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Abstract. We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave 

infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, 

precision and accuracy requirements, inverse and mass balance methods to infer emissions, source detection thresholds, and 

observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with 25 

complementary attributes. Area flux mappers are high-precision (<1%) instruments with 0.1-10 km pixel size designed to 

quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (<60 m) instruments designed 

to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009-present), 

which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018-present) which 

provides global continuous daily mapping to quantify emissions on regional scales. Current point source imagers include the 30 

GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, Landsat-8/9, 

WorldView-3), with detection thresholds in the 100-10000 kg h-1 range. Future area flux mappers including MethaneSAT, 

GOSAT-GW, MicroCarb, GeoCarb, and CO2M will increase the capability to quantify emissions from source regions, and 

the MERLIN lidar will improve observation of the Arctic. The future constellation of Carbon Mapper point source imagers 

will achieve high observing system completeness for point sources through high spatial coverage and frequent return times. 35 
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1 Introduction 

Methane is a powerful greenhouse gas that has contributed 0.6oC of global warming since pre-industrial time, as compared to 40 

1.0oC for CO2 (Naik et al., 2021).  It is emitted by a number of anthropogenic sectors including livestock, oil/gas systems, coal 

mining, landfills, wastewater treatment, and rice cultivation. Wetlands are the main natural source. The main sink is oxidation 

by the hydroxyl radical (OH), resulting in an atmospheric lifetime of about 9 years (Prather et al., 2012). Because of this short 

lifetime, decreasing methane emissions is a powerful lever to slow down near-term greenhouse warming (Nisbet et al., 2020). 

However, methane emission estimates and contributions from different sectors are highly uncertain (Saunois et al., 2020), 45 

hindering the design of control strategies. Here we review the capability of satellite observations of atmospheric methane to 

quantify emissions from the global scale down to point sources.  

 

Methane emission inventories are constructed using bottom-up methods in which activity levels (such as number of cows) are 

multiplied by emission factors (methane emitted per cow) (IPCC, 2019). Bottom-up methods relate emissions to the underlying 50 

processes, thus providing a basis for emission control strategies. Observations of atmospheric methane provide top-down 

information to improve emission estimates by using inverse methods to relate observed concentrations to emissions (Miller 

and Michalak, 2017). Satellite observations are of particular interest because of their high observation density and global 

coverage (Palmer et al., 2021).  

 55 

Satellites retrieve atmospheric methane column concentrations with unit sensitivity down to the surface by measuring 

spectrally resolved backscattered solar radiation in the shortwave infrared (SWIR) (Jacob et al., 2016).  Global observation of 

methane from space began with the SCIAMACHY instrument (2003-2014, 30×60 km2 pixels) (Frankenberg et al., 2005), and 

continued with the TANSO-FTS instrument aboard GOSAT (2009-present, 10-km circular pixels separated by about 270 km) 

(Parker et al., 2020) and the TROPOMI instrument (2018-present, 5.5×7 km2 pixels) (Lorente et al., 2021). Many studies have 60 

used these satellite observations to quantify methane emissions globally (Bergamaschi et al., 2013; Alexe et al., 2015; Wang 

et al., 2019; Qu et al., 2021), on continental scales (Wecht et al., 2014; Maasakkers et al., 2021; Lu et al., 2022), on finer 

regional scales (Miller et al., 2019; Zhang et al., 2020; Shen et al., 2021), and for large point sources (Pandey et al.,2019; 

Lauvaux et al., 2022). Targeted observation of methane point sources from space began with the the 2015 Aliso Canyon 

blowout using the Hyperion hyperspectral sensor (Thompson et al., 2016) and has since continued with the GHGSat 65 

instruments (2016-present, 25×25 m2 pixels) (Jervis et al., 2021). Hyperspectral and multispectral imaging spectrometers 

designed to observe land surfaces at high spatial resolution (Hyperion, PRISMA, Sentinel-2, Landsat-8/9, WorldView-3) have 

also shown capability to detect large methane point sources in their SWIR bands (Cusworth et al., 2019; Guanter et al., 2021; 

Varon et al., 2021; Ehret et al., 2022; Sanchez-Garcia et al., 2022).  

 70 
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Better quantification of methane emissions worldwide is urgently needed to meet the demands of climate policy. Individual 

countries must report their emissions by sector to the United Nations Framework Convention on Climate Change (UNFCCC), 

on a yearly basis for Annex I (developed) countries. The enhanced transparency framework of the Paris Agreement requires 

all countries to submit national sector-resolved emissions for expert review by November 2024 as basis for setting their 

Nationally Determined Contributions to meet climate goals. Independently of the Paris Agreement, over 110 countries have 75 

now signed the Global Methane Pledge of 2021 committing them to reduce their collective 2030 methane emissions by 30% 

relative to 2020 levels. Satellites can help to quantify national emissions by sector as baseline for setting methane reduction 

goals, and can then monitor emissions over time to evaluate success in achieving those goals. They provide near real-time 

information on emissions whereas bottom-up inventories typically have latencies of a few years, and are thus a unique resource 

to document rapid changes in emissions (Barré et al., 2021). 80 

 

Jacob et al. (2016) previously reviewed the state of the science for quantifying methane emissions from space. They presented 

observing capabilities at the time, discussed the inverse methods for inferring methane emissions from satellite observations, 

and laid out observing requirements for future satellite missions. Since then, new satellite instruments for measuring 

atmospheric methane have been launched and new capabilities for detecting methane point sources from space have emerged. 85 

New analytical tools have been developed to infer emissions from satellite observations, including for point sources. Additional 

satellite instruments are scheduled to be launched over the next few years that will augment current capabilities. These new 

developments motivate our updated review.  

2 Observing atmospheric methane from space 

2.1 Current and planned instruments 90 

Table 1 lists current and scheduled satellite instruments with documented or expected capability for quantifying methane 

emissions, and Table 2 gives specific attributes for each. We classify the instruments as area flux mappers or point source 

imagers, and Fig. 1 illustrates these two fleets. Area flux mappers are designed to observe total emissions on global or regional 

scales with 0.1-10 km pixel size. Point source imagers are fine-pixel (<60 m) instruments designed to quantify individual point 

sources by imaging the plumes. Point source imagers have much finer spatial resolution than area flux mappers but lower 95 

precision. 

 

 

 

 100 
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Table 1: Current and planned SWIR satellite instruments for observing atmospheric methanea 

Instrument Agency or 

company 

Launch 

date 

Nadir  

pixel size 

Coverage Return 

time, 

daysb 

Methane 

band, 

μmc 

Spectral 

resolution,  

nmd 

Precisione Reference 

Area flux mappersf 
    

 
 

 
  

  GOSATg JAXA 2009 10-km 

diameterh 

global 3  1.65 0.06 0.7% Parker et al. (2020) 

  TROPOMI ESA 2017i 5.5×7 km2 global 1  2.3 0.25 0.8%j Lorente et al. (2021) 

  GOSAT-GW JAXA 2023 1×1-10×10 

km2 k 

global 

+targets 

3  1.65 0.06 0.6% NIES (2021) 

  MethaneSAT   EDF 2023 130×400 m2 200×200 

km2 targets 

3-4  1.65 0.3 0.1-0.2%l Chan Miller et al.  (2022) 

  MicroCarb CNES 2023 4.5×9 km2 13.5×9 km2 

targets 

7 1.65 0.07 0.7%m Geyl et al. (2020) 

  GeoCarb NASA 2025 10×10 km2 N and S 

American 

1  2.3 0.2 0.3-0.6% Moore et al. (2018) 

  CO2M ESA 2025 2×2 km2 global 5  1.65 0.3 0.6% Sierk et al. (2021) 

  MERLIN CNES/DLR 2027 0.1×50 kmo global 28  1.65 3×10-4 p 1.5% Ehret et al. (2017) 

Point source imagersq          

  Landsat-8r USGS 2013 30×30 m2 global 16  2.3 200 30-90%s Ehret et al. (2022) 

  WorldView-3 DigitalGlobe 2014 3.7×3.7 m2 66.5x112 

km2 targets 

< 1  2.3 50 6-19%s Sanchez-Garcia et al. 

(2022) 

  Sentinel-2 ESA 2015 20×20 m2 global 2-5  2.3 200 30-90%s Varon et al. (2021) 

  GHGSatt GHGSat, Inc. 2016 25×25 m2 12x12 km2 

targets 

1-7 u 1.65 0.3-0.7  1.5%v Jervis et al.  (2021) 

  PRISMAw ASI 2019 30×30 m2 30x30 km2 

targets 

4  2.3 10 3-9% Guanter et al. (2021) 

  EnMAPw DLR 2022 30×30 m2 30x30 km2 

targets 

4  2.3 10 3-9% Cusworth et al. (2019) 
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  EMIT NASA 2022 60×60 m2 Dust-

emitting 

regionsx 

3  2.3 9 2-6%y Cusworth et al. (2019) 

  Carbon Mapperz Carbon 

Mapper and 

Planet 

2023 30×30 m2, 

30×60 m2 

18-km 

swathsaa 

1-7 u 2.3 6 1.2-1.5% Duren et al. (2021) 

a The Table lists shortwave infrared (SWIR) satellite instruments currently operating or scheduled for launch that provide 

publicly accessible data and documentation of methane-observing capabilities. Instruments not yet launched are in italics. All 105 

instruments in this Table are in low-elevation polar sun-synchronous orbits except for GeoCarb, which will be in geostationary 

orbit over the Americas, and EMIT, which will be in an inclined precessing orbit.  All instruments measure SWIR solar 

radiation backscattered from the Earth’s surface except for MERLIN which is a lidar instrument. A more comprehensive list 

of instruments including from private companies with proprietary data is available from GEO, ClimateTRACE, WGIC (2021). 
b Time interval between successive viewings of the same scene. 110 
c Most useful band for methane retrieval. The 1.65 and 2.3 μm bands have exploitable features at 1.63-1.70 and 2.2-2.4 μm, 

respectively. 
d Full width at half maximum. 
e Precision is reported as percentage of the retrieved dry column mixing ratio XCH4.   
f Area flux mappers are designed to quantify total methane emissions on regional to global scales. 115 
g TANSO-FTS instrument aboard the GOSAT satellite. The instrument is commonly referred to as GOSAT in the literature. 

