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Abstract. We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave
infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods,
precision and accuracy requirements, inverse and mass balance methods for inferring emissions, source detection thresholds,
and observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with
complementary attributes. Area flux mappers are high-precision (<1%) instruments with 0.1-10 km pixel size designed to
quantify totalmethane emissions on regional to global scales. Point source imagers are fine-pixel (<60 m) instruments designed
to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009-present),
which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018-present), which
provides global continuous daily mapping to quantify emissions on regional scales. These instruments already provide a
powerful resource to quantify national methane emissions in support of the Paris Agreement. Current point source imagers
include the GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2,
Landsat-8/9, WorldView-3), with detection thresholds in the 100-10000 kg h-! range that enable monitoring of large point
sources. Future area flux mappers including MethaneSAT, GOSAT-GW, Sentinel-5, GeoCarb, and CO2M will increase the
capability to quantify emissions at high resolution, and the MERLIN lidar will improve observation of the Arctic. The
averaging times required by area flux mappers to quantify regional emissions depend on pixel size, retrieval precision,
observation density, fraction of successful retrievals, and return times in a way that varies with the spatial resolution desired.

A similar interplay applies to point source imagers between detection threshold, spatial coverage,and return time, definin g an

1



40

45

50

55

60

65

70

observing system completeness. Expanding constellations of point source imagers including GHGSat and Carbon Mapper over
the coming years will greatly improve observing system completeness for point sources through dense spatial coverage and

frequent return times.

1 Introduction

Methane is a powerful greenhouse gas that has contributed 0.6°C of global warming since pre-industrial time (Naik et al.,
2021). Itis emitted by a numberof anthropogenic source sectors including livestock, oil/gas systems, coal mining, landfills,
wastewater treatment, and rice cultivation. Wetlands are the main naturalsource. The mainsink is oxidation by the hydroxyl
radical (OH), resulting in an atmospheric lifetime of about 9 years (Prather et al., 2012). Because of this short lifetime,
decreasing methane emissions is a powerful lever to slow down near-term greenhouse warming (Nisbet et al., 2020). However,
methane emission estimatesand the contributions from different sectors are highly uncertain (Saunois et al., 2020), hindering
climate policy. Here we review the capability of satellite observations of atmospheric methane to quantify emissions from the

global scale down to point sources.

Methane emission inventories are typically constructed using bottom-up methods in which activity levels (such as number of
cows) are multiplied by emission factors (methane emitted percow) (IPCC, 2019). Bottom-up methods relate emissions to the
underlying processes, thus providing a basis foremission control strategies. Observations of atmospheric methane provide top-
down information to improve these emission estimates by using inverse methodsto relate observed concentrations to emissions
(Miller and Michalak,2017). Satellite observationsare of particular interest for this purpose because of their high observation

density and global coverage (Palmer et al., 2021).

Satellites retrieve atmospheric methane column concentrations with near-unit sensitivity down to the surface by measuring
spectrally resolved backscattered solarradiation in the shortwave infrared (SWIR) (Jacobet al., 2016). Global observation of
methane from space began with the SCIAMACHY instrument (2003-2014, 30x60 km? pixels) (Frankenberg et al., 2005), and
has continued since with the TANSO-FTS instrumentaboard GOSAT (2009-present, 10-km circular pixels separated by about
270 km) (Parker et al., 2020) and the TROPOMI instrument (2018-present, 5.5x7 km2 pixels) (Lorente et al., 2021). Many
studies have used these satellite observationsto quantify methane emissions globally (Bergamaschi et al., 2013; Alexe et al.,
2015; Wangetal., 2019; Qu et al., 2021), on continentalscales (Wecht et al., 2014; Maasakkersetal., 2021; Lu et al., 2022),
on finer regional scales (Miller et al., 2019; Zhang et al., 2020; Shen et al., 2021), and for large point sources (Pandey et
al.,2019; Sadavarte et al., 2021; Lauvaux et al., 2022; Maasakkers et al., 2022ab). Targeted observation of methane point
sources from space began with the 2015 Aliso Canyon blowout using the Hyperion hyperspectral sensor (Thompson et al.,
2016) and has since continued with the GHGSat instruments (2016-present, 25x25 m?2 pixels) (Jervis et al., 2021).

Hyperspectral land-imaging spectrometers (measuring continuous spectra with ~10 nm resolution in selected wavelength
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channels) and multispectral land-imaging spectrometers (measuring radiances in discrete ~100 nm channels) have also
demonstrated capability to detect large methane point sources in their SWIR bands (Cusworth et al., 2019; Guanteretal., 2021,
Varon etal., 2021; Ehret et al., 2022; Sanchez-Garcia etal., 2022).

Better quantification of methane emissions worldwide is urgently needed to meet the demands of climate policy. Individual
countries must report their emissions by sector to the United Nations Framework Convention on Climate Change (UNFCCC),
on a yearly basis for Annex | (developed) countries. The enhanced transparency framework of the Paris Agreement requires
all countries to submit national sector-resolved emissions for expert review by November 2024 as basis for setting their
Nationally Determined Contributions to meet climate goals. Independently of the Paris Agreement, over 110 countries have
now signed the Global Methane Pledge of 2021 committing them to reduce their collective 2030 methane emissions by 30%
relative to 2020 levels. Satellites can help to quantify national emissions by sector as baseline for setting methane reduction
goals, and can then monitor emissions over time to evaluate success in achieving those goals. They provide near real-time
information on emissions whereas bottom-up inventories typically have latencies of a fewyears,and are thusa unique resource

to documentrapid changesin emissions (Barré et al., 2021).

Jacobetal. (2016) previously reviewed the state of the science for quantifyingmethane emissions from space. They presented
observing capabilities atthe time, discussed the inverse methods for inferring methane emissions from satellite observations,
and laid out observing requirements for future satellite missions. Since then, new satellite instruments for measuring
atmospheric methane have been launched and new capabilities for detecting methane point sources from space have emerged.
New analyticaltools have been developed to inferemissions from satellite observations, including for point sources. Additio nal
satellite instruments are scheduled to be launched over the next few years that will augment current capabilities. These new

developments motivate ourupdated review.

2 Observing atmospheric methane from space
2.1 Current and planned instruments

Table 1 lists current and scheduled satellite instruments with documented or expected capability for quantifying methane
emissions, and Table 2 gives specific attributes for each. We classify the instruments as area flux mappers or point source
imagers, and Fig. 1 illustrates these two fleets. Area flux mappersare designed to observe totalemissions on global or regional
scales with 0.1-10 km pixel size. Point source imagers are fine-pixel (<60 m) instruments designed to quantify individual point
sources by imaging the plumes. Point source imagers have much finer spatial resolution than area flux mappers b ut lower

precision.
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Table 1: Current and planned SWIR satellite instruments for observing atmospheric methane?

Instrument Organization®{Launch [Nadir Coverage |[Return Methane|Spectral  |Precisionf |Reference
date pixel size time band resolution
(days)®  [(um)? |(nm)e
Area flux mappers?
GOSATh JAXA, MOE,|2009 [10-km global 3 1.65, 2.3i|0.06 0.7% Parker et al. (2020);
NEIS diameteri Noel et al. (2022)
TROPOMI ESA 2017% [5.5x7 km2 |global 1 2.3 0.25 0.8%' Lorente et al. (2021)
GOSAT-GW JAXA, MOE,|2023 [1x1-10x10 |global 3 1.65 0.06 0.6% NIES (2021)
NEIS km2zm +targets
MethaneSAT EDF 2023 [130x400m?2|200x200 3-4 1.65 0.3 0.1-0.2%" |Rohrschneider et al.
kmZ targets (2021)
Sentinel-5 ESA 2024 |7.5x7.5 km2|global 1 1.65,2.3(0.25 0.8% ESA (2020)
GeoCarb NASA 2025 [6x3 km? N and S|0.5 2.3 0.2 0.3-0.6% [Moore et al. (2018)
America®
CO2M ESA 2025 [2x2 km? global 5 1.65 0.3 0.6% Sierk et al. (2019)
MERLIN CNES, DLR (2027 [0.1x50 kmP |global 28 1.65 3x10-4¢ 1.5% Ehret et al. (2017)
Point source imagers"
Landsat-8° USGS 2013 |30x30 m2 [global 16 2.3 200 30-90%' |Ehretetal. (2022)
WorldView-3 DigitalGlobe (2014 |3.7x3.7m?2 |66.5x112 (<1 2.3 50 6-19%! |Sanchez-Garcia et al.
kmZ2 targets (2022)
Sentinel-2 ESA 2015 [20x20 m?2 |global 2-5 2.3 200 30-90%! |Varonetal. (2021)
GHGSat GHGSat, Inc.[2016  [25x25m2 [12x12 km?|1-7V 1.65 0.3 1.5%wW Jervis etal. (2021)
targets
PRISMAX ASI 2019 [30x30m? |30x30 km?¢|4 2.3 10 3-9% Guanteret al. (2021)
targets




EnMAPX DLR 2022 |30x30m?2 |30x30 km?|4 2.3 10 3-9% Cusworth et al. (2019)
targets
EMIT NASA 2022 |60x60 m2 |Dust- 3 2.3 9 2-6%7 Cusworth et al. (2019)
emitting
regionsy
Carbon Mapper®@  |Carbon 2023 [30x30 m2[18-km 1-7v 2.3 6 1.2-1.5% |[Duren etal. (2021)
Mapper and 30x60 m2  |swaths®
Planet

110

115

120

125

130

@ The Table lists shortwave infrared (SWIR) satellite instruments currently operating or scheduled for launch that have
documented methane-observing capabilities and offer publicly accessible data (some for purchase; see Table 2). Instruments
notyet launched are in italics, and launch datesare estimates as of this writing. All instruments are in low-elevation polarsun-
synchronous orbits except for GeoCarb, which will be in geostationary orbit over the Americas, and EMIT, which will be in
aninclined precessing orbit. All instruments measure SWIR solar radiation backscattered from the Earth’s surface except for
MERLIN which is a lidar instrument. The Gaofen 5 series of Chinese satellites has capabilities similar to PRISMA and EnMAP
(Irakulis-Loitxate et al., 2021) but is not included in the Table because of the opacity of data acquisition and distribution. A
more comprehensive list of instruments including from private companies with proprietary data is available from GEO,
ClimateTRACE, WGIC (2021).

b JAXA = Japan Aerospace Exploration Agency, MOE = Ministry of Environment, NIES = National Institute for
Environmental Studies, ESA = European Space Agency, EDF = Environmental Defense Fund, NASA = National Aeronautics
and Space Administration, CNES = Centre Nationald’Etudes Spatiales, DLR = Deutsches Zentrum fir Luft- und Raumfahn,
USGS = Unted States Geological Survey, ASI = Agenzia Spaziale Italiana.

¢ Time interval between successive viewings of the same scene.

d Most useful band(s) for methane retrieval. The 1.65 and 2.3 um bands have exploitable featuresat 1.63-1.70and 2.2-2.4 ym,
respectively.

& Full width athalf maximum.

fPrecision is reported as percentage of the retrieved dry column methane mixing ratio Xcna.

9 Area flux mappersare primarily designed to quantify total methane emissions on regional to global scales.

9 TANSO-FTS instrument aboard the GOSAT satellite. The instrument is commonly referred to as GOSAT in the literature.
GOSAT-2 was launched in 2018 with specifications similar to GOSAT butaddinga 2.3 um band (Suto et al., 2021).

i Circular pixels separated by about 270 km along-track and cross-track.

I The 2.3 um band wasadded in GOSAT-2.

kTROPOMI was launched in October 2017 but the methane data stream beginsin May 2018.

'The TROPOMI product reports a much higher precision of ~2 ppb but this only includes error from the measured radiances.
Accounting forretrieval errors by validation with TCCON data indicatesa precision of 0.8% (Schneising et al., 2019).

5




m Narrow-swath mode (1x1 to 3x3 km? pixels) for urban regions and wide-swath mode (10x10 km?) for global coverage.

135 MFor 1-5 km binned data.
° From 45°Sto 55°N.
P Integrating the signal along 50 km of the lidar orbit track.
4 Lidar online/offline sampling at 1645.552/1645.846 nm.
"Point source imagers quantify emissions from individual point sources by imaging of the atmospheric plume.
140 sLandsat-9waslaunchedin 2021 with similar capability as Landsat-8.
tFor favorable (bright and spectrally homogeneous) surfaces.
UIncluding GHGSat-D (2016), -C1 (2020), C2 (2021), and C3-C5 (2022). Plans are for six more launchesin 2023.
V'For the constellation. Individualsatellites have return times of about 14 days.
W For the GHGSat-C satellites. GHGSat-D hasa precision of 12-25%.
145 *Otherplanned hyperspectralimagingspectrometers with observing capabilities similar to PRISMA and EnMAP include SBG
and CHIME (Cusworth et al., 2019).
YEMIT is a surface mineraldust mapperthatwill fly on the International Space Stationina 51.6° inclined orbit and will target
arid areas.
Z Based onthe precision of PRISMA (Guanter etal., 2021)and the higher spectralresolution of EMIT (Cusworth et al., 2019).
150 @ Carbon Mapperis expected to be a constellation of satellites with two launchesin 2023 and six launchesin 2024.
ab Carbon Mapper push-broom mode has imaging strips as long as 1000 km with 30x60 m?2 pixels; Carbon Mapper target-
tracking mode hasshorter imaging strips with 30x30m?2 pixels and ground-motion compensation to achieve higher signal-to-
noise ratio (lower detection threshold).
155 Table 2: Attributes and data availability for satellite instruments observing atmospheric methane?
Instrument Attributes Data availability®

Area flux mappers

GOSAT Long-term record of high-quality data L2, open
TROPOMI Global continuousdaily coverage L2, open
GOSAT-GW High-resolution mappingofurbanareas L2, open
MethaneSAT High-resolution mappingof oil/gas/agricultural L1,L2, and L4, open®
source regions with imaging of large point sources
Sentinel-5 Global continuousdaily coverage including the L2, open
1.65 um band




GeoCarb Continuous coverage for methane-CO2-COover L2, open
North and South America with subdaily

observations

Cco2M High-resolution global continuous coverage L2, open
MERLIN Arctic and nighttime observations L2
Point source imagers

Sentinel-2, Landsat Global continuousdata acquisition, long-term L1, open
records

WorldView-3 Very high spatialresolution L1, forpurchase

GHGSat High sensitivity (~100 kg h-1), established L2 and L4, for purchased
constellation

PRISMA, EnMAP Medium sensitivity (100-1000 kg h-1), extensive L1, free onrequest
coverage

EMIT Medium sensitivity (100-1000 kg h-1), extensive L1, opent

coverage of low-latitude arid regions

Carbon Mapper High sensitivity (~100 kg h-1), high observing L2 and L4, open

system completeness

@ See Table 1 for the specifications of each instrument. Instrumentsnot yet launched are in italics.
b L1 (Level 1) = measured radiances; L2 = retrieved column dry mixing ratio Xcra; L4 = derived emission rates.
¢L1and L2 data will be made available upon request.
d Data may also be obtained from space agencies through agreements negotiated with GHGSat.
160 ©Generation of an L2 productis underdiscussion.
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Figure 1: Satellite instruments for observation of methane in the shortwave infrared (SWIR). Area flux mappers are designed to
quantify total methane emissions on regional to global scales. Point source imagers are designed to quantify emissions from
individual point sources by imaging the atmospheric plumes. Specifications for each instrumentare in Tables 1 and 2. Satellite icons
were obtained from https://www.gosat.nies.go.jp for GOSATWikipedia Commons for TROPOMI, EMIT (International Space
Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper; Error! Hyperlink
reference not valid.https://www.methanesat.org for MethaneSAT; ESA (2020) for Sentinel-5; https://www.ou.edu/geocarb/mission
for GeoCarb; https://www.planetek.it/ for PRISMA; https://www.ghgsat.com/ for GHGSat; https://www.enmap.org/mission for
EnMAP; https://directory.eoportal.org for WorldView-3; and https://www.usgs.gov/landsat-missions for Landsat.

All instruments in Table 1 except MERLIN observe methane by SWIR solar backscatter from the Earth’s surface, either at
1.63-1.70 um (1.65 pum band)or at2.2-2.4 um (2.3 um band). Atmospheric scattering is weak in the SWIR except forclouds
and large aerosol particles. Under clear skies, methane is observed down to the surface with near unit sensitivity (Worden et
al., 2015). The retrieval may fail if the surface is too dark,asover water or forest canopies (Ayasse et al., 2018). Observations
overwater can be made by sunglint when the Sun-satellite viewing geometry is favorable. The MERLIN lidar instrument emits

its own 1.65 um radiation and detects the reflected signal. It can observe overwater and at night, but its sensitivity and coverage
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are lower than for the solar back-scatter instruments. Lidar capability to observe methane from space is currently limited by

laser technology (Riris et al., 2019).

Not included in Table 1 are instruments that measure methane in the thermal infrared (TIR) or by solar occultation. These
instruments are not sensitive to methane near the surface and are therefore not directly useful for quantifying methane
emissions. TIR instruments have been used for remote sensing of methane plumes from aircraft (Hulley et al., 2016) but
measurements from satellites mainly sense the upper tropospheric background (Worden et al., 2015). Solar occultation
instruments such as ACE-FTS provide sensitive measurements of stratospheric methane profiles (Koo et al., 2017) but cloud
interference prevents observations in the troposphere. TIR and solar occultation instruments can complement SWIR data by

providing information on background methane in the upper troposphere and stratosphere (Zhanget al., 2021; Tuet al., 2022).

The spectrally resolved SWIR backscattered solar radiation detected by satellite under clear-sky conditions can be used to
retrieve the totalatmospheric column of methane, QcHa [molecules cm-2], as will be reviewed in Section 2.2. To remove the
variability from surface pressure, measurements are typically reported as dry column mixing ratio Xcrhs = Qcha/ Qad Where
Qadis the dry air column [molecules cm-2]. Normalizing to dry air rather than totalairavoids introducing dependence on water

vapor.

All instrumentsin Table 1 except EMIT and GeoCarb are in low-elevation polar sun-synchronousorbit and observe globally
at specific local times of day, either morning or early afternoon. Morning has greater probability of clear sky, while early
afternoon has steadier boundary layer winds for interpreting methane enhancements. GOSAT (2009 -present) and its follow-
on GOSAT-2 (2018-present) provide global coverage every 3 daysfor10-km circular pixels spaced about 270-km apart, while
TROPOMI (2018-present) provides full global daily coverage with 5.5x7 km2 pixels. Figure 2 shows mean TROPOMI XcHs
data for two different seasons, illustrating the dense coverage. Future instruments GOSAT-GW (2023 launch, 10x10 km?2
pixels with full global coverage every 3 days in wide-swath mode), Sentinel-5 (2024 launch, 7.5x7.5 km?2 pixels with full
global daily coverage), and CO2M (2025 launch, 2x2 km?2 pixels with full global coverage every 5 days) will continue the
global observation record. MERLIN will provide day/night global coverage alongits lidar orbit track. Sentinel-2 and Landsat
instruments provide full global coverage with 20-30 m pixels every 5 days (Sentinel-2) or 16 days (Landsat) and can detect
very large point sources over bright spectrally homogeneous surfaces. EMIT (designed to observe arid surfaces for dust
generation) will beon a 51.6°inclined orbit aboard the International Space Station with variable local overpass times. GeoCarb

will be in geostationary orbit over the Americas and will provide subdaily observationsfrom 45°Sto 55°N.

Several narrow-swath instruments in Table 1 are selective in their observationsto focuson specific targets and avoid cloudy
conditions. The GHGSat instruments observe selected 12x12 km?2 scenes with 25x25 m2 pixel resolution and instrument

pointing to increase the signal-to-noise ratio (SNR). Carbon Mapperwill observe 18-km swathswith imaging strips aslong as

9



1000 km in push-broom mode and shorter strips in target-track (instrument-pointing) mode. GHGSat has six satellites in orbit
asof this writing to achieve frequent return times, and Carbon Mappersimilarly plans a constellation of satellites. WorldView-
3 observes scenes of dimensions up to 66.5x112 km?2. MethaneSAT will observe 200x200 km? targets in oil/gas and
215 agricultural regions with 130x400 m2 pixel resolution, enabling high-resolution quantification of regionalemissions aswell as

imaging of large point sources.
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Figure 2: Global TROPOMI observations of methane for December 2019 — February 2020 and June-August 2020. Data are from
220 theversion 2.02 product, filtering out low-quality retrievals (qa_value < 0.5) and snow/ice surfaces diagnosed by blended albedo >

0.8 (Lorente et al., 2021). The top panels show the mean dry methane column mixing ratios Xchs.0n a 0.1°x0.1° grid. The middle

panels show the observation density as the number of successful observations per 1°x1° grid cell for the 3-month periods. The bottom

panels show the mean Xcns4 differences between collocated TROPOMI and GOSAT observations plotted on a 2°x2.5° grid and

adjusted upward by 10.5 ppb to account for TROPOMI being 10.5 ppb lower than GOSAT in the global mean. . GOSAT data are
225 from the CO: proxy retrieval version 9.0 of Parker et al. (2020).

