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Abstract. We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave 

infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, 

precision and accuracy requirements, inverse and mass balance methods for inferring emissions, source detection thresholds, 

and observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with 25 

complementary attributes. Area flux mappers are high-precision (<1%) instruments with 0.1-10 km pixel size designed to 

quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (<60 m) instruments designed 

to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009-present), 

which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018-present), which 

provides global continuous daily mapping to quantify emissions on regional scales. These instruments already provide a 30 

powerful resource to quantify national methane emissions in support of the Paris Agreement. Current point source imagers 

include the GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, 

Landsat-8/9, WorldView-3), with detection thresholds in the 100-10000 kg h-1 range that enable monitoring of large point 

sources. Future area flux mappers including MethaneSAT, GOSAT-GW, Sentinel-5, GeoCarb, and CO2M will increase the 

capability to quantify emissions at high resolution, and the MERLIN lidar will improve observation of the Arctic. The 35 

averaging times required by area flux mappers to quantify regional emissions depend on pixel size, retrieval precision, 

observation density, fraction of successful retrievals, and return times in a way that varies with the spatial resolution desired. 

A similar interplay applies to point source imagers between detection threshold, spatial coverage, and return time, defining an 



2 
 

observing system completeness. Expanding constellations of point source imagers including GHGSat and Carbon Mapper over 

the coming years will greatly improve observing system completeness for point sources through dense spatial coverage and 40 

frequent return times. 

1 Introduction 

Methane is a powerful greenhouse gas that has contributed 0.6oC of global warming since pre-industrial time (Naik et al., 

2021).  It is emitted by a number of anthropogenic source sectors including livestock, oil/gas systems, coal mining, landfills, 

wastewater treatment, and rice cultivation. Wetlands are the main natural source. The main sink is oxidation by the hydroxyl 45 

radical (OH), resulting in an atmospheric lifetime of about 9 years (Prather et al., 2012). Because of this short lifetime, 

decreasing methane emissions is a powerful lever to slow down near-term greenhouse warming (Nisbet et al., 2020). However, 

methane emission estimates and the contributions from different sectors are highly uncertain (Saunois et al., 2020), hindering 

climate policy. Here we review the capability of satellite observations of atmospheric methane to quantify emissions from the 

global scale down to point sources.  50 

 

Methane emission inventories are typically constructed using bottom-up methods in which activity levels (such as number of 

cows) are multiplied by emission factors (methane emitted per cow) (IPCC, 2019). Bottom-up methods relate emissions to the 

underlying processes, thus providing a basis for emission control strategies. Observations of atmospheric methane provide top-

down information to improve these emission estimates by using inverse methods to relate observed concentrations to emissions 55 

(Miller and Michalak, 2017). Satellite observations are of particular interest for this purpose because of their high observation 

density and global coverage (Palmer et al., 2021).  

 

Satellites retrieve atmospheric methane column concentrations with near-unit sensitivity down to the surface by measuring 

spectrally resolved backscattered solar radiation in the shortwave infrared (SWIR) (Jacob et al., 2016).  Global observation of 60 

methane from space began with the SCIAMACHY instrument (2003-2014, 30×60 km2 pixels) (Frankenberg et al., 2005), and 

has continued since with the TANSO-FTS instrument aboard GOSAT (2009-present, 10-km circular pixels separated by about 

270 km) (Parker et al., 2020) and the TROPOMI instrument (2018-present, 5.5×7 km2 pixels) (Lorente et al., 2021). Many 

studies have used these satellite observations to quantify methane emissions globally (Bergamaschi et al., 2013; Alexe et al., 

2015; Wang et al., 2019; Qu et al., 2021), on continental scales (Wecht et al., 2014; Maasakkers et al., 2021; Lu et al., 2022), 65 

on finer regional scales (Miller et al., 2019; Zhang et al., 2020; Shen et al., 2021), and for large point sources (Pandey et 

al.,2019; Sadavarte et al., 2021; Lauvaux et al., 2022; Maasakkers et al., 2022ab). Targeted observation of methane point 

sources from space began with the  2015 Aliso Canyon blowout using the Hyperion hyperspectral sensor (Thompson et al., 

2016) and has since continued with the GHGSat instruments (2016-present, 25×25 m2 pixels) (Jervis et al., 2021). 

Hyperspectral land-imaging spectrometers (measuring continuous spectra with ~10 nm resolution in selected wavelength 70 
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channels) and multispectral land-imaging spectrometers (measuring radiances in discrete ~100 nm channels) have also 

demonstrated capability to detect large methane point sources in their SWIR bands (Cusworth et al., 2019; Guanter et al., 2021; 

Varon et al., 2021; Ehret et al., 2022; Sanchez-Garcia et al., 2022).  

 

Better quantification of methane emissions worldwide is urgently needed to meet the demands of climate policy. Individual 75 

countries must report their emissions by sector to the United Nations Framework Convention on Climate Change (UNFCCC), 

on a yearly basis for Annex I (developed) countries. The enhanced transparency framework of the Paris Agreement requires 

all countries to submit national sector-resolved emissions for expert review by November 2024 as basis for setting their 

Nationally Determined Contributions to meet climate goals. Independently of the Paris Agreement, over 110 countries have 

now signed the Global Methane Pledge of 2021 committing them to reduce their collective 2030 methane emissions by 30% 80 

relative to 2020 levels. Satellites can help to quantify national emissions by sector as baseline for setting methane reduction 

goals, and can then monitor emissions over time to evaluate success in achieving those goals. They provide near real-time 

information on emissions whereas bottom-up inventories typically have latencies of a few years, and are thus a unique resource 

to document rapid changes in emissions (Barré et al., 2021). 

 85 

Jacob et al. (2016) previously reviewed the state of the science for quantifying methane emissions from space. They presented 

observing capabilities at the time, discussed the inverse methods for inferring methane emissions from satellite observations, 

and laid out observing requirements for future satellite missions. Since then, new satellite instruments for measuring 

atmospheric methane have been launched and new capabilities for detecting methane point sources from space have emerged. 

New analytical tools have been developed to infer emissions from satellite observations, including for point sources. Additional 90 

satellite instruments are scheduled to be launched over the next few years that will augment current capabilities. These new 

developments motivate our updated review.  

2 Observing atmospheric methane from space 

2.1 Current and planned instruments 

Table 1 lists current and scheduled satellite instruments with documented or expected capability for quantifying methane 95 

emissions, and Table 2 gives specific attributes for each. We classify the instruments as area flux mappers or point source 

imagers, and Fig. 1 illustrates these two fleets. Area flux mappers are designed to observe total emissions on global or regional 

scales with 0.1-10 km pixel size. Point source imagers are fine-pixel (<60 m) instruments designed to quantify individual point 

sources by imaging the plumes. Point source imagers have much finer spatial resolution than area flux mappers but lower 

precision. 100 
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Table 1: Current and planned SWIR satellite instruments for observing atmospheric methanea 

Instrument Organizationb Launch 

date 

Nadir  

pixel size 

Coverage Return 

time 

(days)c 

Methane 

band 

(μm)d 

Spectral 

resolution  

(nm)e 

Precisionf Reference 

Area flux mappersg 
    

 
 

 
  

  GOSATh JAXA, MOE, 

NEIS 

2009 10-km 

diameteri 

global 3  1.65, 2.3j 0.06 0.7% Parker et al. (2020);  

Noel et al. (2022) 

  TROPOMI ESA 2017k 5.5×7 km2 global 1  2.3 0.25 0.8%l Lorente et al. (2021) 

  GOSAT-GW JAXA, MOE, 

NEIS 

2023 1×1-10×10 

km2 m 

global 

+targets 

3  1.65 0.06 0.6% NIES (2021) 

  MethaneSAT   EDF 2023 130×400 m2 200×200 

km2 targets 

3-4  1.65 0.3 0.1-0.2%n Rohrschneider  et al. 

(2021) 

  Sentinel-5 ESA 2024 7.5×7.5 km2 global 1 1.65, 2.3 0.25 0.8% ESA (2020) 

  GeoCarb NASA 2025 6×3 km2  N and S 

Americao 

0.5 2.3 0.2 0.3-0.6% Moore et al. (2018) 

  CO2M ESA 2025 2×2 km2 global 5  1.65 0.3 0.6% Sierk et al. (2019) 

  MERLIN CNES, DLR 2027 0.1×50 kmp global 28  1.65 3×10-4 q 1.5% Ehret et al. (2017) 

Point source imagersr          

  Landsat-8s USGS 2013 30×30 m2 global 16  2.3 200 30-90%t Ehret et al. (2022) 

  WorldView-3 DigitalGlobe 2014 3.7×3.7 m2 66.5x112 

km2 targets 

< 1  2.3 50 6-19%t Sanchez-Garcia et al. 

(2022) 

  Sentinel-2 ESA 2015 20×20 m2 global 2-5  2.3 200 30-90%t Varon et al. (2021) 

  GHGSatu GHGSat, Inc. 2016 25×25 m2 12x12 km2 

targets 

1-7 v 1.65 0.3  1.5%w Jervis et al.  (2021) 

  PRISMAx ASI 2019 30×30 m2 30x30 km2 

targets 

4  2.3 10 3-9% Guanter et al. (2021) 
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  EnMAPx DLR 2022 30×30 m2 30x30 km2 

targets 

4  2.3 10 3-9% Cusworth et al. (2019) 

  EMIT NASA 2022 60×60 m2 Dust-

emitting 

regionsy 

3  2.3 9 2-6%z Cusworth et al. (2019) 

  Carbon Mapperaa Carbon 

Mapper and 

Planet 

2023 30×30 m2, 

30×60 m2 

18-km 

swathsab 

1-7v 2.3 6 1.2-1.5% Duren et al. (2021) 

a The Table lists shortwave infrared (SWIR) satellite instruments currently operating or scheduled for launch that have 

documented methane-observing capabilities and offer publicly accessible data (some for purchase; see Table 2). Instruments 

not yet launched are in italics, and launch dates are estimates as of this writing. All instruments are in low-elevation polar sun-110 

synchronous orbits except for GeoCarb, which will be in geostationary orbit over the Americas, and EMIT, which will be in 

an inclined precessing orbit.  All instruments measure SWIR solar radiation backscattered from the Earth’s surface except for 

MERLIN which is a lidar instrument. The Gaofen 5 series of Chinese satellites has capabilities similar to PRISMA and EnMAP 

(Irakulis-Loitxate et al., 2021) but is not included in the Table because of the opacity of data acquisition and distribution. A 

more comprehensive list of instruments including from private companies with proprietary data is available from GEO, 115 

ClimateTRACE, WGIC (2021). 
b JAXA ≡ Japan Aerospace Exploration Agency, MOE ≡ Ministry of Environment, NIES  ≡ National Institute for 

Environmental Studies, ESA ≡ European Space Agency, EDF ≡ Environmental Defense Fund, NASA ≡ National Aeronautics 

and Space Administration, CNES ≡ Centre National d’Etudes Spatiales, DLR ≡ Deutsches Zentrum für Luft- und Raumfahrt, 

USGS ≡ Unted States Geological Survey, ASI ≡ Agenzia Spaziale Italiana. 120 
c Time interval between successive viewings of the same scene.  
d Most useful band(s) for methane retrieval. The 1.65 and 2.3 μm bands have exploitable features at 1.63-1.70 and 2.2-2.4 μm, 

respectively. 
e Full width at half maximum. 
f Precision is reported as percentage of the retrieved dry column methane mixing ratio XCH4.   125 
g Area flux mappers are primarily designed to quantify total methane emissions on regional to global scales. 
g TANSO-FTS instrument aboard the GOSAT satellite. The instrument is commonly referred to as GOSAT in the literature. 