GOSAT-2 was launched in 2018 with specifications similar to GOSAT (Suto et al., 2021). 
h Circular pixels separated by about 270 km along-track and cross-track. 
i TROPOMI was launched in October 2017 but the methane data stream begins in May 2018.  

j The TROPOMI product reports a much higher precision averaging 2 ppb but this only includes error from the measured 120 

radiances. Accounting for retrieval errors by validation with TCCON data indicates a precision of 0.8% (Schneising et al., 

2019). 
k Narrow-swath mode (1×1 to 3×3 km3 pixels) for urban regions and wide-swath mode (10×10 km2) for global coverage. 
l For 1-5 km binned data. 
m Estimated by analogy with GOSAT. 125 
n From 45oS to 55oN. 
o Integrating the signal along 50 km of the lidar orbit track. 
p Lidar online/offline sampling at 1645.552/1645.846 nm. 
q Point source imagers are designed to quantify emissions from individual point sources by imaging of the atmospheric plume. 
r Landsat-9 was launched in 2021 and should have similar capability as Landsat-8. 130 
s For favorable (bright and spectrally homogeneous) surfaces. 
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t Including GHGSat-D (2016) ,GHGSat -C1 (2020), and GHGSat-C2 (2021). Plans are for three more launches in 2022 and 

six more in 2023. 
u For the eventual full constellation 
v For GHGSat-C1 and -C2.  GHGSat-D has a precision of 12-25%. 135 
w Other planned hyperspectral imaging spectrometers with observing capabilities similar to PRISMA and EnMAP include 

SBG and CHIME (Cusworth et al., 2019). 
x EMIT is a surface mineral dust mapper that will fly on the International Space Station in a 51.6o inclined orbit and will target 

arid areas. 
y Based on the precision of PRISMA (Guanter et al., 2021) and the higher spectral resolution of EMIT (Cusworth et al., 2019). 140 
z Carbon Mapper is expected to be a constellation of satellites with two launches in 2023 and a goal of six launches in 2024. 
aa Carbon Mapper push-broom mode has imaging strips as long as 1000 km with 30×60m2 pixels; Carbon Mapper target-

tracking mode has shorter imaging strips with 30×30m2 pixels and ground-motion compensation for higher SNR (lower 

detection threshold). 

 145 
Table 2: Attributes of different satellite instruments for observing atmospheric methanea 

Instrument Attributes 

Area flux mappers  

     GOSAT Long-term record, high-quality data 

    TROPOMI Global continuous daily coverage  

    GOSAT-GW High-resolution mapping of urban areas 

    MethaneSAT High-resolution mapping of oil/gas/agricultural source regions with imaging of large point sources 

    MicroCarb Targeted observations of methane and CO2 

    GeoCarb Continuous coverage of North and South America 

    CO2M High-resolution global continuous daily coverage 

    MERLIN Arctic and nighttime observations 

Point source imagers  

    Sentinel-2, Landsat Global continuous data acquisition, long-term records 

    WorldView-3 Very high spatial resolution 

    GHGSat High sensitivity (~100 kg h-1) 

    PRISMA, EnMAP, EMIT Medium sensitivity (100-1000 kg h-1), extensive coverage 

    Carbon Mapper High sensitivity (~100 kg h-1), extensive coverage 
a See Table 1 for the specifications of each instrument. Instruments not yet launched are in italics. 
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 150 
Figure 1: Satellite instruments for observation of methane in the shortwave infrared (SWIR).  Area flux mappers are designed to 
quantify total methane emissions on regional to global scales. Point source imagers are designed to quantify emissions from 
individual point sources by imaging the atmospheric plumes. Satellite icons were obtained from https://www.gosat.nies.go.jp for 
GOSAT; https://directory.eoportal.org for PRISMA and WorldView-3; Wikipedia Commons for TROPOMI, EMIT (International 
Space Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper; 155 
https://microcarb.cnes.fr for MicroCarb; https://www.methanesat.org for MethaneSAT; https://www.ou.edu/geocarb/mission for 
GeoCarb; https://www.planetek.it/ for PRISMA;  https://www.ghgsat.com/ for GHGSat; https://www.enmap.org/mission for 
EnMAP; and  https://www.usgs.gov/landsat-missions for Landsat-8/9. 

All instruments in Table 1 except MERLIN observe methane by SWIR solar backscatter from the Earth’s surface, either at 

1.63-1.70 µm (1.65 µm band) or at 2.2-2.4 µm (2.3 µm band). Atmospheric scattering is weak in the SWIR except for clouds 160 

and large aerosol particles. Under clear skies, methane is observed down to the surface with near unit sensitivity (Worden et 

al., 2015). The retrieval may fail if the surface is too dark, as over water or forest canopies (Ayasse et al., 2018). Observations 

over water can be made by sunglint when the Sun-satellite viewing geometry is favorable. The MERLIN lidar instrument emits 

its own 1.65 µm radiation and detects the reflected signal. It can observe over water, at night, and in broken cloud fields, but 

its sensitivity and coverage are lower than for the solar back-scatter instruments. Lidar capability to observe methane from 165 

space is currently limited by laser technology (Riris et al., 2019). 

 

Not included in Table 1 are instruments that measure methane in the thermal infrared (TIR) or by solar occultation. These 

instruments are not sensitive to methane near the surface and are therefore not directly useful for quantifying methane 
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emissions. TIR instruments have been used for remote sensing of methane plumes from aircraft (Hulley et al., 2016) but 170 

measurements from satellites are mainly sensitive to the upper troposphere (Worden et al., 2015). Solar occultation instruments 

such as ACE-FTS provide sensitive measurements of stratospheric methane profiles (Koo et al., 2017) but cloud interference 

prevents observations in the troposphere. TIR and solar occultation instruments can complement SWIR data by providing 

information on background methane in the upper troposphere and stratosphere (Zhang et al., 2021; Tu et al., 2022).   

 175 

The spectrally resolved SWIR backscattered solar radiation detected by satellite under clear-sky conditions can be used to 

retrieve the total atmospheric column of methane, ΩCH4 [molecules cm-2], as will be reviewed in Section 2.2. To remove the 

variability from surface pressure, measurements are typically reported as dry column mixing ratio XCH4 = ΩCH4/ Ωa,d  where 

Ωa,d is the dry air column [molecules cm-2]. Normalizing to dry air rather than total air avoids introducing dependence on water 

vapor.  180 

 

All instruments in Table 1 except EMIT and GeoCarb are in low-elevation polar sun-synchronous orbit and observe globally 

at a specific local time of day, either morning or early afternoon. Morning has greater probability of clear sky, while early 

afternoon has steadier boundary layer winds for interpreting methane enhancements. GOSAT (2009-present) and its follow-

on GOSAT-2 (2018-present) provide global coverage every 3 days for 10-km circular pixels spaced about 270-km apart, while 185 

TROPOMI (2018-present) provides full global daily coverage with 5.5×7 km2 pixels. Figure 2 shows mean TROPOMI XCH4 

data for two different seasons, illustrating the dense coverage.  Future instruments GOSAT-GW (2023 launch, 10×10 km2 

pixels with full global coverage every 3 days in wide-swath mode) and CO2M (2025 launch, 2×2 km2 pixels with full global 

coverage every 5 days) will continue the global observation record. MERLIN will provide day/night global coverage but only 

along its lidar orbit track. Sentinel-2 and Landsat instruments provide full global coverage with 20-30 m pixels every 5 days 190 

(Sentinel-2) or 16 days (Landsat) and can detect very large point sources over bright spectrally homogeneous surfaces. EMIT 

(designed to observe dust surfaces) will be on a 51.6o inclined orbit aboard the International Space Station, prioritizing 

observations over arid regions and with variable local overpass times. GeoCarb will be in geostationary orbit over the Americas 

and will provide daily observations from 45oS to 55oN. 

 195 

Several narrow-swath instruments in Table 1 are selective in their observations to focus on specific targets and avoid cloudy 

conditions. The GHGSat instruments observe selected 12×12 km2 scenes with 25×25 m2 pixel resolution and instrument 

pointing to increase the signal-to-noise ratio (SNR). Carbon Mapper will observe 18-km swaths with imaging strips as long as 

1000 km in push-broom mode and shorter strips in target-track (instrument-pointing) mode. GHGSat and Carbon Mapper each 

anticipate a constellation of instruments (GHGSat has three in orbit as of this writing) to achieve frequent return times. 200 

WorldView-3 observes scenes of dimensions up to 66.5×112 km2. MicroCarb (mainly focused on CO2) will provide methane 

retrievals for three cross-track pixels of 4.5 km (cross-track)×9 km (along-track) each.  MethaneSAT will observe 200×200 
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km2 targets in oil/gas and agricultural regions with 130×400 m2 pixel resolution, enabling high-resolution quantification of 

regional emissions as well as imaging of large point sources. 

 205 
 
Figure 2: Global TROPOMI observations of methane for December 2019 – February 2020 and June-August 2020. Data are from 
the version 2.02 product, filtering out low-quality retrievals (qa_value < 0.5) and snow/ice surfaces diagnosed by blended albedo > 
0.8 (Lorente et al., 2021). The top panels show the mean dry methane column mixing ratios XCH4.on a 0.1o×0.1o grid. The middle 
panels show the observation density as the number of successful observations per 1o×1o grid cell for the 3-month periods. The bottom 210 
panels show the mean XCH4 differences between concurrent TROPOMI and GOSAT observations plotted on a 2o×2.5o grid and 
corrected for a global mean difference of 17 ppb. GOSAT data are from the CO2 proxy retrieval version 9.0 of Parker et al. (2020). 