All area flux mappers in Table 1 have fine (< 0.5 nm) spectral resolution to enable precise measurements of methane

concentrations, traded against coarser (0.1-10 km) spatial resolution. GHGSat achievesa combination of fine spatial resolution
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and fine spectral resolution by instrument pointing. Most other point source imagers in Table 1 are designed to observe land
surfaces, which requires fine spatial resolution (<50 m) but less stringent spectral resolution. These instruments have
serendipitous capability to detect methane plumes in the broad 2.3 pm band, including hyperspectral sensors with ~10 nm
spectral resolution (PRISMA, EnMAP, EMIT) (Cusworth et al.,, 2019) and even multispectral sensors with a single 2.3 um
channel (Sentinel-2, Landsat) (Varon et al., 2021) or a few channels (WorldView-3) (Sanchez-Garcia et al., 2022). Carbon

Mapperwill have 6 nm spectral resolution, which increases precision appreciably relative to 10 nm (Cusworth et al., 2019).

All area flux mappersin Table 1 havean open data policy allowing free accessfrom a distribution website or from the cloud.
The data are generally provided as Xcha retrievals (Level 2 or L2). MethaneSAT will distribute its data publicly as inferred
methane fluxes (L4), with the L1 an L2 data also available upon request. Data access for point source imagers is presently less
straightforward. Sentinel-2 and Landsat have freely accessible channel radiance (L1) data but users must perform their own
methane retrievalsand source rate estimates. GHGSat and WorldView-3 make observationsatthe request of paying customers,
with GHGSat providing column density (L2) and source rate (L4) data and WorldView-3 providing L1 data. PRISMA and
EnMAP make observationsupon request from the scientific community and stakeholders, and the resulting L1 data are then
freely accessible, but again users must perform their own methane retrievals. Carbon Mapper will provide open L2 and L4
data.

2.2 Retrieval methods

The ‘full-physics’ retrieval of methane columns from satellite SWIR spectra involves inversion of the spectra with a radiative
transfer model (Butz et al., 2012; Thorpe et al., 2017). It typically solves simultaneously for the vertical profile of methane
concentration, the vertical profile of aerosol extinction, and the surface reflectivity. Although the vertical profile of methane
may be retrieved in the inversion, there is actually no significant information on vertical gradients and only Xcwa is reported
together with an averaging kernel vectorfor sensitivity to the vertical profile (nearunity in the troposphere). The retrieval may
fail if the atmosphere is hazy or if the surfaceis heterogeneousor too dark. Full-physics TROPOMI retrievals in the 2.3 um
bandthushave only a 3% global success rate over land (Lorente et al., 2021) with large variability depending on location (Fig.
2). Arid areas and mid-latitudes are relatively well observed. Observations are much sparser in the wet tropics because of
extensive cloudiness and dark surfaces, and in the Arctic because of seasonal darkness, extensive cloudiness, and low Sun

angles. Observationsathigh latitudes are very limited outside of summer, resulting in a seasonalsampling bias.
The 1.65 um band allows the alternative CO2 proxy retrieval taking advantage of the adjacent CO2 absorption band at1.61 um

(Frankenberg et al., 2005). In this method, QcHa and Qcoz are retrieved simultaneously without accounting for atmospheric

scattering, and Xcna is then derived as
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where Xco2is independently specified, typically from assimilated observations or from a global chemical transport model
(Parker et al., 2020; Palmer etal., 2021). The CO> proxy method takes advantage of the lower variability of CO2 than methane
and of the low CO. co-emission from the dominant methane sources (livestock, oil/gas systems, coal mining, landfills,
wastewater treatment, rice cultivation, wetlands). It is much faster than the full-physics retrieval, achieves similar precision
andaccuracy (Buchwitz et al., 2015), and largely avoids biases associated with surface reflectivity and aerosols because these
biases tend to cancel in the QcHa/Qco2ratio. Itis subjectto errors from unresolved variability of CO2 such as in urban regions,
and is also subject to bias for sources that co-emit methane and CO: such as flaring and other incomplete combustion. The
GOSAT instrument operating at 1.65 pm with 10 km pixels has a 24% success rate over land using the CO. proxy retrieval,

mainly limited by cloud cover (Parker et al., 2020).

A limitation in using the 1.65 um band is thatit is narrower, with fewer spectral featuresand weaker absorption than the 2.3
pm band, and therefore requires an instrument with sub-nm spectral resolution (Cusworth et al., 2019; Jongaramrungruang et
al., 2021). The 2.3 um band can be successfully sampled fora full-physics retrieval by hyperspectralinstrumentswith ~10 nm
spectral resolution (Thorpe et al., 2014, 2017; Cusworth et al., 2021a; Borchardt et al., 2021; Irakulis-Loitxate et al., 2021).
Precision improves with spectral resolution (Cusworth et al., 2019; Jongaramrungruang et al., 2021) and with spectral
positioning relative to the methane absorption lines (Scaffuto et al., 2021). Multispectral instruments with one or several
broadband channels (~100 nm bandwidth) do not allow a spectrally resolved retrieval, but a simple Beer’s law retrieval of the
methane column enhancementina plume relative to background canstill be achieved in the 2.3 um band by inferring surface
reflectivity from adjacent bands orfrom views of the same scene when the plume is absent (Varonetal., 2021; Sanchez-Garcia
etal., 2022).

Yet another approach for retrieving methane enhancements from point sources is the matched -filter method in which the
observed spectrum is fitted to a background spectrum convolved with a target methane absorption spectrum capturingthe 2.3
um absorption band (Thompson et al., 2015; Foote et al., 2020). Matched filter methods have been extensively used for
mapping methanepoint sources from airborne hyperspectralcampaigns (Frankenbergetal., 2016; Duren etal.,2019; Cusworth
et al., 2021b) and have also been used for satellite retrieval of point sources (Thompson et al., 2016; Guanter et al., 2021;
Irakulis-Loitxate etal., 2021). These methodsdirectly retrieve the methane enhancement above background and are faster than
a full-physics retrieval. They are well-suited for plume imaging, where the methane enhancementabove local background is

the quantity of interest.
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2.3 Precision and accuracy

Retrievals of XcHs may be affected by random error (precision) and systematic error (bias or accuracy). A uniform bias is
inconsequential because it can be simply subtracted. Random error is reducible by temporal averaging if the observation
density is high. The most pernicious error is spatially variable bias, often called relative bias (Buchwitz et al., 2015), which is
generally caused by aliasing of surface reflectivity spectral features into the methane retrieval. Variable bias corrupts the

retrieved concentration gradientsand producesartifact featuresthat may be wrongly attributed to methane.

Area flux mapper instruments are generally validated by reference to the highly accurate Xcns measurements from the
worldwide Total Carbon Column Observing Network (TCCON) of ground-based sun-staring spectrometers (Wunch et al.,
2011). Variable bias can be estimated as the spatial standard deviation across TCCON sites of the temporal mean bias
(Buchwitz etal., 2015). Schneising etal. (2019) inferred in this mannera globalbias of -1.3 ppb for the TROPOMI University
of Bremen methane retrieval, a precision of 14 ppb,anda variable biasof 4.3 ppb. Lorente etal. (2021) inferred a global mean
bias of -3.4 ppb and a variable bias of 5.6 ppb for the current TROPOMI version 2 Netherlands Institute for Space Research
(SRON) operationalretrieval. Figure 3 places these valuesin the contextof TROPOMI observationsover the Permian Basin
oil field in Texas and New Mexico. A typical single day of TROPOMI observationsshows large areas of missing and noisy
data, so temporal averaging is necessary, which also reduces the random error. Averaging TROPOMI observations over a
month shows full coverage of the Permian with enhancements of ~50 ppb over the principal areasof oil and gas production,

well above the variable bias of the instrument.

Reliance on the TCCON network to diagnose variable bias is limited by the sparsity of network sites, almost all at northem
mid-latitudes. An alternative way is by reference to GOSAT. The current version 9 GOSAT retrieval using the CO2 proxy
method hasa variable bias of only 2.9 ppb referenced to TCCON and is recognized asa well-calibrated measurement (Parker
et al., 2020). Spatial variability in the mean TROPOMI-GOSAT difference provides a global assessment of TROPOMI
variable bias (Qu et al., 2021). Results in Fig. 2 (bottom panel), after correcting for a global mean TROPOMI-GOSAT
difference of -10.5 ppb (TROPOMI lower than GOSAT), show that TROPOMI variable biases can exceed 20 ppb in some
regions. The reason forsuch large biases relative to GOSAT is TROPOMI’s coarser spectralsampling of the SWIR region, as
well as the unavailability of the CO> proxy retrieval at 2.3 um. Comparing TROPOMI and GOSAT observations for a region
of interest is good practice before interpreting TROPOMI data forthatregion (Z. Chenetal.,, 2022).
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Figure 3: Satellite observations of atmospheric methane over the Permian Basin (Texas and New Mexico) in July 2020. The left panel
shows typical TROPOMI observations for 1 day (July 15), featuring large areas of missing data where the retrieval was not successful
because of cloud cover or other factors. The middle panel shows monthly mean TROPOMI observations on a0.1°x0.1° grid, featuring
enhancements over the Delaware and Midland basins where oil production is concentrated. TROPOMI data are from the version
2.02 retrieval of Lorente et al. (2021). The right panel shows sample observations of plumes from point sources by Sentinel-2,
PRISMA, and GHGSat superimposed on surface imagery from © Google Earth. Plume dimensions and inferred point source rates
(Q) are given inset. See Sect. 4.2 for the inference of point source rates from plume observations.

Variable bias is also a concern for point source imagers where it manifests as artifact features that could be mistaken for
methane plumes (Ayasse etal., 2018). Thisis of particularconcern for heterogeneous surfaces (Cusworth etal.,2019). Artifacts
can be screened by visual inspection of the candidate plumesin relation to wind direction, known infrastructure, and surface
reflectivity (Guanteret al., 2021). Machine-learning methodscan also be trained to detect plumesand recognize artifact noise
patterns (Jongaramrungruangetal.,2022). Figure 3 shows illustrative observationsof point sources from Sentinel-2, PRISMA,
and GHGSat in the Permian Basin. The observations have lower precision than TROPOMI (Table 1) but the methane
enhancements are much larger because the pixels are smaller. Point source detection thresholds and their relationship to

precision are discussed in Sect. 5.

3 Global, regional, and point source observations

Figure 4 classifies the satellite instruments of Table 1 in terms of their abilities to observe methane on global and regiona |
scales as area sources (area flux mappers) or on the scale of individual point sources (point source imagers). Observations on
these different scales target complementary needs for our understanding of methane, and they correspondingly have different
observing requirements. Area sources may integrate a very large number of individually small emitters that cumulateto a large

total, such aslow-production oil wells (Omara et al., 2022). A practical definition of a methane point source for our purposes,
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following Duren et al. (2019), is a single facility emitting more than 10 kg h-1 over an area less than 30x30 m2. This represents
a typical limit of detection from aircraft remote sensing combined with a typical spatial resolution for point source imagers.
With this definition of source threshold, Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields
originate from point sources. This emphasizes the need for characterizing methane emissions complementarily both as area

sources and as point sources.

3.1 Global and regional observations with area flux mappers

Global observation of methane targets the central question of why atmospheric methane hasalmost tripled since pre-industrial
times and why it continues to increase. Ground network measurements such as from NOAA are the reference for observing
global trends because of their high accuracy (Bruhwiler et al., 2021), and some sites include isotopic or other information to
separate contributions from different source sectors (Lanet al., 2021). But satellites have an essential role to play because of
their dense and global coverage. They can identify the regions that drive the global trend (Zhang et al., 2021). They have a
unique capability to evaluate the accuracy and trends of methane emissions reported by individual countries to the UNFCCC
(Janardananetal.,2020)and thus contribute to the transparency framework of the Parisagreement (Deng et al., 2022; Worden
etal., 2022).
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Figure 4: Classification of satellite instruments by their capability to observe atmospheric methane on global scales, on
regional scaleswith high resolution, and for point sources. Specifications for the satellite instruments are listed in Table
1 and key attributes are listed in Table 2. Point source detection thresholds are given here as orders of magnitude.
These detection thresholds are discussed in Sect. 5.2. Instruments not yet launched are in italics.

Global observation of methane from spaceis presently available from GOSAT and TROPOMI. GOSAT provides a contin uous
and well-calibrated record going back to 2009 (Parker et al. 2020). Inversions of GOSAT data have been used to attribute the
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contributions of different source regions and sectors to the methane increase over the past decade (Maasakkers et al., 2019;
Chandra et al., 2021; Palmer et al., 2021; Zhanget al., 2021). The TROPOMI data stream begins in May 2018 and is much
denser than GOSAT, but theability to use TROPOMI data in global inversions is presently limited by large variable biases in
some regions of the world (Qu et al. (2021); Fig. 2). This is likely to improve with future retrieval versions and may be
overcome with carefuldata selection. Continuity of global methane observations from space is expected overthe next decade
with the GOSAT series (GOSAT-2, GOSAT-GW), Sentinel-5, and CO2M (Table 1). MERLIN could make an important
contribution toward better understanding of methane emissions in the Arctic, which is otherwise difficult to observe from

space.

There is considerable interest in using satellite observations to quantify methane emissions with high resolution on regional
scales. This is important forreporting of emissions atthe nationalorsub-nationalstate level, for monitoring oil/gas production
basins, and for separating contributions from different source sectors. Qil/gas production basins are typically a few hundred
km in size and may contain thousands of point sources that are individually small but add up to large totals and are best
quantified on a regional scale (Lyon et al., 2015). Several field campaigns using surface and aircraft measurements have
targeted oil/gas fields in North America (Karion et al., 2015; Pétron et al., 2020; Lyon et al., 2021), but these campaignsare

necessarily short and are not practicalin many partsof the world.

TROPOMI with its 5.5x7 km?2 pixel resolution and global continuous daily coverage is presently the only satellite instrument
capable of high-resolution regional mappingof methane emissions. GOSAT data are too sparse. TROPOMI hasbeen used to
quantify emissions from oil/gas production fields including the Permian Basin (Zhanget al., 2020), other fields in the US and
Canada (Shenet al., 2022), and the Mexican Sureste Basin (Shen et al., 2021), revealing large underestimatesin the bottom-
up inventories. It has also been used to quantify total methane emissions from China and attribute them to source sectors (Z.
Chenetal, 2022). The variable bias problemsthataffect global TROPOMI inversions can be less problematic on the scale of
source regions where methane enhancements are large, the bias may be less severe (Fig. 2), and bias correction is possible
through adjustment of boundary conditions in the transport model (Shen et al., 2021). Capability for regional mapping of
methane emissions is expected to greatly expand in the future with the MethaneSAT, GOSAT -GW, Sentinel-5, and CO2M

instruments.

3.2 Point source observations with point source imagers

Monitoring large point sources is important for reporting of emissions, and detection of unexpectedly large point sources
(super-emitters) can enable prompt corrective action. In situ sampling and remote sensing from aircraft has been used
extensively to quantify point sources (Frankenberget al., 2016; Lyon et al., 2016; Duren et al., 2019; Hajny et al., 2019; Y.

Chenetal.,, 2022; Cusworth et al., 2022) butis limited in spatialand temporalcoverage. Satellites again have an essential role
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to play. They have enabled the discovery of previously unknown releases (Varon et al., 2019; Lauvaux et al., 2022) and the

quantification of time-integrated totalemissions from gas well blowouts (Cusworth et al., 2021a; Maasakkersetal., 2022a).

Observing point sources from space hasunique requirements. Plumes are typically less than 1 km in size (Frankenberget al.,
2016; Fig. 3), thus requiring satellite pixels finer than 60 m (Ayasse et al., 2019). It is desirable to quantify emissions from
single overpasses, though temporalaveragingof plumes to improve SNR is possible with wind rotation if the precise location
of the source is known [Varon et al., 2020]. The emissions are temporally variable, motivating frequent revisit times thatcan
be achieved by a constellation of instruments. On the other hand, precision requirements are less stringent than for

regional/global observationsbecause of the larger magnitude of the concentration enhancements.

The potential for space-based land imaging spectrometers to detect methane point sources was first demonstrated with the
hyperspectral Hyperion instrument for the Aliso Canyon blowout (Thompson et al., 2016). Hyperspectral sensors such as
PRISMA and others of similar design have since proven capable of quantifyingpoint sources of ~500 kg h-! (Cusworth et al.,
2021a; Guanteret al., 2021; Irakulis-Loitxate et al., 2021; Nesme et al., 2021). The first satellite instrument dedicated to
quantifying methane point sources was the GHGSat-D demonstration instrument launched in 2016 with 50x50 m?2 effective
pixel resolution and a precision of 12-25% depending on surface type (Jervis etal., 2021). Varon et al. (2019) demonstrated
the capability of that instrument for discovering and quantifying persistent point sources in the range 4000-40000 kg h-1in an
oil/gas field in Turkmenistan. Five follow-up GHGSat instruments with precisions of 1-2% were subsequently launched in

2020-2022, building up to a constellation with frequent return times.

Multispectral instruments such as Sentinel-2, Landsat, and WorldView-3 are also capable of detecting and quantifying very
large point sources (Varon etal., 2021; Ehretetal., 2022; Sanchez-Garcia etal.,2022; Irakulis-Loitxate et al., 2022a). Sentinel-
2 and Landsat provide global and freely accessible data that could form the foundation of a global detection system for super-
emitters (Ehret etal., 2022). A large-scale survey of point emissions across the west coast of Turkmenistan wasachieved with
the combination of Sentinel-2 and Landsat (Irakulis-Loitxate etal., 2022a).

Detection of methane plumesfrom space has mainly been over bright land surfaces. Observation of offshore plumes such as
from oil/gas extraction platforms is more difficult because of the low reflectance of water in the SWIR. The signal can be
enhanced by observing in the sunglint mode, in which the sensor capturesthe solar radiation specularly reflected by the water.
The sunglint observation configuration can be achieved by agile platformsable to point in the Sun-surface forward scattering
direction (PRISMA, Worldview-3, GHGSat, Carbon Mapper), or by instruments with a field-of-view sufficiently large that
part of the swath falls in the forward scattering area (TROPOMI, Sentinel-2, Landsat). Irakulis-Loitxate et al. (2022b)
demonstrated the ability of sunglint retrievals from World View-3 and Landsat-8 to detect large plumes from offshore platforms
in the Gulf of Mexico.
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The capability to monitor methane point sources from space isexpected to expand rapidly in comingyearsthrough the GHGSat
and Carbon Mapper constellations as well as new hyperspectral missions (Cusworth et al., 2019). Expanding constellations
observing with frequent return times and at different times of day will enable better understanding of the intermittency of
methane emissions. In an aircraft survey of the Permian Basin, Cusworth et al. (2021b) found that individual point sources
produced detectable emissions only 26% of the time on average. Similar intermittency was observed for oil/gas facilities in
California (Duren et al.,, 2019). Allen et al. (2017) and Vaughn et al. (2018) point out that some emissions from the oil/gas
infrastructure are highly intermittent by design (liquids unloading, blowdowns and startups)and may have predictable diurnal
variations. Emissions due to equipment failure may be persistent (leaks, unlit flares), sporadic (responding to gas pressure), or
single events (accidents). An increased frequency of observation can identify persistence of emissions to enable corrective
action, and better understanding of point sources that are intermittent by design can lead to better quantification of time -
averaged emissions. Beyond this short-term intermittency, there is also long-term variability related to operating practicesand
facility life cycle (Cardoso-Saldafia and Allen, 2020; Johnson and Heltzel, 2021; Varon et al, 2021; Allen et al., 2022; Ehret

etal.,, 2022), stressing the importance of sustained long-term monitoring.

4 Inferring methane emissions from satellite observations

Inferring methane emissions from satellite observations of methane columnsinvolvesdifferent methodsforarea flux mappers
and point source imagers. Area flux mappersare typically used to optimize 2-D distributions of emissions on regional or global
scales by inverse methods. Point source imagers are used to infer individual point source rates by some form of massbalance

analysis.

4.1 Global and regional inversions with area flux mappers

Area flux mappers produce 2-D fields of methane observations from which to optimize 2-D fields of gridded emission fluxes.
The optimization involvesan atmospheric transport model (forward model) to relate emissions to the ob served concentrations.
The optimal emissions are generally obtained by Bayesian inference, fitting the observations to the forward model and
including prior estimates of emissions to regularize the solution where the observations provide insufficient information
(Brasseur and Jacob,2017). Optimizing temporaltrends of emissions can be done aspart of the solution or sequentially using
a Kalman filter [Feng etal., 2017].