GOSAT-2 was launched in 2018 with specifications similar to GOSAT but adding a 2.3 μm band (Suto et al., 2021). 
i Circular pixels separated by about 270 km along-track and cross-track. 
j The 2.3 μm band was added in GOSAT-2. 130 
k TROPOMI was launched in October 2017 but the methane data stream begins in May 2018.  

l The TROPOMI product reports a much higher precision of ~2 ppb but this only includes error from the measured radiances. 

Accounting for retrieval errors by validation with TCCON data indicates a precision of 0.8% (Schneising et al., 2019). 
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m Narrow-swath mode (1×1 to 3×3 km3 pixels) for urban regions and wide-swath mode (10×10 km2) for global coverage. 
n For 1-5 km binned data. 135 
o From 45oS to 55oN. 
p Integrating the signal along 50 km of the lidar orbit track. 
q Lidar online/offline sampling at 1645.552/1645.846 nm. 
r Point source imagers quantify emissions from individual point sources by imaging of the atmospheric plume. 
s Landsat-9 was launched in 2021 with similar capability as Landsat-8. 140 
t For favorable (bright and spectrally homogeneous) surfaces. 
u Including GHGSat-D (2016), -C1 (2020), C2 (2021), and C3-C5 (2022). Plans are for six more launches in 2023. 
v For the constellation. Individual satellites have return times of about 14 days. 
w For the GHGSat-C satellites.  GHGSat-D has a precision of 12-25%. 
x Other planned hyperspectral imaging spectrometers with observing capabilities similar to PRISMA and EnMAP include SBG 145 

and CHIME (Cusworth et al., 2019). 
y EMIT is a surface mineral dust mapper that will fly on the International Space Station in a 51.6o inclined orbit and will target 

arid areas. 
z Based on the precision of PRISMA (Guanter et al., 2021) and the higher spectral resolution of EMIT (Cusworth et al., 2019). 
aa Carbon Mapper is expected to be a constellation of satellites with two launches in 2023 and six launches in 2024. 150 
ab Carbon Mapper push-broom mode has imaging strips as long as 1000 km with 30×60 m2 pixels; Carbon Mapper target-

tracking mode has shorter imaging strips with 30×30m2 pixels and ground-motion compensation to achieve higher signal-to-

noise ratio (lower detection threshold). 

 
Table 2: Attributes and data availability for satellite instruments observing atmospheric methanea 155 

Instrument Attributes Data availabilityb 

Area flux mappers   

     GOSAT Long-term record of high-quality data L2, open 

    TROPOMI Global continuous daily coverage  L2, open 

    GOSAT-GW High-resolution mapping of urban areas L2, open 

    MethaneSAT High-resolution mapping of oil/gas/agricultural 

source regions with imaging of large point sources 

L1, L2, and L4, openc 

    Sentinel-5 Global continuous daily coverage including the 

1.65 μm band 

L2, open 
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    GeoCarb Continuous coverage for methane-CO2-CO over 

North and South America with subdaily 

observations 

L2, open 

    CO2M High-resolution global continuous coverage L2, open 

    MERLIN Arctic and nighttime observations L2 

Point source imagers   

    Sentinel-2, Landsat Global continuous data acquisition, long-term 

records 

L1, open 

    WorldView-3 Very high spatial resolution L1, for purchase 

    GHGSat High sensitivity (~100 kg h-1), established 

constellation 

L2 and L4, for purchased 

    PRISMA, EnMAP Medium sensitivity (100-1000 kg h-1), extensive 

coverage 

L1, free on request 

   EMIT Medium sensitivity (100-1000 kg h-1), extensive 

coverage of low-latitude arid regions 

L1, opene 

    Carbon Mapper High sensitivity (~100 kg h-1), high observing 

system completeness 

L2 and L4, open 

a See Table 1 for the specifications of each instrument. Instruments not yet launched are in italics. 
b L1 (Level 1) ≡ measured radiances; L2 ≡ retrieved column dry mixing ratio XCH4; L4 ≡ derived emission rates. 
c L1 and L2 data will be made available upon request. 
d Data may also be obtained from space agencies through agreements negotiated with GHGSat. 
e Generation of an L2 product is under discussion. 160 
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Figure 1: Satellite instruments for observation of methane in the shortwave infrared (SWIR).  Area flux mappers are designed to 
quantify total methane emissions on regional to global scales. Point source imagers are designed to quantify emissions from 165 
individual point sources by imaging the atmospheric plumes. Specifications for each instrument are in Tables 1 and 2. Satellite icons 
were obtained from https://www.gosat.nies.go.jp for GOSATWikipedia Commons for TROPOMI, EMIT (International Space 
Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper; 
https://www.methanesat.org for MethaneSAT; ESA (2020) for Sentinel-5; https://www.ou.edu/geocarb/mission for GeoCarb; 
https://www.planetek.it/ for PRISMA;  https://www.ghgsat.com/ for GHGSat; https://www.enmap.org/mission for EnMAP; 170 
https://directory.eoportal.org for WorldView-3; and  https://www.usgs.gov/landsat-missions for Landsat. 

All instruments in Table 1 except MERLIN observe methane by SWIR solar backscatter from the Earth’s surface, either at 

1.63-1.70 µm (1.65 µm band) or at 2.2-2.4 µm (2.3 µm band). Atmospheric scattering is weak in the SWIR except for clouds 

and large aerosol particles. Under clear skies, methane is observed down to the surface with near unit sensitivity (Worden et 

al., 2015). The retrieval may fail if the surface is too dark, as over water or forest canopies (Ayasse et al., 2018). Observations 175 

over water can be made by sunglint when the Sun-satellite viewing geometry is favorable. The MERLIN lidar instrument emits 

its own 1.65 µm radiation and detects the reflected signal. It can observe over water and at night, but its sensitivity and coverage 

https://www.gosat.nies.go.jp/
https://space.skyrocket.de/
https://www.methanesat.org/
https://www.ou.edu/geocarb/mission
https://www.planetek.it/
https://www.ghgsat.com/
https://www.enmap.org/mission
https://directory.eoportal.org/
https://www.usgs.gov/landsat-missions
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are lower than for the solar back-scatter instruments. Lidar capability to observe methane from space is currently limited by 

laser technology (Riris et al., 2019). 

 180 

Not included in Table 1 are instruments that measure methane in the thermal infrared (TIR) or by solar occultation. These 

instruments are not sensitive to methane near the surface and are therefore not directly useful for quantifying methane 

emissions. TIR instruments have been used for remote sensing of methane plumes from aircraft (Hulley et al., 2016) but 

measurements from satellites mainly sense the upper tropospheric background (Worden et al., 2015). Solar occultation 

instruments such as ACE-FTS provide sensitive measurements of stratospheric methane profiles (Koo et al., 2017) but cloud 185 

interference prevents observations in the troposphere. TIR and solar occultation instruments can complement SWIR data by 

providing information on background methane in the upper troposphere and stratosphere (Zhang et al., 2021; Tu et al., 2022).   

 

The spectrally resolved SWIR backscattered solar radiation detected by satellite under clear-sky conditions can be used to 

retrieve the total atmospheric column of methane, ΩCH4 [molecules cm-2], as will be reviewed in Section 2.2. To remove the 190 

variability from surface pressure, measurements are typically reported as dry column mixing ratio XCH4 = ΩCH4/ Ωa,d  where 

Ωa,d is the dry air column [molecules cm-2]. Normalizing to dry air rather than total air avoids introducing dependence on water 

vapor.  

 

All instruments in Table 1 except EMIT and GeoCarb are in low-elevation polar sun-synchronous orbit and observe globally 195 

at specific local times of day, either morning or early afternoon. Morning has greater probability of clear sky, while early 

afternoon has steadier boundary layer winds for interpreting methane enhancements. GOSAT (2009-present) and its follow-

on GOSAT-2 (2018-present) provide global coverage every 3 days for 10-km circular pixels spaced about 270-km apart, while 

TROPOMI (2018-present) provides full global daily coverage with 5.5×7 km2 pixels. Figure 2 shows mean TROPOMI XCH4 

data for two different seasons, illustrating the dense coverage.  Future instruments GOSAT-GW (2023 launch, 10×10 km2 200 

pixels with full global coverage every 3 days in wide-swath mode), Sentinel-5 (2024 launch, 7.5×7.5 km2 pixels with full 

global daily coverage), and CO2M (2025 launch, 2×2 km2 pixels with full global coverage every 5 days) will continue the 

global observation record. MERLIN will provide day/night global coverage along its lidar orbit track. Sentinel-2 and Landsat 

instruments provide full global coverage with 20-30 m pixels every 5 days (Sentinel-2) or 16 days (Landsat) and can detect 

very large point sources over bright spectrally homogeneous surfaces. EMIT (designed to observe arid surfaces for dust 205 

generation) will be on a 51.6o inclined orbit aboard the International Space Station with variable local overpass times. GeoCarb 

will be in geostationary orbit over the Americas and will provide subdaily observations from 45oS to 55oN. 

 

Several narrow-swath instruments in Table 1 are selective in their observations to focus on specific targets and avoid cloudy 

conditions. The GHGSat instruments observe selected 12×12 km2 scenes with 25×25 m2 pixel resolution and instrument 210 

pointing to increase the signal-to-noise ratio (SNR). Carbon Mapper will observe 18-km swaths with imaging strips as long as 
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1000 km in push-broom mode and shorter strips in target-track (instrument-pointing) mode. GHGSat has six satellites in orbit 

as of this writing to achieve frequent return times, and Carbon Mapper similarly plans a constellation of satellites. WorldView-

3 observes scenes of dimensions up to 66.5×112 km2. MethaneSAT will observe 200×200 km2 targets in oil/gas and 

agricultural regions with 130×400 m2 pixel resolution, enabling high-resolution quantification of regional emissions as well as 215 

imaging of large point sources. 