 

https://doi.org/10.5194/acp-2022-246
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



10 
 

All area flux mappers in Table 1 have fine (< 0.5 nm) spectral resolution to enable precise measurements of methane 

concentrations, traded against coarse (0.1-10 km) spatial resolution. GHGSat achieves a combination of fine spatial resolution 215 

and fine spectral resolution by instrument pointing. Most other point source imagers in Table 1 are designed to observe land 

surfaces, which requires fine spatial resolution (<50 m) but less stringent spectral resolution. These instruments have 

serendipitous capability to detect methane plumes in the broad 2.3 μm band, including hyperspectral sensors with ~10 nm 

spectral resolution (PRISMA, EnMAP, EMIT) (Cusworth et al., 2019) and even multispectral sensors with a single 2.3 μm 

channel (Sentinel-2, Landsat-8/9) (Varon et al., 2021) or a few channels (WorldView-3) (Sanchez-Garcia et al., 2022). Carbon 220 

Mapper will have 6 nm spectral resolution, which increases precision appreciably relative to 10 nm (Cusworth et al., 2019).   

2.2 Retrieval methods 

The ‘full-physics’ retrieval of methane columns from satellite SWIR spectra typically solves simultaneously for the vertical 

profile of methane concentration, the vertical profile of aerosol extinction, and the surface reflectivity by inversion of the 

radiance spectrum using a radiative transfer model (Butz et al., 2012; Thorpe et al., 2017). Although the vertical profile of 225 

methane may be used in the inversion, there is no significant profile information from the measurement and only XCH4 is 

reported. The retrieval may fail if the atmosphere is hazy or if the surface is heterogeneous or too dark. Full-physics TROPOMI 

retrievals in the 2.3 μm band thus have only a 3% global success rate over land (Lorente et al., 2021) with large variability 

depending on location (Fig. 2). Arid areas and mid-latitudes are relatively well observed. Observations are much sparser in the 

wet tropics because of extensive cloudiness and dark surfaces, and in the Arctic because of seasonal darkness, extensive 230 

cloudiness, and low Sun angles. 

 

The 1.65 µm band allows the alternative CO2 proxy retrieval taking advantage of the adjacent CO2 absorption band at 1.61 μm 

[Frankenberg et al., 2005]. In this method, ΩCH4 and ΩCO2 are retrieved simultaneously without accounting for atmospheric 

scattering, and XCH4 is then derived as 235 

 

CH4
CH4 CO2

CO2

X X
 Ω

=  Ω                               (1) 

 

where XCO2 is independently specified, typically from assimilated observations or a global atmospheric transport model (Parker 

et al., 2020; Palmer et al., 2021). The CO2 proxy method takes advantage of the lower variability of CO2 than methane. It is 

much faster than the full-physics retrieval, achieves similar precision and accuracy (Buchwitz et al., 2015), and largely avoids 240 

biases associated with surface reflectivity because these biases tend to cancel in the ΩCH4/ΩCO2 ratio. It is subject to errors from 

unresolved variability of CO2 such as in urban regions, and is also subject to bias for sources that co-emit methane and CO2 

such as flaring. The GOSAT instrument operating at 1.65 µm with 10 km pixels has a 24% success rate using the CO2 proxy 

retrieval, mainly limited by cloud cover (Parker et al., 2020).  
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 245 

A limitation in using the 1.65 µm band is that it is narrower, with fewer spectral features and weaker absorption than the 2.3 

µm band, and therefore requires an instrument with sub-nm spectral resolution (Cusworth et al., 2019; Jongaramerungruang 

et al., 2022a). The 2.3 µm band can be successfully sampled for a full-physics retrieval by hyperspectral instruments with ~10 

nm spectral resolution (Thorpe et al., 2014, 2017; Cusworth et al., 2021a; Borchardt et al., 2021; Irakulis-Loitxate et al., 2021). 

Precision improves with spectral resolution (Cusworth et al., 2019; Jongaramrungruang et al., 2022a) and with spectral 250 

positioning relative to the methane absorption lines (Scaffuto et al., 2021). Multispectral instruments with one or several 

broadband channels (~100 nm bandwidth) cannot do a spectrally resolved retrieval, but can still achieve a simple Beer’s law 

retrieval of the methane column in the 2.3 µm band by inferring surface reflectivity from adjacent bands or from scenes with 

no apparent methane enhancements (Varon et al., 2021; Sanchez-Garcia et al., 2022).  

 255 

Yet another approach for retrieving methane enhancements from point sources is the matched-filter method in which the 

observed spectrum is fitted to a background spectrum convolved with a target methane absorption spectrum capturing the 2.3 

μm absorption band (Thompson et al., 2015; Foote et al., 2020). Matched filter methods have been extensively used for 

mapping methane point sources from airborne hyperspectral campaigns (Frankenberg et al., 2016; Duren et al., 2019; Cusworth 

et al., 2021b), but have been less used for satellite retrieval of point sources (Thompson et al., 2016; Guanter et al., 2021; 260 

Irakulis-Loitxate et al., 2021). These methods directly retrieve the methane enhancement above background and are faster than 

a full-physics retrieval. They are well-suited for plume imaging, where the methane enhancement above local background is 

the quantity of interest. But they do not quantify background variability and therefore cannot be used for regional inversions.  

2.3 Precision and accuracy  

Retrievals of XCH4 may be affected by random error (precision) and systematic error (bias or accuracy). A uniform bias is 265 

inconsequential because it can be simply subtracted. Random error is reducible by temporal averaging. The most pernicious 

error is spatially variable bias, often called relative bias (Buchwitz et al., 2015), which is generally caused by aliasing of surface 

reflectivity spectral features into the methane retrieval. Variable bias corrupts the retrieved concentration gradients and 

produces artifact features that may be wrongly attributed to methane.  

 270 

Area flux mapper instruments are generally validated by reference to the highly accurate XCH4 measurements from the 

worldwide Total Carbon Column Observing Network (TCCON) of ground-based sun-staring spectrometers (Wunch et al., 

2011). Variable bias can be estimated as the spatial standard deviation across TCCON sites of the temporal mean bias 

(Buchwitz et al., 2015). Schneising et al. (2019) inferred in this manner a global bias of -1.3 ppb for the TROPOMI University 

of Bremen methane retrieval, a precision of 14 ppb, and a variable bias of 4.3 ppb. Lorente et al. (2021) inferred a global mean 275 

bias of -3.4 ppb and a variable bias of 5.6 ppb for the current TROPOMI version 2 Netherlands Institute for Space Research 

(SRON) operational retrieval. Figure 3 places these values in the context of TROPOMI observations over the Permian Basin 
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oil field in Texas and New Mexico. A typical single day of TROPOMI observations shows large areas of missing and noisy 

data, so temporal averaging is necessary, which also reduces the random error. Averaging TROPOMI observations over a 

month shows full coverage of the Permian with enhancements of ~50 ppb over the principal areas of oil and gas production, 280 

well above the variable bias of the instrument. 

 

Reliance on the TCCON network to diagnose variable bias is limited by the sparsity of network sites, almost all at northern 

mid-latitudes. An alternative way is by reference to GOSAT. The current version 9 GOSAT retrieval using the CO2 proxy 

method has a variable bias of only 2.9 ppb referenced to TCCON and is recognized as a well-calibrated measurement (Parker 285 

et al., 2020). Spatial variability in the mean TROPOMI-GOSAT difference provides a global assessment of TROPOMI 

variable bias (Qu et al., 2021). Results in Fig. 2 (bottom panel), after correcting for a global mean TROPOMI-GOSAT 

difference of 17 ppb, show that TROPOMI variable biases can exceed 20 ppb in some regions. The reason for such large biases 

relative to GOSAT is TROPOMI’s coarser spectral sampling of the SWIR region, as well as the unavailability of the CO2 

proxy retrieval at 2.3 μm. Comparing TROPOMI and GOSAT observations for a region of interest is good practice before 290 

interpreting TROPOMI data for that region (Shen et al., 2022).  

 
 

Figure 3: Satellite observations of atmospheric methane over the Permian Basin (Texas and New Mexico) in July 2020. The left panel 
shows typical TROPOMI observations for 1 day (July 15), featuring large areas of missing data due to unsuccessful retrievals. The 295 
middle panel shows monthly mean TROPOMI observations over the month on a 0.1o×0.1o grid , featuring distinct enhancements 
over the Midland and Delaware basins where oil production is concentrated. TROPOMI data are from the version 2.02 retrieval of 
Lorente et al. (2021). The right panel shows sample observations of plumes from point sources by Sentinel-2, PRISMA, and GHGSat 
superimposed on surface imagery from © Google Earth. 
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Variable bias is also a concern for point source imagers where it manifests as artifact features that could be mistaken for 300 

methane plumes (Ayasse et al., 2018). This is of particular concern for heterogeneous surfaces (Cusworth et al., 2019). Artifacts 

can be screened by visual inspection of the candidate plumes in relation to wind direction, known infrastructure, and surface 

reflectivity (Guanter et al., 2021). Machine-learning methods can also be trained to detect plumes and recognize artifact noise 

patterns (Jongaramrungruang et al., 2022b). Figure 3 shows illustrative observations of point sources from Sentinel-2, 

PRISMA, and GHGSat in the Permian Basin. The observations have lower precision than TROPOMI (Table 1) but the methane 305 

enhancements are much larger because the pixels are smaller. Point source detection thresholds and their relationship to 

precision will be discussed in Sect. 5. 

3 Global, regional, and point source observations 

Figure 4 classifies the satellite instruments of Table 1 in terms of their abilities to observe methane on global and regional 

scales as area sources (area flux mappers) or on the scale of individual point sources (point source imagers). Observations on 310 

these different scales target complementary needs for our understanding of methane, and they correspondingly have different 

observing requirements. Area sources may integrate a very large number of point sources that are individually small but 

cumulate to a large total. A practical lower threshold for defining a methane point source is 10 kg h-1, which represents a typical 

limit of detection from aircraft (Duren et al., 2019; Chen et al., 2022). With this definition, Cusworth et al. (2022) found on 

average that 40% of emissions from US oil/gas fields originate from point sources. This emphasizes the need for characterizing 315 

methane emissions both as area sources and as point sources. 