The basic procedure is as follows. Given an ensemble of observationsover a domain of interest assembled in an observation
vectory, the task isto optimize the distribution of emission fluxes assembled in a state vector x of dimension n. The relationship
between x andy can be assumed linear for methane, despite the sensitivity of OH concentrationsto methane concentrations.

This is because the inversion does not significantly change the global methane concentration, which is set by observation;
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furthermore, forregional inversions, the time scale for ventilation of the regional domain is much shorterthan that forchemical
loss. Global inversions often optimize OH concentrationsas part of the state vectorand that relationship canalso be assumed
linear. Further assuming Gaussian error probability density functions (pdfs) for x andy, the optimal (posterior) estimate of x

is obtained by minimizing a Bayesian cost function J(x) of the form (Brasseur and Jacob,2017):

J(X) = (X-X,)" S, (- X,) +7(y - Kx)" S5y - KX) o)

Here x4 is the prior estimate of emissions, Sa is the corresponding prior error covariance matrix, K = oy / ox is the Jacobian

matrix describing the sensitivity of observations to emissions as given by the atmospheric transport model, So is the
observational error covariance matrix including contributions from instrument and transport model errors, and y is a
regularization parameterthat may be needed to correct overfit caused by imperfect definition of So (Lu etal., 2021). Since the
relationship between x andy is linear, K fully defines the atmospheric transport model for the inversion. Jacob et al. (2016)
describe alternative formulations for the cost function such as in geostatistical inverse modeling where prior information is

provided asthe relative spatialdistribution of emissions ratherthan emission magnitudes (Miller et al., 2020).

Specification of the error covariance matrices Sa and So strongly affects the solution. Construction of Sa can be done by
intercomparing bottom-up inventories (Maasakkers et al., 2016; Bloom et al., 2017) or by using error estimates generated by
the bottom-up inventories (Scarpelli et al., 2020). Construction of So can be done by the residual error method in which the
observations are compared to simulated concentrations from the atmospheric transport model with prior emission estimates,
and the residual difference afterremoving the mean bias is taken to be the observationalerror (Heald et al., 2004; Wechtet al.,
2014). The observationalerror for satellites is generally found to be dominated by the instrument retrieval error ratherthan by

the transport modelerror, whereas for in situ observationsit is dominated by the transport modelerror (Lu et al., 2021).

Minimization of the cost function J(x) in Eqg. (2) to obtain the posterior solution % andits error covariance matrix S canbe
done either numerically or analytically (Brasseur and Jacob, 2017). S and the related averaging kernel matrix

A=0oxlox=1 -éS}i (Rodgers, 2000) determine the information content from the observations and the ability of the

inversion to improve on the prior estimate. The diagonal terms of A ranging from 0 to 1 are called the averaging kernel
sensitivities and measure the ability of the observationsto constrain the solution for that state vectorelement independently of
the prior estimate (1 = fully, 0 = not atall). The traceof A is called the degrees of freedom for signal (DOFS) and represents
the totalnumber of pieces of information that can be fully constrained from the observations. An inherent assumption is that

the observations, the transport model, and the prior information are unbiased. Although the prior estimate is in principle
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unbiased since it represents our best estimate before the observationsare taken, under-accounting of Sa together with incorrect

spatialdistribution of prior emissions can drive bias in inversion results (Yu et al., 2022).

Numerical solution for min(J(x)) using the adjoint of the atmospheric transport modelor other variational methods optimizes

a state vector of any dimension by avoidingexplicit construction of the full Jacobian matrix K,and may use various procedures

to estimate S (Bousserez et al., 2015; Cho et al., 2022). Analytical solution provides a closed-form expression for S but
requires the computationally expensive construction of K column-by-column with n perturbation runs of the atmospheric
transport model. This limits the dimension and hence the resolution of the state vector that can be optimized. However, once
K has been constructed, inversion ensembles can be conducted at no significant added computational cost to explore
uncertainties in inversion parameters, orto examine the complementarity and consistency of different observation subsets such
as from different satellite instruments or from ground-based sites (Lu et al., 2021, 2022). This includes optimization of the

regularization parametery so that the sum of prior terms in the posterior cost function matches the expected value from the
chi-square distribution, J,(X)=(X-X,)"Sx(X-X,)~n (Lu et al., 2021). Increasing access to large computational clusters

hasfacilitated the construction of K as anembarrassingly parallel problem, enabling analyticalsolution for state vectors with
n > 1000 (Maasakkersetal., 2019). Nesser et al. (2021) show thateven larger dimensions can be accessed by approximating

the Jacobian alongleading patterns of information content.

Figure 5illustrates the inversion of TROPOMI observations with a 1-month example forthe Permian Basin using an analytical
solution with 0.259x0.3125° (=25x25 km?) resolution. This calculation was done on the Amazon Web Services (AWS) cloud
with the Integrated Methane Inversion (IMI1) open-access facility for analytical inversions of TROPOMI data, enabling users
to directly access the TROPOMI data archived on AWS and infer emissions for their selected domain and time window of

interest with pre-compiled inversion code (Varon et al., 2022).
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Figure 5: Integrated Methane Inversion (IMI) on the Amazon Web Services (AWS) cloud (Varon et al., 2022). The IMI accesses the
TROPOMI operational data posted on the cloud and carries out analytical inversions for user-selected domains and time periods.
Before conducting the inversion, users can run an IMI preview to visualize the observations, the default prior emission estimates (to
which they can substitute their own), the expected information content of the inversion (degrees of freedom for signal or DOFS),
and the SWIR albedos for indication of data artifacts. If the preview is satisfactory, they can then run the inversion to generate
posterior emission estimates with averaging kernel sensitivities indicating where the observations can successfully constrain
emissions. Shown here is an example given by Varon et al. (2022) for a 1-month (May 2018) inversion over the Permian Basin, using
the prior emission estimate from the EDF inventory (Zhanget al., 2020). The IMI is accessible at https://imi.seas.harvard.edu.

The assumption of Gaussian error pdfs for prior emission estimates in Eq. (2) may not always be appropriate. A log-normal
distribution is often more correct (Yuan et al., 2015) and can be accommodated in analytical inversions (Maasakkers et al.,
2019; Z. Chen etal.,, 2022).Brandtet al. (2016) show that the log-normal distribution still underestimatesthe heavy tailof the
frequency distribution of point sources (the super-emitters). Application of inverse methodsto detectand quantify individual
super-emitters within a source region (such asan oil/gas field) may require a bimodal pdf for prior estimates,and an L-1 norm
cost function may be bettersuited than the standard L-2 norm of equation (2) (Cusworth etal., 2018). A Markov Chain Monte
Carlo (MCMC) method for the inversion as used by Western et al. [2021] enables the specification of any prior and
observationalerror pdfs, and returns the full posterior error pdf on emissions, butit is computationally expensive and its cost

increases rapidly as n increases.

The inversion typically optimizes a geographical 2-D array of emission fluxes, but quantifyingemissions by source sector is

often of ultimate interest. Sectoralinformation is generally contained in the prior inventory. The simplest approach isto assume
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that the posterior/prior correction factorto emissions for a given grid cell applies equally to all emissions in that grid cell

(Turner etal., 2015) or in a mannerweighted by the prior uncertainties of the different sectors (Shen etal., 2021). The posterior

error covariance matrix S and averaging kernel matrix A on the 2-D grid cansimilarly be mapped to specific sectors and/or

summed over a domain such as an individual country (Maasakkerset al., 2019). A more general approach for sectoral

attribution introduced by Cusworth et al. (2021c) mapsthe (X , é) solution onto any alternative state vector z (such as sector-

a

resolved emissions) with its own prior information (za, Za) to obtaina solution Z with posterior error covariance matrix Z .

This allows in particularto compare results from inversions using different prior information.

4.2 Quantification of point sources with point source imagers

Quantification of point sources from satellite observations of instantaneous plumes poses a different kind of inversion problem.
In this case a single quantity, the point source rate Q [kg s], is to be inferred from a single observation of the plume. Figure
3 showed examplesof plume observations. The morphology of the instantaneousplumeis determined by turbulent diffusion
superimposed on the mean wind, with a plume boundary (commonly called plume mask) defined by the detection limit of the
instrument. The observation is of the total methane columnandsois relatively insensitive to vertical boundary layer mixing,
which is a majorsource of error in interpreting plumes from in situ aircraft observations (Angevine et al, 2020). On the other
hand, unlike for in situ aircraft observations, there is no direct measurement of the wind speed U in the plume. Lack of precise
wind speed information is a majorsource of error for interpreting satellite observationsbecause concentrationsin the plume

vary asthe ratio Q/U, meaningthaterrors in U propagate proportionally to errors in Q.

Figure 6 summarizes different methods for inferring point source rates from satellite observations of instantaneous plumes.
Details on these methodsare given by Krings etal. (2011), Varon et al. (2018), and Jongaramrungruanget al. (2019, 2022).
The Gaussian plume is the classic model for turbulent diffusion from a point source but it is valid only for a plume sampling
a representative ensemble of turbulent eddies. Methane plumes are generally too small for this condition to be met
(Jongarangmrungruanget al., 2019), asillustrated in Fig. 3 where the plume shapesare not Gaussian. A simple mass balance
method applyingthe local wind speed to the methane enhancement observed in the plume is flawed forsub-km scales because

ventilation is determined by turbulent eddies more than by the mean wind (Varon et al., 2018).
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Figure 6: Seven different methods for inferring point source rates Q [kg s "] from satellite observations of instantaneous plumes of
methane column enhancements AQ [kg m-?] relative to background. The methods involve (1) fit to a Gaussian plume, (2) local mass
balance for near-source pixels, (3) Gauss theorem with integration of the outward flux along a closed contour s, (4) cross-sectional
flux (CSF) integral, (5) integrated mass enhancement (IME) with independent wind speed information, (6) IME with wind speed
inferred from the plume angular width 0, and (7) machine-learning applying a convolution neural network (CNN) to the plume
image. Methods (1), (2), (4), and (5) are described by Varon et al. (2018), method (3) by Krings et al. (2011), method (6) by
Jongaramrungruang et al. (2019), and method (7) by Jongaramrungruang et al. (2022). In the equations, x denotes the plume axis
for transport by the mean wind and y denotes the horizontal axis normal to the wind. The IME [kg] is the spatial integral of the
methane column enhancement AQ over the plume mask. The wind speed U is that relevant to transport of the plume, and in the
IME method (4) it is parameterized as an effective wind speed Uesf to include the effect of turbulent diffusion. The Gauss theorem
and CSF methods require wind direction information. The IME method (4) requires a characteristic plume size L thatcan be taken
as the square root of the plume area (Varon et al., 2018) or the radial plume length (Duren et al., 2019). The empirical dispersion
parameter oy [m] in the Gaussian plume method (1) characterizes the spread of the plume. fi in the Gauss theorem method is the
unit vector normal to the contour.

The Gauss theorem method, in which the source rate is calculated as the outward flux summed along a contour surrounding
the point source, is extensively used for in situ aircraft observations where concurrent measurements of wind vector and
methane concentration are available to calculate the local flux asthe aircraft circles around the source (Hainy et al., 2019). In

the absence of in situ wind data, one canapply a single estimate of the wind vector based on local station or assimilated data

23



585

590

595

600

605

610

615

(Krings et al., 2011). However, the calculation then doesnotaccount forthe contribution of turbulent diffusion to the outward

flux. In addition, any sources within the contourwill alias into the inferred point source rate.

Two successful methodsto derive point source rates from observations of instantaneous plumes have been the cross-sectional
flux (CSF) method (White, 1976; Krings et al., 2011), in which the source rate is inferred from the product of the methane
enhancement and the wind speed integrated across the plume width, and the integrated mass enhancement (IME) method
(Frankenberg et al., 2016; Varon et al., 2018), in which the totalmass enhancementin the plume is related to the magnitude
of emission with a parameterization dependenton wind speed. Both methodsare widely applied to the retrieval of point source
rates from satellite observations and they yield consistent results (Varon et al., 2019). The CSF method is more physically
based, and source rates can be derived from cross-sections at different distances downwind to reduce error (Fig. 6). The
contribution of turbulent diffusion to the flux can be neglected in the direction of the wind following the slender plume
approximation (Seinfeld and Pandis, 2016). However, the dependence on wind direction is an additionalsource of error relative

to the IME method.

Both the CSF and IME methodsrequire estimatesof wind speed relevantto plume transport. For the CSF method this is the
mean wind speed over the vertical depth of the plume, which canbe parameterized from the 10-m wind speed (Varon et al.,
2018)or interpolated from a database of wind speed vertical profiles (Krings et al., 2011). The effective wind speed Uest in the
IME method accounts forthe effect of turbulent diffusion in plume dissipation, and can be parameterized asa function of an
observable 10-m wind speed by using large-eddy simulations (LES) of synthetic plumes sampled with the instrument pixel
resolution, plume mask definition, and observing time of day (Varon et al., 2018). The need for independentinformation on
wind speed, either from measurementsat the point source location or from a meteorological database, can dominate the error
budget in inferring source rates from the CSF and IME methods, and typically limits the precision to 30% (Varon et al., 2018).
The error is larger forweak winds, which tendto be more variable, and smaller for strong steady winds. However, plumes are
less likely to be detectable in strong winds because of dilution. Weak winds are thus favorable for plume detection but can

induce large error in source quantification.

Jongaramrungruanget al. (2019) showed thatthe morphology of an observed plume containsinformation on wind speed, as
long slender plumesare associated with high wind speeds while short stubby plumes are associated with low wind speeds. By
using the plume angular width asa measure of wind speed, they were able to infer source rates without independent wind
information.Jongaramrungruangetal. (2022) developed that idea further with a convolutional neural network (CNN) approach
trained on LES plume images to learn the source rate from the 2-D plume structure. Application to synthetic plumes aswould
be sampled by the AVIRIS-NG aircraftinstrumentat1-5 m pixel resolution showed a mean precision of 17% and a detection
threshold of 50 kg h-1 over spectrally homogeneous surfaces. This method has not yet been applied to satellite observations

where coarser pixels would result in lower sensitivity and where retrievals are more subject to artifacts.
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5 Detection thresholds
5.1 Area sources

Here we examine the ability of area flux mappersto detect totalmethane emission fluxes from a target domain with a desired
spatial resolution. This can involve repeated observations of the domain over multiple passes to increase precision and
observation density, asillustrated in Fig. 3. The observation time required to detect a desired flux threshold at a desired spatial
resolution then depends on the instrument precision, the fraction of successful retrievals, the pixel size, the variability of

emissions, and the return time.

Following the conceptualmodelofJacobetal [2016], the methane column enhancement AX [ppb] resulting from a uniform

emission flux E [kg km-2h-1]Jover a square domain of dimension W [km] is given by
AX = oEW (3)

with a scaling coefficient o = (Ma/McH4)g/pUwhere Ma and Mch4 are the molecular weights of dry air and methane, g is the
acceleration of gravity, p is the surface pressure, and U is the wind speed for ventilation of the domain. With the units above
andassuming p = 1000 hPaand U = 5 km h"1,we havea=4.0x102 ppbkm h kg. An instrumentwith pixel-level precision
o1 [ppb] can detect this emission flux with a single measurement if AX >> o, but this is often not the case. Spatialand temporal
averaging of observations improves the effective precision, and this improvement goes as the square root of the number of
observations if the error is random, uncorrelated, and representatively sampled (IID conditions). The time required for

detecting the mean emission flux E over a domain of dimension W with a signal-to-noise ratio of 2 is then given by

_ 2 el 22
t =t, max |:1, = max(l,{AX } )} 3)

where tr is the return time of the instrument (time interval between successive passes), N is the number of observations within
the domain perindividual pass for instrument pixel sizes D smaller than W (for continuous mappingand square pixels we have
N = (W/D)?), F is the fraction of successful retrievals, and o [ppb] is the variability that results from both the instrument

precision and the spatial variability ox (D,W) of the enhancement AX sampled by the pixels within the domain:

o=./c? +o, (D,W)? 4)
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Equations (3)-(5) provide a simple conceptual framework for evaluating the ability of area flux mappers to detect regional
emissions of a certain magnitude and with a desired spatialresolution. For illustration purposes, consider an objective to detect
emissions at either 100-km or 10-km resolution. In the gridded version of the methane emission inventory from the US
Environmental Protection Agency [Maasakkers et al., 2016], 75% of total national anthropogenic emissions are contributed
by 0.1°x0.1° (=10x10 km?) grid cells with emission flux E > 0.5 kg km-2h-1, and 30% are contributed by grid cells with E > 5
kg km-2h-1 (Jacobet al., 2016). Shen et al. (2022) find a mean emission of 0.18 Tg a-* for 12 majoroil/gas production basins
in the US EPA inventory, which for a typical basin scale of 200x200 km? corresponds to a mean emission flux of 0.5 kg km?2
h-1. Taking E = 0.5 kg km-2h-1 as a desired flux detection threshold on a 100-km scale, or alternatively E =5 kg km-2h-1asa
desired flux detection threshold on a 10-km scale, we find from equation (3) a mean enhancement AX = 2.0 ppb. Instrument
precisions for the flux mappersin Table 1 arein therange 3-15 ppb and we assume that ox is small in comparison. We further
assume F = 0.24 for instruments operating at 1.65 pm by analogy with GOSAT using the CO2 proxy method (mainly limited
by cloud cover), and F=0.03 for instruments operating at 2.3 pum by analogy with TROPOMI (limited by both cloud cover

and spectrally inhomogeneoussurfaces). Other instrument properties are taken from Table 1.

Table 3: Averaging time requirements for regional source detection by area flux mappers?

Instrument Averaging time Averaging time
E=0.5kgkm-2h1,100x100km2 | E=5kgkm-2h-, 1010 km?

TROPOMI 28 days >1 year

GOSAT-GW 18 days (global), 3 days (target) 18 days (target)

MethaneSAT 3 days 5 days

Sentinel-5 5 days >1 year

GeoCarb 3 days 1 year

coz2m 5 days 120days

@ |llustrative calculation using the conceptual model of equations (3)-(5) applied to the detection of an emission flux averaging
0.5 kg km-2h-1 over a desired spatialresolution of 100 x 100 km?2, or5 kg km-2h-1over a desired spatialresolution of 10x10
km2, See text for details and Table 1 for the specifications of the different instruments. Results for GOSAT-GW are given for

both global and target viewing modes. Instruments not yet launched are in italics.

Table 3 shows the results of this illustrative calculation. In the 100-km resolution case we find that TROPOMI requires a 4-
week averaging period, limited by the small fraction of successful retrievals. GOSAT-GW requires 18 days in global viewing
mode, as the greater fraction of successful retrievals is offset by coarser pixels and 3-day return time, but only one pass in
target mode. MethaneSAT requires a single passand is limited by its 3-day return time. Sentinel-5 requires 5 days, much
shorter than TROPOM I despite coarser pixels, because it uses the 1.65 um band. GeoCarb requires only 3 daysbecause of its
twice-daily observations. CO2M requires only a single passand is limited by its 5-day return time. In the 10-km resolution
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case, we find that only MethaneSAT has an averaging time less than a week, with GOSAT-GW requiring 18 days in target
mode (limited by its lower instrument precision) and other instruments requiring several months or more. However, both
MethaneSAT and GOSAT-GW in target mode only cover limited domains (200x200 km? for MethaneSAT).

The above conceptualmodelis crude and overoptimistic, assumingideal reduction of errors and uncorrelated retrieval success
across instrument pixels, ignoring variable bias, and takinginstrument specificationsfrom Table 1 at face value, butitis useful
for intercomparing instruments and it highlights critical variables determining detection thresholds for different applicatio ns.
The advantage of the 1.65 um band is readily apparent because itachieves a much higher success rate through the CO2 proxy
retrieval. The MethaneSAT instrument with high precision and smallpixels is most useful forquantifying fluxesat high spatial

resolution. For coarser resolutions, return time and spatialcoverage can be more important considerations.

5.2 Point sources

In the case of point source imagers, the detection threshold applies to single-pass observations of the plumes. Table 4 lists
point source detection thresholds reported in the literature for different instruments. Detection thresholds are defined by the
ability to determine the plume mask against a noisy background and to retrieve the corresponding emissions. The detection
thresholds for a given instrument depend strongly on surface type and are lowest forbright, spectrally homogeneous surfaces.
They also depend on wind speed, which complicates the definition of detection threshold because weak winds facilitate
detection but cause large error in quantification (Varon et al., 2018). The best range of wind speeds to allow both detection
and quantification is 2-5 m s’ (Varon et al., 2018). Sherwin et al. (2022) conducted a series of controlled release experiments
underthose favorable surface and wind conditionsand confirmed the ability of GHGSat to quantify emissions down to 200 kg

h-1and Sentinel-2, Landsat-8, PRISMA, and WorldView-3 to quantify emissions down to the 1400-4000 kg h- range.

Table 4: Point source detection thresholds for different satellite instruments?