 
 
Figure 2: Global TROPOMI observations of methane for December 2019 – February 2020 and June-August 2020. Data are from 
the version 2.02 product, filtering out low-quality retrievals (qa_value < 0.5) and snow/ice surfaces diagnosed by blended albedo > 220 
0.8 (Lorente et al., 2021). The top panels show the mean dry methane column mixing ratios XCH4.on a 0.1o×0.1o grid. The middle 
panels show the observation density as the number of successful observations per 1o×1o grid cell for the 3-month periods. The bottom 
panels show the mean XCH4 differences between collocated TROPOMI and GOSAT observations plotted on a 2o×2.5o grid and 
adjusted upward by 10.5 ppb to account for TROPOMI being 10.5 ppb lower than GOSAT in the global mean. . GOSAT data are 
from the CO2 proxy retrieval version 9.0 of Parker et al. (2020). 225 

 

All area flux mappers in Table 1 have fine (< 0.5 nm) spectral resolution to enable precise measurements of methane 

concentrations, traded against coarser (0.1-10 km) spatial resolution. GHGSat achieves a combination of fine spatial resolution 
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and fine spectral resolution by instrument pointing. Most other point source imagers in Table 1 are designed to observe land 

surfaces, which requires fine spatial resolution (<50 m) but less stringent spectral resolution. These instruments have 230 

serendipitous capability to detect methane plumes in the broad 2.3 μm band, including hyperspectral sensors with ~10 nm 

spectral resolution (PRISMA, EnMAP, EMIT) (Cusworth et al., 2019) and even multispectral sensors with a single 2.3 μm 

channel (Sentinel-2, Landsat) (Varon et al., 2021) or a few channels (WorldView-3) (Sanchez-Garcia et al., 2022). Carbon 

Mapper will have 6 nm spectral resolution, which increases precision appreciably relative to 10 nm (Cusworth et al., 2019).   

 235 

All area flux mappers in Table 1 have an open data policy allowing free access from a distribution website or from the cloud. 

The data are generally provided as XCH4 retrievals (Level 2 or L2). MethaneSAT will distribute its data publicly as inferred 

methane fluxes (L4), with the L1 an L2 data also available upon request. Data access for point source imagers is presently less 

straightforward. Sentinel-2 and Landsat have freely accessible channel radiance (L1) data but users must perform their own 

methane retrievals and source rate estimates. GHGSat and WorldView-3 make observations at the request of paying customers, 240 

with GHGSat providing column density (L2) and source rate (L4) data and WorldView-3 providing L1 data. PRISMA and 

EnMAP make observations upon request from the scientific community and stakeholders, and the resulting L1 data are then 

freely accessible, but again users must perform their own methane retrievals. Carbon Mapper will provide open L2 and L4 

data. 

2.2 Retrieval methods 245 

The ‘full-physics’ retrieval of methane columns from satellite SWIR spectra involves inversion of the spectra with a radiative 

transfer model (Butz et al., 2012; Thorpe et al., 2017). It typically solves simultaneously for the vertical profile of methane 

concentration, the vertical profile of aerosol extinction, and the surface reflectivity. Although the vertical profile of methane 

may be retrieved in the inversion, there is actually no significant information on vertical gradients and only XCH4 is reported 

together with an averaging kernel vector for sensitivity to the vertical profile (near unity in the troposphere). The retrieval may 250 

fail if the atmosphere is hazy or if the surface is heterogeneous or too dark. Full-physics TROPOMI retrievals in the 2.3 μm 

band thus have only a 3% global success rate over land (Lorente et al., 2021) with large variability depending on location (Fig. 

2). Arid areas and mid-latitudes are relatively well observed. Observations are much sparser in the wet tropics because of 

extensive cloudiness and dark surfaces, and in the Arctic because of seasonal darkness, extensive cloudiness, and low Sun 

angles. Observations at high latitudes are very limited outside of summer, resulting in a seasonal sampling bias. 255 

 

The 1.65 µm band allows the alternative CO2 proxy retrieval taking advantage of the adjacent CO2 absorption band at 1.61 μm 

(Frankenberg et al., 2005). In this method, ΩCH4 and ΩCO2 are retrieved simultaneously without accounting for atmospheric 

scattering, and XCH4 is then derived as 

 260 
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 CH4
CH4 CO2

CO2

X X
 Ω

=  Ω 
                             (1) 

 

where XCO2 is independently specified, typically from assimilated observations or from a global chemical transport model 

(Parker et al., 2020; Palmer et al., 2021). The CO2 proxy method takes advantage of the lower variability of CO2 than methane 

and of the low CO2 co-emission from the dominant methane sources (livestock, oil/gas systems, coal mining, landfills, 265 

wastewater treatment, rice cultivation, wetlands). It is much faster than the full-physics retrieval, achieves similar precision 

and accuracy (Buchwitz et al., 2015), and largely avoids biases associated with surface reflectivity and aerosols because these 

biases tend to cancel in the ΩCH4/ΩCO2 ratio. It is subject to errors from unresolved variability of CO2 such as in urban regions, 

and is also subject to bias for sources that co-emit methane and CO2 such as flaring and other incomplete combustion. The 

GOSAT instrument operating at 1.65 µm with 10 km pixels has a 24% success rate over land using the CO2 proxy retrieval, 270 

mainly limited by cloud cover (Parker et al., 2020).  

 

A limitation in using the 1.65 µm band is that it is narrower, with fewer spectral features and weaker absorption than the 2.3 

µm band, and therefore requires an instrument with sub-nm spectral resolution (Cusworth et al., 2019; Jongaramrungruang et 

al., 2021). The 2.3 µm band can be successfully sampled for a full-physics retrieval by hyperspectral instruments with ~10 nm 275 

spectral resolution (Thorpe et al., 2014, 2017; Cusworth et al., 2021a; Borchardt et al., 2021; Irakulis-Loitxate et al., 2021). 

Precision improves with spectral resolution (Cusworth et al., 2019; Jongaramrungruang et al., 2021) and with spectral 

positioning relative to the methane absorption lines (Scaffuto et al., 2021). Multispectral instruments with one or several 

broadband channels (~100 nm bandwidth) do not allow a spectrally resolved retrieval, but a simple Beer’s law retrieval of the 

methane column enhancement in a plume  relative to background can still be achieved in the 2.3 µm band by inferring surface 280 

reflectivity from adjacent bands or from views of the same scene when the plume is absent (Varon et al., 2021; Sanchez-Garcia 

et al., 2022).  

 

Yet another approach for retrieving methane enhancements from point sources is the matched-filter method in which the 

observed spectrum is fitted to a background spectrum convolved with a target methane absorption spectrum capturing the 2.3 285 

μm absorption band (Thompson et al., 2015; Foote et al., 2020). Matched filter methods have been extensively used for 

mapping methane point sources from airborne hyperspectral campaigns (Frankenberg et al., 2016; Duren et al., 2019; Cusworth 

et al., 2021b) and have also been used for satellite retrieval of point sources (Thompson et al., 2016; Guanter et al., 2021; 

Irakulis-Loitxate et al., 2021). These methods directly retrieve the methane enhancement above background and are faster than 

a full-physics retrieval. They are well-suited for plume imaging, where the methane enhancement above local background is 290 

the quantity of interest.  
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2.3 Precision and accuracy  

Retrievals of XCH4 may be affected by random error (precision) and systematic error (bias or accuracy). A uniform bias is 

inconsequential because it can be simply subtracted. Random error is reducible by temporal averaging if the observation 

density is high. The most pernicious error is spatially variable bias, often called relative bias (Buchwitz et al., 2015), which is 295 

generally caused by aliasing of surface reflectivity spectral features into the methane retrieval. Variable bias corrupts the 

retrieved concentration gradients and produces artifact features that may be wrongly attributed to methane.  

 

Area flux mapper instruments are generally validated by reference to the highly accurate XCH4 measurements from the 

worldwide Total Carbon Column Observing Network (TCCON) of ground-based sun-staring spectrometers (Wunch et al., 300 

2011). Variable bias can be estimated as the spatial standard deviation across TCCON sites of the temporal mean bias 

(Buchwitz et al., 2015). Schneising et al. (2019) inferred in this manner a global bias of -1.3 ppb for the TROPOMI University 

of Bremen methane retrieval, a precision of 14 ppb, and a variable bias of 4.3 ppb. Lorente et al. (2021) inferred a global mean 

bias of -3.4 ppb and a variable bias of 5.6 ppb for the current TROPOMI version 2 Netherlands Institute for Space Research 

(SRON) operational retrieval. Figure 3 places these values in the context of TROPOMI observations over the Permian Basin 305 

oil field in Texas and New Mexico. A typical single day of TROPOMI observations shows large areas of missing and noisy 

data, so temporal averaging is necessary, which also reduces the random error. Averaging TROPOMI observations over a 

month shows full coverage of the Permian with enhancements of ~50 ppb over the principal areas of oil and gas production, 

well above the variable bias of the instrument. 

 310 

Reliance on the TCCON network to diagnose variable bias is limited by the sparsity of network sites, almost all at northern 

mid-latitudes. An alternative way is by reference to GOSAT. The current version 9 GOSAT retrieval using the CO2 proxy 

method has a variable bias of only 2.9 ppb referenced to TCCON and is recognized as a well-calibrated measurement (Parker 

et al., 2020). Spatial variability in the mean TROPOMI-GOSAT difference provides a global assessment of TROPOMI 

variable bias (Qu et al., 2021). Results in Fig. 2 (bottom panel), after correcting for a global mean TROPOMI-GOSAT 315 

difference of -10.5 ppb (TROPOMI lower than GOSAT), show that TROPOMI variable biases can exceed 20 ppb in some 

regions. The reason for such large biases relative to GOSAT is TROPOMI’s coarser spectral sampling of the SWIR region, as 

well as the unavailability of the CO2 proxy retrieval at 2.3 μm. Comparing TROPOMI and GOSAT observations for a region 

of interest is good practice before interpreting TROPOMI data for that region (Z. Chen et al., 2022).  

 320 
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Figure 3: Satellite observations of atmospheric methane over the Permian Basin (Texas and New Mexico) in July 2020. The left panel 
shows typical TROPOMI observations for 1 day (July 15), featuring large areas of missing data where the retrieval was not successful 
because of cloud cover or other factors. The middle panel shows monthly mean TROPOMI observations on a 0.1o×0.1o grid, featuring 
enhancements over the Delaware and Midland basins where oil production is concentrated. TROPOMI data are from the version 325 
2.02 retrieval of Lorente et al. (2021). The right panel shows sample observations of plumes from point sources by Sentinel-2, 
PRISMA, and GHGSat superimposed on surface imagery from © Google Earth. Plume dimensions and inferred point source rates 
(Q) are given inset. See Sect. 4.2 for the inference of point source rates from plume observations. 

Variable bias is also a concern for point source imagers where it manifests as artifact features that could be mistaken for 

methane plumes (Ayasse et al., 2018). This is of particular concern for heterogeneous surfaces (Cusworth et al., 2019). Artifacts 330 

can be screened by visual inspection of the candidate plumes in relation to wind direction, known infrastructure, and surface 

reflectivity (Guanter et al., 2021). Machine-learning methods can also be trained to detect plumes and recognize artifact noise 

patterns (Jongaramrungruang et al., 2022). Figure 3 shows illustrative observations of point sources from Sentinel-2, PRISMA, 

and GHGSat in the Permian Basin. The observations have lower precision than TROPOMI (Table 1) but the methane 

enhancements are much larger because the pixels are smaller. Point source detection thresholds and their relationship to 335 

precision are discussed in Sect. 5. 