3.1 Global and regional observations with area flux mappers 

Global observation of methane targets the central question of why atmospheric methane has almost tripled since pre-industrial 

times and why it continues to increase. Ground network measurements such as from NOAA are the reference for observing 

global trends because of their high accuracy (Bruhwiler et al., 2021), and some sites include isotopic or other information to 320 

separate contributions from different source sectors (Lan et al., 2021). But satellites have an essential role to play because of 

their dense and global coverage. They can identify the regions that drive the global trend (Zhang et al., 2021). They have a 

unique capability to evaluate the accuracy and trends of methane emissions reported by individual countries to the UNFCCC 

(Janardanan et al., 2020) and thus contribute to the transparency framework of the Paris agreement (Deng et al., 2022; Worden 

et al., 2022). 325 

 

https://doi.org/10.5194/acp-2022-246
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

  

Figure 4: Classification of satellite instruments by their capability to observe atmospheric methane on global scales, on 
regional scales with high resolution, and for point sources. Specifications for the satellite instruments are listed in Table 
1 and key attributes are listed in Table 2. Point source detection thresholds are given here as orders of magnitude. 330 
These detection thresholds are discussed in Sect. 5.2.  

Global observation of methane from space is presently available from GOSAT and TROPOMI. GOSAT provides a continuous 

and well-calibrated record going back to 2009 (Parker et al. 2020). Inversions of GOSAT data have been used to attribute the 

contributions of different source regions and sectors to the methane increase over the past decade (Maasakkers et al., 2019; 

Chandra et al., 2021; Palmer et al., 2021; Zhang et al., 2021). The TROPOMI data stream begins in May 2018 and is much 335 

denser than GOSAT, but the ability to use TROPOMI data in global inversions is presently limited by large variable biases in 

some regions of the world (Qu et al. (2021); Fig. 2). Continuity of global methane observations from space is expected over 

the next decade with the GOSAT series (GOSAT-2, GOSAT-GW) and CO2M (Table 1). MERLIN could make an important 

contribution toward better understanding of methane emissions in the Arctic, which is otherwise difficult to observe from 

space.  340 

 

There is considerable interest in using satellite observations to quantify methane emissions with high resolution on regional 

scales. This is important for reporting of emissions at the national or sub-national state level, for monitoring oil/gas production 

basins, and for separating contributions from different source sectors. Oil/gas production basins are typically a few hundred 

km in size and may contain thousands of point sources that are individually small but add up to large totals and are best 345 

quantified on a regional scale (Lyon et al., 2015). Several field campaigns using surface and aircraft measurements have 
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targeted oil/gas fields in North America (Karion et al., 2015; Pétron et al., 2020; Lyon et al., 2021), but these campaigns are 

necessarily short and are not practical in many parts of the world.   

 

TROPOMI with its 5.5×7 km2 pixel resolution and global continuous daily coverage is presently the only satellite instrument 350 

capable of high-resolution regional mapping of methane emissions. GOSAT data are too sparse. TROPOMI has been used to 

quantify emissions from oil/gas production fields including the Permian Basin (Zhang et al., 2020), other fields in the US and 

Canada (Shen et al., 2022), and the Mexican Sureste Basin (Shen et al., 2021), revealing large underestimates in the bottom-

up inventories. The variable bias problems that affect global TROPOMI inversions can be less problematic on the scale of 

source regions where methane enhancements are large, the bias is more homogeneous (Fig. 2), and bias correction is possible 355 

through adjustment of boundary conditions in the transport model (Shen et al., 2021). Capability for regional mapping of 

methane emissions is expected to greatly expand in the future with the MethaneSAT, GOSAT-GW, and CO2M instruments. 

3.2 Point source observations with point source imagers 

Monitoring large point sources is important for reporting of emissions, and detection of unexpectedly large point sources 

(super-emitters) can enable prompt corrective action. In situ sampling and remote sensing from aircraft has been used 360 

extensively to quantify point sources (Frankenberg et al., 2016; Lyon et al., 2016; Duren et al., 2019; Hajny et al., 2019; Chen 

et al., 2022; Cusworth et al., 2022) but is limited in spatial and temporal coverage. Satellites again have an essential role to 

play, and have enabled the discovery of previously unknown releases (Varon et al., 2019; Lauvaux et al., 2022). 

 

Observing point sources from space has unique requirements. Plumes are typically less than 1 km in size (Frankenberg et al., 365 

2016), thus requiring satellite pixels finer than 60 m (Ayasse et al., 2019). It is desirable to quantify emissions from single 

overpasses, though temporal averaging of plumes to improve SNR is possible with wind rotation if the precise location of the 

source is known [Varon et al., 2020]. The emissions are temporally variable, motivating frequent revisit times that can be 

achieved by a constellation of instruments. On the other hand, precision requirements are less stringent than for regional/global 

observations because of the larger magnitude of the concentration enhancements.  370 

 

The potential for space-based land imaging spectrometers to detect methane point sources was first demonstrated with the 

hyperspectral Hyperion instrument for the Aliso Canyon blowout (Thompson et al., 2016). Hyperspectral sensors such as 

PRISMA and others of similar design have since proven capable of quantifying point sources of ~500 kg h-1 (Cusworth et al., 

2021; Guanter et al., 2021; Irakulis-Loitxate et al., 2021; Nesme et al., 2021). The first satellite instrument dedicated to 375 

quantifying methane point sources was the GHGSat-D demonstration instrument launched in 2016 with 50×50 m2 effective 

pixel resolution and a precision of 12-25% depending on surface type (Jervis et al., 2021). Varon et al. (2019) demonstrated 

the capability of that instrument for discovering and quantifying persistent point sources in the range 4000-40000 kg h-1 in an 

oil/gas field in Turkmenistan. GHGSat-C1 and -C2 instruments with precisions of 1-2% were subsequently launched in 2020 
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and 2021, and nine additional instruments are planned for launch in 2022-2023 to build a constellation enabling frequent return 380 

times (Gauthier, 2021).  

 

Multispectral instruments such as Sentinel-2, Landsat-8/9, and WorldView-3 are also capable of detecting and quantifying 

very large point sources (Varon et al., 2021; Ehret et al., 2022; Sanchez-Garcia et al., 2022; Irakulis-Loitxate et al., 2022a). 

Sentinel-2 and Landsat provide global and freely accessible data that could form the foundation of a global detection system 385 

for super-emitters (Ehret et al., 2022). A large-scale survey of point emissions across the west coast of Turkmenistan was 

achieved with the combination of Sentinel-2 and Landsat (Irakulis-Loitxate et al., 2022a). 

 

Detection of methane plumes from space has mainly been over bright land surfaces. Observation of offshore plumes such as 

from oil/gas extraction platforms is more difficult because of the low reflectance of water in the SWIR. The signal can be 390 

enhanced by observing in the sunglint mode, in which the sensor captures the solar radiation specularly reflected by the water. 

The sunglint observation configuration can be achieved by agile platforms able to point in the Sun-surface forward scattering 

direction (PRISMA, Worldview-3, GHGSat, Carbon Mapper), or by instruments with a field-of-view sufficiently large that 

part of the swath falls in the forward scattering area (TROPOMI, Sentinel-2, Landsat). Initial tests of offshore methane plume 

mapping with multispectral instruments have led to the detection of massive plumes from offshore platforms in the Gulf of 395 

Mexico (Ayasse et al., 2022; Irakulis-Loitxate et al., 2022b). 

 

The capability to monitor methane point sources from space is expected to expand rapidly in coming years through the Carbon 

Mapper constellation (Duren et al., 2021) and new hyperspectral missions (Cusworth et al., 2019). An expanding constellation 

with frequent return times and at different times of day will enable better understanding of the intermittency of methane 400 

emissions. In an aircraft survey of the Permian Basin, Cusworth et al. (2021b) found that individual point sources produced 

detectable emissions only 26% of the time on average. Similar intermittency was observed for oil/gas facilities in California 

(Duren et al., 2019). Allen et al. (2017) and Vaughn et al. (2018) point out that some emissions from the oil/gas infrastructure 

are highly intermittent by design (liquids unloading, blowdowns and startups) and may have predictable diurnal variations. 

Emissions due to equipment failure may be persistent (leaks, unlit flares), sporadic (responding to gas pressure), or single 405 

events (accidents). An increased frequency of observation can identify persistence of emissions to enable corrective action, 

and better understanding of point sources that are intermittent by design can lead to better quantification of time-averaged 

emissions. Beyond this short-term intermittency, there is also long-term variability related to operating practices and the life 

cycle of the facility (Cardoso-Saldaña and Allen, 2020; Johnson and Heltzel, 2021; Varon et al, 2021; Allen et al., 2022; Ehret 

et al., 2022), stressing the importance of sustained long-term monitoring 410 
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4 Inferring methane emissions from satellite observations 

Inferring methane emissions from satellite observations of methane columns involves different methods for area flux mappers 

and point source imagers. Area flux mappers are typically used to optimize 2-D distributions of emissions on regional or global 

scales by inverse methods. Point source imagers are used to infer individual point source rates by some form of mass balance 

analysis. 415 

4.1 Global and regional inversions with area flux mappers 

Area flux mappers produce 2-D fields of methane observations from which to optimize 2-D fields of gridded emission fluxes. 

The optimization involves an atmospheric transport model (forward model) to relate emissions to the observed concentrations. 

The optimal emissions are generally obtained by Bayesian inference, fitting the observations to the forward model and 

including prior estimates of emissions to regularize the solution where the observations provide insufficient information 420 

(Brasseur and Jacob, 2017). Optimizing temporal trends of emissions can be done as part of the solution or sequentially using 

a Kalman filter [Feng et al., 2017]. 

 

The basic procedure is as follows. Given an ensemble of observations over a domain of interest assembled in an observation 

vector y, the task is to optimize the distribution of emission fluxes assembled in a state vector x of dimension n. The relationship 425 

between x and y can be assumed linear for methane, despite the sensitivity of OH concentrations to methane concentrations. 