Instrument Detection threshold (kg h'1) Reference

TROPOMI 25000° Lauvauxetal. (2022)

Sentinel-2, Landsat-8/9 1800-25000¢ Varon et al. (2021); Ehret et al. (2022);
Irakulis-Loitxate et al. (2022a)

PRISMA 500-2000¢ Guanteret al. (2021)

MethaneSAT 750 footnote®

GHGSat-D 1000-3000 Jervis et al. (2021)

GHGSat-C1, C2 100-200f Gauthier (2021)

Carbon Mapper 50-2009 Duren et al. (2021)

WorldView-3 <100 Sanchez-Garcia et al. (2022)
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AVIRIS-NG (aircraft) 2-10 Duren et al. (2019)

2 The detection thresholds are as reported in the references and are generally for favorable winds (<5 m s-1) and favorable
surfaces (bright and spectrally homogeneous) unless otherwise indicated. As pointed out in the text, weak winds are favorable
for detection but not for quantification and this places some ambiguity in the definition of detection threshold. Specifications
foreach instrumentare in Table 1. Instrumentsnot yet launched are in italics.

b From an ensemble of 1800 observed detections for TROPOMI 5.5x7 km?2 pixels. The pixels may contain multiple point
sources.

¢ Observations over surfacesranging from bright and homogeneous (Sahara) to highly heterogeneous (farmland).

4 From LES synthetic plumes and observations over surfaces ranging from Sahara (bright homogeneous surfaces) to Shanxi
Province in China (darker more heterogeneous surfaces with significant terrain)

€ C. Chan Miller, Harvard University, personal communication.

fVerified by controlled releases (MacLeanetal., 2021; Sherwin et al., 2022).

950 kg h-1in target mode with pointing, 200 kg h-1in push-broom mode.

hAirborne imaging spectrometer with spectral resolution of 5 nm and pixel resolution of 1-8 m depending on aircraftaltitude
(Thorpe et al.,, 2017).

i.Observations in California with range determined by surface brightness.

For a given surfaceand wind speed, the main instrument predictors of point source detection threshold are spatial resolution,
spectral resolution, and precision. Finer spatial resolution decreases the dilution of the plume enhancements over the pixel
area, thus increasing the magnitude of the enhancementswithin plume pixels and facilitating detection. An airborne imaging
spectrometerobserving from low altitude such as AVIRIS-NG (with spatialresolution of 1-8 m dependingon aircraftaltitude)
is thus much more sensitive than satellite instruments with similar spectral resolution. Higher spectral resolution increases
precision and reduces the aliasing of surface spectral features into the methane retrieval (Cusworth et al., 2019;
Jongaramrungruangetal.,2021). For hyperspectraland multispectralinstruments, the spectral positioning of the bands relative
to the methane absorption lines is also important (Scaffuto et al., 2021; Sanchez-Garcia et al., 2022). Precision depends on
other instrument properties beyond spectral resolution and positioning, including the capability of pointing to specific targets
to increase the SNR through longer sample collection. Pointing is how GHGSat achieves a combination of high spatial and

spectral resolution.

The detection thresholds in Table 4 are not strictly comparable between instruments because they reflect different levels of
evidence. One may still usefully classify the instruments by order-of-magnitude thresholds of ~100 kg h-t, ~500 kg h, and
~1000-10000 kg h-! (Fig. 4). Instruments in the ~100 kg h-1class include GHGSat, WorldView-3, and Carbon Mapper. A

typical point source imager with spatial resolution ~30 m requires spectral resolution of 5 nm or better to fit into this class
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(Cusworth et al., 2019), though WorldView-3 can achieve this class for bright spectrally homogeneous surfaces through its

combination of very high spatialresolution (3.7x3.7 m2) and favorable spectralpositioning (Sanchez-Garcia et al., 2022).

Instrumentsin the ~500 kg h-! class include the land hyperspectralsensors (PRISMA, EnMAP, EMIT) and MethaneSAT. The
land hyperspectralsensors have ~30 m spatial resolution and achievethis class with 10 nm spectral resolution in the 2.3 pm
band, enabling either a full-physics or matched filter retrieval. MethaneSAT will have coarser 130x400 m?2 spatialresolution
but higher precision enabled by 0.3 nm spectralresolution in the 1.65 um band, with the added benefit of allowing a CO2 proxy

retrieval to minimize artifacts.

Instrumentsin the 1000-10000 kgh-! classinclude the multispectralland sensors Sentinel-2 and Landsat with 20-30 nm spatial
resolution and a single measurement in the 2.3 um band to allowa simple Beer’s law retrieval. TROPOMI can detect extremely
large point sources or clusters of sources (>25,000 kg h-1) over its 5.5x7 km? pixels (Lauvaux et al., 2022), though coarse

spatialresolution hinders source identification.

The relevance of measuring individual point sources at these different thresholds can be assessed by considering their
contributionsto totalemissions. Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields originate
from point sources > 10 kg h-1 detectable by AVIRIS-NG. Fig. 7 shows the cumulative frequency distributions (CFDs) by
numberand totalemission of point sources larger than 10 kg h-sampled by airborne remote sensing over California and over
US oil/gas fields (Duren et al., 2019; Cusworth et al., 2022). Results are shown forindividual campaigns and forthe combined
CFD with equalweighting between campaigns. A satellite instrument with detection threshold of 100 kg h-! could detect 50-
95% of point sources depending on the region (80% in the combined data set),, contributing 75-99% of point source emissions
(95% for the combined data set). An instrument with detection threshold of 1000 kg h-! could detect 0-15% of point sources
(5% for the combined data set), contributing 0-55% of point source emissions (30% in the combined data set). Brandt et al.
(2016) find that sourcesin the 10-100 kg h-1 range contribute 20% of emissions from point sources > 10 kg h-1 in their survey
of emissions from US oil/gas fields. The dataset of Fig. 7 includes only a few emitters in the ~10,000 kg h-! range. Global
statistics of aircraftand satellite data suggest a power law frequency distribution of point source emissions with ~100x fewer
sources at 10000 kg h-1thanat 1000 kg h-t (Ehret et al., 2022; Lauvaux et al., 2022). These so-called ultra-emitters could still

contribute significantly to totalemissions in some regions.
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Figure 7: Cumulative frequency distributions (CFDs) of point source rates above 10 kg h-! for 3879 point sources detected by
airborne remote sensing in California and in US oil/gas basins by Duren et al. (2019) and Cusworth et al. (2022). Many of the
individual point sources were detected multiple times, and the values entered in the frequency distributions are the averages of these
detections not including non-detection events; they thus represent the average emission from the source when on, as is relevant to
the definition of the instrument detection threshold Co in equation (8). The colored curves are for individual campaigns and the
black curve is the combined CFD for all regions with equal weighting per campaign. The top panel gives the cumulative fraction of
emissions contributed by detected pointsources above a given rate, and the bottom panel gives the cumulative fraction of the number
of point sources. For example, a satellite instrumentwith detection threshold of 100 kg h-* could detect 80% of the point sources in
the combined CFD, contributing 95% of total point source emissions. An instrument with detection threshold of 1000 kg h-! could
detect 5% of the pointsources in the combined CFD, contributing 30% of total pointsource emissions.

6 Observing system completeness

Here we introduce the concept of observing system completeness as the capability of an instrument (or ensemble of

instruments) to fully quantify their target emissions within a selected domain and time window. For area flux mappers the
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target would be the total methane emissions within the domainata desired spatial resolution, while for point source imagers

the target would be the totalemissions within the domain contributed by point sources larger than 10 kg h-1.

6.1 Observing system completeness for area flux mappers

Observations from area flux mappersare generally used to infer 2-D distributions of totalemissions over a regional domain of
interest by Bayesian inference. The observing system completenessis then defined by the DOFS (Sect. 4.1 and Fig. 5). Given
n state vector elements of emissions on the 2-D grid, the DOFS tell us how many of those elements are quantified by the
observations, and the averaging kernel sensitivities (diagonal terms of the averaging kernel matrix, adding up to the DOFS)

give thatinformation for the individual state vectorelements.

As pointed out by Nesser etal. (2021) and Varon et al. (2022), it is possible to roughly estimate the DOFS of an observing
system fora selected domain and time period without doing any actualforward model calculations. Considera domain divided
into n emission state vector elements of individual dimension W [km], sampled with an instrument providing m successful
observationsover the domain in the selected time period. Let oa be the mean prior error standard deviation forthe individual
state vectorelements, and oo the mean observational error standard deviation. The DOFS can then be estimated as
n o4
o2+ O K
m

DOFS = )

where k = AX/E [ppb km?2h kg1] is the Jacobian matrix element thatrelates the column mixing ratio enhancement AX [ppb]
over a state vector element to the emission flux E [kg km-2 h-1] for that element. Following Nesser et al. (2021), we can
approximate k with a simple massbalance modelas

M, Wg

k=n
MCH4 Up

(6)

where 1 is a coefficient to account forturbulent diffusion. Nesser et al. (2021) and Varon et al. (2022a) find thatn=0.4 is a
suitable value for W in the range 25-100 km. Further assuming U = 5km h-tand p= 1000 hPa we obtain k = 1.4x1010W [ppb
km2h kg']. The mean prior error standard deviation can be estimatedas oa = fQa/(NW?) where Qa is the totalprior estimate of
emission in thedomain [kg h-1]and fis the fractionalerror (such as50%). For the example of Fig. 5 with a 1-month inversion
of TROPOMI observations over the Permian Basin, Varon et al. (2022) find that this rough estimate prior to doing the

inversions yields a DOFS of 11.7, close to the value of 10.8 found in the actualinversion.

The simple estimate of DOFS in equation (6) yields basic insights into the factors affecting observing system completeness

foranarea flux mapper. Instrumentprecision and number of observations (or observation density fora given area)are critical.
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The bar for the observations to improve on the prior estimate depends on the estimated error for that prior estimate (smaller
prior error meansa higher bar for the observations). Increasing the requirement on spatialresolution (large n, small W) leads
to smaller absolute prior errors for individual state vector elements and raises in turn the requirement on the precision and

number of observations.

6.2 Observing system completeness for point source imagers

Observing system completeness fora point source imager (or a constellation) can be defined as its ability to quantify total
emissions from point sources larger than 10 kgh-1 over a selected domain and time window. Such completeness in observation
of point sources is important not only for complementingthe information from area flux mappershbut also for leak detection
and repair (LDAR) programswhere regular survey of point sources in a region can enable promptaction to fix malfunctioning
equipment (Kemp et al., 2016; Fox et al., 2021). Current LDAR programs rely on a combination of ground surveys, drones,

andaircraft, butwe will see thatsatellites havean importantrole toplay.

Let C e [0,1] denote the observing system completeness for point sources asthe fraction of total point source emissions larger
than 10 kg h-! within a domain and time window that can be detected by a given instrument (or constellation of instruments).

Cis limited by a combination of the instrument detection threshold (Cp), spatial coverage (Cs), and temporalsampling (Cr):

C=C,xCyxC, )

Here Cpis the fraction of point source emissions thatcan be detected on the basis of the instrument’s detection threshold, as
inferred for example from Fig. 7. Cs is the fraction of the domain that the instrument observes at least once within the time
window. If there is full spatial coverage within the time window then Cs= 1. Ct = 1- (1-Fp)V is the probability for an observed
source to be actually detected within the time window given the number N > 1 of observations in the window, the source
persistence p (fraction of time that the source is emitting above the detection threshold), and the fraction F of successful
retrievals, taken here asthe fraction of clear-sky observations. Forexample, an intermittent source with p = 0.2 thatisobserved
with a 1-week return time and 30% clear skies would have Cr = 0.96 for 1 yearof observationsbut Cr = 0.23 for 1 month. If
spatialcoverage and observing frequency are sufficient, then C is limited by the instrument’s detection threshold (Cp). If they
are not, and depending on source persistence and cloud cover, then Csand Ct may limit observation system completeness

ratherthan Cp.
Figure 8 shows the frequency distribution of persistence (p) for 2500 oil and gas point sources detected and quantified by the
airborne AVIRIS-NG and Global Airborne Observatory instruments in US field campaigns (Cusworth et al., 2022). The left

panelshows the frequency distribution of mean emissions from individual point sources for each persistence bin. From there
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we can estimate the observing system completeness forany instrument on the basis of its detection threshold, spatial coverage,
andreturntime. Theright panelplots the resulting cumulative observing system completeness for the ensemble of 2500 point
sources as achieved by either (1) anairborne instrumentwith 10 kg h-1 detection threshold and bi-monthly (60-day)sampling
interval, or (2) a satellite instrument with 100 kg h-1 detection threshold and bi-weekly (14-day) sampling interval. The
calculation is done for a 1-year time window with 30% clear skies, assuming Cs = 0.95 in both cases, and the cumulative
results are shown acrossthe range of persistence bins. We see in this example that the two observing systems have comparable
success for persistent sources (p > 0.5) by trading Cp for Cr, but the satellite system is better for intermittent sources (p < 0.5),

despite its higher detection threshold, because of the greater benefit from frequent observations.
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Figure 8: Point source rates, persistence, and observing system completeness for an ensemble of 2500 oil/gas point sources sampled
by aircraft remote sensing in five US oil/gas basins (Cusworth et al., 2022). The left panel shows the frequency distribution of mean
point sources rates for different persistence bins (p, fraction of the time that the source is detected), where the mean is computed by
assuming zero emission when no plumeis detected. Boxes and whiskers indicate 10t™, 25t 50t 75t and 90t percentiles. The right
panel shows the percentage of total point source emissions contributed by different persistence bins. Also shown in that panel is the
cumulative observing system completeness C = Co xCs xCt (equation (8)) for 1 year of observations under 30% clear-sky conditions
and two observing systems, one with 100 kg h-! detection threshold and bi-weekly sampling (green line) and one with 10 kg h* and
bi-monthly sampling (red line). We assume spatial coverage Cs = 0.95 for both. The observing system completeness is computed
individually for each basin and then averaged. Both observing systems have comparable performance for sources with high
persistence (p >0.5) but the biweekly observing system performs better for sources with low persistence despite its higher detection
threshold.

Figure 9 further illustrates the trade space between detection threshold and return time for determining observing system
completeness. Results are for the ensemble of 2500 point sources with statistics given in Fig. 8. We see from Fig. 9 that an
observing system completeness of 0.6 can be achieved by an instrument with a detection threshold of 300 kg h-! sampling
weekly. Such an instrument performsaswell as one with low detection threshold but samplingonly every 2 months. Achieving
an observing system completeness higher than 0.8 requires an instrument with detection threshold better than 150 kg h-1

sampling at least biweekly.
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Our calculation of Craspresented above assumesthat a point source follows a binary emission frequency distribution (on/off)
with constant emissions when on. Actual sources have more complex variability (Allen et al.,, 2022; Zimmerle et al., 2022).
Similarly to the analysis of Section 5.1, a simple analysis can be done by assuming Gaussian statistics following Hill and
Nassar (2019) to estimate the number N of observations needed to quantify a mean point source emission rate (1+5)Q with

relative precision of & defined by the 95% relative confidence interval:

1 o,
N = 0962) @®)
o= \/cslz +05 9)

Here o is the standard deviation of individual measurements determined by instrument precision (c1) and variability in the
source (os). Using statistics from airborne surveys in the Permian Basin, we find that 71 observations per year (roughly 5-day
return time, assuming 30% clear skies) would be required to estimate annual point source emissions from that highly
intermittent population within 50% (p = 0.24, o1 = 36%, os = 45%; Cusworth et al. (2021b)). Increasing the required annual
emission precision to 35% would require 145 observations per year (2-day return time). For a less intermittent population (p
= 0.5), we find N =43 (8-day return time) to achieve 50% precision and N = 87 (4-day return time) to achieve 35% precision.

These observing frequencies can be achieved with a satellite constellation but would be challenging for anairborne program.
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Figure 9: Observing system completeness of a point source imager as a function of detection threshold and return time. The
calculation is for the ensemble of point sources in Fig. 8. Observing system completeness for a point source imager is defined here
as the ability to quantify emissions from all point sources larger than 10 kg h-*.
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The tails of the pdfs for point source emissions are a particular challenge to sample representatively. The pdfs are generally
heavy-tailed, resulting in low estimate of mean emissions (Zimmerle et al., 2022), which may be addressed with very dense
sampling (Y. Chen et al., 2022) or with supporting observations from area flux mappers. Persistence is defined in the
observations by the frequency of occurrence of emissions above the detection threshold, but non -detection could represent the
low tail of the pdf rather than an on/off switch. The definition of persistence may thus depend on the detection threshold,
increasing the importance of that threshold as a measure of observing system completeness. Further complicating matters is
thatthe instrument detection threshold is variable, depending notably on the wind speed at the time of observation. This calls
for better characterization of the full pdf of emissions from point sources as a meansto extrapolate the observations (Allen et
al,, 2022).

7 Concluding remarks

Satellite observations of atmospheric methane in the shortwave infrared (SWIR) provide an increasingly powerful system for
continuous monitoring of emissions from the global scale down to point sources. We reviewed the current and scheduled fleet
of instruments including area flux mappersto quantify totalemissions on regional scales and point source imagers to quantify
individual source rates. We discussed retrieval methods to infer concentrations from measured radiances, precision and
accuracy requirements, inverse methodsto infer emissions from observed concentrations, emission detection thresholds, and

observing system completeness.

Synergy between different satellite instrumentsis importantto exploit. Area flux mapperscan constrain total emissions while
point source imagers provide specific facility-level attribution. Detection of coarse-resolution hotspots by area flux mappers
can direct targeted observation by point source imagers to identify the causes (Maasakkers et al., 2022b). Point source
observations with adequate completeness can improve the bottom -up estimates used as prior information in inversions of area
flux mapperdata. Constellations of point source imagers can achieve high observing system completenessin support of point

source mappingas well asleak detection and repair (LDAR) programs.

Synergy with suborbital (ground-based and airborne) platformsis essential for a multi-tiered observing strategy (Cusworth et
al., 2020). Suborbital observations have a unigue role to complement the intrinsic limitations of satellites in terms of spatial
resolution, return time, cloud cover, dark surfaces,and nighttime. Surface measurementsare typically ten timesmore sensitive
to local emissions than satellite observations (Cusworth et al., 2018). They canalso include correlative chemicalinformation
such as isotopes, ethane,and ammonia concentrations (Yuan et al., 2015; Ganesanetal., 2019; Graven et al., 2019; Pétron et
al., 2020; Yangetal., 2020).
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Correlative chemical information available from satellites needs to be better exploited. Concurrent satellite observations of
CO and methane have been used to quantify methane emissions from open fires (Worden et al., 2013) and from cities (Plant
et al., 2022) by reference to CO emissions, although this is contingent on an accurate CO emission inventory and errors in
these inventories are often large. GeoCarb will measure methane, CO2, and CO, offering further application of this method
including the use of methane/CO2 enhancementratios. Concurrent enhancements of COz and methane in oil/gas fields observed
by the PRISMA instrument, together with nighttime flare data from the VIIRS instrument, have been used to identify flaring
point sources and quantify flaringefficiency (Cusworth etal., 2021a). Measurements of ammonia from space (Van Damme et

al., 2018) have the potentialto identify livestock sources but have notyet been used in combination with methane.

Some methane sources are intrinsically difficult to observe from space including over water, the wet tropics, and the Arctic.
Potentially large methane sources over water include offshore oil/gas facilities, wastewater facilities, hydroelectric and
agricultural reservoirs, and estuaries. They can be observed in the sunglint mode or by lidar (Kiemle et al., 2017; Ayasseet al.,
2022; Irakulis-Loitxate et al., 2022b). The wet tropics and the Arctic are a challenge because of persistent cloudiness,
compounded in the Arctic by high solar zenith angles and polar darkness, and by the collocation of oil/gas and wetland
emissions. The MERLIN lidar instrumentwill provide unigue observation capability forthe Arctic. The GeoC arb geostationary
instrument will increase data density over tropical South America. The tropics are thought to be the principal driver for the
recent methane increase (Chandra etal., 2021; Yin et al., 2021; Zhanget al., 2021), and there would be considerable value in

dedicated geostationary orinclined-orbit satellite observations of the tropics with high pixel resolution.

The ultimate goal of top-down methane emission estimates is to improve bottom-up estimates, as the latter provide the
information needed for climate action by relating emissions to processes. This calls for partnerships where discrepancies
identified by satellite for a particular sector motivate work to improve bottom-up estimatesfor that sector. The International
Methane Emissions Observatory (IMEO) (United Nations Environmental Program, 2021) aims to facilitate this infusion of
top-down information into the improvement of bottom-up inventories on a global scale in support of the Paris agreement, and
collaborativesin the oil/gas industry aim to achieve the sameatthe level of oil/gas production fields and individual facil ities
(Cooperetal., 2022).