3 Global, regional, and point source observations 

Figure 4 classifies the satellite instruments of Table 1 in terms of their abilities to observe methane on global and regional 

scales as area sources (area flux mappers) or on the scale of individual point sources (point source imagers). Observations on 

these different scales target complementary needs for our understanding of methane, and they correspondingly have different 340 

observing requirements. Area sources may integrate a very large number of individually small emitters that cumulate to a large 

total, such as low-production oil wells (Omara et al., 2022). A practical definition of a methane point source for our purposes, 



15 
 

following Duren et al. (2019), is a single facility emitting more than 10 kg h-1 over an area less than 30×30 m2. This represents  

a typical limit of detection from aircraft remote sensing combined with a typical spatial resolution for point source imagers. 

With this definition of source threshold, Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields 345 

originate from point sources. This emphasizes the need for characterizing methane emissions complementarily both as area 

sources and as point sources. 

3.1 Global and regional observations with area flux mappers 

Global observation of methane targets the central question of why atmospheric methane has almost tripled since pre-industrial 

times and why it continues to increase. Ground network measurements such as from NOAA are the reference for observing 350 

global trends because of their high accuracy (Bruhwiler et al., 2021), and some sites include isotopic or other information to 

separate contributions from different source sectors (Lan et al., 2021). But satellites have an essential role to play because of 

their dense and global coverage. They can identify the regions that drive the global trend (Zhang et al., 2021). They have a 

unique capability to evaluate the accuracy and trends of methane emissions reported by individual countries to the UNFCCC 

(Janardanan et al., 2020) and thus contribute to the transparency framework of the Paris agreement (Deng et al., 2022; Worden 355 

et al., 2022). 

Figure 4: Classification of satellite instruments by their capability to observe atmospheric methane on global scales, on 
regional scales with high resolution, and for point sources. Specifications for the satellite instruments are listed in Table 
1 and key attributes are listed in Table 2. Point source detection thresholds are given here as orders of magnitude. 360 
These detection thresholds are discussed in Sect. 5.2. Instruments not yet launched are in italics. 

Global observation of methane from space is presently available from GOSAT and TROPOMI. GOSAT provides a continuous 

and well-calibrated record going back to 2009 (Parker et al. 2020). Inversions of GOSAT data have been used to attribute the 
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contributions of different source regions and sectors to the methane increase over the past decade (Maasakkers et al., 2019; 

Chandra et al., 2021; Palmer et al., 2021; Zhang et al., 2021). The TROPOMI data stream begins in May 2018 and is much 365 

denser than GOSAT, but the ability to use TROPOMI data in global inversions is presently limited by large variable biases in 

some regions of the world (Qu et al. (2021); Fig. 2). This is likely to improve with future retrieval versions and may be 

overcome with careful data selection. Continuity of global methane observations from space is expected over the next decade 

with the GOSAT series (GOSAT-2, GOSAT-GW), Sentinel-5, and CO2M (Table 1). MERLIN could make an important 

contribution toward better understanding of methane emissions in the Arctic, which is otherwise difficult to observe from 370 

space.  

 

There is considerable interest in using satellite observations to quantify methane emissions with high resolution on regional 

scales. This is important for reporting of emissions at the national or sub-national state level, for monitoring oil/gas production 

basins, and for separating contributions from different source sectors. Oil/gas production basins are typically a few hundred 375 

km in size and may contain thousands of point sources that are individually small but add up to large totals and are best 

quantified on a regional scale (Lyon et al., 2015). Several field campaigns using surface and aircraft measurements have 

targeted oil/gas fields in North America (Karion et al., 2015; Pétron et al., 2020; Lyon et al., 2021), but these campaigns are 

necessarily short and are not practical in many parts of the world.   

 380 

TROPOMI with its 5.5×7 km2 pixel resolution and global continuous daily coverage is presently the only satellite instrument 

capable of high-resolution regional mapping of methane emissions. GOSAT data are too sparse. TROPOMI has been used to 

quantify emissions from oil/gas production fields including the Permian Basin (Zhang et al., 2020), other fields in the US and 

Canada (Shen et al., 2022), and the Mexican Sureste Basin (Shen et al., 2021), revealing large underestimates in the bottom-

up inventories. It has also been used to quantify total methane emissions from China and attribute them to source sectors (Z. 385 

Chen et al., 2022). The variable bias problems that affect global TROPOMI inversions can be less problematic on the scale of 

source regions where methane enhancements are large, the bias may be less severe (Fig. 2), and bias correction is possible 

through adjustment of boundary conditions in the transport model (Shen et al., 2021). Capability for regional mapping of 

methane emissions is expected to greatly expand in the future with the MethaneSAT, GOSAT-GW, Sentinel-5, and CO2M 

instruments. 390 

3.2 Point source observations with point source imagers 

Monitoring large point sources is important for reporting of emissions, and detection of unexpectedly large point sources 

(super-emitters) can enable prompt corrective action. In situ sampling and remote sensing from aircraft has been used 

extensively to quantify point sources (Frankenberg et al., 2016; Lyon et al., 2016; Duren et al., 2019; Hajny et al., 2019; Y. 

Chen et al., 2022; Cusworth et al., 2022) but is limited in spatial and temporal coverage. Satellites again have an essential role 395 
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to play. They have enabled the discovery of previously unknown releases (Varon et al., 2019; Lauvaux et al., 2022) and the 

quantification of time-integrated total emissions from gas well blowouts (Cusworth et al., 2021a; Maasakkers et al., 2022a). 

 

Observing point sources from space has unique requirements. Plumes are typically less than 1 km in size (Frankenberg et al., 

2016; Fig. 3), thus requiring satellite pixels finer than 60 m (Ayasse et al., 2019). It is desirable to quantify emissions from 400 

single overpasses, though temporal averaging of plumes to improve SNR is possible with wind rotation if the precise location 

of the source is known [Varon et al., 2020]. The emissions are temporally variable, motivating frequent revisit times that can 

be achieved by a constellation of instruments. On the other hand, precision requirements are less stringent than for 

regional/global observations because of the larger magnitude of the concentration enhancements.  

 405 

The potential for space-based land imaging spectrometers to detect methane point sources was first demonstrated with the 

hyperspectral Hyperion instrument for the Aliso Canyon blowout (Thompson et al., 2016). Hyperspectral sensors such as 

PRISMA and others of similar design have since proven capable of quantifying point sources of ~500 kg h-1 (Cusworth et al., 

2021a; Guanter et al., 2021; Irakulis-Loitxate et al., 2021; Nesme et al., 2021). The first satellite instrument dedicated to 

quantifying methane point sources was the GHGSat-D demonstration instrument launched in 2016 with 50×50 m2 effective 410 

pixel resolution and a precision of 12-25% depending on surface type (Jervis et al., 2021). Varon et al. (2019) demonstrated 

the capability of that instrument for discovering and quantifying persistent point sources in the range 4000-40000 kg h-1 in an 

oil/gas field in Turkmenistan. Five follow-up GHGSat instruments with precisions of 1-2% were subsequently launched in 

2020-2022, building up to a constellation with frequent return times.  

 415 

Multispectral instruments such as Sentinel-2, Landsat, and WorldView-3 are also capable of detecting and quantifying very 

large point sources (Varon et al., 2021; Ehret et al., 2022; Sanchez-Garcia et al., 2022; Irakulis-Loitxate et al., 2022a). Sentinel-

2 and Landsat provide global and freely accessible data that could form the foundation of a global detection system for super-

emitters (Ehret et al., 2022). A large-scale survey of point emissions across the west coast of Turkmenistan was achieved with 

the combination of Sentinel-2 and Landsat (Irakulis-Loitxate et al., 2022a). 420 

 

Detection of methane plumes from space has mainly been over bright land surfaces. Observation of offshore plumes such as 

from oil/gas extraction platforms is more difficult because of the low reflectance of water in the SWIR. The signal can be 

enhanced by observing in the sunglint mode, in which the sensor captures the solar radiation specularly reflected by the water. 

The sunglint observation configuration can be achieved by agile platforms able to point in the Sun-surface forward scattering 425 

direction (PRISMA, Worldview-3, GHGSat, Carbon Mapper), or by instruments with a field-of-view sufficiently large that 

part of the swath falls in the forward scattering area (TROPOMI, Sentinel-2, Landsat). Irakulis-Loitxate et al. (2022b) 

demonstrated the ability of sunglint retrievals from WorldView-3 and Landsat-8 to detect large plumes from offshore platforms 

in the Gulf of Mexico. 
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 430 

The capability to monitor methane point sources from space is expected to expand rapidly in coming years through the GHGSat 

and Carbon Mapper constellations as well as new hyperspectral missions (Cusworth et al., 2019). Expanding constellations 

observing with frequent return times and at different times of day will enable better understanding of the intermittency of 

methane emissions. In an aircraft survey of the Permian Basin, Cusworth et al. (2021b) found that individual point sources 

produced detectable emissions only 26% of the time on average. Similar intermittency was observed for oil/gas facilities in 435 

California (Duren et al., 2019). Allen et al. (2017) and Vaughn et al. (2018) point out that some emissions from the oil/gas 

infrastructure are highly intermittent by design (liquids unloading, blowdowns and startups) and may have predictable diurnal 

variations. Emissions due to equipment failure may be persistent (leaks, unlit flares), sporadic (responding to gas pressure), or 

single events (accidents). An increased frequency of observation can identify persistence of emissions to enable corrective 

action, and better understanding of point sources that are intermittent by design can lead to better quantification of time-440 

averaged emissions. Beyond this short-term intermittency, there is also long-term variability related to operating practices and 

facility life cycle (Cardoso-Saldaña and Allen, 2020; Johnson and Heltzel, 2021; Varon et al, 2021; Allen et al., 2022; Ehret 

et al., 2022), stressing the importance of sustained long-term monitoring. 

4 Inferring methane emissions from satellite observations 

Inferring methane emissions from satellite observations of methane columns involves different methods for area flux mappers 445 

and point source imagers. Area flux mappers are typically used to optimize 2-D distributions of emissions on regional or global 

scales by inverse methods. Point source imagers are used to infer individual point source rates by some form of mass balance 

analysis. 

4.1 Global and regional inversions with area flux mappers 

Area flux mappers produce 2-D fields of methane observations from which to optimize 2-D fields of gridded emission fluxes. 450 

The optimization involves an atmospheric transport model (forward model) to relate emissions to the observed concentrations. 

The optimal emissions are generally obtained by Bayesian inference, fitting the observations to the forward model and 

including prior estimates of emissions to regularize the solution where the observations provide insufficient information 

(Brasseur and Jacob, 2017). Optimizing temporal trends of emissions can be done as part of the solution or sequentially using 

a Kalman filter [Feng et al., 2017]. 455 

 

The basic procedure is as follows. Given an ensemble of observations over a domain of interest assembled in an observation 

vector y, the task is to optimize the distribution of emission fluxes assembled in a state vector x of dimension n. The relationship 

between x and y can be assumed linear for methane, despite the sensitivity of OH concentrations to methane concentrations. 

