b) NC, (c) the YRD and (d) the PRD. The points during 2012–2019 are filled and the short lines between SP-294 

CV and SP-EC pointes indicate the calibrations. 295 

High spatial resolution was one of the advantages of the seasonal prediction model developed in this study. That is, the 296 

SP-EC model could predict winter PM2.5 concentration at each 10km10km grid in east of China. When only considering 297 

emission predictors (i.e., SP-SE), RMSEs>12 μg/m3 were found in middle part of the study region and the PSS was lower 298 

than 60% in South China and the Inner Mongolia (Figure 6a). When only considering climate predictors (i.e., SP-CV), 299 

RMSEs>12 μg/m3 existed in Beijing and its surrounding areas and PSS significantly increased compared to the result of SP-300 

SE (Figure 6b). When integrating both of the emission predictors and climate predictors (i.e., SP-EC), the RMSE in each 301 

grid further decreased and the PSS also increased (Figure 6c). In middle part of the study region, the PSS was higher than 302 

80%. In view of gaps between site observations and model simulations, the SP-EC-predicted PM2.5 concentrations were 303 
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compared with site observations (Figure 8). NC was the most severely polluted area and the SP-EC model could capture the 304 

PM2.5 values and interannual differences. Particularly, the SP-EC model reproducee the sudden rebound of PM2.5 pollution in 305 

2018 (Figure 8e) that was mainly resulted from climate anomalies (Yin and Zhang 2020a). However, the model failed to 306 

well predict the evident PM2.5 drops in east of China (Figure 8f) caused by COVID-19 quarantines (Yin et al., 2021).  307 
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 309 

Figure 8: SP-EC predicted (shading) and site-observed (scatter) PM2.5 concentrations (units: μg/m3) in (a) 2014, (b) 2015, (c) 2016, 310 

(d) 2017, (e) 2018 and (f) 2019. The boxes represent NC, the YRD and the PRD respectively.   311 

Due to the limitation of short sequence of data, recycling independent tests (RIT) were designed to further verify the 312 

performance of the SP-EC model. In the RIT predictions, the prediction model was trained by samples from 2001 to the 313 

expiration year of training data and the PM2.5 anomalies from the next year to 2019 were independently predicted. For 314 

example, the prediction model trained by the data from 2001 to 2014 can produce independent predictions from 2015 to 315 

2019. The expiration year of the training data moved forward from 2015 to 2019, so there were 15 independent predictions. 316 

The PM2.5 concentration was independently predicted 5 times for 2019, 4 times for 2018, and so on. The PSS of PM2.5 317 

anomalies was 100%, not only relative to winters of 2001–2019 but also 2015–2019, indicating a high accuracy of prediction 318 
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in east of China. The predicted values for each year did not vary much (Figure 6d), indicating a high reliability and 319 

robustness of the model. For example, when the SP-EC model was trained by the samples only from 2000 to 2014, the 320 

predicted PM2.5 anomalies for 2018 and 2019 were also close to the results of leave-one-out validations and the 321 

measurements. 322 

5 Conclusions and discussion 323 

The change of haze pollution consisted of long-term trend, interannual-decadal variations, synoptic disturbances and so 324 

on. Seasonal prediction was focused on predicting long-term trend and interannual-decadal variations 1~3 months in advance 325 

(Wang et al., 2021). Because of the limitation of short observational period, many previous studies employed the number of 326 

haze days as proxy of PM2.5 pollution to build statistical prediction model (Yin and Wang 2016; Yin et al., 2017; Dong et al., 327 

2021; Zhao et al., 2021; Chang et al., 2021). Since 2020, several high-resolution PM2.5 reanalysis datasets have been 328 

successively released, which greatly increased the possibility for direct seasonal prediction of PM2.5 concentration that is 329 

more familiar to decision makers and the public (Yin et al., 2021).  330 

In this study, two seasonal prediction models were separately trained by emission factor (i.e., SP-SE) or preceding 331 

climate predictors (i.e., SP-CV) to discuss their relative contributions. The SP-SE model could simulate the slow rising trend 332 

of PM2.5 concentration before 2012 and the strong downward trend after 2012. However, it was incapable of importing the 333 

interannual component. The SP-CV model benefited from the year-to-year increment approach and could introduce a large 334 

portion of the linear trend except the sharp decrease of winter PM2.5 concentration from 2013. Furthermore, the SP-CV 335 

model performed well in predicting the obvious interannual variation of PM2.5 concentration. We integrated the emission and 336 

climate factors to establish the final prediction model (i.e., SP-EC), which could well reproduce both the trend and the 337 

interannual variation of PM2.5 concentration. The area-averaged PSS was 81.84% in east of China and CC between observed 338 

and predicted PM2.5 concentrations before (after) the detrending was 0.96 (0.748). The RMSEs were 6.85 in NC, 4.21 in the 339 

YRD and 4.76 μg/m3 in the PRD, which were 44.3% (15.0%), 32.3% (12.5%) and 30.9% (9.6%) 46.7% (14.5%), 33.9% 340 

(12.8%) and 32.4% (11.5%) smaller than that the results of SP-SE (SP-CV). Due to the implementation of the super-strict 341 

emission control measures, the air quality has been substantially improved and this improvement was also perfectly 342 

predicted by the SP-EC model. During recycling independent tests, the PSS of PM2.5 anomalies was 100%, demonstrating 343 

high accuracy and robustness. The high-resolution PM2.5 prediction could provide scientific supports for air pollution control 344 

at the regional and city levels. Considering the severe impact of haze pollutionFor example, real-time PM2.5climate  345 

prediction is highly demanded for the purpose to determininge how to reduce anthropogenic emissions and how much should 346 

be reduced; 10km10km gridded PM2.5 information also had potentials to support finely and dynamically regional 347 

managements and collaborations. 348 
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This study mainly focused on the developments of seasonal PM2.5 prediction model. TheRelated theories and methods 349 

for seasonal prediction of PM2.5 concentration are still exploratory and need further discoveries. Although the SP-EC model 350 

was proved to be skilled, the underlying physical mechanisms of climate predictors were not sufficiently explained and 351 

needed further in-deep studies. As shown in Figure 8f, the SP-EC model failed to well predict the evident PM2.5 drops in east 352 

of China caused by COVID-19 quarantines in the winter of 2019 (especially February in 2020) (Yin et al., 2021). Therefore, 353 

such sudden fluctuations of PM2.5 concentration were not involved in the established prediction model. Furthermore, the 354 

EOF pattern of PM2.5 possibly changed under climate change and must influence the climate component of PM2.5, which 355 

should be updated in time. Furthermore, althoughAlthough the SP-EC model had high spatial resolution, it could only output 356 

winter-mean PM2.5 concentration. It was meaningful to build monthly sub-seasonal models to provide more detailed 357 

predictions. In addition, mModern weather and climate forecasts were heavily dependent on numerical prediction models. 358 

Thus, it is imperative to design and develop numerical models that target at routine seasonal prediction of air pollution (Yin 359 

et al., 2021). The theories and methods for seasonal prediction of PM2.5 concentration are still exploratory and need further 360 

discoveries. Considering the severe impact of haze pollution, real-time climate prediction is highly demanded for the purpose 361 

to determine how to reduce anthropogenic emissions and how much should be reduced. 362 
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