The capability is thus emerging for satellite observations to anchor a global methane monitoring system delivering global
information on emissions in nearreal time, from the global scale down to point sources, to support climate policy and to guide
corrective action. The basic framework for building such a facility is already here and will be rapidly augmented in coming

yearswith the launch of new instruments.
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Abstract. We review the capability of current and scheduled satellite observationsof atmospheric methane in the shortwave
infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods,
precision and accuracy requirements, inverse and mass balance methods to infer emissions, source detection thresholds, and
observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with
complementary attributes. Area flux mappers are high-precision (<1%) instruments with 0.1-10 km pixel size designed to
quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (<60 m) instruments designed
to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009 -present),
which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018-present) which
provides global continuous daily mappingto quantify emissions on regional scales. Current point source imagers include the
GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, Landsat-8/9,
WorldView-3), with detection thresholds in the 100-10000 kg h- range. Future area flux mappers including MethaneSAT,
GOSAT-GW, Sentinel-5, MicreCarb-GeoCarb, and CO2M will increase the capability to quantify emissions from source
regions, and the MERLIN lidar will improve observation of the Arctic. The future constellation of Carbon Mapper point source

imagers will achieve high observing system completeness for point sources through high spatial coverage and frequent return

times.
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1 Introduction

Methane is a powerful greenhouse gas that has contributed 0.6°C of global warming since pre-industrial time, ascompared to
1.0°C for CO2 (Naik etal., 2021). Itis emitted by a numberof anthropogenic sectors including livestock, oil/gas systems, coal
mining, landfills, wastewatertreatment,and rice cultivation. Wetlandsare the main naturalsource. The main sink is oxidation
by the hydroxylradical (OH), resulting in anatmospheric lifetime of about 9 years (Prather et al., 2012). Because of this short
lifetime, decreasing methane emissions is a powerful lever to slow down near-term greenhouse warming (Nisbet et al., 2020).
However, methane emission estimates and contributions from different sectors are highly uncertain (Saunois et al., 2020),
hindering the design of control strategies. Here we review the capability of satellite observations of atmospheric methane to

quantify emissions from the global scale down to point sources.

Methane emission inventories are typically constructed using bottom-up methodsin which activity levels (such as numberof
cows) are multiplied by emission factors (methane emitted percow) (IPCC, 2019). Bottom-up methods relate emissions to the
underlying processes, thus providing a basis foremission control strategies. Observations of atmospheric methane provide top-
down information to improve emission estimates by using inverse methods to relate observed concentrations to emissions
(Miller and Michalak, 2017). Satellite observations are of particular interest because of their high observation density and

global coverage (Palmer et al., 2021).

Satellites retrieve atmospheric methane column concentrations with near-unit sensitivity down to the surface by measuring
spectrally resolved backscattered solarradiation in the shortwave infrared (SWIR) (Jacobet al., 2016). Global observation of
methane from space began with the SCIAMACHY instrument (2003-2014, 30x60 km? pixels) (Frankenberg et al., 2005), and
continued with the TANSO-FTS instrumentaboard GOSAT (2009-present, 10-km circular pixels separated by about 270 km)
(Parker et al., 2020) and the TROPOMI instrument (2018-present, 5.5x7 km? pixels) (Lorente et al., 2021). Many studies have
used these satellite observationsto quantify methane emissionsglobally (Bergamaschietal., 2013; Alexe et al., 2015; Wang
et al, 2019; Qu et al., 2021), on continental scales (Wecht et al., 2014; Maasakkers et al., 2021; Lu et al.,, 2022), on finer
regional scales (Miller et al., 2019; Zhang et al., 2020; Shen et al., 2021), and for large point sources (Pandey et al.,2019;

Lauvauxetal.,2022; Maasakkersetal., 2022a). Targeted observation of methane point sources from space began with the -the

2015 Aliso Canyon blowout using the Hyperion hyperspectral sensor (Thompson et al., 2016) and has since continued with
the GHGSat instruments (2016-present, 25x25 m2 pixels) (Jervis et al., 2021). Hyperspectral_land-imaging spectrometers
(measuring continuous spectra with ~10 nm resolution in selected wavelength channels) and multispectral_land-imaging

;magmg—spectrometers(measurlnq radiances in discrete ~100 nm channels)designed-to-abserve-land-surfaces-at-high-spatial

have also shown capability to detect large methane
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pointsources in their SWIR bands (Cusworth et al., 2019; Guanteretal., 2021; Varonetal.,, 2021; Ehretet al., 2022; Sanchez-
Garcia et al., 2022).

Better quantification of methane emissions worldwide is urgently needed to meet the demands of climate policy. Individual
countries must report their emissions by sector to the United Nations Framework Convention on Climate Change (UNFCCC),
on a yearly basis for Annex | (developed) countries. The enhanced transparency framework of the Paris Agreement requires
all countries to submit national sector-resolved emissions for expert review by November 2024 as basis for setting their
Nationally Determined Contributions to meet climate goals. Independently of the Paris Agreement, over 110 countries have
now signed the Global Methane Pledge of 2021 committing them to reduce their collective 2030 methane emissions by 30%
relative to 2020 levels. Satellites can help to quantify national emissions by sector as baseline for setting methane reduction
goals, and can then monitor emissions over time to evaluate success in achieving those goals. They provide near real-time
information on emissions whereas bottom-up inventories typically have latencies of a fewyears,and are thusa unique resource

to documentrapid changesin emissions (Barré et al., 2021).

Jacobetal. (2016) previously reviewed the state of the science for quantifyingmethane emissions from space. They presented
observing capabilities atthe time, discussed the inverse methods for inferring methane emissions from satellite observations,
and laid out observing requirements for future satellite missions. Since then, new satellite instruments for measuring
atmospheric methane have been launched and new capabilities for detecting methane point sources from space have emerged.
New analyticaltools have been developed to inferemissions from satellite observations, including for point sources. Additional
satellite instruments are scheduled to be launched over the next few years that will augment current capabilities. These new

developments motivate ourupdated review.

2 Observing atmospheric methane from space
2.1 Current and planned instruments

Table 1 lists current and scheduled satellite instruments with documented or expected capability for quantifying methane
emissions, and Table 2 gives specific attributes for each. We classify the instruments as area flux mappers or point source
imagers, and Fig. 1 illustrates these two fleets. Area flux mappersare designed to observe totalemissions on global or regional
scales with 0.1-10 km pixel size. Point source imagers are fine-pixel (<60 m) instruments designed to quantify individualpoint
sources by imaging the plumes. Point source imagers have much finer spatial resolution than area flux mappers but lower

precision.
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Table 1: Current and planned SWIR satellite instruments for observing atmospheric methane?

Instrument Agency  or|Launch [Nadir Coverage |Return Methane|Spectral  [Precision! |Reference |
company? |date pixel size time, band, resolution, [¢ | e [ Formatted: Superscript
days®  [umde nNme¢
Area flux mappers® | { Formatted: Font: Not Italic
GQOSAThS JAXA, MOE,[2009 |10-km global 3 1.65,2.3i]0.06 0.7% Parker et al. (2020);.- [ F;matted: Superscript
NEIS diameteri® Noel et al. (2022)
TROPOMI ESA 2017& |5.5x7 km2 [global 1 2.3 0.25 0.8%! Lorente et al. (2021)
GOSAT-GW JAXA, MOE,[2023 |[1x1-10x10 [global 3 1.65 0.06 0.6% NIES (2021)
NEIS km?2 mk +targets
MethaneSAT EDF 2023 |130x400m?2|200x200 |(3-4 1.65 0.3 0.1-0.2%"|Chan Miller et al. (2022
km?2 targets
MicroCarbSentinel HCNESESA  [20243 [7.54.5x7.59 [13.5x9 km?|71 165.23[00725 [0.87%® [GeyletalESA (2020)
km?2 targetsgloba
I
GeoCarb NASA 2025 |10x10655x|N and S[0.51 2.3 0.2 0.3-0.6% [Moore et al. (2018)
273 km22 |America%e”
cozm ESA 2025 |2x2 km? global 5 1.65 0.3 0.6% Sierk et al. (2021)
MERLIN CNES_/DLR (2027 |0.1x50 global 28 1.65 3x104% [15% Ehret et al. (2017)
kmpse
Pojntsourceimagers®{ | e [ Formatted: Font: Not Italic
Liandsat-8s% USGS 2013 [30x30m? [global 16 2.3 200 30-90%#|Ehret et al. (2022)
orldView-3 DigitalGlobe [2014 [3.7x3.7m? [66.5x112 [<1 23 50 6-19%* |Sanchez-Garcia et al.
km? targets (2022)
SFntineI-Z ESA 2015 |20x20 m? [global 2-5 23 200 30-90%#|Varon et al. (2021)
GHGSatw GHGSat, Inc.|2016  |25x25 m2  [12x12 km?|1-7 ¥ |1.65 0.3-07 1.5%w |Jervis etal. (2021)
targets




FRISMA&W ASI| 2019 [30x30m?2 [30x30 km?|4 2.3 10 3-9% Guanteret al. (2021)
targets
FnMAP‘&W DLR 2022 |30x30m2 [30x30 km?|4 2.3 10 3-9% Cusworth et al. (2,01.9)[F°maued; Font: Not Italic
targets
FMIT NASA 2022 |60x60 m? |Dust- 3 23 9 2-6%22 |Cusworth et al. (2019)
emitting
| regions&*
rarbon Mapper## [Carbon 2023 [30x30 m?[18-km 1-7+v% 123 6 1.2-1.5% |Duren et al. (2021) [Formatted: Font: Not Italic
Mapper and 30x60 m2  |swathsbed
Planet
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115

120

125

@ The Table lists shortwave infrared (SWIR) satellite instruments currently operating or scheduled for launch that provide

publicly accessible data (some for purchase; see Table 2) and documentation of methane-observing capabilities. Instruments

not yet launched are in italics. All instruments in this Table are in low-elevation polar sun-synchronous orbits except for
GeoCarb, which will be in geostationary orbit over the Americas, and EMIT, which will be in an inclined precessing orbit.
All instruments measure SWIR solar radiation backscattered from the Earth’s surface except for MERLIN which is a lidar
instrument. A more comprehensive list of instruments including from private companies with proprietary data is available
from GEO, ClimateTRACE, WGIC (2021).

b JAXA =Japan Aerospace Exploration Agency, MOE = Ministry of Environment, NIES National Institute for Environmental

Administration, CNES = Centre National d"Etudes Spatiales. DLR = Deutsches Zentrum fiir Luft- und Raumfahrt. USGS =

Unted States Geological Survey, ASI = Agenzia Spaziale Italiana.

¢ Time interval between successive viewings of the same scene.

de Most useful band(s) formethane retrieval. The 1.65 and 2.3 um bands have exploitable featuresat 1.63-1.70 and 2.2-2.4 um,
respectively.

& Full width at half maximum.

fs Precision is reported as percentage of the retrieved dry column methane mixing ratio Xcwa.

% Area flux mappersare primarily designed to quantify total methane emissions on regional to global scales.

% TANSO-FTS instrumentaboard the GOSAT satellite. The instrument is commonly referred to as GOSAT in the literature.
GOSAT-2 was launched in 2018 with specifications similar to GOSAT butaddinga 2.3 um band (Suto et al., 2021).

I Circular pixels separated by about 270 km along-track and cross-track.

) The 2.3 um band wasadded in GOSAT-2.

k- TROPOMI was launched in October 2017 but the methane data stream beginsin May 2018.




¥ The TROPOMI product reports a much higher precision averaging 2 ppb but this only includes error from the measured

130 radiances. Accounting for retrieval errors by validation with TCCON data indicates a precision of 0.8% (Schneising et al.,
2019).
mk Narrow-swath mode (1x1 to 3x3 km3 pixels) for urban regions and wide-swath mode (10x10 km2) forglobal coverage.
*0For 1-5 km binned data.
om_Estimated-by analog
135  perspective.
22* From 45°Sto 55°N.
bée [ntegrating the signal along 50 km of the lidar orbit track.
@ | idar online/offline sampling at 1645.552/1645.846 nm.
=4 Point source imagers are-designed-te-quantify emissions from individual point sources by imaging of the atmospheric plume.
140 s¥Landsat-9waslaunched in 2021 andshould-havewith similar capability asLandsat-8.
s Forfavorable (bright and spectrally homogeneous) surfaces.
U Including GHGSat-D (2016), -GHGSat-C1 (2020), ahd GHGSat-C2 (2021), and C3-C5 (2022). Plans are for three-more
launchesin-2022and-six more launchesin 2023.
vws For the eventualfullconstellation, Individualsatellites have return times of about 14 days.
145 “xFor the GHGSat-Cl-and-C2 series. GHGSat-D hasa precision of 12-25%.
x## Other planned hyperspectral imaging spectrometers with observing capabilities similar to PRISMA and EnMAP include
SBG and CHIME (Cusworth et al., 2019).
| ¥2=EMIT is a surface mineral dust mapper that will fly on the International Space Station in a 51.6° inclined orbit and will
target arid areas.
|150 22/ Based on the precision of PRISMA (Guanter et al., 2021) and the higher spectral resolution of EMIT (Cusworth et al.,
2019).
a2z Carbon Mapper is expected to be a constellation of satellites with two launchesin 2023 and a goalof six launchesin 2024.
abea Carbon Mapper push-broom mode has imaging strips as long as 1000 km with 30x60m? pixels; Carbon Mapper target-
tracking mode has shorter imaging strips with 30x30m? pixels and ground-motion compensation forto achieve higher SNR
155  (lower detection threshold).
Table 2: Attributes and data availability for efdifferentsatellite instrumentsfor observing atmospheric methane?
nstrument Attributes Data availability?
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aSee Table 1 for the specifications of each instrument. Instrumentsnot yet launched are in italics.

GOSAT-GW High-resolution mappingof urbanareas L2, open P [ Formatted: Left
MethaneSAT High-resolution mappingof oil/gas/agricultural L4, open§ [ Formatted: Superscript
source regions with imaging of large point sources [ Formatted: Left
MicroCarbSentinel-5 Targeted-observationsofmethaneand COzGlobal | L2.open i { Formatted: Left
continuousdaily coverage including the 1.65 um
bangd [ Formatted: Not Superscript/ Subscript
GeoCarb Continuous coverage of-for methane-CO,-COover | L2, open Formatted: Left
North and South America_with potentialforsub-
daily observations
COo2M High-resolution global continuousdaily coverage L2, open P [ Formatted: Left
MERLIN Arctic and nighttime observations L2, undefined Dl [ Formatted: Left
oint source imagers Formatted: Font: Not Italic
Sentinel-2, Landsat Global continuous data acquisition, long-term L1, open [Fomﬂmﬂﬁ Left
records " Formatted: Left
WorldView-3 Very high spatialresolution L1, for purchase
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11 (Level 1)= measured radiances: L2 = retrieved column dry mixing ratio Xcna: L4 = derived emission rates.

160 ¢ L2 data will be madeavailable upon request to the scientific community.
d Data may also be obtained from space agencies through agreements negotiated with GHGSat.
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Figure 1: Satellite instruments for observation of methane in the shortwave infrared (SWIR). Area flux mappers are designed to
quantify total methane emissions on regional to global scales. Point source imagers are designed to quantify emissions from
individual point sources by imaging the atmospheric plumes. Satellite icons were obtained from https://www.gosat.nies.go.jp for
GOSAT:—Error! Hyperlink reference not valid.—ferRPRISMA—-and Werld\iew-3:-—Wikipedia Commons for TROPOMI, EMIT
(International Space Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper;
Error! Hyperlink reference not valid.—fer—MicreCarb—https://www.methanesat.org for MethaneSAT; ESA (2020) for Sentinel-5;
https://www.ou.edu/geocarb/mission for GeoCarb; https://www.planetek.it/ for PRISMA; https://www.ghgsat.com/ for GHGSat;
https://www.enmap.org/mission for EnMAP; ; https://directory.eoportal.org for WorldView-3; and https://www.usgs.gov/landsat-
missions for Landsat-8/3.

All instruments in Table 1 except MERLIN observe methane by SWIR solar backscatter from the Earth’s surface, either at
1.63-1.70 um (1.65 pm band)orat2.2-2.4 um (2.3 um band). Atmospheric scattering is weak in the SWIR except forclouds
and large aerosol particles. Under clear skies, methane is observed down to the surface with near unit sensitivity (Worden et
al., 2015). The retrieval may fail if the surface is too dark, asover water or forest canopies (Ayasse et al., 2018). Observations

overwater can be made by sunglint when the Sun-satellite viewing geometry is favorable. The MERLIN lidar instrument emits
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its own 1.65 pm radiation and detectsthe reflected signal. It can observe over water-and at night, andin-brokencloud fields;
butits sensitivity and coverage are lower than forthe solar back-scatterinstruments. Lidar capability to observe methane from
spaceis currently limited by laser technology (Riris et al., 2019).

Not included in Table 1 are instruments that measure methane in the thermal infrared (TIR) or by solar occultation. These
instruments are not sensitive to methane near the surface and are therefore not directly useful for quantifying methane
emissions. TIR instruments have been used for remote sensing of methane plumes from aircraft (Hulley et al., 2016) but
measurements from satellitesare mainly sensitive to the uppertroposphere (Worden etal., 2015). Solar occultation instruments
such as ACE-FTS provide sensitive measurements of stratospheric methane profiles (Koo et al., 2017) but cloud interference
prevents observations in the troposphere. TIR and solar occultation instruments can complement SWIR data by providing

information on background methane in the upper troposphere and stratosphere (Zhanget al., 2021; Tu et al., 2022).

The spectrally resolved SWIR backscattered solar radiation detected by satellite under clear-sky conditions can be used to
retrieve the totalatmospheric column of methane, Qcra [molecules cm2], as will be reviewed in Section 2.2. To remove the
variability from surface pressure, measurements are typically reported as dry column mixing ratio XcHs4 = Qcra/ Qad Where
Qagis the dry air column [molecules cm-2]. Normalizing to dry air rather than totalairavoids introducing dependence on water

vapor.

All instrumentsin Table 1 except EMIT and GeoCarb are in low-elevation polar sun-synchronous orbit and observe globally
at a specific local time of day, either morning or early afternoon. Morning has greater probability of clear sky, while early
afternoon has steadier boundary layer winds for interpreting methane enhancements. GOSAT (2009-present) and its follow-
on GOSAT-2 (2018-present)provide global coverage every 3 daysfor 10-km circular pixels spaced about 270-km apart, while
TROPOMI (2018-present) provides full global daily coverage with 5.5x7 km?2 pixels. Figure 2 shows mean TROPOMI XcHs
data for two different seasons, illustrating the dense coverage. Future instruments GOSAT-GW (2023 launch, 10x10 km?
pixels with full global coverage every 3 daysin wide-swath mode), Sentinel-5 (2024 launch, 7.5x7.5 km? pixels with full
global daily coverage), and CO2M (2025 launch, 2x2 km? pixels with full global coverage every 5 days) will continue the

global observation record. MERLIN will provide day/night global coverage butonly alongits lidar orbit track. Sentinel-2 and

Landsat instruments provide full global coverage with 20-30 m pixels every 5 days (Sentinel-2) or 16 days(Landsat)and can
detect very large point sources over bright spectrally homogeneous surfaces. EMIT (designed to observe dust surfaces) will
beon a51.6°inclined orbit aboard the International Space Station, prioritizing observations overarid regions and with variable
local overpasstimes. GeoCarb will be in geostationary orbit over the Americas and will provide daily observations from 45°S
to 55°N.
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Several narrow-swath instruments in Table 1 are selective in their observationsto focuson specific targets and avoid cloudy
conditions. The GHGSat instruments observe selected 12x12 km? scenes with 25x25 m? pixel resolution and instrument
pointing to increase the signal-to-noise ratio (SNR). Carbon Mapperwill observe 18-km swathswith imaging strips aslong as
1000 km in push-broom mode and shorter strips in target-track (instrument-pointing) mode. GHGSat has six satellites in orbit
as of this writing a ic i i
writing)—to achieve frequent return times, and Carbon Mapper similarly plans a constellation of satellites. WorldView-3
observes scenes of dimensions up to 66.5x112 km2, MicroCarb-{mainlyfocused-on-COz) will provide methaneretrievalsfor
three cross-trackpixels-of 4-5-km-{cross-track)x9 km{along-track)-each—MethaneSAT will observe 200x200 km?2 targets in

oil/gas and agriculturalregions with 130x400 m? pixel resolution, enabling high-resolution quantification of regionalemissions

aswell asimaging of large pointsources.
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Figure 2: Global TROPOMI observations of methane for December 2019 — February 2020 and June-August 2020. Data are from
225 the version 2.02 product, filtering out low-quality retrievals (ga_value < 0.5) and snow/ice surfaces diagnosed by blended albedo >

0.8 (Lorente et al., 2021). The top panels show the mean dry methane column mixing ratios Xcns.0n a 0.1°x0.1° grid. The middle

panels show the observation density as the number of successful observations per 1°x1° grid cell for the 3-month periods. The bottom

panels show the mean Xca differences between concurrent TROPOMI and GOSAT observations plotted on a 2°x2.5° grid and

corrected-adjusted upward by 17 ppb to account for TROPOMI being 17 ppb lower than GOSAT in the global mean. for-a-global
230 mean-difference-of-17ppb. GOSAT data are from the CO; proxy retrieval version 9.0 of Parker et al. (2020).