This is because the inversion does not significantly change the global methane concentration, which is set by observation; 460 
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furthermore, for regional inversions, the time scale for ventilation of the regional domain is much shorter than that for chemical 

loss.  Global inversions often optimize OH concentrations as part of the state vector and that relationship can also be assumed 

linear. Further assuming Gaussian error probability density functions (pdfs) for x and y, the optimal (posterior) estimate of x 

is obtained by minimizing a Bayesian cost function J(x) of the form (Brasseur and Jacob, 2017): 

 465 

 ( ) ( ) ( ) ( ) )T TJ = + γ-1 -1
A OS K S KA Ax x - x x - x y - x (y - x                  (2) 

 

Here xA is the prior estimate of emissions, SA is the corresponding prior error covariance matrix, /= ∂ ∂K y x is the Jacobian 

matrix describing the sensitivity of observations to emissions as given by the atmospheric transport model, SO is the 

observational error covariance matrix including contributions from instrument and transport model errors, and γ is a 470 

regularization parameter that may be needed to correct overfit caused by imperfect definition of SO (Lu et al., 2021). Since the 

relationship between x and y is linear, K fully defines the atmospheric transport model for the inversion. Jacob et al. (2016) 

describe alternative formulations for the cost function such as in geostatistical inverse modeling where prior information is 

provided as the relative spatial distribution of emissions rather than emission magnitudes (Miller et al., 2020).  

 475 

Specification of the error covariance matrices SA and SO strongly affects the solution. Construction of SA can be done by 

intercomparing bottom-up inventories (Maasakkers et al., 2016; Bloom et al., 2017) or by using error estimates generated by 

the bottom-up inventories (Scarpelli et al., 2020). Construction of SO can be done by the residual error method in which the 

observations are compared to simulated concentrations from the atmospheric transport model with prior emission estimates, 

and the residual difference after removing the mean bias is taken to be the observational error (Heald et al., 2004; Wecht et al., 480 

2014). The observational error for satellites is generally found to be dominated by the instrument retrieval error rather than by 

the transport model error, whereas for in situ observations it is dominated by the transport model error (Lu et al., 2021). 

 

Minimization of the cost function J(x) in Eq. (2) to obtain the posterior solution ˆ  x   and its error covariance matrix Ŝ  can be 

done either numerically or analytically (Brasseur and Jacob, 2017). Ŝ  and the related averaging kernel matrix 485 

ˆˆ /= ∂ ∂ = -1
n AA I - SSx x  (Rodgers, 2000) determine the information content from the observations and the ability of the 

inversion to improve on the prior estimate. The diagonal terms of A ranging from 0 to 1 are called the averaging kernel 

sensitivities and measure the ability of the observations to constrain the solution for that state vector element independently of 

the prior estimate (1 = fully, 0 = not at all).  The trace of A is called the degrees of freedom for signal (DOFS) and represents 

the total number of pieces of information that can be fully constrained from the observations. An inherent assumption is that 490 

the observations, the transport model, and the prior information are unbiased. Although the prior estimate is in principle 
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unbiased since it represents our best estimate before the observations are taken, under-accounting of SA together with incorrect 

spatial distribution of prior emissions can drive bias in inversion results (Yu et al., 2022). 

 

Numerical solution for min(J(x)) using the adjoint of the atmospheric transport model or other variational methods optimizes 495 

a state vector of any dimension by avoiding explicit construction of the full Jacobian matrix K, and may use various procedures 

to estimate Ŝ  (Bousserez et al., 2015; Cho et al., 2022). Analytical solution provides a closed-form expression for Ŝ  but 

requires the computationally expensive construction of K column-by-column with n perturbation runs of the atmospheric 

transport model. This limits the dimension and hence the resolution of the state vector that can be optimized. However, once 

K has been constructed, inversion ensembles can be conducted at no significant added computational cost to explore 500 

uncertainties in inversion parameters, or to examine the complementarity and consistency of different observation subsets such 

as from different satellite instruments or from ground-based sites (Lu et al., 2021, 2022). This includes optimization of the 

regularization parameter γ so that the sum of prior terms in the posterior cost function matches the expected value from the 

chi-square distribution, ˆ ˆ ˆ( ) ( ) ( ) ~TJ n= -1
ASA A Ax x - x x - x  (Lu et al., 2021). Increasing access to large computational clusters 

has facilitated the construction of K as an embarrassingly parallel problem, enabling analytical solution for state vectors with 505 

n > 1000 (Maasakkers et al., 2019). Nesser et al. (2021) show that even larger dimensions can be accessed by approximating 

the Jacobian along leading patterns of information content.  

 

Figure 5 illustrates the inversion of TROPOMI observations with a 1-month example for the Permian Basin using an analytical 

solution with 0.25o×0.3125o (≈25×25 km2) resolution. This calculation was done on the Amazon Web Services (AWS) cloud 510 

with the Integrated Methane Inversion (IMI) open-access facility for analytical inversions of TROPOMI data, enabling users 

to directly access the TROPOMI data archived on AWS and infer emissions for their selected domain and time window of 

interest with pre-compiled inversion code (Varon et al., 2022).  
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 515 

Figure 5: Integrated Methane Inversion (IMI) on the Amazon Web Services (AWS) cloud (Varon et al., 2022). The IMI accesses the 
TROPOMI operational data posted on the cloud and carries out analytical inversions for user-selected domains and time periods. 
Before conducting the inversion, users can run an IMI preview to visualize the observations, the default prior emission estimates (to 
which they can substitute their own), the expected information content of the inversion (degrees of freedom for signal or DOFS), 
and the SWIR albedos for indication of data artifacts. If the preview is satisfactory, they can then run the inversion to generate 520 
posterior emission estimates with averaging kernel sensitivities indicating where the observations can successfully constrain 
emissions. Shown here is an example given by Varon et al. (2022) for a 1-month (May 2018) inversion over the Permian Basin, using 
the prior emission estimate from the EDF inventory (Zhang et al., 2020). The IMI is accessible at https://imi.seas.harvard.edu. 

 

The assumption of Gaussian error pdfs for prior emission estimates in Eq. (2) may not always be appropriate. A log-normal 525 

distribution is often more correct (Yuan et al., 2015) and can be accommodated in analytical inversions (Maasakkers et al., 

2019; Z. Chen et al., 2022). Brandt et al. (2016) show that the log-normal distribution still underestimates the heavy tail of the 

frequency distribution of point sources (the super-emitters). Application of inverse methods to detect and quantify individual 

super-emitters within a source region (such as an oil/gas field) may require a bimodal pdf for prior estimates, and an L-1 norm 

cost function may be better suited than the standard L-2 norm of equation (2) (Cusworth et al., 2018). A Markov Chain Monte 530 

Carlo (MCMC) method for the inversion as used by Western et al. [2021] enables the specification of any prior and 

observational error pdfs, and returns the full posterior error pdf on emissions, but it is computationally expensive and its cost 

increases rapidly as n increases. 

 

The inversion typically optimizes a geographical 2-D array of emission fluxes, but quantifying emissions by source sector is 535 

often of ultimate interest. Sectoral information is generally contained in the prior inventory. The simplest approach is to assume 

https://imi.seas.harvard.edu/
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that the posterior/prior correction factor to emissions for a given grid cell applies equally to all emissions in that grid cell 

(Turner et al., 2015) or in a manner weighted by the prior uncertainties of the different sectors (Shen et al., 2021). The posterior 

error covariance matrix Ŝ  and averaging kernel matrix A on the 2-D grid can similarly be mapped to specific sectors and/or 

summed over a domain such as an individual country (Maasakkers et al., 2019). A more general approach for sectoral 540 

attribution introduced by Cusworth et al. (2021c) maps the ( ˆ  x , Ŝ ) solution onto any alternative state vector z (such as sector-

resolved emissions) with its own prior information (zA, ZA) to obtain a solution ˆ  z with posterior error covariance matrix Ẑ . 

This allows in particular to compare results from inversions using different prior information. 

4.2 Quantification of point sources with point source imagers 

Quantification of point sources from satellite observations of instantaneous plumes poses a different kind of inversion problem. 545 

In this case a single quantity, the point source rate Q [kg s-1], is to be inferred from a single observation of the plume. Figure 

3 showed examples of plume observations. The morphology of the instantaneous plume is determined by turbulent diffusion 

superimposed on the mean wind, with a plume boundary (commonly called plume mask) defined by the detection limit of the 

instrument. The observation is of the total methane column and so is relatively insensitive to vertical boundary layer mixing, 

which is a major source of error in interpreting plumes from in situ aircraft observations (Angevine et al, 2020). On the other 550 

hand, unlike for in situ aircraft observations, there is no direct measurement of the wind speed U in the plume. Lack of precise 

wind speed information is a major source of error for interpreting satellite observations because concentrations in the plume 

vary as the ratio Q/U, meaning that errors in U propagate proportionally to errors in Q. 

 

Figure 6 summarizes different methods for inferring point source rates from satellite observations of instantaneous plumes. 555 

Details on these methods are given by Krings et al. (2011), Varon et al. (2018), and Jongaramrungruang et al. (2019, 2022). 

The Gaussian plume is the classic model for turbulent diffusion from a point source but it is valid only for a plume sampling 

a representative ensemble of turbulent eddies. Methane plumes are generally too small for this condition to be met 

(Jongarangmrungruang et al., 2019), as illustrated in Fig. 3 where the plume shapes are not Gaussian. A simple mass balance 

method applying the local wind speed to the methane enhancement observed in the plume is flawed for sub-km scales because 560 

ventilation is determined by turbulent eddies more than by the mean wind (Varon et al., 2018).  
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Figure 6: Seven different methods for inferring point source rates Q [kg s -1] from satellite observations of instantaneous plumes of 565 
methane column enhancements ΔΩ [kg m-2] relative to background. The methods involve (1) fit to a Gaussian plume, (2) local mass 
balance for near-source pixels, (3) Gauss theorem with integration of the outward flux along a closed contour s, (4) cross-sectional 
flux (CSF) integral, (5) integrated mass enhancement (IME) with independent wind speed information, (6) IME with wind speed 
inferred from the plume angular width θ, and (7) machine-learning applying a convolution neural network (CNN) to the plume 
image. Methods (1), (2), (4), and (5) are described by Varon et al. (2018), method (3) by Krings et al. (2011), method (6) by 570 
Jongaramrungruang et al. (2019), and method (7) by Jongaramrungruang et al. (2022). In the equations, x denotes the plume axis 
for transport by the mean wind and y denotes the horizontal axis normal to the wind.  The IME [kg] is the spatial integral of the 
methane column enhancement ΔΩ over the plume mask. The wind speed U is that relevant to transport of the plume, and in the 
IME method (4) it is parameterized as an effective wind speed Ueff to include the effect of turbulent diffusion.  The Gauss theorem 
and CSF methods require wind direction information. The IME method (4) requires a characteristic plume size  L  that can be taken 575 
as the square root of the plume area (Varon et al., 2018) or the radial plume length (Duren et al., 2019). The empirical dispersion 
parameter σy [m] in the Gaussian plume method (1) characterizes the spread of the plume. n in the Gauss theorem method is the 
unit vector normal to the contour. 