This is because the inversion does not significantly change the global methane concentration, which is set by observation; 

furthermore, for regional inversions, the time scale for ventilation of the regional domain is much shorter than that for chemical 

loss.  Global inversions often optimize OH concentrations as part of the state vector and that relationship can also be assumed 

linear. Further assuming Gaussian error probability density functions (pdfs) for x and y, the optimal (posterior) estimate of x 430 

is obtained by minimizing a Bayesian cost function J(x) of the form (Brasseur and Jacob, 2017):  
 

( ) ( ) ( ) ( ) )T TJ = + γ-1 -1
A OS K S KA Ax x - x x - x y - x (y - x

                 (2) 

 

Here xA is the prior estimate of emissions, SA is the corresponding prior error covariance matrix, K = /∂ ∂y x is the Jacobian 435 

matrix describing the sensitivity of observations to emissions as given by the atmospheric transport model, SO is the 

observational error covariance matrix including contributions from instrument and transport model errors, and γ is a 

regularization parameter that may be needed to correct over- or underfitting caused by imperfect definition of SO. Since the 

relationship between x and y is linear, K fully defines the atmospheric transport model for the inversion. Jacob et al. [2016] 

describe alternative formulations for the cost function such as in geostatistical inverse modeling where prior information is 440 

provided as the relative spatial distribution of emissions rather than emission magnitudes (Miller et al., 2020).  
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Specification of the error covariance matrices SA and SO strongly affects the solution. Construction of SA can be done by 

intercomparing bottom-up inventories (Maasakkers et al., 2016; Bloom et al., 2017) or by using error estimates generated by 

the bottom-up inventories (Scarpelli et al., 2020). Construction of SO can be done by the residual error method in which the 445 

observations are compared to results from the atmospheric transport model with prior emission estimates, and the residual 

difference after removing the mean bias is taken to be the observational error (Heald et al., 2004). The observational error for 

satellites is generally found to be dominated by the instrument retrieval error rather than by the transport model error, whereas 

for in situ observations it is dominated by the transport model error (Lu et al., 2021). 

 450 

Minimization of the cost function J(x) in Eq. (2) to obtain the posterior solution x̂  and its error covariance matrix  Ŝ  can be 

done either numerically or analytically (Brasseur and Jacob, 2017). Ŝ  and the related averaging kernel matrix 

ˆˆ /= ∂ ∂ = -1
n AA I - SSx x  (Rodgers, 2000) determine the information content from the observations and the ability of the 

inversion to improve on the prior estimate. The diagonal terms of A ranging from 0 to 1 are called the averaging kernel 

sensitivities and measure the ability of the observations to constrain the solution for that state vector element independently of 455 

the prior estimate (1 = fully, 0 = not at all).  The trace of A is called the degrees of freedom for signal (DOFS) and represents 

the total number of pieces of information that can be fully constrained from the observations. An inherent assumption is that 

the observations, the transport model, and the prior information are unbiased. Although the prior estimate is in principle 

unbiased since it represents our best estimate before the observations are taken, under-accounting of SA together with incorrect 

spatial distribution of prior emissions drives bias in inversion results (Yu et al., 2022). 460 

 

Numerical solution for min(J(x)) using the adjoint of the atmospheric transport model or other variational methods optimizes 

a state vector of any dimension by avoiding explicit construction of the full Jacobian matrix K, and may use various procedures 

to estimate Ŝ  (Bousserez et al., 2015; Cho et al., 2022). Analytical solution provides a closed-form expression for Ŝ  but 

requires the computationally expensive construction of K column-by-column with n perturbation runs of the atmospheric 465 

transport model. This limits the dimension and hence the resolution of the state vector that can be optimized. However, once 

K has been constructed, inversion ensembles can be conducted at no significant added computational cost to explore 

uncertainties in inversion parameters, or to examine the complementarity and consistency of different observation subsets such 

as from different satellite instruments or from ground-based sites (Lu et al., 2021, 2022). This includes optimization of the 

regularization parameter γ so that the sum of prior terms in the posterior cost function matches the expected value from the 470 

chi-square distribution, 
ˆ ˆ ˆ( ) ( ) ( ) ~TJ n= -1

ASA A Ax x - x x - x
 (Lu et al., 2021). Increasing access to large computational 

clusters has facilitated the construction of K as an embarrassingly parallel problem, enabling analytical solution for state 
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vectors with n ~ 1000 (Maasakkers et al., 2019). Nesser et al. (2021) show that even larger dimensions can be accessed by 

approximating the Jacobian along leading patterns of information content.  

 475 

Figure 5 illustrates the inversion of TROPOMI observations with a 1-month example for the Permian Basin using an analytical 

solution with 0.25o×0.3125o (≈25×25 km2) resolution. This calculation was done on the Amazon Web Services (AWS) cloud 

with the Integrated Methane Inversion (IMI) open-access facility for analytical inversions of TROPOMI data, enabling users 

to directly access the TROPOMI data archived on AWS and infer emissions for their domain and time window of interest with 

pre-compiled inversion code (Varon et al., 2022).  480 

 
Figure 5: Integrated Methane Inversion (IMI) on the Amazon Web Services (AWS) cloud (Varon et al., 2022). The IMI accesses the 
TROPOMI operational data posted on the cloud and carries out analytical inversions for user-selected domains and time periods. 
Before conducting the inversion, users can run an IMI preview to visualize the observations, the default prior emission estimates (to 
which they can substitute their own), the expected information content of the inversion (degrees of freedom for signal or DOFS), 485 
and the SWIR albedos for indication of data artifacts. If the preview is satisfactory, they can then run the inversion to generate 
posterior emission estimates with averaging kernel sensitivities indicating where the observations can successfully constrain 
emissions. Shown here is an example given by Varon et al. (2022) for a 1-month (May 2018) inversion over the Permian Basin, using 
the prior emission estimate from the EDF inventory (Zhang et al., 2020). The IMI is accessible at https://imi.seas.harvard.edu. 

 490 

The assumption of Gaussian error pdfs for prior emission estimates in Eq. (2) may not always be appropriate. A log-normal 

distribution is often more correct (Yuan et al., 2015) and can be accommodated in analytical inversions (Maasakkers et al., 

2019; Lu et al., 2022). Brandt et al. (2016) show that the log-normal distribution still underestimates the heavy tail of the 

frequency distribution of point sources (the super-emitters). Application of inverse methods to detect and quantify super-
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emitters in an oil/gas field may require a bimodal pdf for prior estimates, and an L-1 norm cost function may be better suited 495 

than the standard L-2 norm of equation (2) (Cusworth et al., 2018). A Markov Chain Monte Carlo (MCMC) method for the 

inversion as used by Western et al. [2021] enables the specification of any prior and observational error pdfs, and returns the 

full posterior error pdf on emissions, but it is computationally expensive and its cost increases rapidly as n increases. 

 

The inversion typically optimizes a geographical 2-D array of emission fluxes, but quantifying emissions by source sector is 500 

often of more interest. Sectoral information is generally contained in the prior inventory. The simplest approach is to assume 

that the posterior/prior correction factor to emissions for a given grid cell applies equally to all emissions in that grid cell 

(Turner et al., 2015) or in a manner weighted by the prior uncertainties of the different sectors (Shen et al., 2021). The posterior 

error covariance matrix  Ŝ  and averaging kernel matrix A on the 2-D grid can similarly be mapped to specific sectors and/or 

summed over a domain such as an individual country (Maasakkers et al., 2019). A more general approach for sectoral 505 

attribution introduced by Cusworth et al. (2021c) maps the ( x̂ , Ŝ ) solution onto any alternative state vector z (such as sector-

resolved emissions) with its own prior information (zA, ZA) to obtain a solution ẑ with posterior error covariance matrix Ẑ . 

This allows in particular to compare results from inversions using different prior information. 

4.2 Quantification of point sources with point source imagers 

Quantification of point sources from satellite observations of instantaneous plumes poses a different kind of inversion problem. 510 

In this case a single quantity, the point source rate Q [kg s-1], is to be inferred from a single observation of the plume. Figure 

3 showed examples of plume observations. The morphology of the instantaneous plume is determined by turbulent diffusion 

superimposed on the mean wind, with a plume boundary (commonly called plume mask) defined by the detection limit of the 

instrument. The observation is of the total methane column and so is relatively insensitive to vertical boundary layer mixing, 

which is a major source of error in interpreting plumes from in situ aircraft observations (Angevine et al, 2020). On the other 515 

hand, unlike for in situ aircraft observations, there is no direct measurement of the wind speed U in the plume. Lack of precise 

wind speed information is a major source of error for interpreting satellite observations because plume concentrations in the 

plume vary as the ratio Q/U, meaning that errors in U propagate linearly to errors in Q. 

 

Figure 6 summarizes different methods for inferring point source rates from satellite observations of instantaneous plumes. 520 

Details on these methods are given by Krings et al. (2011), Varon et al. (2018), and Jongaramrungruang et al. (2019, 2022b). 

The Gaussian plume is the classic model for turbulent diffusion from a point source but it is valid only for a plume sampling 

a representative ensemble of turbulent eddies. Methane plumes are generally too small for this condition to be met 

(Jongarangmrungruang et al., 2019), as illustrated in Fig. 3 where the plume shapes are not Gaussian. A simple mass balance 
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method applying the local wind speed to the methane enhancement observed in the plume is flawed for sub-km scales because 525 

ventilation is determined by turbulent eddies more than by the mean wind (Varon et al., 2018).  

 

 
Figure 6: Seven different methods for inferring point source rates Q [kg s -1] from satellite observations of instantaneous plumes of 
methane column enhancements ΔΩ [kg m-2] relative to background. The methods involve (1) fit to a Gaussian plume, (2) local mass 530 
balance for near-source pixels, (3) Gauss theorem with integration of the outward flux along a closed contour s, (4) cross-sectional 
flux (CSF) integral, (5) integrated mass enhancement (IME) with independent wind speed information, (6) IME with wind speed 
inferred from the plume angular width, and (7) machine-learning applying a convolution neural network (CNN) to the plume image. 
Methods (1), (2), (4), and (5) are described by Varon et al. (2018), method (3) by Krings et al. (2011), method (6) by 
Jongaramrungruang et al. (1999), and method (7) called MethaNet by Jongaramrungruang et al. (2022b). In the equations, x denotes 535 
the plume axis for transport by the mean wind and y denotes the horizontal axis normal to the wind.  The IME [kg] is the spatial 
integral of the methane column enhancement ΔΩ over the plume mask. The wind speed U is that relevant to transport of the plume, 
and in the IME method (4) it is parameterized as an effective wind speed Ueff to include the effect of turbulent diffusion.  The Gauss 
theorem and CSF methods require wind direction information. The IME method (4) requires a characteristic plume size  L  that 
can be taken as the square root of the plume area (Varon et al., 2018) or the radial plume length (Duren et al., 2019). The empirical 540 

dispersion parameter σy [m] in the Gaussian plume method (1) characterizes the spread of the plume. n


in the Gauss theorem 
method is the unit vector normal to the contour. 