12



235

240

245

250

255

260

All area flux mappers in Table 1 have fine (< 0.5 nm) spectral resolution to enable precise measurements of methane
concentrations, traded against coarser (0.1-10 km) spatial resolution. GHGSat achievesa combination of fine spatial resolution
and fine spectral resolution by instrument pointing. Most other point source imagers in Table 1 are designed to observe land
surfaces, which requires fine spatial resolution (<50 m) but less stringent spectral resolution. These instruments have
serendipitous capability to detect methane plumes in the broad 2.3 pm band, including hyperspectral sensors with ~10 nm
spectral resolution (PRISMA, EnMAP, EMIT) (Cusworth et al., 2019) and even multispectral sensors with a single 2.3 pm
channel (Sentinel-2, Landsat-8/9) (Varonetal.,, 2021) or a few channels (WorldView-3) (Sanchez-Garcia etal., 2022). Carbon

Mapperwill have 6 nm spectral resolution, which increases precision appreciably relative to 10 nm (Cusworth et al., 2019).

All area flux mappershave an open data policy allowing free access from a distribution website or from the cloud. The data

are generally provided as XcHa retrievals (Level 2 or L2). MethaneSAT will distribute its data publicly as inferred methane

fluxes (L4) but the L2 data will also be madeavailable to researchers. Data access for point source imagers is presently less

straightforward. Sentinel-2, Landsat have freely accessible channel radiance (L1) data,and so will EMIT, but users must

perform their own methane retrievals and source rate estimates. GHGSat and WorldView-3 make observationsat the request

of paying customers, with GHGSat providing point source rate (L4) data and WorldView-3 providing L1 data.PRISMA and

EnMAP _make observations upon request from the scientific community and stakeholders, and the resulting L1 data are then

freely accessible, but again users must perform their own methane retrievals. Carbon Mapperwill provide open L4 data.

2.2 Retrieval methods

The ‘full-physics’ retrieval of methane columns from satellite SWIR spectra typically solves simultaneously for the vertical
profile of methane concentration, the vertical profile of aerosol extinction, and the surface reflectivity by inversion of the
radiance spectrum using a radiative transfer model (Butz et al., 2012; Thorpe et al., 2017). Although the vertical profile of

methane may be used in the inversion, there is no significant profile information from the measurement and only Xcws is

reported together with an averagingkernel vector for sensitivity to the vertical profile (generally-nearunity in the troposphere).
The retrieval may fail if the atmosphere ishazy or if the surface is heterogeneous ortoo dark. Full-physics TROPOMI retrievals
in the 2.3 pm band thus have only a 3% global success rate over land (Lorente et al., 2021) with large variability depending
on location (Fig. 2). Arid areasand mid-latitudesare relatively well observed. Observationsare much sparser in the wet tropics
because of extensive cloudiness and dark surfaces, and in the Arctic because of seasonaldarkness, extensive cloudiness, and

low Sun angles._Observations at high latitudesare very limited outside of summer, resulting in a seasonalsampling bias.
The 1.65 pm band allows the alternative CO2 proxy retrieval taking advantage of the adjacent CO2 absorption band at1.61 um

(fFrankenberg et al., 2005)}. In this method, QcHa and Qcoz are retrieved simultaneously without accounting for atmospheric

scattering, and Xcha is then derived as
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where Xcoz isindependently specified, typically from assimilated observationsor from a global atmespheric-chemical transport
model (Parker et al., 2020; Palmer et al., 2021). The CO2 proxy method takesadvantage of the lower variability of CO> than

methaneand that the dominant methane sources (livestock, oil/gas systems, coal mining, landfills, wastewater treatment, rice

cultivation, wetlands) are not large co-emitters of CO,.-. It is much faster than the full-physics retrieval, achieves similar

precision and accuracy (Buchwitz et al., 2015), and largely avoids biases associated with surface reflectivity and aerosols
because these biases tend to cancel in the QcHa/Qcoz ratio. Itis subject to errors from unresolved variability of COz such asin
urban regions, and is also subject to bias for sources that co-emit methane and COz such as flaring_and other incomplete
combustion. The GOSAT instrument operating at 1.65 um with 10 km pixels has a 24% success rate using the CO2 proxy

retrieval, mainly limited by cloud cover (Parker et al., 2020).

A limitation in using the 1.65 um band is thatit is narrower, with fewer spectral featuresand weaker absorption than the 2.3
um band, and therefore requires an instrument with sub-nm spectral resolution (Cusworth et al., 2019; Jongaramerungruang
etal, 2022a). The 2.3 um band can be successfully sampled fora full-physics retrieval by hyperspectralinstruments with ~10
nm spectralresolution (Thorpe et al., 2014,2017; Cusworth etal., 2021a; Borchardtetal.,2021; Irakulis-Loitxate etal.,2021).
Precision improves with spectral resolution (Cusworth et al., 2019; Jongaramrungruang et al., 2022a) and with spectral
positioning relative to the methane absorption lines (Scaffuto et al., 2021). Multispectral instruments with one or several
broadband channels (~100 nm bandwidth) cannot do a spectrally resolved retrieval, but can still achieve a simple Beer’s law
retrieval of the methane column in the 2.3 pum band by inferring surface reflectivity from adjacentbandsor from scenes with

no apparent methane enhancements (Varon etal., 2021; Sanchez-Garcia etal., 2022).

Yet another approach for retrieving methane enhancements from point sources is the matched-filter method in which the
observed spectrum is fitted to a background spectrum convolved with a target methane absorption spectrum capturingthe 2.3
um absorption band (Thompson et al., 2015; Foote et al., 2020). Matched filter methods have been extensively used for
mapping methanepointsources from airborne hyperspectral campaigns (Frankenbergetal., 2016; Duren etal., 2019; Cusworth
et al., 2021b), but have been less used for satellite retrieval of point sources (Thompson et al., 2016; Guanter et al., 2021,
Irakulis-Loitxate etal., 2021). These methods directly retrieve the methane enhancement above background and are faster than
a full-physics retrieval. They are well-suited for plume imaging, where the methane enhancementabove local background is

the quantity of interest. But they do not quantify background variability and therefore cannot be used for regional inversions.
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2.3 Precision and accuracy

Retrievals of Xcnsa may be affected by random error (precision) and systematic error (bias or accuracy). A uniform bias is
inconsequential because it can be simply subtracted. Random error is reducible by temporal averaging_if the observation
density is high. The most pernicious error is spatially variable bias, often called relative bias (Buchwitz et al., 2015), which is
generally caused by aliasing of surface reflectivity spectral features into the methane retrieval. Variable bias corrupts the

retrieved concentration gradientsand producesartifact featuresthat may be wrongly attributed to methane.

Area flux mapper instruments are generally validated by reference to the highly accurate Xcn4a measurements from the
worldwide Total Carbon Column Observing Network (TCCON) of ground-based sun-staring spectrometers (Wunch et al.,
2011). Variable bias can be estimated as the spatial standard deviation across TCCON sites of the temporal mean bias
(Buchwitz etal., 2015). Schneising etal. (2019) inferred in this mannera globalbias of -1.3 ppb for the TROPOMI University
of Bremen methane retrieval, a precision of 14 ppb,and a variable biasof 4.3 ppb. Lorente etal. (2021) inferred a global mean
bias of -3.4 ppb and a variable bias of 5.6 ppb for the current TROPOMI version 2 Netherlands Institute for Space Research
(SRON) operationalretrieval. Figure 3 places these valuesin the contextof TROPOMI observationsover the Permian Basin
oil field in Texas and New Mexico. A typical single day of TROPOMI observationsshows large areasof missing and noisy
data, so temporal averaging is necessary, which also reduces the random error. Averaging TROPOMI observations over a
month shows full coverage of the Permian with enhancementsof ~50 ppb over the principal areasof oil and gas production,

well above the variable bias of the instrument.

Reliance on the TCCON network to diagnose variable bias is limited by the sparsity of network sites, almost all at northem
mid-latitudes. An alternative way is by reference to GOSAT. The current version 9 GOSAT retrieval using the CO2 proxy
method hasa variable bias of only 2.9 ppb referenced to TCCON and is recognized asa well-calibrated measurement (Parker
et al., 2020). Spatial variability in the mean TROPOMI-GOSAT difference provides a global assessment of TROPOMI
variable bias (Qu et al., 2021). Results in Fig. 2 (bottom panel), after correcting for a global mean TROPOMI-GOSAT
difference of -17 ppb_(TROPOMI lower than GOSAT), show that TROPOMI variable biases can exceed 20 ppb in some

regions. The reason forsuch large biases relative to GOSAT is TROPOMI’s coarser spectralsampling of the SWIR region, as
well as the unavailability of the CO; proxy retrieval at2.3 um. Comparing TROPOMI and GOSAT observations for a region
of interest is good practice before interpreting TROPOMI data forthat region (Shen-Z. Chenet al., 2022).
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Figure 3: Satellite observations of atmospheric methane over the Permian Basin (Texas and New Mexico) in July 2020. The left panel
shows typical TROPOMI observations for 1 day (July 15), featuring large areas of missing data due to unsuccessful retrievals. The
middle panel shows monthly mean TROPOMI observations over the month on a 0.1°x0.1° grid , featuring distinct enhancements
over the Midland and Delaware basins where oil production is concentrated. TROPOMI dataare from the version 2.02 retrieval of
Lorente et al. (2021). The right panel shows sample observations of plumes from pointsources by Sentinel-2, PRISMA, and GHGSat
superimposed on surface imagery from © Google Earth.
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Variable bias is also a concern for point source imagers where it manifests as artifact features that could be mistaken for
methane plumes (Ayasse etal.,2018). Thisis of particular concern for heterogeneous surfaces (Cusworth etal., 2019). Artifacts
can be screened by visual inspection of the candidate plumesin relation to wind direction, known infrastructure, and surface
reflectivity (Guanteret al., 2021). Machine-learning methods can also be trained to detect plumesand recognize artifact noise
patterns (Jongaramrungruang et al., 2022b). Figure 3 shows illustrative observations of point sources from Sentinel-2,
PRISMA, and GHGSat in the Permian Basin. The observationshave lower precision than TROPOMI (Table 1) but the methane
enhancements are much larger because the pixels are smaller. Point source detection thresholds and their relationship to
precision iswill-be discussed in Sect. 5.

3 Global, regional, and point source observations

Figure 4 classifies the satellite instruments of Table 1 in terms of their abilities to observe methane on global and regional
scales as area sources (area flux mappers) or on the scale of individual point sources (point source imagers). Observations on
these different scales target complementary needs for our understanding of methane, and they correspondingly have different
observing requirements. Area sources may integrate a very large number of point sources that are individually small but
cumulatetoa large total. A practicallewerthreshelddefinition of ferdefining-a methane pointsource, following Duren et al.
(2019), -is a source thatemits more than 10 kg h-Lover an area less than 10x10 m2, representing —which-represents-a typical
limit of detection from aircraft remote sensing{Durenetal,2019; Chenetal,2022). With this definition_of source threshold,
Cusworth et al. (2022) feund-find on average that 40% of emissions from US oil/gas fields originate from point sources. This

emphasizesthe need for characterizing methane emissions both as area sources and as point sources.

3.1 Global and regional observations with area flux mappers

Global observation of methane targets the central question of why atmospheric methane hasalmost tripled since pre-industrial
times and why it continues to increase. Ground network measurements such as from NOAA are the reference for observing
global trends because of their high accuracy (Bruhwiler et al., 2021), and some sites include isotopic or other information to
separate contributions from different source sectors (Lanet al., 2021). But satellites have an essential role to play because of
their dense and global coverage. They can identify the regions that drive the global trend (Zhang et al., 2021). They have a
unique capability to evaluate the accuracy and trends of methane emissions reported by individual countries to the UNFCCC
(Janardananetal., 2020) and thus contribute to the transparency framework of the Parisagreement (Deng et al., 2022; Worden
etal, 2022).
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360 Figure 4: Classification of satellite instruments by their capability to observe atmospheric methane on global scales, on
regional scaleswith high resolution, and for point sources. Specifications for the satellite instruments are listed in Table
1 and key attributes are listed in Table 2. Point source detection thresholds are given here as orders of magnitude.
These detection thresholds are discussed in Sect. 5.2. Instruments not yet launched are initalics.
Global observation of methane from spaceis presently available from GOSAT and TROPOMI. GOSAT provides a continuous

365 andwell-calibrated record going back to 2009 (Parker et al. 2020). Inversions of GOSAT data have been used to attribute the
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contributions of different source regions and sectors to the methane increase over the past decade (Maasakkers et al., 2019;
Chandra et al., 2021; Palmeret al., 2021; Zhanget al., 2021). The TROPOMI data stream begins in May 2018 and is much
denser than GOSAT, but the ability to use TROPOMI data in global inversions is presently limited by large variable biases in
some regions of the world (Qu et al. (2021); Fig. 2). Continuity of global methane observations from space is expected over
the next decade with the GOSAT series (GOSAT-2, GOSAT-GW), _Sentinel-5, and CO2M (Table 1). MERLIN could make

an important contribution toward better understanding of methane emissions in the Arctic, which is otherwise difficult to

observe from space.

There is considerable interest in using satellite observations to quantify methane emissions with high resolution on regional
scales. This is important forreporting of emissions at the nationalorsub-nationalstate level, for monitoring oil/gas production
basins, and for separating contributions from different source sectors. Oil/gas production basins are typically a few hundred
km in size and may contain thousands of point sources that are individually small but add up to large totals and are best
quantified on a regional scale (Lyon et al., 2015). Several field campaigns using surface and aircraft measurements have
targeted oil/gas fields in North America (Karion et al., 2015; Pétron et al., 2020; Lyon et al., 2021), but these campaignsare
necessarily short and are not practicalin many partsof the world.

TROPOMI with its 5.5x7 km? pixel resolution and global continuousdaily coverage is presently the only satellite instrument
capable of high-resolution regional mappingof methane emissions. GOSAT data are too sparse. TROPOMI hasbeen used to
quantify emissions from oil/gas production fields including the Permian Basin (Zhanget al., 2020), otherfields in the US and
Canada (Shenet al., 2022), and the Mexican Sureste Basin (Shen et al., 2021), revealing large underestimatesin the bottom-
up inventories. It has also been used to quantify totalmethane emissions from China and attribute them to source sectors (Z
Chenetal., 2022). The variable bias problemsthat affect global TROPOMI inversions can be less problematic on the scale of

source regions where methane enhancementsare large, the biasis more homogeneous (Fig. 2), and biascorrection is possible

through adjustment of boundary conditions in the transport model (Shen et al., 2021). Capability for regional mapping of
methane emissions is expected to greatly expand in the future with the MethaneSAT, GOSAT-GW, Sentinel-5, and CO2M

instruments.

3.2 Point source observations with point source imagers

Monitoring large point sources is important for reporting of emissions, and detection of unexpectedly large point sources
(super-emitters) can enable prompt corrective action. In situ sampling and remote sensing from aircraft has been used
extensively to quantify point sources (Frankenberget al., 2016; Lyon et al., 2016; Duren et al., 2019; Hajny et al., 2019; Y.
Chenetal.,, 2022; Cusworth et al., 2022) but is limited in spatialand temporalcoverage. Satellites again have an essential role
to play. They-and have enabled the discovery of previously unknown releases (Varon et al., 2019; Lauvauxetal., 2022) and
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the quantification of time-integrated total emissions from gas well blowouts (Cusworth et al., 2021a; Maasakkers et al.

2022a).-

Observing point sources from space hasunique requirements. Plumes are typically less than 1 km in size (Frankenbergetal.,
2016), thus requiring satellite pixels finer than 60 m (Ayasse et al., 2019). It is desirable to quantify emissions from single
overpasses, though temporalaveraging of plumes to improve SNR is possible with wind rotation if the precise location of the
source is known [Varon et al., 2020]. The emissions are temporally variable, motivating frequent revisit times that can be
achieved by a constellation of instruments. On the other hand, precision requirementsare less stringent than for regional/global

observations because of the larger magnitude of the concentration enhancements.

The potential for space-based land imaging spectrometers to detect methane point sources was first demonstrated with the
hyperspectral Hyperion instrument for the Aliso Canyon blowout (Thompson et al., 2016). Hyperspectral sensors such as
PRISMA and others of similar design have since proven capable of quantifyingpoint sources of ~500 kg h-! (Cusworth et al.,
2021a; Guanteret al., 2021; Irakulis-Loitxate et al., 2021; Nesme et al., 2021). The first satellite instrument dedicated to
quantifying methane point sources was the GHGSat-D demonstration instrument launched in 2016 with 50x50 m? effective
pixel resolution and a precision of 12-25% depending on surface type (Jervis et al., 2021). Varon et al. (2019) demonstrated
the capability of that instrument for discovering and quantifying persistent point sources in the range 4000-40000 kg h'*in an
oil/gas field in Turkmenistan. Five follow-up GHGSat-C1-and-C2 instruments with precisions of 1-2% were subsequently
launched in 2020-2022, building up to a constellation with -a
in2022-2023 to build a-constellationenabling frequent return tlmes-(-@au-tNet’—ZOZ—l—)

Multispectral instruments such as Sentinel-2, Landsat-8/9, and WorldView-3 are also capable of detecting and quantifying
very large point sources (Varon et al., 2021; Ehret et al., 2022; Sanchez-Garcia et al., 2022; Irakulis-Loitxate et al., 2022a).
Sentinel-2 and Landsat provide global and freely accessible data that could form the foundation of a global detection system
for super-emitters (Ehret et al., 2022). A large-scale survey of point emissions across the west coast of Turkmenistan was

achieved with the combination of Sentinel-2 and Landsat (Irakulis-Loitxate etal., 2022a).

Detection of methane plumes from space has mainly been over bright land surfaces. Observation of offshore plumes such as
from oil/gas extraction platforms is more difficult because of the low reflectance of water in the SWIR. The signal can be
enhanced by observing in the sunglint mode, in which the sensor capturesthe solar radiation specularly reflected by the water.
The sunglint observation configuration can be achieved by agile platformsable to point in the Sun-surface forward scattering
direction (PRISMA, Worldview-3, GHGSat, Carbon Mapper), or by instruments with a field-of-view sufficiently large that

part of the swath falls in the forward scattering area (TROPOMI, Sentinel-2, Landsat). lnitialtestsof offshore methaneplume
mappingwith—mIrakulis-Loitxate et al. (2022b) demonstrated the ability of sunglint retrievals from WorldVview-34 and
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Landsat-8 to detect large wtispestralinstruments-haveled tothe detectionof massive-plumes from offshore platformsin the
Gulf of Mexico.{Ayasse-etal 2022 rakulis-Loitxateetal2022b).

The capability to monitor methane point sources from space is expected to expand rapidly in comingyears through the GHGSat
and Carbon Mapper constellations (Buren—etal 2021 andaswell as new hyperspectralmissions (Cusworth et al., 2019). Aa
expanding-Expanding constellations observing with frequent return times and at different times of day will enable better
understandingof the intermittency of methane emissions. Inan aircraft survey of the Permian Basin, Cusworth et al. (2021b)
found thatindividualpoint sources produced detectable emissions only 26% of the time on average. Similar intermittency was
observed for oil/gas facilities in California (Duren et al., 2019). Allen et al. (2017) and Vaughn et al. (2018) point out that
some emissions from the oil/gas infrastructure are highly intermittent by design (liquids unloading, blowdowns and startups)
and may have predictable diurnalvariations. Emissions due to equipment failure may be persistent (leaks, unlit flares), sporadic
(responding to gas pressure), or single events (accidents). An increased frequency of observation can identify persistence of
emissions to enable corrective action, and better understanding of point sources that are intermittent by design can lead to
better quantification of time-averaged emissions. Beyond this short-term intermittency, there is also long-term variability
related to operating practicesand the-facility life cycle efthefacility-(Cardoso-Saldafia and Allen, 2020; Johnson and Heltzel,
2021;Varonet al, 2021; Allen et al.,, 2022; Ehret et al., 2022), stressing the importance of sustained long-term monitoring.

4 Inferring methane emissions from satellite observations

Inferring methane emissions from satellite observations of methane columnsinvolvesdifferent methods forarea flux mappers
and point source imagers. Area flux mappersare typically used to optimize 2-D distributions of emissions on regional or global
scales by inverse methods. Point source imagers are used to infer individual point source rates by some form of massbalance

analysis.