The Gauss theorem method, in which the source rate is calculated as the outward flux summed along a contour surrounding 

the point source, is extensively used for in situ aircraft observations where concurrent measurements of wind vector and 580 

methane concentration are available to calculate the local flux as the aircraft circles around the source (Hainy et al., 2019).  In 

the absence of in situ wind data, one can apply a single estimate of the wind vector based on local station or assimilated data 
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(Krings et al., 2011). However, the calculation then does not account for the contribution of turbulent diffusion to the outward 

flux. In addition, any sources within the contour will alias into the inferred point source rate. 

  585 

Two successful methods to derive point source rates from observations of instantaneous plumes have been the cross-sectional 

flux (CSF) method (White, 1976; Krings et al., 2011), in which the source rate is inferred from the product of the methane 

enhancement and the wind speed integrated across the plume width, and the integrated mass enhancement (IME) method 

(Frankenberg et al., 2016; Varon et al., 2018), in which the total mass enhancement in the plume is related to the magnitude 

of emission with a parameterization dependent on wind speed. Both methods are widely applied to the retrieval of point source 590 

rates from satellite observations and they yield consistent results (Varon et al., 2019). The CSF method is more physically 

based, and source rates can be derived from cross-sections at different distances downwind to reduce error (Fig. 6). The 

contribution of turbulent diffusion to the flux can be neglected in the direction of the wind following the slender plume 

approximation (Seinfeld and Pandis, 2016). However, the dependence on wind direction is an additional source of error relative 

to the IME method.  595 

 

Both the CSF and IME methods require estimates of wind speed relevant to plume transport. For the CSF method this is the 

mean wind speed over the vertical depth of the plume, which can be parameterized from the 10-m wind speed (Varon et al., 

2018) or interpolated from a database of wind speed vertical profiles (Krings et al., 2011). The effective wind speed Ueff  in the 

IME method accounts for the effect of turbulent diffusion in plume dissipation, and can be parameterized as a function of an 600 

observable 10-m wind speed by using large-eddy simulations (LES) of synthetic plumes sampled with the instrument pixel 

resolution, plume mask definition, and observing time of day (Varon et al., 2018). The need for independent information on 

wind speed, either from measurements at the point source location or from a meteorological database, can dominate the error 

budget in inferring source rates from the CSF and IME methods, and typically limits the precision to 30% (Varon et al., 2018). 

The error is larger for weak winds, which tend to be more variable, and smaller for strong steady winds. However, plumes are 605 

less likely to be detectable in strong winds because of dilution. Weak winds are thus favorable for plume detection but can 

induce large error in source quantification. 

 

Jongaramrungruang et al. (2019) showed that the morphology of an observed plume contains information on wind speed, as 

long slender plumes are associated with high wind speeds while short stubby plumes are associated with low wind speeds. By 610 

using the plume angular width as a measure of wind speed, they were able to infer source rates without independent wind 

information. Jongaramrungruang et al. (2022) developed that idea further with a convolutional neural network (CNN) approach 

trained on LES plume images to learn the source rate from the 2-D plume structure. Application to synthetic plumes as would 

be sampled by the AVIRIS-NG aircraft instrument at 1-5 m pixel resolution showed a mean precision of 17% and a detection 

threshold of 50 kg h-1 over spectrally homogeneous surfaces. This method has not yet been applied to satellite observations 615 

where coarser pixels would result in lower sensitivity and where retrievals are more subject to artifacts. 
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5  Detection thresholds 

5.1 Area sources 

Here we examine the ability of area flux mappers to detect total methane emission fluxes from a target domain with a desired 

spatial resolution. This can involve repeated observations of the domain over multiple passes to increase precision and 620 

observation density, as illustrated in Fig. 3. The observation time required to detect a desired flux threshold at a desired spatial 

resolution then depends on the instrument precision, the fraction of successful retrievals, the pixel size, the variability of 

emissions, and the return time.  

 

Following the conceptual model of Jacob et al. [2016], the methane column enhancement  ΔX  [ppb] resulting from a uniform 625 

emission flux E [kg km-2 h-1] over a square domain of dimension W [km] is given by 

 

 X EW∆ = α                   (3) 

 

with a scaling coefficient α = (Ma/MCH4)g/pU where Ma and MCH4 are the molecular weights of dry air and methane, g is the 630 

acceleration of gravity, p is the surface pressure, and U is the wind speed for ventilation of the domain. With the units above 

and assuming p = 1000 hPa and U = 5 km h-1, we have α = 4.0×10-2 ppb km h kg-1. An instrument with pixel-level precision 

σI [ppb] can detect this emission flux with a single measurement if ΔX >> σI, but this is often not the case. Spatial and temporal 

averaging of observations improves the effective precision, and this improvement goes as the square root of the number of 

observations if the error is random, uncorrelated, and representatively sampled (IID conditions). The time required for 635 

detecting the mean emission flux E over a domain of dimension W with a signal-to-noise ratio of 2 is then given by 

 

 
21 2max 1, max(1, )Rt t

FN X
 σ =   ∆   

     (3) 

 

where tR is the return time of the instrument (time interval between successive passes), N is the number of observations within 640 

the domain per individual pass for instrument pixel sizes D smaller than W (for continuous mapping and square pixels we have 

N = (W/D)2), F is the fraction of successful retrievals, and σ [ppb] is the variability that results from both the instrument 

precision and the spatial variability σX (D,W) of the enhancement ΔX sampled by the pixels within the domain: 

 

 2 2( , )I X D Wσ = σ + σ             (4) 645 
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Equations (3)-(5) provide a simple conceptual framework for evaluating the ability of area flux mappers to detect regional 

emissions of a certain magnitude and with a desired spatial resolution. For illustration purposes, consider an objective to detect 

emissions at either 100-km or 10-km resolution. In the gridded version of the methane emission inventory from the US 

Environmental Protection Agency [Maasakkers et al., 2016], 75% of total national anthropogenic emissions are contributed 650 

by 0.1o×0.1o (≈10×10 km2) grid cells with emission flux E > 0.5 kg km-2 h-1, and 30% are contributed by grid cells with E > 5 

kg km-2 h-1 (Jacob et al., 2016). Shen et al. (2022) find a mean emission of 0.18 Tg a-1 for 12 major oil/gas production basins 

in the US EPA inventory, which for a typical basin scale of 200×200 km2 corresponds to a mean emission flux of 0.5 kg km-2 

h-1. Taking E = 0.5 kg km-2 h-1 as a desired flux detection threshold on a 100-km scale, or alternatively E = 5 kg km-2 h-1 as a 

desired flux detection threshold on a 10-km scale, we find from equation (3) a mean enhancement ΔX = 2.0 ppb. Instrument 655 

precisions for the flux mappers in Table 1 are in the range 3-15 ppb and we assume that σX is small in comparison. We further 

assume F = 0.24 for instruments operating at 1.65 μm by analogy with GOSAT using the CO2 proxy method (mainly limited 

by cloud cover), and F = 0.03 for instruments operating at 2.3 μm by analogy with TROPOMI (limited by both cloud cover 

and spectrally inhomogeneous surfaces). Other instrument properties are taken from Table 1. 

 660 

Table 3: Averaging time requirements for regional source detection by area flux mappersa 

Instrument Averaging time  

E = 0.5 kg km-2 h-1, 100×100 km2 

Averaging time  

E = 5 kg km-2 h-1, 10×10 km2 

TROPOMI 28 days >1 year 

GOSAT-GW 18 days (global), 3 days (target) 18 days (target) 

MethaneSAT 3 days 5 days 

Sentinel-5 5 days >1 year 

GeoCarb 3 days 1 year 

CO2M 5 days 120 days 
a Illustrative calculation using the conceptual model of equations (3)-(5) applied to the detection of an emission flux averaging 

0.5 kg km-2 h-1 over a desired spatial resolution of 100 × 100 km2, or 5 kg km-2 h-1 over a desired spatial resolution of 10×10 

km2. See text for details and Table 1 for the specifications of the different instruments. Results for GOSAT-GW are given for 

both global and target viewing modes. Instruments not yet launched are in italics. 665 

 

Table 3 shows the results of this illustrative calculation. In the 100-km resolution case we find that TROPOMI requires a 4-

week averaging period, limited by the small fraction of successful retrievals. GOSAT-GW requires 18 days in global viewing 

mode, as the greater fraction of successful retrievals is offset by coarser pixels and 3-day return time, but only one pass in 

target mode. MethaneSAT requires a single pass and is limited by its 3-day return time. Sentinel-5 requires 5 days, much 670 

shorter than TROPOMI despite coarser pixels, because it uses the 1.65 μm band. GeoCarb requires only 3 days because of its 

twice-daily observations. CO2M requires only a single pass and is limited by its 5-day return time. In the 10-km resolution 
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case, we find that only MethaneSAT has an averaging time less than a week, with GOSAT-GW requiring 18 days in target 

mode (limited by its lower instrument precision) and other instruments requiring several months or more. However, both 

MethaneSAT and GOSAT-GW in target mode only cover limited domains (200×200 km2 for MethaneSAT). 675 

 

The above conceptual model is crude and overoptimistic, assuming ideal reduction of errors and uncorrelated retrieval success 

across instrument pixels, ignoring variable bias, and taking instrument specifications from Table 1 at face value, but it is useful 

for intercomparing instruments and it highlights critical variables determining detection thresholds for different applications. 

The advantage of the 1.65 μm band is readily apparent because it achieves a much higher success rate through the CO2 proxy 680 

retrieval. The MethaneSAT instrument with high precision and small pixels is most useful for quantifying fluxes at high spatial 

resolution. For coarser resolutions, return time and spatial coverage can be more important considerations. 

5.2 Point sources 

In the case of point source imagers, the detection threshold applies to single-pass observations of the plumes. Table 4 lists 

point source detection thresholds reported in the literature for different instruments. Detection thresholds are defined by the 685 

ability to determine the plume mask against a noisy background and to retrieve the corresponding emissions. The detection 

thresholds for a given instrument depend strongly on surface type and are lowest for bright, spectrally homogeneous surfaces. 

They also depend on wind speed, which complicates the definition of detection threshold because weak winds facilitate 

detection but cause large error in quantification (Varon et al., 2018). The best range of wind speeds to allow both detection 

and quantification is 2-5 m s-1 (Varon et al., 2018). Sherwin et al. (2022) conducted a series of controlled release experiments 690 

under those favorable surface and wind conditions and confirmed the ability of GHGSat to quantify emissions down to 200 kg 

h-1 and Sentinel-2, Landsat-8, PRISMA, and WorldView-3 to quantify emissions down to the 1400-4000 kg h-1 range.    