The Gauss theorem method, in which the source rate is calculated as the outward flux summed along a contour surrounding 

the point source, is extensively used for in situ aircraft observations where concurrent measurements of wind vector and 

methane are available to calculate the local flux as the aircraft circles around the source (Hainy et al., 2019).  In the absence 545 

of in situ wind data, one can apply a single estimate of the wind vector based on local station or assimilated data (Krings et al., 
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2011). However, the calculation then does not account for the contribution of turbulent diffusion to the outward flux. In 

addition, any sources within the contour will alias into the inferred point source rate. 

  

Two successful methods to derive point source rates from observations of instantaneous plumes are the cross-sectional flux 550 

(CSF) method (White, 1976; Krings et al., 2011), in which the source rate is inferred from the product of the methane 

enhancement and the wind speed integrated across the plume width, and the integrated mass enhancement (IME) method 

(Frankenberg et al., 2016; Varon et al., 2018), in which the total mass enhancement in the plume is related empirically to the 

magnitude of emission. Both methods are widely applied to the retrieval of point source rates from satellite observations and 

they yield consistent results (Varon et al., 2019). The CSF method is more physically based, and source rates can be derived 555 

from cross-sections at different distances downwind to reduce error (Fig. 6). The contribution of turbulent diffusion to the flux 

can be neglected in the direction of the wind following the slender plume approximation (Seinfeld and Pandis, 2016). However, 

the dependence on wind direction is an additional source of error.  

 

Both the CSF and IME methods require estimates of wind speed relevant to plume transport. For the CSF method this is the 560 

mean wind speed over the vertical depth of the plume, which can be parameterized from the 10-m wind speed (Varon et al., 

2019) or averaged from available wind data (Krings et al., 2011). The effective wind speed Ueff  in the IME method accounts 

for the effect of turbulent diffusion in plume dissipation, and can be parameterized as a function of an observable 10-m wind 

speed by using large-eddy simulations (LES) of synthetic plumes sampled with the instrument pixel resolution, plume mask 

definition, and observing time of day (Varon et al., 2018). The need for independent information on wind speed, either from 565 

measurements at the point source location or from a meteorological database, can dominate the error budget in inferring source 

rates from the CSF and IME methods, and typically limits the precision to 30% (Varon et al., 2018). The error is larger for 

weak winds, which tend to be more variable, and smaller for strong steady winds. However, plumes are less likely to be 

detectable in strong winds because of dilution. Weak winds are thus favorable for plume detection but can induce large error 

in source quantification. 570 

 

Jongaramrungruang et al. (2019) showed that the morphology of an observed plume contains information on wind speed, as 

long slender plumes are associated with high wind speeds while short stubby plumes are associated with low wind speeds. By 

using the plume angular width as a measure of wind speed, they were able to infer source rates without independent wind 

information. Jongaramrungruang et al. (2022b) developed that idea further with a convolutional neural network (CNN) 575 

approach trained on LES plume images to learn the source rate from the 2-D plume structure. Application to synthetic plumes 

as would be sampled by the AVIRIS-NG aircraft instrument at 1-5 m pixel resolution found a mean precision of 17% and a 

detection threshold of 50 kg h-1 over spectrally homogeneous surfaces. This method has not yet been applied to satellite 

observations where coarser pixels would result in lower sensitivity and where retrievals are more subject to artifacts. 
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5  Detection thresholds 580 

5.1 Area sources 

Here we examine the ability of area flux mappers to detect total methane emission fluxes for a target domain and spatial 

resolution. This can involve repeated observations of the same scene over multiple passes to increase precision and observation 

density, as illustrated in Fig. 3. The observation time required to detect a desired flux threshold then depends on the spatial 

resolution required, the instrument precision, the fraction of successful retrievals, the pixel size, the variability of emissions, 585 

and the return time.  

 

Following the conceptual model of Jacob et al. [2016], the methane column enhancement  ΔX  [ppb] resulting from a uniform 

emission flux E [kg km-2 h-1] over a domain of dimension W [km] is given by 

 ∆ = αX EW                   (3) 590 

 

with a scaling coefficient α = (Ma/(MCH4)g/pU where g is the acceleration of gravity, Ma and MCH4 are the molecular weights 

of dry air and methane, p is the surface pressure, and U is the wind speed. With the units above and assuming p = 1000 hPa 

and U = 5 km h-1, we have α = 4.0×10-2 ppb km h kg-1. An instrument with pixel-level precision σI [ppb] can detect this 

emission flux with a single measurement if ΔX > σI, but this is often not the case. Spatial and temporal averaging of 595 

observations improves the effective precision, and this improvement goes as the square root of the number of observations if 

the error is random, uncorrelated, and representatively sampled (IID conditions). The time required for detecting the mean 

emission flux E over a domain of dimension W is then given by 

 

 

21max(1, max(1, ) ))σ
=

∆Rt t
FN X      (3) 600 

 

where tR is the return time of the instrument (time interval between passes), N is the number of observations within the domain 

per individual pass for instrument pixel sizes D smaller than W (for continuous mapping and square pixels we have N = (W/D)2), 

F is the fraction of successful retrievals, and σ [ppb] is the variability that results from both the instrument precision and the 

spatial variability σX (D,W) of the enhancement ΔX sampled by the pixels within the domain: 605 

 

 
2 2( , )σ = σ + σI X D W

            (4) 
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 610 

Equations (3)-(5) provide a simple conceptual framework for evaluating the ability of area flux mappers to detect regional 

emissions of a certain magnitude. For illustration purposes, consider an application to detect US emissions at 100-km 

resolution. In the gridded version of the methane emission inventory from the US Environmental Protection Agency 

[Maasakkers et al., 2016], 80% of total national anthropogenic emissions are contributed by 0.1o×0.1o (≈10×10 km2) grid cells 

with emission flux E > 0.4 kg km-2 h-1 (Jacob et al., 2016). Shen et al. (2022) find a mean emission of 0.18 Tg a-1 for 12 major 615 

oil/gas production basins in the US EPA inventory, which for a typical basin scale of 200×200 km2 corresponds to a mean 

emission flux of 0.5 kg km-2 h-1. Taking E = 0.5 kg km-2 h-1 as a desired flux detection threshold on a 100-km scale, we find 

from equation (3) a mean enhancement ΔX = 2.0 ppb. Instrument precisions for the flux mappers in Table 1 are in the range 

10-15 ppb and we assume that σX is small in comparison. We further assume F = 0.24 for instruments operating at 1.65 μm by 

analogy with GOSAT using the CO2 proxy method (mainly limited by cloud cover), and F = 0.03 for instruments operating at 620 

2.3 μm by analogy with TROPOMI (limited by both cloud cover and spectrally inhomogeneous surfaces). Taking other 

instrument properties from Table 1, we find that TROPOMI requires a 40-day averaging period, largely limited by the small 

fraction of successful retrievals, and GeoCarb requires a similar averaging period for the same reason.  GOSAT-GW in wide-

swath mode requires only 8 days because it uses the 1.65 μm band. The other regional instruments of Figure 4 operating at 

1.65 μm (GOSAT-GW in narrow-swath mode, MethaneSat, CO2M) can meet the flux threshold in a single pass and are limited 625 

solely by their return time. If we used a 10-km spatial resolution requirement then only MethaneSat could meet the flux 

threshold in a single pass on account of its high precision, though its observing domain would be limited to 200×200 km2. 

 

The above conceptual model is crude and overoptimistic, assuming ideal reduction of errors and uncorrelated retrieval success 

across instrument pixels, and ignoring regional bias, but it is useful for intercomparing instruments and it highlights critical 630 

variables determining detection thresholds for different applications. The advantage of the 1.65 μm band is readily apparent 

because it has a much higher success rate through the CO2 proxy retrieval. The MethaneSAT instrument with high precision 

and small pixels is most useful for quantifying fluxes at high spatial resolution. For coarser resolutions, return time and spatial 

coverage can be more important considerations. A future TROPOMI-like instrument with 5.5×7 km2 pixels and 1-day return 

time but observing at 1.65 μm instead of 2.3 μm would thus be more effective on coarse scales than CO2M with its 2×2 km2 635 

pixels but 5-day return time. 

5.2 Point sources 

In the case of point source imagers, the detection threshold applies to single-pass observations of the plumes. Table 3 lists 

point source detection thresholds reported in the literature for different instruments. Detection thresholds are defined by the 

ability to determine the plume mask against a noisy background and to retrieve the corresponding emissions. The detection 640 

thresholds for a given instrument depend strongly on surface type and are lowest for flat, bright, spectrally homogeneous 
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surfaces. They also depend on wind speed, which complicates the definition of detection threshold because weak winds 

facilitate detection but cause large error in quantification (Varon et al., 2018).  