4.1 Global and regional inversions with area flux mappers

Area flux mappersproduce 2-D fields of methane observations from which to optimize 2-D fields of gridded emission fluxes.
The optimization involvesan atmospheric transport model (forward model) to relate emissions to the observed concentrations.
The optimal emissions are generally obtained by Bayesian inference, fitting the observations to the forward model and
including prior estimates of emissions to regularize the solution where the observations provide insufficient information
(Brasseur and Jacob,2017). Optimizing temporaltrends of emissions can be done as part of the solution or sequentially using
a Kalman filter [Feng etal., 2017].

The basic procedure is as follows. Given anensemble of observationsover adomain of interest assembled in an observation

vectory, the task is to optimize the distribution of emission fluxes assembled in a state vector x of dimension n. The relationship

21



465

470

475

480

485

490

between x andy can be assumed linear for methane, despite the sensitivity of OH concentrationsto methane concentrations.
This is because the inversion does not significantly change the global methane concentration, which is set by observation;
furthermore, forregional inversions, the time scale for ventilation of the regional domain ismuch shorterthan that forchemical
loss. Global inversions often optimize OH concentrationsaspart of the state vectorand that relationship can also be assumed
linear. Further assuming Gaussian error probability density functions (pdfs) for x andy, the optimal (posterior) estimate of x

is obtained by minimizing a Bayesian cost function J(x) of the form (Brasseur and Jacob, 2017):

J(X) = (X~ X,)" S5 (X~ X,) +3(y - KX) S5y - KX) @

Here xa is the prior estimate of emissions, Sais the corresponding prior error covariance matrix, K=K = dy / ox is the

Jacobian matrix describing the sensitivity of observationsto emissions asgiven by the atmospheric transport model, So is the
observational error covariance matrix including contributions from instrument and transport model errors, and y is a
regularization parameter that may be needed to correct over- or underfitting caused by imperfect definition of So. Since the
relationship between x andy is linear, K fully defines the atmospheric transport model for the inversion. Jacobetal. (f2016)}
describe alternative formulations for the cost function such as in geostatistical inverse modeling where prior information is

provided asthe relative spatialdistribution of emissions ratherthan emission magnitudes (Miller et al., 2020).

Specification of the error covariance matrices Sa and So strongly affects the solution. Construction of Sa can be done by
intercomparing bottom-up inventories (Maasakkers et al., 2016; Bloom et al., 2017) or by using error estimates generated by
the bottom-up inventories (Scarpelli et al., 2020). Construction of So can be done by the residual error method in which the
observations are compared to results from the atmospheric transport model with prior emission estimates, and the residual
difference afterremoving the mean bias is taken to be the observationalerror (Heald et al., 2004). The observationalerror for
satellites is generally found to be dominated by the instrument retrieval error ratherthan by the transport model error, whereas

for in situ observationsit is dominated by the transport modelerror (Lu et al., 2021).

Minimization of the cost function J(x) in Eq. (2) to obtain the posterior solution & _and its error covariance matrix-$ canbe
done either numerically or analytically (Brasseur and Jacob, 2017). $ and the related averaging kernel matrix

A=X/lox=1, -QSX (Rodgers, 2000) determine the information content from the observations and the ability of the

inversion to improve on the prior estimate. The diagonal terms of A ranging from 0 to 1 are called the averaging kernel
sensitivities and measure the ability of the observationsto constrain the solution for that state vectorelementindependently of
the prior estimate (1 = fully, 0 = not atall). The trace of A is called the degrees of freedom for signal (DOFS) and represents
the totalnumber of pieces of information that can be fully constrained from the observations. An inherent assumption is that
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the observations, the transport model, and the prior information are unbiased. Although the prior estimate is in principle
unbiased since it represents our best estimate before the observationsare taken, under-accounting of Sa together with incorrect

spatialdistribution of prior emissions can drives bias in inversion results (Yu et al.,, 2022).

Numerical solution for min(J(x)) using the adjoint of the atmospheric transport model or other variational methods optimizes

a state vector of any dimension by avoiding explicit construction of the full Jacobian matrix K,and may use various procedures

to estimate $ (Bousserez et al., 2015; Cho et al., 2022). Analytical solution provides a closed-form expression for S but
requires the computationally expensive construction of K column-by-column with n perturbation runs of the atmospheric
transport model. This limits the dimension and hence the resolution of the state vector that can be optimized. However, once
K has been constructed, inversion ensembles can be conducted at no significant added computational cost to explore
uncertainties in inversion parameters, orto examine the complementarity and consistency of different observation subsets such
as from different satellite instruments or from ground-based sites (Lu et al., 2021, 2022). This includes optimization of the

regularization parameter y so that the sum of prior terms in the posterior cost function matches the expected value from the
chi-square distribution, J,(X)=(X-X,) SA(X-X,)~n (Lu et al., 2021). Increasing access to large computational clusters

hasfacilitated the construction of K as anembarrassingly parallel problem, enabling analyticalsolution for state vectors with
n=> 1000 (Maasakkersetal., 2019). Nesser et al. (2021) show thateven larger dimensions can be accessed by approximating

the Jacobian alongleading patterns of information content.

Figure 5illustrates the inversion of TROPOMI observations with a 1-month example forthe Permian Basin using an analytical
solution with 0.25°x0.3125° (=25x25 km2) resolution. This calculation was done on the Amazon Web Services (AWS) cloud
with the Integrated Methane Inversion (IMI) open-access facility for analytical inversions of TROPOMI data, enabling users
todirectly accessthe TROPOMI data archived on AWS and infer emissions for their domain and time window of interest with

pre-compiled inversion code (Varon et al., 2022).
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Figure 5: Integrated Methane Inversion (IMI) on the Amazon Web Services (AWS) cloud (Varon et al., 2022). The IMI accesses the
TROPOMI operational data posted on the cloud and carries out analytical inversions for user-selected domainsand time periods.
Before conducting the inversion, users can run an IMI preview to visualize the observations, the default prior emission estimates (to
which they can substitute their own), the expected information content of the inversion (degrees of freedom for signal or DOFS),
and the SWIR albedos for indication of data artifacts. If the preview is satisfactory, they can then run the inversion to generate
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posterior emission estimates with averaging kernel sensitivities indicating where the observations can successfully constrain
emissions. Shown here is an example given by Varon et al. (2022) for a 1-month (May 2018) inversion over the Permian Basin, using
the prior emission estimate from the EDF inventory (Zhanget al., 2020). The IMI is accessible at https://imi.seas.harvard.edu.

The assumption of Gaussian error pdfs for prior emission estimates in Eq. (2) may not always be appropriate. A log-normal
distribution is often more correct (Yuan et al., 2015) and can be accommodated in analytical inversions (MaasakKkers et al.,
2019; Lu-Z. Chen et al., 2022). Brandtetal. (2016)show that the log-normal distribution still underestimatesthe heavy tail of
the frequency distribution of point sources (the super-emitters). Application of inverse methodsto detect and quantify super-
emitters in an oil/gas field may require a bimodal pdf for prior estimates, and an L-1 norm cost function may be better suited
than the standard L-2 norm of equation (2) (Cusworth et al., 2018). A Markov Chain Monte Carlo (MCMC) method for the
inversion as used by Western et al. [2021] enablesthe specification of any prior and observationalerror pdfs, and returns the

full posterior error pdf on emissions, but it is computationally expensive and its cost increases rapidly asn increases.

The inversion typically optimizes a geographical 2-D array of emission fluxes, but quantifyingemissions by source sector is
often of mere-ultimate interest. Sectoral information is generally contained in the prior inventory. The simplest approach isto
assume that the posterior/prior correction factorto emissions for a given grid cell applies equally to all emissions in that grid

cell (Turner et al., 2015) or in a manner weighted by the prior uncertainties of the different sectors (Shen et al., 2021). The

posterior error covariance matrix $ and averagingkernel matrix A on the 2-D grid can similarly be mapped to specific sectors

and/orsummed over adomain such as anindividual country (Maasakkersetal., 2019). A more general approach for sectoral
attribution introduced by Cusworth et al. (2021c) mapsthe (X , S ) solution onto any alternative state vector z (such assector-

resolved emissions) with its own prior information (za, Za) to obtain a solution- 2 with posterior error covariance matrix Z .

This allows in particularto compare results from inversions using different prior information.

4.2 Quantification of point sources with point source imagers

Quantification of point sources from satellite observations of instantaneous plumes poses a different kind of inversion problem.
In this casea single quantity, the point source rate Q [kg s], is to be inferred from a single observation of the plume. Figure
3 showed examplesof plume observations. The morphology of the instantaneous plume is determined by turbulent diffusion
superimposed on the mean wind, with a plume boundary (commonly called plume mask) defined by the detection limit of the
instrument. The observationis of the total methane columnandso is relatively insensitive to vertical boundary layer mixing,
which is a majorsource of error in interpreting plumes from in situ aircraft observations (Angevine et al, 2020). On the other
hand, unlike for in situ aircraft observations, there is no direct measurement of the wind speed U in the plume. Lack of precise
wind speed information is a majorsource of error for interpreting satellite observations because plume-concentrationsin the

plume vary asthe ratio Q/U, meaningthaterrors in U propagate Hnearhy-proportionally toerrors in Q.
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Figure 6 summarizes different methods for inferring point source rates from satellite observations of instantaneous plumes.

Details on these methodsare given by Krings et al. (2011), Varon et al. (2018), and Jongaramrungruangetal. (2019, 2022b).

The Gaussian plume is the classic model for turbulent diffusion from a point source but it is valid only for a plume sampling

a representative ensemble of turbulent eddies. Methane plumes are generally too small for this condition to be met

(Jongarangmrungruanget al., 2019), asillustrated in Fig. 3 where the plume shapesare not Gaussian. A simple mass balance

method applyingthe local wind speed to the methane enhancement observed in the plume is flawed forsub-km scales because

ventilation is determined by turbulent eddies more than by the mean wind (Varon et al., 2018).
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Figure 6: Seven different methods for inferring point source rates Q [kg s "] from satellite observations of instantaneous plumes of
methane column enhancements AQ [kg m?] relative to background. The methods involve (1) fit to a Gaussian plume, (2) local mass
balance for near-source pixels, (3) Gauss theorem with integration of the outward flux along a closed contour s, (4) cross-sectional
flux (CSF) integral, (5) integrated mass enhancement (IME) with independent wind speed information, (6) IME with wind speed
inferred from the plume angularwidth, and (7) machine-learning applying a convolution neural network (CNN) to the plume image.
Methods (1), (2), (4), and (5) are described by Varon et al. (2018), method (3) by Krings et al. (2011), method (6) by
Jongaramrungruang et al. (1999), and method (7) ealled-MethaNetby Jongaramrungruang et al. (2022b). In the equations, x denotes
the plume axis for transport by the mean wind and y denotes the horizontal axis normal to the wind. The IME [kg] is the spatial
integral of the methane column enhancement AQ over the plume mask. The wind speed U is that relevant to transport of the plume,
and in the IME method (4) it is parameterized as an effective wind speed Uesr to include theeffect of turbulent diffusion. The Gauss
theorem and CSF methods require wind direction information. The IME method (4) requires a characteristic plume size L that
can be taken as the square root of the plume area (Varon et al., 2018) or the radial plume length (Duren et al., 2019). The empirical
dispersion parameter oy [m] in the Gaussian plume method (1) characterizes the spread of the plume. fi in the Gauss theorem
method is the unitvector normal to the contour.

The Gauss theorem method, in which the source rate is calculated as the outward flux summed along a contour surrounding
the point source, is extensively used for in situ aircraft observations where concurrent measurements of wind vector and
methane concentration are available to calculate the local flux asthe aircraft circles around the source (Hainy et al., 2019). In
the absence of in situ wind data,onecanapply a single estimate of the wind vector based on local station or assimilated data
(Krings et al., 2011). However, the calculation then does not account for the contribution of turbulent diffusion to the outward

flux. In addition, any sources within the contourwill alias into the inferred point source rate.
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Two successful methods to derive point source rates from observations of instantaneous plumes are-have been the cross-
sectional flux (CSF) method (White, 1976; Krings et al., 2011), in which the source rate is inferred from the product of the
methane enhancement and the wind speed integrated across the plume width, and the integrated mass enhancement (IME)
method (Frankenberget al., 2016; Varon et al., 2018), in which the totalmassenhancement in the plume is related empirically
to the magnitude of emission_with a parameterization dependent on wind speed.- Both methods are widely applied to the
retrieval of point source rates from satellite observationsand they yield consistent results (Varon etal., 2019). The CSF method
is more physically based, and source rates can be derived from cross-sections at different distances downwind to reduce error
(Fig. 6). The contribution of turbulent diffusion to the flux can be neglected in the direction of the wind following the slender
plume approximation (Seinfeld and Pandis, 2016). However, the dependence on wind direction is an additionalsource of error
relative to the IME method.

Both the CSF and IME methodsrequire estimatesof wind speed relevantto plume transport. For the CSF method this is the
meanwind speed over the vertical depth of the plume, which can be parameterized from the 10-m wind speed (Varon et al.,
201982018) or averaged-interpolated from a database of wind speed vertical profiles available-wind-data-(Krings et al., 2011).

The effective wind speed Uest in the IME method accounts forthe effect of turbulent diffusion in plume dissipation, and can

be parameterized asa function of an observable 10-m wind speed by using large-eddy simulations (LES) of synthetic plumes
sampled with the instrument pixel resolution, plume mask definition, and observing time of day (Varon et al., 2018). The need
forindependentinformation on wind speed, either from measurementsat the point source location or from a meteorological
database, can dominate the error budget in inferring source rates from the CSF and IME methods, and typically limits the
precision to 30% (Varon et al., 2018). The error is larger for weak winds, which tend to be more variable, and smaller for
strong steady winds. However, plumes are less likely to be detectable in strong winds because of dilution. Weak winds are

thus favorable for plume detection but can induce large error in source quantification.

Jongaramrungruanget al. (2019) showed thatthe morphology of an observed plume containsinformation on wind speed, as
long slender plumesare associated with high wind speeds while short stubby plumes are associated with low wind speeds. By
using the plume angular width asa measure of wind speed, they were able to infer source rates without independent wind
information. Jongaramrungruang et al. (2022b) developed that idea further with a convolutional neural network (CNN)
approach trained on LES plume images to learn the source rate from the 2-D plume structure. Application to synthetic plumes
aswould be sampled by the AVIRIS-NG aircraftinstrumentat1-5 m pixel resolution feund-showed a mean precision of 17%
and a detection threshold of 50 kg h-t over spectrally homogeneous surfaces. This method has not yet been applied to satellite

observations where coarser pixels would result in lower sensitivity and where retrievals are more subject to artifacts.
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5 Detection thresholds
5.1 Area sources

Here we examine the ability of area flux mappersto detect total methane emission fluxes fo+from a target domain and with a

desired spatial resolution_within thatdomain. This caninvolve repeated observationsof the same scene over multiple passes

to increase precision and observation density, as illustrated in Fig. 3. The observation time required to detect a desired flux
threshold then depends on the spatial resolution required, the instrument precision, the fraction of successful retrievals, the

pixel size, the variability of emissions, and the return time.

Following the conceptualmodelofJacobetal [2016], the methane column enhancement AX [ppb] resulting from a uniform

emission flux E [kg km-2h]over a square domain of dimension W [km] is given by

AX = 0EW ®3)

with a scaling coefficient a = (Ma/{McH4)g/pU where g-is-the-accelerationof gravityMa and Mcras are the molecular weights
of dry air and methane, g is the acceleration of gravity. p is the surface pressure, and U is the wind speed forventilation of the

domain. With the units above and assumingp =1000 hPa and U= 5km h'1, we have a=4.0x102ppb km h kg. An instrument
with pixel-level precision o [ppb] can detect this emission flux with a single measurement if AX >> oy, but this is often not the
case. Spatialand temporalaveraging of observationsimproves the effective precision, and this im provement goes as the square
root of the number of observations if the error is random, uncorrelated, and representatively sampled (11D conditions). The

time required for detecting the mean emission flux E over a domain of dimension W is then given by

1 s T
t =t, max {meax(l, [5} )} (34)

where tris thereturn time of the instrument (time interval between successive passes), N is the number of observations within
the domain perindividual pass for instrument pixel sizes D smaller than W (for continuous mappingand square pixels we have
N = (W/D)?), F is the fraction of successful retrievals, and o [ppb] is the variability that results from both the instrument

precision and the spatial variability ox (D,W) of the enhancement AX sampled by the pixels within the domain:

G=4/c} +0, (DW)? (45)
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Equations (3)-(5) provide a simple conceptual framework for evaluating the ability of area flux mappers to detect regional
emissions of a certain magnitude. For illustration purposes, consider an application-objective to detect US emissions at 100-
km resolution. In the gridded version of the methane emission inventory from the US Environmental Protection Agency
[Maasakkersetal.,2016], 80% of totalnationalanthropogenic emissions are contributed by 0.1°x0.1° (=<10x10 km?2) grid cells
with emission flux E > 0.4 kg km-2h-1 (Jacob etal., 2016). Shen et al. (2022) find a mean emission of 0.18 Tg a1 for 12 major
oil/gas production basins in the US EPA inventory, which fora typical basin scale of 200x200 km?2 corresponds to a mean
emission flux of 0.5 kg km2h, Taking E = 0.5 kg km-2h™as a desired flux detection threshold on a 100-km scale, we find
from equation (3) a mean enhancement AX= 2.0 ppb. Instrument precisions for the flux mappersin Table 1 are in the range
10-15 ppb and we assume thatox is small in comparison. We furtherassume F = 0.24 for instruments operating at 1.65 um by
analogy with GOSAT using the CO2 proxy method (mainly limited by cloud cover), and F =0.03 for instruments operatingat
2.3 um by analogy with TROPOMI (limited by both cloud cover and spectrally inhomogeneous surfaces). Taking other
instrument properties from Table 1, we find that TROPOMI requires a 40-day1-week averaging period, largely-limited by the
small fraction of successfulretrievals, and GeoCarb requires two passes (1 day).a-similaraveragingperiod-forthe samereason.
GOSAT-GW —in-wide-swath-modex qnh- S n‘} 4 rlng because-itusesthe1-65 E band. The other regiona| instruments of
Figure 4 eperatingat .65 pm (GOSAT-GW—in—narrow-swath-mode, MethaneSat, Sentinel-5, CO2M) can meet the flux
threshold in a single pass and are limited solely by their return time. If we used a 10-km spatial resolution requirement then

only MethaneSat could meet the flux threshold in a single pass onaccountofits high precision, though its observing domain
would be limited to 200x200 km?.

The above conceptualmodel is crude and overoptimistic, assumingideal reduction of errors and uncorrelated retrieval success

across instrument pixels, and ignoring regienal-variable bias, but it is useful for intercomparing instruments and it highlights

critical variables determining detection thresholds for different applications. The advantage of the 1.65 um band is readily
apparent because it has-achieves a much higher success rate through the CO2 proxy retrieval. The MethaneSAT instrument
with high precision and small pixels is most useful for quantifying fluxes at high spatial resolution. For coarser resolutions,
return time and spatial coverage can be more important considerations. A-future TROPOMI-likeinstrument with-5.5x7 km?

5 cto. oI}

CO2M-with-its-2x2 km?pixels-but 5-day return-time-

5.2 Point sources

In the case of point source imagers, the detection threshold applies to single-pass observations of the plumes. Table 3 lists
point source detection thresholds reported in the literature for different instruments. Detection thresholds are defined by the
ability to determine the plume mask against a noisy background and to retrieve the corresponding emissions. The detection

thresholds for a given instrument depend strongly on surface type and are lowest for flat, bright, spectrally homogeneous
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surfaces. They also depend on wind speed, which complicates the definition of detection threshold because weak winds

facilitate detection but cause large error in quantification (Varon et al., 2018). The best range of wind speeds to allow both

detection and guantification is 2-5 m s (Varon et al., 2018). Sherwin et al. (2022) conducted a series of Seme-controlled

release experiments under those favorable surface and wind conditions and confirmed the ability of GHGSat to quantify

emissions down to 200 kg h-t and Sentinel-2, Landsat-8, PRISMA, and WorldView-3 to guantify emissions down to the 1400-
4000 kg h! range.

Table 3: Point source detection thresholds for different satellite instruments?

Instrument Detection threshold (kg ht) Reference
TROPOMI 25000 Lauvauxetal. (2022)
Sentinel-2, Landsat-8/9 1800-25000¢ Varon et al. (2021); Ehret et al. (2022);
Irakulis-Loitxate et al. (2022a)
PRISMA 500-20009 Guanteret al. (2021)
MethaneSAT 500 Chan Miller et al. (2022)
GHGSat-D 1000-3000 Jervis et al. (2021)
GHGSat-C1, C2 100-200¢ Gauthier (2021)
Carbon Mapper 50-200f Duren et al. (2021)
WorldView-3 <100 Sanchez-Garcia et al. (2022)
AVIRIS-NG (aircraft)e 2-10M Duren et al. (2019)

a The detection thresholds are as reported in the references and are generally for favorable winds (<5 m s1) and favorable
surfaces (flat, bright, spectrally homogeneous) unless otherwise indicated. As pointed out in the text, weak winds are favorable
for detection but not for quantification and this places some ambiguity in the definition of detection threshold. Specifications
foreachinstrumentare in Table 1. Instrumentsnotyet launched are in italics.

b From an ensemble of 1800 observed detections for TROPOMI 5.5x7 km?2 pixels. The pixels may contain multiple point
sources.