 

Table 4:  Point source detection thresholds for different satellite instrumentsa 

Instrument Detection threshold (kg h-1) Reference 

TROPOMI 25000b Lauvaux et al. (2022) 

Sentinel-2, Landsat-8/9 1800-25000c Varon et al. (2021); Ehret et al. (2022); 

Irakulis-Loitxate et al. (2022a) 

PRISMA 500-2000d Guanter et al. (2021) 

MethaneSAT 750 footnotee 

GHGSat-D 1000-3000 Jervis et al. (2021) 

GHGSat-C1, C2 100-200f Gauthier (2021) 

Carbon Mapper 50-200g Duren et al. (2021) 

WorldView-3 <100 Sanchez-Garcia et al. (2022) 
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AVIRIS-NG (aircraft)h 2-10i Duren et al. (2019) 
a The detection thresholds are as reported in the references and are generally for favorable winds (<5 m s-1) and favorable 695 

surfaces (bright and spectrally homogeneous) unless otherwise indicated. As pointed out in the text, weak winds are favorable 

for detection but not for quantification and this places some ambiguity in the definition of detection threshold. Specifications 

for each instrument are in Table 1. Instruments not yet launched are in italics. 
b From an ensemble of 1800 observed detections for TROPOMI 5.5×7 km2 pixels. The pixels may contain multiple point 

sources. 700 
c Observations over surfaces ranging from bright and homogeneous (Sahara) to highly heterogeneous (farmland).  
d From LES synthetic plumes and observations over surfaces ranging from Sahara (bright homogeneous surfaces) to Shanxi 

Province in China (darker more heterogeneous surfaces with significant terrain) 
e C. Chan Miller, Harvard University, personal communication. 
f Verified by controlled releases (MacLean et al., 2021; Sherwin et al., 2022). 705 
g 50 kg h-1 in target mode with pointing, 200 kg h-1 in push-broom mode. 
hAirborne imaging spectrometer with spectral resolution of 5 nm and pixel resolution of 1-8 m depending on aircraft altitude 

(Thorpe et al., 2017). 

 i. Observations in California with range determined by surface brightness. 

 710 

For a given surface and wind speed, the main instrument predictors of point source detection threshold are spatial resolution, 

spectral resolution, and precision. Finer spatial resolution decreases the dilution of the plume enhancements over the pixel 

area, thus increasing the magnitude of the enhancements within plume pixels and facilitating detection. An airborne imaging 

spectrometer observing from low altitude such as AVIRIS-NG (with spatial resolution of 1-8 m depending on aircraft altitude) 

is thus much more sensitive than satellite instruments with similar spectral resolution. Higher spectral resolution increases 715 

precision and reduces the aliasing of surface spectral features into the methane retrieval (Cusworth et al., 2019; 

Jongaramrungruang et al., 2021). For hyperspectral and multispectral instruments, the spectral positioning of the bands relative 

to the methane absorption lines is also important (Scaffuto et al., 2021; Sanchez-Garcia et al., 2022). Precision depends on 

other instrument properties beyond spectral resolution and positioning, including the capability of pointing to specific targets 

to increase the SNR through longer sample collection. Pointing is how GHGSat achieves a combination of high spatial and 720 

spectral resolution. 

 

The detection thresholds in Table 4 are not strictly comparable between instruments because they reflect different levels of 

evidence. One may still usefully classify the instruments by order-of-magnitude thresholds of  ~100 kg h-1, ~500 kg h-1, and 

~1000-10000 kg h-1  (Fig. 4). Instruments in the ~100 kg h-1 class include GHGSat, WorldView-3, and Carbon Mapper. A 725 

typical point source imager with spatial resolution ~30 m requires spectral resolution of 5 nm or better to fit into this class 
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(Cusworth et al., 2019), though WorldView-3 can achieve this class for bright spectrally homogeneous surfaces through its 

combination of very high spatial resolution (3.7×3.7 m2) and favorable spectral positioning (Sanchez-Garcia et al., 2022). 

 

Instruments in the ~500 kg h-1 class include the land hyperspectral sensors (PRISMA, EnMAP, EMIT) and MethaneSAT. The 730 

land hyperspectral sensors have ~30 m spatial resolution and achieve this class with 10 nm spectral resolution in the 2.3 μm 

band, enabling either a full-physics or matched filter retrieval. MethaneSAT will have coarser 130×400 m2 spatial resolution 

but higher precision enabled by 0.3 nm spectral resolution in the 1.65 μm band, with the added benefit of allowing a CO2 proxy 

retrieval to minimize artifacts. 

 735 

Instruments in the 1000-10000 kg h-1 class include the multispectral land sensors Sentinel-2 and Landsat with 20-30 nm spatial 

resolution and a single measurement in the 2.3 μm band to allow a simple Beer’s law retrieval. TROPOMI can detect extremely 

large point sources or clusters of sources (>25,000 kg h-1) over its 5.5×7 km2 pixels (Lauvaux et al., 2022), though coarse 

spatial resolution hinders source identification.  

 740 

The relevance of measuring individual point sources at these different thresholds can be assessed by considering their 

contributions to total emissions. Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields originate 

from point sources > 10 kg h-1 detectable by AVIRIS-NG. Fig. 7 shows the cumulative frequency distributions (CFDs) by 

number and total emission of point sources larger than 10 kg h-1 sampled by airborne remote sensing over California and over 

US oil/gas fields (Duren et al., 2019; Cusworth et al., 2022). Results are shown for individual campaigns and for the combined 745 

CFD with equal weighting between campaigns. A satellite instrument with detection threshold of 100 kg h-1 could detect 50-

95% of point sources depending on the region (80% in the combined data set), , contributing 75-99% of point source emissions 

(95% for the combined data set).  An instrument with detection threshold of 1000 kg h-1 could detect 0-15% of point sources 

(5% for the combined data set), contributing 0-55% of point source emissions (30% in the combined data set). Brandt et al. 

(2016) find that sources in the 10-100 kg h-1 range contribute 20% of emissions from point sources > 10 kg h-1 in their survey 750 

of emissions from US oil/gas fields. The dataset of Fig. 7 includes only a few emitters in the ~10,000 kg h-1 range. Global 

statistics of aircraft and satellite data suggest a power law frequency distribution of point source emissions with ~100× fewer 

sources at 10000 kg h-1 than at 1000 kg h-1 (Ehret et al., 2022; Lauvaux et al., 2022). These so-called ultra-emitters could still 

contribute significantly to total emissions in some regions. 

 755 
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Figure 7: Cumulative frequency distributions (CFDs) of point source rates above 10 kg h-1 for 3879 point sources detected by 
airborne remote sensing in California and in US oil/gas basins by Duren et al. (2019) and Cusworth et al. (2022). Many of the 760 
individual point sources were detected multiple times, and the values entered in the frequency distributions are the averages of these 
detections not including non-detection events; they thus represent the average emission from the source when on, as is relevant to 
the definition of the instrument detection threshold CD in equation (8). The colored curves are for individual campaigns and the 
black curve is the combined CFD for all regions with equal weighting per campaign. The top panel  gives the cumulative fraction of 
emissions contributed by detected point sources above a given rate, and the bottom panel gives the cumulative fraction of the number 765 
of point sources. For example, a satellite instrument with detection threshold of 100 kg h-1 could detect 80% of the point sources in 
the combined CFD, contributing 95% of total point source emissions. An instrument with detection threshold of 1000 kg h-1 could 
detect 5% of the point sources in the combined CFD, contributing 30% of total point source emissions. 

6  Observing system completeness  

Here we introduce the concept of observing system completeness as the capability of an instrument (or ensemble of 770 

instruments) to fully quantify their target emissions within a selected domain and time window. For area flux mappers the 
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target would be the total methane emissions within the domain at a desired spatial resolution, while for point source imagers 

the target would be the total emissions within the domain contributed by point sources larger than 10 kg h-1.  

6.1 Observing system completeness for area flux mappers 

Observations from area flux mappers are generally used to infer 2-D distributions of total emissions over a regional domain of 775 

interest by Bayesian inference. The observing system completeness is then defined by the DOFS (Sect. 4.1 and Fig. 5). Given 

n state vector elements of emissions on the 2-D grid, the DOFS tell us how many of those elements are quantified by the 

observations, and the averaging kernel sensitivities (diagonal terms of the averaging kernel matrix, adding up to the DOFS) 

give that information for the individual state vector elements. 

 780 

As pointed out by Nesser et al. (2021) and Varon et al. (2022), it is possible to roughly estimate the DOFS of an observing 

system for a selected domain and time period without doing any actual forward model calculations. Consider a domain divided 

into n emission state vector elements of individual dimension W [km], sampled with an instrument providing m successful 

observations over the domain in the selected time period. Let σA be the mean prior error standard deviation for the individual 

state vector elements, and σO the mean observational error standard deviation. The DOFS can then be estimated as 785 
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where k = ΔX/E [ppb km2 h kg-1] is the Jacobian matrix element that relates the column mixing ratio enhancement ΔX [ppb] 

over a state vector element to the emission flux E [kg km-2 h-1] for that element. Following Nesser et al. (2021), we can 

approximate k with a simple mass balance model as  790 
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where η is a coefficient to account for turbulent diffusion. Nesser et al. (2021) and Varon et al. (2022a) find that η = 0.4 is a 

suitable value for W in the range 25-100 km. Further assuming U = 5 km h-1 and p = 1000 hPa we obtain k = 1.4×1010 W [ppb 

km2 h kg-1]. The mean prior error standard deviation can be estimated as σA = fQA/(nW2) where QA is the total prior estimate of 795 

emission in the domain [kg h-1] and f is the fractional error (such as 50%).  For the example of Fig. 5 with a 1-month inversion 

of TROPOMI observations over the Permian Basin, Varon et al. (2022) find that this rough estimate prior to doing the 

inversions yields a DOFS of 11.7, close to the value of 10.8 found in the actual inversion. 

  

The simple estimate of DOFS in equation (6) yields basic insights into the factors affecting observing system completeness 800 

for an area flux mapper. Instrument precision and number of observations (or observation density for a given area) are critical. 
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The bar for the observations to improve on the prior estimate depends on the estimated error for that prior estimate (smaller 

prior error means a higher bar for the observations). Increasing the requirement on spatial resolution (large n, small W) leads 

to smaller absolute prior errors for individual state vector elements and raises in turn the requirement on the precision and 

number of observations. 805 

6.2 Observing system completeness for point source imagers 

Observing system completeness for a point source imager (or a constellation) can be defined as its ability to quantify total 

emissions from point sources larger than 10 kg h-1 over a selected domain and time window. Such completeness in observation 

of point sources is important not only for complementing the information from area flux mappers but also for leak detection 

and repair (LDAR) programs where regular survey of point sources in a region can enable prompt action to fix malfunctioning 810 

equipment (Kemp et al., 2016; Fox et al., 2021). Current LDAR programs rely on a combination of ground surveys, drones, 

and aircraft, but we will see that satellites have an important role to play. 