 

Table 3:  Point source detection thresholds for different satellite instrumentsa 645 

Instrument Detection threshold (kg h-1) Reference 

TROPOMI 25000b Lauvaux et al. (2022) 

Sentinel-2, Landsat-8/9 1800-25000c Varon et al. (2021); Ehret et al. (2022); 

Irakulis-Loitxate et al. (2022a) 

PRISMA 500-2000d Guanter et al. (2021) 

MethaneSAT 500 Chan Miller et al. (2022) 

GHGSat-D 1000-3000 Jervis et al. (2021) 

GHGSat-C1, C2 100e Gauthier (2021) 

Carbon Mapper 50-200f Duren et al. (2021) 

WorldView-3 <100 Sanchez-Garcia et al. (2022) 

AVIRIS-NG (aircraft)g 2-10h Duren et al. (2019) 
a The detection thresholds are as reported in the references and are generally for favorable winds (<5 m s-1) and favorable 

surfaces (flat, bright, spectrally homogeneous) unless otherwise indicated. As pointed out in the text, weak winds are favorable 

for detection but not for quantification and this places some ambiguity in the definition of detection threshold. Specifications 

for each instrument are in Table 1. Instruments not yet launched are in italics. 
b From an ensemble of 1800 observed detections for TROPOMI 5.5×7 km2 pixels. The pixels may contain multiple point 650 

sources. 
c Observations over surfaces ranging from flat and bright (Sahara) to highly heterogeneous (farmland).  
d From LES synthetic plumes and observations over surfaces ranging from Sahara (flat bright homogeneous surfaces) to Shanxi 

Province in China (darker more heterogeneous surfaces with significant terrain) 
e From controlled releases (MacLean et al., 2021). 655 
f 50 kg h-1 in target mode with pointing, 200 kg h-1 in push-broom mode. 
gAirborne imaging spectrometer with spectral resolution of 5 nm and pixel resolution of 1-8 m depending on aircraft altitude 

(Thorpe et al., 2017). 

 h Observations in California with range determined by surface brightness. 

 660 

For a given surface and wind speed, the main instrument predictors of point source detection threshold are spatial resolution, 

spectral resolution, and precision. Finer spatial resolution decreases the dilution of the plume enhancements over the pixel 

area, thus increasing the magnitude of the enhancements within plume pixels and facilitating detection. An airborne imaging 
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spectrometer observing from low altitude such as AVIRIS-NG (with spatial resolution of 1-8 m depending on aircraft altitude) 

is in this manner much more sensitive than satellite instruments with similar spectral resolution. Higher spectral resolution 665 

increases precision and reduces the aliasing of surface spectral features into the methane retrieval (Cusworth et al., 2019; 

Jongaramrungruang et al., 2022a). For hyperspectral and multispectral instruments with coarse spectral resolution, the spectral 

positioning of the bands relative to the methane absorption lines is also important (Scaffuto et al., 2021; Sanchez-Garcia et al., 

2022). Precision depends on other instrument properties beyond spectral resolution and positioning, including the capability 

of pointing to specific targets to increase the SNR through longer sample collection. Pointing is how GHGSat achieves a 670 

combination of high spatial and spectral resolution. 

 

The detection thresholds in Table 3 are not strictly comparable between instruments because they reflect different levels of 

evidence. One may usefully classify the instruments by order-of-magnitude thresholds (Fig. 4). Instruments in the ~100 kg h-

1 class include GHGSat, WorldView-3, and Carbon Mapper. A typical point source imager with spatial resolution ~30 m 675 

requires spectral resolution of 5 nm or better to fit into that class (Cusworth et al., 2019), though WorldView-3 can achieve 

this class for bright spectrally homogeneous surfaces through its combination of very high spatial resolution (3.7×3.7 m2) and 

favorable spectral positioning (Sanchez-Garcia et al., 2022). 

 

Instruments in the ~500 kg h-1 class include the land hyperspectral sensors (PRISMA, EnMAP, EMIT) and MethaneSAT. The 680 

land hyperspectral sensors have ~30 m spatial resolution and achieve that class with 10 nm spectral resolution in the 2.3 μm 

band, enabling either a full-physics or matched filter retrieval. MethaneSAT will have coarser 130×400 m2 spatial resolution 

but higher precision enabled by 0.3 nm spectral resolution in the 1.65 μm band, with the added benefit of allowing a CO2 proxy 

retrieval to minimize artifacts (Chan Miller et al., 2022). 

 685 

Instruments in the 1000-10000 kg h-1 class include the multispectral land sensors Sentinel-2 and Landsat with 20-30 nm spatial 

resolution and a single measurement in the 2.3 μm band to allow a simple Beer’s law retrieval. TROPOMI can detect extremely 

large point sources or clusters of sources (>25,000 kg h-1) over its 5.5×7 km2 pixels (Lauvaux et al., 2022), though coarse 

spatial resolution hinders source identification.  

 690 

The relevance of measuring individual point sources at these different thresholds can be assessed by considering their 

contributions to total emissions. Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields originate 

from point sources > 10 kg h-1 detectable by AVIRIS-NG, and Fig. 7 shows the cumulative frequency distributions by number 

and total emission of  >10 kg h-1 point sources sampled by airborne remote sensing over both California and US oil/gas fields 

(Duren et al., 2019; Cusworth et al., 2022). A satellite instrument with detection threshold of 100 kg h-1 could detect 90% of 695 

point sources in that data set, contributing 98% of point source emissions.  An instrument with detection threshold of 1000 kg 

h-1 could detect 10% of point sources, contributing 40% of point source emissions. It should be emphasized that different 
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datasets may show different distributions. Brandt et al. (2016) find that sources in the 10-100 kg h-1 range contribute 20% of 

emissions from point sources > 10 kg h-1 in their survey of emissions from US oil/gas fields. The dataset of Fig. 7 also includes 

only a few emitters in the ~10,000 kg h-1 range. Global statistics of aircraft and satellite data suggest a power law frequency 700 

distribution of point source emissions with ~100× fewer sources at 10000 kg h-1 than at 1000 kg h-1 (Ehret et al., 2022; Lauvaux 

et al., 2022). These so-called ultra-emitters could still contribute significantly to total emissions in some regions. 

 
Figure 7: Cumulative frequency distribution of point source rates above 10 kg h-1 for 3879 point sources detected by airborne remote 
sensing in California and in US oil/gas basins by Duren et al. (2019) and Cusworth et al. (2022). The blue curve gives the cumulative 705 
fraction of emissions contributed by detected point sources above a given rate, and the red curve gives the cumulative fraction of the 
number of point sources. For example, a satellite instrument with detection threshold of 100 kg h-1 could detect 90% of the point 
sources, contributing 98% of total point source emissions. An instrument with detection threshold of 1000 kg h-1 could detect 10% 
of the point sources, contributing 40% of total point source emissions. 

 710 
6  Observing system completeness  

Here we introduce the concept of observing system completeness as the capability of an instrument (or ensemble of 

instruments) to fully quantify their target emissions within a selected domain and time window. For area flux mappers the 

target would be the total methane emissions at a desired spatial resolution, while for point source imagers the target would be 

the total emissions contributed by point sources, which would have defined for practical purposes as sources >10 kg h-1.  715 

6.1 Observing system completeness for area flux mappers 

Observations from area flux mappers are generally used to infer 2-D distributions of emissions over the observation domain 

by Bayesian inference. The observing system completeness is then defined by the DOFS (Sect. 4.1 and Fig. 5). Given n state 

vector elements of emissions on the 2-D grid, the DOFS tell us how many of those elements are actually quantified by the 
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observations, and the averaging kernel sensitivities (diagonal terms of the averaging kernel matrix, adding up to the DOFS) 720 

give that information for individual state vector elements. 

 

As pointed out by Nesser et al. (2021) and Varon et al. (2022), it is possible to roughly estimate the DOFS of an observing 

system for a selected domain and time period without doing any actual forward model calculations. Consider a domain divided 

into n emission state vector elements of individual dimension W [km], sampled with an instrument providing m successful 725 

observations over the domain in the selected time period. Let σA be the mean prior error standard deviation for the individual 

state vector elements, and σO the mean observational error standard deviation. The DOFS can then be estimated as 

 

2

2
2

DOFS = 
( / )
σ
σσ +

A

O
A

n
k

m     (5) 

 

where k = ΔX/E [ppb km2 h kg-1] is the Jacobian matrix element that relates the column mixing ratio enhancement ΔX [ppb] 730 

over a state vector element to the emission flux  E [kg km-2 h-1] for that element. Following Nesser et al. (2021), we can 

approximate k with a simple mass balance model as  

 CH4

= η aM Wgk
M Up          (6) 

 

where η is a coefficient to account for turbulent diffusion. Nesser et al. (2021) and Varon et al. (2022a) find that η = 0.4 is a 735 

suitable value for W in the range 25-100 km. Further assuming U = 5 km h-1 and p = 1000 hPa we obtain k = 1.4×1010 W [ppb 

km2 h kg-1]. The mean prior error standard deviation can be estimated as σA = fQA/(nW2) where QA is the total prior estimate of 

emission in the domain [kg h-1] and f is the fractional error (such as 50%).  For the example of Fig. 5 with a 1-month inversion 

of TROPOMI observations over the Permian Basin, Varon et al. (2022) find that this rough estimate prior to doing the 

inversions yields a DOFS of 11.7, close to the value of 10.8 found in the actual inversion. 740 

  

The simple estimate of DOFS in equation (6) yields basic insights into the factors affecting observing system completeness 

for an area flux mapper. Instrument precision and number of observations (or observation density for a given area) are critical. 

The requirement for improving the prior estimate depends on the error for that prior estimate. Increasing the requirement on 

spatial resolution (large n, small W) leads to smaller absolute prior errors for individual state vector elements and raises in turn 745 

the requirement on the precision and number of observations. 
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6.2 Observing system completeness for point source imagers 

Observing system completeness for a point source imager can be defined as its ability to quantify total emissions from point 

sources > 10 kg h-1 over a selected domain and time window. Completeness in observation of point sources is important not 

only for complementing the information from area flux mappers but also for leak detection and repair (LDAR) programs where 750 

regular survey of point sources in a region can enable prompt action to fix malfunctioning equipment (Kemp et al., 2016; Fox 

et al., 2021). Current LDAR programs rely on a combination of ground surveys, drones, and aircraft, but we will see that 

satellites have an important role to play. 

 

Let C ∈ [0,1] denote the observing system completeness for point sources as the fraction of total point source emissions > 10 755 

kg h-1 within a domain and time window that can be detected by a given instrument (or constellation of instruments). C is 

limited by a combination of the instrument detection threshold (CD), spatial coverage (CS), and temporal sampling (CT): 

 

 D S TC C C C= × ×  (7) 

 760 

Here CD is the fraction of point sources that can be detected on the basis of the instrument’s detection threshold, as inferred 

for example from Fig. 7.  CS is the fraction of the domain that the instrument observes at least once within the time window. 