¢ Observations over surfacesranging from flatand bright (Sahara)to highly heterogeneous (farmland).

dFrom LES synthetic plumes and observations over surfaces ranging from Sahara (flat bright homogeneous surfaces) to Shanxi
Province in China (darker more heterogeneous surfaces with significant terrain)

¢ From controlled releases (MacLeanetal., 2021; Sherwin et al., 2022).

f50 kg h-tin target mode with pointing, 200 kg h-tin push-broom mode.
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9Airborne imaging spectrometer with spectral resolution of 5 nm and pixel resolution of 1-8 m depending on aircraftaltitude
(Thorpe et al., 2017).

h Observations in California with range determined by surface brightness.

For a given surface and wind speed, the main instrument predictors of point source detection threshold are spatial resolution,
spectral resolution, and precision. Finer spatial resolution decreases the dilution of the plume enhancements over the pixel
area, thus increasing the magnitude of the enhancementswithin plume pixels and facilitating detection. An airborne imaging
spectrometer observing from low altitude such as AVIRIS-NG (with spatialresolution of 1-8 m dependingon aircraft altitude)
is in-thismannerthus much more sensitive than satellite instruments with similar spectral resolution. Higher spectralresolution
increases precision and reduces the aliasing of surface spectral features into the methane retrieval (Cusworth et al., 2019;
Jongaramrungruangetal.,2022a). For hyperspectraland multispectral instruments-with-cearse-spestralreselution, the spectral
positioning of the bandsrelative to the methane absorption lines is also important (Scaffutoetal.,2021; Sanchez-Garcia etal.,
2022). Precision depends on other instrument properties beyond spectral resolution and positioning, including the capability
of pointing to specific targets to increase the SNR through longer sample collection. Pointing is how GHGSat achieves a

combination of high spatialand spectralresolution.

The detection thresholds in Table 3 are not strictly comparable between instruments because they reflect different levels of
evidence. One may still usefully classify the instruments by order-of-magnitude thresholds_of ~100 kg h-t, ~500 kg h™!, and

~1000-10000 kg h't (Fig. 4). Instruments in the ~100 kg h-1 class include GHGSat, WorldView-3, and Carbon Mapper. A
typical point source imager with spatialresolution ~30 m requires spectralresolution of 5 nm or better to fit into thatthis class
(Cusworth et al., 2019), though WorldView-3 can achieve this class for bright spectrally homogeneous surfaces through its

combination of very high spatialresolution (3.7x3.7 m2) and favorable spectral positioning (Sanchez-Garcia et al., 2022).

Instruments in the ~500 kg h-1 class include the land hyperspectralsensors (PRISMA, EnMAP, EMIT) and MethaneSAT. The
land hyperspectralsensors have ~30 m spatialresolution and achieve thisat class with 10 nm spectral resolution in the 2.3 um
band, enabling either a full-physics or matched filter retrieval. MethaneSAT will have coarser 130x400 m? spatialresolution
but higher precision enabled by 0.3 nm spectralresolution in the 1.65 um band, with the added benefit of allowing a CO2 proxy
retrieval to minimize artifacts (Chan Miller et al., 2022).

Instruments in the 1000-10000 kgh-! class include the multispectralland sensors Sentinel-2 and Landsat with 20-30 nm spatial
resolution and a single measurement in the 2.3 um band to allowa simple Beer’s law retrieval. TROPOMI can detect extremely
large point sources or clusters of sources (>25,000 kg h') over its 5.5x7 km2 pixels (Lauvaux et al., 2022), though coarse

spatialresolution hinders source identification.

32



740

745

750

755

The relevance of measuring individual point sources at these different thresholds can be assessed by considering their
contributionsto totalemissions. Cusworth et al. (2022) find on average that 40% of emissions from US oil/gas fields originate
from point sources > 10 kg h'! detectable by AVIRIS-NG.—an4d Fig. 7 shows the cumulative frequency distributions_(CFDs)
by numberand totalemission of ->10 kg h-1 point sources sampled by airborne remote sensing over beth-California and over

US oil/gas fields (Duren et al.,, 2019; Cusworth et al., 2022). Results are shown for individual regions and for the combined

CDECFD with equalweighting between regions. A satellite instrumentwith detection threshold of 100 kg h-t could detect 50-
950% of point sources depending on the region (80% for the combined data set), inthatdata-set, contributing 75-998% of

point source emissions_(95% for the combined data set). An instrument with detection threshold of 1000 kg h- could detect
100-15% of point sources_(5% for the combined data set), contributing 0-55% 40%-of point source emissions_(30% in the
combined data set). Hshouwld-be-emphasized-thatdifferentdatasetsmay-showdifferentdistributions—Brandtetal. (2016) find
thatsourcesin the 10-100 kg h-! range contribute 20% of emissions from point sources > 10 kg h-*in their survey of emissions

from US oil/gas fields. The dataset of Fig. 7 alse-includes only a few emitters in the ~10,000 kg h-! range. Global statistics of
aircraft and satellite data suggest a power law frequency distribution of point source emissions with ~100x fewer sources at
10000 kg h't thanat 1000 kg h't (Ehret et al., 2022; Lauvaux et al., 2022). These so-called ultra-emitters could still contribute

significantly to totalemissions in some regions.
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Figure 7: Cumulative frequency distributions (CFEDs) -of point source rates above 10 kg h-* for 3879 point sources detected by
airborne remote sensing in California and in US oil/gas basins by Duren et al. (2019) and Cusworth et al. (2022). Many of the
individual point sources were detected multiple times, and the values entered in the frequency distributions are the averages of these
detections not including non-detection events; they thus represent the average emission from the source when on, as is relevant to
the definition of the instrument detection threshold Co in equation (8). The colored curves are for individual regions and the black
curve is the combined CFD for all regions with equal weighting per region. The top panel bite-surve gives the cumulative fraction
of emissions contributed by detected pointsources above a given rate, and the red-survebottom panel gives the cumulative fraction
of the number of pointsources. For example, a satellite instrument with detection threshold of 100 kg h'* could detect 9980% of the
point sources_in the combined CED, contributing 9895% of total point source emissions. An instrument with detection threshold of
1000 kg h could detect 105% of the pointsources_in the combined CFD, contributing 4030% of total pointsource emissions.

6 Observing system completeness
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Here we introduce the concept of observing system completeness as the capability of an instrument (or ensemble of
instruments) to fully quantify their target emissions within a selected domain and time window. For area flux mappers the

target would be the total methane emissions_everwithin theat domain at a desired spatial resolution, while for point source

imagers the target would be the total emissions everwithin _theatdomain contributed by point sources;-which-would-we-have

defined forpracticalpurposes-as-sources>larger than 10 kg ht.

6.1 Observing system completeness for area flux mappers

Observations from area flux mappers are generally used to infer 2-D distributions of total emissions over the-a observation
regional domain of interest by Bayesian inference. The observing system completenessis then defined by the DOFS (Sect. 4.1
and Fig. 5). Given n state vector elements of emissions on the 2-D grid, the DOFS tell us how many of those elements are
actuallyquantified by the observations, and the averaging kernel sensitivities (diagonalterms of the averaging kernel matrix,

adding up to the DOFS) give thatinformation for the individual state vector elements.

As pointed out by Nesser et al. (2021) and Varon et al. (2022), it is possible to roughly estimate the DOFS of an observing
system fora selected domain and time period without doing any actualforward model calculations. Considera domain divided
into n emission state vector elements of individual dimension W [km], sampled with an instrument providing m successful
observations over the domain in the selected time period. Let oa be the mean prior error standard deviation forthe individual
state vectorelements, and oo the mean observationalerror standard deviation. The DOFS can then be estimated as
no’
PINCY Vi
m

DOFS = (58)

where k = AX/E [ppb km?2h kg?] is the Jacobian matrix element thatrelates the column mixing ratio enhancement AX [ppb]
over a state vector element to the emission flux- E [kg km-2 h'1] for that element. Following Nesser et al. (2021), we can
approximate k with a simple massbalance modelas

M, Wg

()]
Mep, Up

k=n

where 1 is a coefficient to account forturbulent diffusion. Nesser et al. (2021) and Varon et al. (2022a) find thatn=0.4 is a
suitable value for W in the range 25-100 km. Further assuming U = 5km h-tand p = 1000 hPa we obtain k = 1.4x101°W [ppb
kmZ2hkg1]. The mean prior error standard deviation can be estimatedas ca = fQa/(NW2) where Qa is the totalprior estimate of
emission in the domain [kg h-1]and fis the fractionalerror (such as50%). For the example of Fig. 5with a 1-month inversion
of TROPOMI observations over the Permian Basin, Varon et al. (2022) find that this rough estimate prior to doing the

inversions yields a DOFS of 11.7, close to the value of 10.8 found in the actualinversion.
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The simple estimate of DOFS in equation (6) yields basic insights into the factors affecting observing system completeness
foranarea flux mapper. Instrumentprecision and number of observations (or observation density fora given area)are critical.
The requirement for improving the prior estimate dependson the error for that prior estimate. Increasing the requirement on
spatialresolution (large n, small W) leadsto smaller absolute prior errors forindividual state vectorelements and raisesin turn

the requirement on the precision and number of observations.

6.2 Observing system completeness for point source imagers

Observing system completeness for a point source imager can be defined as its ability to quantify totalemissions from point
sources >-larger than 10 kg h-! over a selected domain and time window. Completeness in observation of point sources is
important notonly for complementing the information from area flux mappers but also for leak detection and repair (LDAR)
programs where regular survey of point sources in a region canenable promptaction to fix malfunctioningequipment (Kemp
etal, 2016; Fox et al., 2021). Current LDAR programs rely on a combination of ground surveys, drones, and aircraft, but we

will see thatsatellites haveanimportantrole toplay.

Let C e [0,1] denote the observing system completeness for point sources as the fraction of total point source emissions =
larger than 10 kg hwithin a domain and time window that can be detected by a given instrument (or constellation-ensemble
of instruments). C is limited by a combination of the instrument detection threshold (Cp), spatialcoverage (Cs), and temporal

sampling (Cr):

C=C, xC, xC, _ 78)

Here Cpis the fraction of point source emissions thatcanbe detected on the basis of the instrument’s detection threshold, as
inferred for example from Fig. 7. Csis the fraction of the domain thatthe instrument observes at least once within the time
window. If there is full spatial coverage within the time window then Cs= 1. Cr = 1- (1-Fp)" is the probability for an observed
source to be actually detected within the time window given the number N > _1 of observations in the window, the source
persistence p (fraction of time that the source is emitting above the detection threshold), and the fraction F of successful
retrievals, taken here asthe fraction of clear-sky observations. Forexample, an intermittent source with p = 0.2 that is observed
with a 1-week return time and 30% clear skies would have Ct = 0.96 for 1 yearof observationsbut Ct = 0.23 for 1 month. If
spatial coverage and observing frequency are sufficient, then C is limited by the instrument’s detection threshold (Cp). If they
are not, and depending on source persistence and cloud cover, then Cs and Cr may limit observation system completeness

ratherthan Cp.
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Figure 8 shows the frequency distribution of persistence (p) for 2500 oil and gas point sources detected and quantified by the
airborne AVIRIS-NG and Global Airborne Observatory instruments in US field campaigns (Cusworth et al., 2022). The left
panelshows the frequency distribution of mean emissions from individual point sources for each persistence bin. From there
we can estimate the observing system completeness forany instrument on the basis of its detection threshold, spatial coverage,
and returntime. Theright panelplots the resulting cumulative observing system completeness for the ensemble of 2500 point
sources as achieved by anairborne instrument with 10 kg h-! detection threshold and bi-monthly (60-day) sampling interval,
and by a satellite system with 100 kg h-1 detection threshold and bi-weekly (14-day) sampling interval. The calculation is done
fora 1-yeartime window with 30% clear skies, assuming Cs = 0.95 in both cases,and the cumulative results are shown across
the range of persistence bins. We see in this example that the two observing systems have comparable success for persistent
sources (p > 0.5) by trading Cp for Cr, but the satellite system is better for intermittent sources (p < 0.5), despite its higher

detection threshold, because of the greater benefit from frequent observations.
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Figure 8: Point source rates, persistence, and observing system completeness for an ensemble of 2500 oil/gas point sources sampled
by aircraft remote sensing in five US oil/gas basins (Cusworth et al., 2022). The left panel shows the frequency distribution of mean
point sources rates for different persistence bins (p, fraction of the time that the source is detected), where the mean is computed by
assuming zero emission when no plumeis detected. Boxes and whiskers indicate 10t, 25t, 50t, 75t and 90t percentiles. The right
panel shows the frequency-histogrampercentage of total point source emissions contributed by-ef different persistence bins. Also
shown in that panel is the cumulative observing system completeness C = Co xCs xCr (equation (8)) for 1 year of observations under
30% clear-sky conditions and two observing systems, one with 100 kg h- detection threshold and bi-weekly sampling (green line)
and one with 10 kg h'* and bi-monthly sampling (red line). We assume spatial coverage Cs = 0.95 for both. The observing system
completeness is computed individually for each basin and then averaged. Both observing systems have comparable performance for
sources with high persistence (p > 0.5) but the biweekly observing system performs better for sources with low persistence despite
its higher detection threshold.

Figure 9 further illustrates the trade space between detection threshold and return time for determining observing system

completeness. Results are for the ensemble of 2500 point sources with statistics given in Fig. 8. We see from Fig. 9 thataAn

observing system completeness of 0.5-6 can be achieved by an instrument with a detection threshold betterthanof 300250 kg
h-tsampling atleastweekly. Such an instrument performsaswell asone with low detection threshold but sampling only every

3-2 months. Achieving an observing system completeness ef-higher than 0.8 requires an instrument with detection threshold

better than 1500 kg h-1sampling at least biweekly.

Our calculation of Cras presented above assumesthata point source follows a binary emission frequency distribution (on/off)
with constantemissionswhen on. Actual sources have more complex variability (Allen et al., 2022; Zimmerle et al., 2022). A
simple analysis can be done by assuming Gaussian statistics following Hill and Nassar (2019) to estimate the number N of
observations needed to quantify a mean point source emission rate (1£3)Q with relative precision of & defined by the 95%

relative confidence interval:
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Here o is the standard deviation of individual measurements determined by instrument precision (o1) and variability in the

| source (os). Using statistics from airborne surveys in the Permian Basin, we find that 64 f;lear-sk-y-samplesobsen/ations]ger

875 year (roughly weekly return time, assuming 30% clear skies) would be required to estimate annual point source emissions
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from thathighly intermittent population within 50% (p = 0.24, o1 = 36%, os = 45%; Cusworth et al. (2021b)). Increasing the
| required annual emission precision to 35% would require 130 samples-observations per year (3-day return time). For a less
intermittent population (p = 0.5), we find N = 30 (biweekly sampling) to achieve 50% precision and N = 64 (weekly sampling)

toachieve 35% precision. These observing frequenciescan be achieved with a satellite constellation but would be challenging
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Figure 9: Observing system completeness of a point source imager as a function of detection threshold and return time. The
calculation is for the ensemble of point sources in Fig. 8. Observing system completeness for a point source imager is defined here
as the ability to quantify emissions from all point sources =larger than 10 kgh.

The tails of the pdfs for point source emissions are a particular challenge to sample representatively. The pdfs are generally
heavy-tailed, resulting in low estimate of mean emissions (Zimmerle et al., 2022), which may be addressed with very dense
sampling (Y._Chen et al., 2022) or with supporting observations from area flux mappers. Persistence is defined in the
observations by the frequency of occurrence of emissions above the detection threshold, but non-detection could represent the
low tail of the pdf rather than an on/off switch. The definition of persistence may thus depend on the detection threshold,
increasing the importance of that threshold as a measure of observing system completeness. Further complicating matters is
that the instrument detection threshold is variable, depending notably on the wind speed atthe time of observation. This calls
for better characterization of the full pdf of emissions from point sources as a meansto extrapolate the observations (Allen et
al., 2022).
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7 Concluding remarks

Satellite observations of atmospheric methane in the shortwave infrared (SWIR) provide an increasingly powerful system for
continuous monitoring of emissions from the global scale down to point sources. We reviewed the current and scheduled fleet
of instruments including area flux mappersto quantify totalemissions on regional scales and point source imagers to quantify
individual source rates. We discussed retrieval methods to infer concentrations from measured radiances, precision and
accuracy requirements, inverse methodsto infer emissions from observed concentrations,emission detection thresholds, and

observing system completeness.

Synergy between different satellite instrumentsis importantto exploit. Area flux mapperscan constrain total emissions while
point source imagers provide specific attribution. Detection of coarse-resolution hotspots by area flux mappers can direct
targeted observation by point source imagers to identify the causes. Point source observationswith adequate completeness can
improve the bottom-up estimates used as prior information in inversions of area flux mapper data. Constellations of point
source imagers can achieve high observing system completeness in support of point source mapping and leak detection and

repair (LDAR) programs.

Synergy with suborbital (ground-based and airborne) platformsis essential for a multi-tiered observing strategy (Cusworth et
al., 2020). Suborbital observations have a unique role to complement the intrinsic limitations of satellites in terms of spatial
resolution, return time, cloud cover, dark surfaces,and nighttime. Surface measurementsare typically ten times more sensitive
to local emissions than satellite observations (Cusworth et al., 2018). They can also include correlative chemicalinformation
such as isotopes, ethane,and ammonia concentrations (Yuanet al., 2015; Ganesanetal., 2019; Graven et al., 2019; Pétron et
al.,, 2020; Yanget al., 2020).

Correlative chemical information available from satellites needs to be better exploited. Concurrent satellite observations of
CO and methane have been used to quantify methane emissions from open fires (Worden et al., 2013) and from cities (Plant

et al., 2022)_by reference to CO emissions, although this is contingent on an accurate CO emission inventory and errors in

these inventories are often large. GeoCarb will measure methane, CO,, and CO, offering further application of this method

including the use of methane/CO, enhancement ratios, Concurrent enhancements of CO2 and methane in oil/gas fields

observed by the PRISMA instrument, together with nighttime flare data from the VIIRS instrument, have been used to identify
flaring point sources and quantify flaring efficiency (Cusworth et al., 2021a). Measurements of ammonia from space (Van
Damme et al., 2018) have the potential to identify livestock sources but they-have not yet been used in combination with

methane.
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Some methane sources are intrinsically difficult to observe from space including over water, the wet tropics, and the Arctic.
Potentially large methane sources over water include offshore oil/gas facilities, wastewater facilities, hydroelectric and
agricultural reservoirs, and estuaries. Large-sourcesThey can be observed in the sunglint mode or frem-by lidar (Kiemle et al.,
2017; Ayasseet al.,, 2022; Irakulis-Loitxate etal., 2022b). The wet tropics and the Arctic are a challenge because of persistent
cloudiness, compounded in the Arctic by high solar zenith angles and polar darkness, and by the collocation of oil/gas and
wetland emissions. The MERLIN lidar instrument will provide unique observation capability for the Arctic-butwith-sparse
spatialcoverage due tothe narrow laserspot. The GeoCARB geostatlonarylnstrumentshsuld-wnl increase data den5|ty over
tropical South America
coarsepixelsize will limit the improvementin coverage. The tropics are thought to be the principal driver for the recent
methane increase (Chandra etal.,2021; Yinetal.,, 2021; Zhangetal.,2021),and there would be considerable value in dedicated

geostationary or inclined-orbit satellite observations of the tropics with high pixel resolution.

challenge—Ultimately theThe ultimate goal of top-down methane emission estimates ismust-be to improve bottom-up

estimatesinventories, as the latter provide the foundationalteslsinformation needed for climate pelicy—action by relating

emissions to processes. Top-down information may have insufficient sectoraldetail, but this calls for tipand-cuepartnerships
where discrepancies identified by satellite for a particular sector motivate work to improve activity—and/oremission
factorbottom-up estimates for that sector. The aew-International Methane Emissions Observatory (IMEO) (United Nations
Environmental Program, 2021) aims to facilitate this infusion of top-down information into the improvement of bottom-up

inventories_on a global scale in support of the Paris agreement, and collaboratives in the oil/gas industry aim to achieve the

sameatthe level of oil/gas production fields and individual facilities (Cooper et al., 2022).

The capability is thus emerging for satellite observationsto anchora global methane monitoring system delivering global
information on emissions in nearreal time, from the global scale down to point sources, to support climate policy and to guide
corrective action. The basic framework for building such a facility is already here and will be rapidly augmented in coming

yearswith the launch of new instruments.
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