 

Let C ∈  [0,1] denote the observing system completeness for point sources as the fraction of total point source emissions larger 

than 10 kg h-1 within a domain and time window that can be detected by a given instrument (or constellation of instruments). 815 

C is limited by a combination of the instrument detection threshold (CD), spatial coverage (CS), and temporal sampling (CT): 

 

 D S TC C C C= × ×   (7) 

 

Here CD is the fraction of point source emissions that can be detected on the basis of the instrument’s detection threshold, as 820 

inferred for example from Fig. 7.  CS is the fraction of the domain that the instrument observes at least once within the time 

window. If there is full spatial coverage within the time window then CS = 1. CT  = 1- (1-Fp)N is the probability for an observed 

source to be actually detected within the time window given the number N  ≥  1 of observations in the window, the source  

persistence p (fraction of time that the source is emitting above the detection threshold), and the fraction F of successful 

retrievals, taken here as the fraction of clear-sky observations. For example, an intermittent source with p = 0.2 that is observed 825 

with a 1-week return time and 30% clear skies would have CT  = 0.96 for 1 year of observations but CT = 0.23 for 1 month. If 

spatial coverage and observing frequency are sufficient, then C is limited by the instrument’s detection threshold (CD). If they 

are not, and depending on source persistence and cloud cover, then CS and CT may limit observation system completeness 

rather than CD. 

 830 

Figure 8 shows the frequency distribution of persistence (p) for 2500 oil and gas point sources detected and quantified by the 

airborne AVIRIS-NG and Global Airborne Observatory instruments in US field campaigns (Cusworth et al., 2022).  The left 

panel shows the frequency distribution of mean emissions from individual point sources for each persistence bin. From there 
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we can estimate the observing system completeness for any instrument on the basis of its detection threshold, spatial coverage, 

and return time.  The right panel plots the resulting cumulative observing system completeness for the ensemble of 2500 point 835 

sources as achieved by either (1) an airborne instrument with 10 kg h-1 detection threshold and bi-monthly (60-day) sampling 

interval, or (2) a satellite instrument with 100 kg h-1 detection threshold and bi-weekly (14-day) sampling interval. The 

calculation is done for a 1-year time window with 30% clear skies, assuming CS = 0.95 in both cases, and the cumulative 

results are shown across the range of persistence bins. We see in this example that the two observing systems have comparable 

success for persistent sources (p > 0.5) by trading CD for CT, but the satellite system is better for intermittent sources (p < 0.5), 840 

despite its higher detection threshold, because of the greater benefit from frequent observations.  

 

Figure 8: Point source rates, persistence, and observing system completeness for an ensemble of 2500 oil/gas point sources sampled 
by aircraft remote sensing in five US oil/gas basins (Cusworth et al., 2022). The left panel shows the frequency distribution of mean 
point sources rates for different persistence bins (p, fraction of the time that the source is detected), where the mean is computed by 845 
assuming zero emission when no plume is detected.  Boxes and whiskers indicate 10th, 25th, 50th, 75th, and 90th percentiles.  The right 
panel shows the percentage of total point source emissions contributed by different persistence bins. Also shown in that panel is the 
cumulative observing system completeness C = CD ×CS ×CT  (equation (8)) for 1 year of observations  under 30% clear-sky conditions 
and two observing systems, one with 100 kg h-1 detection threshold and bi-weekly sampling (green line) and one with 10 kg h-1 and 
bi-monthly sampling (red line). We assume spatial coverage CS = 0.95 for both. The observing system completeness is computed 850 
individually for each basin and then averaged. Both observing systems have comparable performance for sources with high 
persistence (p > 0.5) but the biweekly observing system performs better for sources with low persistence despite its higher detection 
threshold. 

 

Figure 9 further illustrates the trade space between detection threshold and return time for determining observing system 855 

completeness. Results are for the ensemble of 2500 point sources with statistics given in Fig. 8. We see from Fig. 9 that an 

observing system completeness of 0.6 can be achieved by an instrument with a detection threshold of 300 kg h-1 sampling 

weekly. Such an instrument performs as well as one with low detection threshold but sampling only every 2 months. Achieving 

an observing system completeness higher than 0.8 requires an instrument with detection threshold better than 150 kg h-1 

sampling at least biweekly.  860 
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Our calculation of CT as presented above assumes that a point source follows a binary emission frequency distribution (on/off) 

with constant emissions when on. Actual sources have more complex variability (Allen et al., 2022; Zimmerle et al., 2022). 

Similarly to the analysis of Section 5.1, a simple analysis can be done by assuming Gaussian statistics following Hill and 

Nassar (2019) to estimate the number N of observations needed to quantify a mean point source emission rate (1±δ)Q with 865 

relative precision of  δ defined by the 95% relative confidence interval:  

 21 (1.96 )N
Fp

σ
=

δ
       (8) 

 2 2
I Sσ = σ + σ               (9) 

 

Here σ is the standard deviation of individual measurements determined by instrument precision (σI) and variability in the 870 

source (σS).  Using statistics from airborne surveys in the Permian Basin, we find that 71 observations per year (roughly 5-day 

return time, assuming 30% clear skies) would be required to estimate annual point source emissions from that highly 

intermittent population within 50% (p = 0.24, σI = 36%, σS = 45%; Cusworth et al. (2021b)). Increasing the required annual 

emission precision to 35% would require 145 observations per year (2-day return time). For a less intermittent population (p 

= 0.5), we find N = 43 (8-day return time) to achieve 50% precision and N = 87 (4-day return time) to achieve 35% precision. 875 

These observing frequencies can be achieved with a satellite constellation but would be challenging for an airborne program.  

 

Figure 9: Observing system completeness of a point source imager as a function of detection threshold and return time.  The 
calculation is for the ensemble of point sources in Fig. 8. Observing system completeness for a point source imager is defined here 
as the ability to quantify emissions from all point sources larger than 10 kg h-1. 880 
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The tails of the pdfs for point source emissions are a particular challenge to sample representatively. The pdfs are generally 

heavy-tailed, resulting in low estimate of mean emissions (Zimmerle et al., 2022), which may be addressed with very dense 

sampling (Y. Chen et al., 2022) or with supporting observations from area flux mappers. Persistence is defined in the 

observations by the frequency of occurrence of emissions above the detection threshold, but non-detection could represent the 885 

low tail of the pdf rather than an on/off switch. The definition of persistence may thus depend on the detection threshold, 

increasing the importance of that threshold as a measure of observing system completeness. Further complicating matters is 

that the instrument detection threshold is variable, depending notably on the wind speed at the time of observation. This calls 

for better characterization of the full pdf of emissions from point sources as a means to extrapolate the observations (Allen et 

al., 2022).  890 

7  Concluding remarks 

Satellite observations of atmospheric methane in the shortwave infrared (SWIR) provide an increasingly powerful system for 

continuous monitoring of emissions from the global scale down to point sources. We reviewed the current and scheduled fleet 

of instruments including area flux mappers to quantify total emissions on regional scales and point source imagers to quantify 

individual source rates. We discussed retrieval methods to infer concentrations from measured radiances, precision and 895 

accuracy requirements, inverse methods to infer emissions from observed concentrations, emission detection thresholds, and 

observing system completeness.  

 

Synergy between different satellite instruments is important to exploit. Area flux mappers can constrain total emissions while 

point source imagers provide specific facility-level attribution. Detection of coarse-resolution hotspots by area flux mappers 900 

can direct targeted observation by point source imagers to identify the causes (Maasakkers et al., 2022b). Point source 

observations with adequate completeness can improve the bottom-up estimates used as prior information in inversions of area 

flux mapper data. Constellations of point source imagers can achieve high observing system completeness in support of point 

source mapping as well as leak detection and repair (LDAR) programs.  

 905 

Synergy with suborbital (ground-based and airborne) platforms is essential for a multi-tiered observing strategy (Cusworth et 

al., 2020). Suborbital observations have a unique role to complement the intrinsic limitations of satellites in terms of spatial 

resolution, return time, cloud cover, dark surfaces, and nighttime. Surface measurements are typically ten times more sensitive 

to local emissions than satellite observations (Cusworth et al., 2018). They can also include correlative chemical information 

such as isotopes, ethane, and ammonia concentrations (Yuan et al., 2015; Ganesan et al., 2019; Graven et al., 2019; Pétron et 910 

al., 2020; Yang et al., 2020).  
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Correlative chemical information available from satellites needs to be better exploited. Concurrent satellite observations of 

CO and methane have been used to quantify methane emissions from open fires (Worden et al., 2013) and from cities (Plant 

et al., 2022) by reference to CO emissions, although this is contingent on an accurate CO emission inventory and errors in 915 

these inventories are often large. GeoCarb will measure methane, CO2, and CO, offering further application of this method 

including the use of methane/CO2 enhancement ratios. Concurrent enhancements of CO2 and methane in oil/gas fields observed 

by the PRISMA instrument, together with nighttime flare data from the VIIRS instrument, have been used to identify flaring 

point sources and quantify flaring efficiency (Cusworth et al., 2021a). Measurements of ammonia from space (Van Damme et 

al., 2018) have the potential to identify livestock sources but have not yet been used in combination with methane.   920 

 

Some methane sources are intrinsically difficult to observe from space including over water, the wet tropics, and the Arctic. 

Potentially large methane sources over water include offshore oil/gas facilities, wastewater facilities, hydroelectric and 

agricultural reservoirs, and estuaries. They can be observed in the sunglint mode or by lidar (Kiemle et al., 2017; Ayasse et al., 

2022; Irakulis-Loitxate et al., 2022b). The wet tropics and the Arctic are a challenge because of persistent cloudiness, 925 

compounded in the Arctic by high solar zenith angles and polar darkness, and by the collocation of oil/gas and wetland 

emissions. The MERLIN lidar instrument will provide unique observation capability for the Arctic. The GeoCarb geostationary 

instrument will increase data density over tropical South America. The tropics are thought to be the principal driver for the 

recent methane increase (Chandra et al., 2021; Yin et al., 2021; Zhang et al., 2021), and there would be considerable value in 

dedicated geostationary or inclined-orbit satellite observations of the tropics with high pixel resolution. 930 

 

The ultimate goal of top-down methane emission estimates is to improve bottom-up estimates, as the latter provide the 

information needed for climate action by relating emissions to processes. This calls for partnerships where discrepancies 

identified by satellite for a particular sector motivate work to improve bottom-up estimates for that sector. The International 

Methane Emissions Observatory (IMEO) (United Nations Environmental Program, 2021) aims to facilitate this infusion of 935 

top-down information into the improvement of bottom-up inventories on a global scale in support of the Paris agreement, and 

collaboratives in the oil/gas industry aim to achieve the same at the level of oil/gas production fields and individual facilities 

(Cooper et al., 2022).  

 

The capability is thus emerging for satellite observations to anchor a global methane monitoring system delivering global 940 

information on emissions in near real time, from the global scale down to point sources, to support climate policy and to guide 

corrective action. The basic framework for building such a facility is already here and will be rapidly augmented in coming 

years with the launch of new instruments. 
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