If there is full spatial coverage within the time window then CS = 1. CT  = 1- (1-Fp)N is the probability for an observed source 

to be actually detected within the time window given the number N ≥ 1 of observations in the window, the source  persistence 

p (fraction of time that the source is emitting above the detection threshold), and the fraction F of successful retrievals, taken 765 

here as the fraction of clear-sky observations. For example, an intermittent source with p = 0.2 that is observed with a 1-week 

return time and 30% clear skies would have CT  = 0.96 for 1 year of observations but CT = 0.23 for 1 month. If spatial coverage 

and observing frequency are sufficient, then C is limited by the instrument’s detection threshold (CD). If they are not, and 

depending on source persistence and cloud cover, then CS and CT may limit observation system completeness rather than CD. 

 770 

Figure 8 shows the frequency distribution of persistence (p) for 2500 oil and gas point sources detected and quantified by the 

airborne AVIRIS-NG and Global Airborne Observatory instruments in US field campaigns (Cusworth et al., 2022).  The left 

panel shows the frequency distribution of mean emissions from individual point sources for each persistence bin. From there 

we can estimate the observing system completeness for any instrument on the basis of its detection threshold, spatial coverage, 

and return time.  The right panel plots the cumulative observing system completeness for the ensemble of 2500 point sources 775 

as achieved by an airborne instrument with 10 kg h-1 detection threshold and bi-monthly (60-day) sampling interval, and by a 

satellite system with 100 kg h-1 detection threshold and bi-weekly (14-day) sampling interval. The calculation is done for a 1-

year time window with 30% clear skies, assuming CS = 0.95 in both cases, and the cumulative results are shown across the 

range of persistence bins. We see in this example that the two observing systems have comparable success for persistent 
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sources (p > 0.5) by trading CD for CT, but the satellite system is better for intermittent sources (p < 0.5), despite its higher 780 

detection threshold, because of the greater benefit from frequent observations. 

 
Figure 8: Point source rates, persistence, and observing system completeness for an ensemble of 2500 oil/gas point sources sampled 
by aircraft remote sensing in five US oil/gas basins (Cusworth et al., 2022). The left panel shows the frequency distribution of mean 
point sources rates for different persistence bins (p, fraction of the time that the source is detected), where the mean is computed by 785 
assuming zero emission when no plume is detected.  Boxes and whiskers indicate 10th, 25th, 50th, 75th, and 90th percentiles.  The right 
panel shows the frequency histogram of different persistence bins. Also shown in that panel is the cumulative observing system 
completeness C = CD ×CS ×CT  (equation (8)) for 1 year of observations  under 30% clear-sky conditions and two observing systems, 
one with 100 kg h-1 detection threshold and bi-weekly sampling (green line) and one with 10 kg h-1 and bi-monthly sampling (red 
line). We assume spatial coverage CS = 0.95 for both. Both systems have comparable performance for sources with high persistence 790 
(p > 0.5) but the biweekly observing system performs better for sources with low persistence despite its higher detection threshold. 

 

Figure 9 further illustrates the trade space between detection threshold and return time for determining observing system 

completeness. Results are for the ensemble of 2500 point sources with statistics given in Fig. 8. An observing system 

completeness of 0.5 can be achieved by an instrument with a detection threshold better than 250 kg h-1 sampling at least weekly. 795 

Such an instrument performs as well as one with low detection threshold but sampling only every 3 months. Achieving an 

observing system completeness of 0.8 requires an instrument with detection threshold better than 100 kg h-1.  

 

Our calculation of CT assumes that a point source follows a binary emission frequency distribution (on/off) with constant 

emissions when on. Actual sources have more complex variability (Allen et al., 2022; Zimmerle et al., 2022). A simple analysis 800 

can be done by assuming Gaussian statistics following Hill and Nassar (2019) to estimate the number N of observations needed 

to quantify a mean point source emission rate (1±δ)Q with relative precision of  δ defined by the 95% relative confidence 

interval:  
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21 (1.96 )σ=
δ

N
Fp       (8) 

 
2 2σ = σ + σI S              (9) 805 

 

Here σ is the standard deviation of individual measurements determined by instrument precision (σI) and variability in the 

source (σS).  Using statistics from airborne surveys in the Permian Basin, we find that 64 clear-sky samples per year (roughly 

weekly return time, assuming 30% clear skies) would be required to estimate annual point source emissions from that highly 

intermittent population within 50% (p = 0.24, σI = 36%, σS = 45%; Cusworth et al. (2021b)). Increasing the required annual 810 

emission precision to 35% would require 130 samples per year (3-day return time). For a less intermittent population (p = 0.5), 

we find N = 30 (biweekly sampling) to achieve 50% precision and N = 64 (weekly sampling) to achieve 35% precision. These 

observing frequencies can be achieved with a satellite constellation but would be challenging for an airborne program. 

 
Figure 9: Observing system completeness of a point source imager as a function of detection threshold and return time.  The 815 
calculation is for the ensemble of point sources in Fig. 8. Observing system completeness for a point source imager is defined here 
as the ability to quantify emissions from all point sources >10 kg h-1. 
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The tails of the pdfs for point source emissions are a particular challenge to sample representatively. The pdfs are generally 

heavy-tailed, resulting in low estimate of mean emissions (Zimmerle et al., 2022), which may be addressed with very dense 820 

sampling (Chen et al., 2022) or with supporting observations from area flux mappers. Persistence is defined in the observations 

by the frequency of occurrence of emissions above the detection threshold, but non-detection could represent the low tail of 

the pdf rather than an on/off switch. The definition of persistence may thus depend on the detection threshold, increasing the 

importance of that threshold as a measure of observing system completeness. Further complicating matters is that the 

instrument detection threshold is variable, depending notably on the wind speed at the time of observation. This calls for better 825 

characterization of the full pdf of emissions from point sources as a means to extrapolate the observations (Allen et al., 2022).  

7  Concluding remarks 

Satellite observations of atmospheric methane in the shortwave infrared (SWIR) provide an increasingly powerful system for 

continuous monitoring of emissions from the global scale down to point sources. We reviewed the current and scheduled fleet 

of instruments including area flux mappers to quantify total emissions on regional scales and point source imagers to quantify 830 

individual source rates. We discussed retrieval methods to infer concentrations from measured radiances, precision and 

accuracy requirements, inverse methods to infer emissions from observed concentrations, emission detection thresholds, and 

observing system completeness.  

 

Synergy between different satellite instruments is important to exploit. Area flux mappers can constrain total emissions while 835 

point source imagers provide specific attribution. Detection of coarse-resolution hotspots by area flux mappers can direct 

targeted observation by point source imagers to identify the causes. Point source observations with adequate completeness can 

improve the bottom-up estimates used as prior information in inversions of area flux mapper data. Constellations of point 

source imagers can achieve high observing system completeness in support of point source mapping and leak detection and 

repair (LDAR) programs.  840 

 

Synergy with suborbital (ground-based and airborne) platforms is essential for a multi-tiered observing strategy (Cusworth et 

al., 2020). Suborbital observations have a unique role to complement the intrinsic limitations of satellites in terms of spatial 

resolution, return time, cloud cover, dark surfaces, and nighttime. Surface measurements are typically ten times more sensitive 

to local emissions than satellite observations (Cusworth et al., 2018). They can also include correlative chemical information 845 

such as isotopes, ethane, and ammonia concentrations (Yuan et al., 2015; Ganesan et al., 2019; Graven et al., 2019; Pétron et 

al., 2020; Yang et al., 2020).  

 

Correlative chemical information available from satellites needs to be better exploited. Concurrent satellite observations of 

CO and methane have been used to quantify methane emissions from open fires (Worden et al., 2013) and from cities (Plant 850 
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et al., 2022). Concurrent enhancements of CO2 and methane in oil/gas fields observed by the PRISMA instrument, together 

with nighttime flare data from the VIIRS instrument, have been used to identify flaring point sources and quantify flaring 

efficiency (Cusworth et al., 2021a). Measurements of ammonia from space (Van Damme et al., 2018) have the potential to 

identify livestock sources but they have not yet been used in combination with methane.   

 855 

Some methane sources are intrinsically difficult to observe from space including over water, the wet tropics, and the Arctic. 

Potentially large methane sources over water include offshore oil/gas facilities, wastewater facilities, hydroelectric and 

agricultural reservoirs, and estuaries. Large sources can be observed in the sunglint mode or from lidar (Kiemle et al., 2017; 

Ayasse et al., 2022; Irakulis-Loitxate et al., 2022b). The wet tropics and the Arctic are a challenge because of persistent 

cloudiness, compounded in the Arctic by high solar zenith angles and polar darkness, and by the collocation of oil/gas and 860 

wetland emissions. The MERLIN lidar instrument will provide unique observation capability for the Arctic but with sparse 

spatial coverage due to the narrow laser spot. The GeoCARB geostationary instrument should increase data density over 

tropical South America, where TROPOMI observations are sparse (Fig. 2), but its default mode of daily observations and 

coarse pixel size will limit the improvement in coverage. The tropics are thought to be the principal driver for the recent 

methane increase (Chandra et al., 2021; Yin et al., 2021; Zhang et al., 2021), and there would be considerable value in dedicated 865 

geostationary or inclined-orbit satellite observations of the tropics with high pixel resolution. 

 

Connecting top-down information on methane emissions to the improvement of bottom-up emission inventories remains a 

challenge. Ultimately, the goal of top-down estimates must be to improve bottom-up inventories, as the latter provide the 

foundational tools for climate policy by relating emissions to processes. Top-down information may have insufficient sectoral 870 

detail, but this calls for tip and cue partnerships where discrepancies identified by satellite for a particular sector motivate work 

to improve activity and/or emission factor estimates for that sector. The new International Methane Emissions Observatory 

(IMEO) (United Nations Environmental Program, 2021) aims to facilitate this infusion of top-down information into the 

improvement of bottom-up inventories.  

 875 

The capability is thus emerging for satellite observations to anchor a global methane monitoring system delivering global 

information on emissions in near real time, from the global scale down to point sources, to support climate policy and to guide 

corrective action. The basic framework for building such a facility is already here and will be rapidly augmented in coming 

years with the launch of new instruments. 
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