- 1 Reconciling the total carbon budget for boreal forest wildfire emissions using airborne
- 2 observations
- 3

17 **Abstract**

 Wildfire impacts on air quality and climate are expected to be exacerbated by climate change with the most pronounced impacts in the boreal biome. Despite the large geographic coverage, there is limited information on boreal forest wildfire emissions, particularly for organic compounds, which are critical inputs for air quality model predictions of downwind impacts. In this study, airborne measurements of 193 compounds from 15 instruments, including 173 non-methane organics compounds (NMOG), were used to provide the most detailed characterization, to date, of boreal forest wildfire emissions. Highly speciated measurements showed a large diversity of chemical classes highlighting the complexity of 25 emissions. Using measurements of the total NMOG carbon (NMOG_T), the $\Sigma NMOG$ was found to be 50 \pm 3 to 53 \pm 3 % of NMOG_T, of which, the intermediate- and semi-volatile organic compounds (I/SVOCs) were estimated to account for 7 to 10 %. These estimates of I/SVOC emission factors expand the volatility range of NMOG typically reported. Despite extensive speciation, a substantial portion of 29 NMOG_T remained unidentified (47 \pm 15 to 50 \pm 15 %), with expected contributions from more highly-

1 Introduction

 Wildfires play a natural role in maintaining forest health and diversity through the release of nutrients, seed germination, removal of aging vegetation, and reducing the spread of forest diseases. Wildfires are, however, one of the largest global sources of trace gases and aerosols to the atmosphere (Andreae, 2019; Yu et al., 2019) and can have deleterious impacts on human health (Cascio, 2018; Cherry and Haynes, 2017; Reid et al., 2016; Finlay et al., 2012), air quality (Landis et al., 2018; Miller et al., 2011; Rogers et al., 2020), ecosystems (Kou-Giesbrecht et al., 2019; Campos et al., 2019; Kallenborn et al., 2012; Johnstone et al., 2010) and climate (Randerson et al., 2006). Not only can wildfire pollutants fumigate local source areas, they can be transported over long distances resulting in degraded air quality in locations far from fire sources (Miller et al., 2011; Rogers et al., 2020), and pose threats to downwind ecosystems through wet and dry deposition processes (Kou-Giesbrecht et al., 2019; Kallenborn et al., 2012; Campos et al., 2019). The severity and frequency of wildfires is expected to increase in response to climate change (Bush and Lemmen, 2019; Seidl et al., 2017; Whitman et al., 2019) with evidence to suggest that such impacts are expected to be most pronounced in the boreal biome (Seidl et al., 2017; Whitman et al., 2019). The boreal forest zone is the most northerly of all forest biomes accounting for 1.2 billion ha of mostly coniferous forest and comprising about 33 % of the global forest area, or 14 % of the earth's land surface (https://www.nrcan.gc.ca/our-natural-resources/forests/sustainable-forest-management/boreal-forest/8-facts-about-canadas-boreal-forest/17394). On a global basis, boreal forest wildfires are

responsible for an estimated 20 % of yearly global biomass burning emissions (van der Werf et al., 2006).

62 Canada's boreal forests account for \sim 28 % of the global boreal zone area and encompasses 75 % of

Canada's 347 million ha of forested land (Fig. S1) (https://www.nrcan.gc.ca/our-natural-

resources/forests/sustainable-forest-management/boreal-forest/8-facts-about-canadas-boreal-forest/17394.

In the past decade, Canada has experienced unprecedented fire seasons, with large numbers of

evacuations, major property damage, poor air quality and significant economic impacts (NRCan, 2018;

 extending from VOCs to SVOCs. The wide range of measured NMOGs, along with concurrent total 94 NMOG carbon $(NMOG_T)$ measurements, provides a unique opportunity to reconcile the total carbon budget. Emission factors are derived for 193 compounds which represents the most extensive chemical speciation of wildfire emissions to date, almost tripling the number of reported values for the boreal forest ecosystem in the Andreae (2019) compilation paper. Emission estimates are also combined with those from satellite observations to evaluate modelled diurnal variability. The purpose of this work is to provide relevant emissions information for boreal forest wildfires to ultimately contribute towards improved emissions quantification and chemical speciation representations in air quality models.

2 Methods

2.1 Aircraft measurements

 The NRC's Convair-580 research aircraft was deployed on June 25, 2018 to sample a wildfire detected to the east of the Alberta/Saskatchewan border (56.4°N, 109.7°W) (Fig. 1). Measurements of a comprehensive suite of trace gases, particles and meteorology were made with high time resolution. Meteorological measurements including relative humidity, temperature, wind direction and speed, as well as aircraft state parameters such as altitude (masl) and geographic coordinates were conducted at 1 sec time resolution. A detailed description of the various measurement methods with references is provided in the supporting information (SI Sect. 1.1, Table S1, S2), with only a brief description provided here. **2.1.1 Trace gas measurements** In-situ measurements of NO, NO₂, NO_y, O₃ and SO₂ were conducted using commercial instruments (Thermo Scientific Inc.) modified to measure at 1 sec time resolution. Ammonia (NH3) measurements were made at 1 sec time resolution using a Los Gatos Research (LGR) NH3/H2S Analyzer, model 911-0039. Gas phase elemental Hg (GEM) was measured with a Tekran 237X instrument (Tekran Instruments Corporation) modified to allow a reduced sampling time of 2 min (McLagan et al., 2021; Cole et al., 2014). CO, CO² and CH⁴ were measured with a Cavity Ring Down spectroscopy instrument (Picarro G2401-m). A second Picarro G2401-m instrument was used to measure Total Carbon (TC, in units of ppm C) by passing the sample air through a catalyst to convert all carbon

119 species to CO_2 . Total non-methane organic gases (NMOG_T), in mixing ratios units of ppm C, was

- 120 quantified by subtracting the ambient CH₄, CO and CO₂ measurements (instrument without the catalyst)
-

121 from the TC measurements (see SI Methods for more details).

 Individually speciated NMOGs (as well as some inorganic species) were measured with a Chemical Ionization Mass Spectrometer (CIMS), a Proton Transfer Time-of-Flight Mass Spectrometer (PTRMS), and through whole air sampling using canisters (Advanced Whole Air Sampler; AWAS). In addition, integrated cartridge-based samples were taken. The CIMS (a modified Tofwerk/Aerodyne Api- ToF) was operated using iodide as the reagent ion providing 1 sec time resolved measurements for 30 compounds (Table S2). The PTRMS (Ionicon Analytik GmbH, Austria) used chemical ionization with H_3O^+ as the primary reagent ion providing 1 sec measurements for a suite of organic compounds. For those compounds with no available gas standard, a relative response factor was calculated with reaction rate constants using the method described in Sekimoto et al. (2017) and guided by the work of Koss et al. (2018) ('calculated' compounds). Integrated 'grab' samples (20-30 sec) were collected from the aircraft using the Advanced Whole Air Sampler (AWAS) with offline analysis. The AWAS provided speciated measurements of hydrocarbons (≤C10), but no oxygenates. Overlapping compounds/isomers that were measured by both the PTRMS and AWAS, as well as between the PTRMS and CIMS, were handled as described in SI Sect. 1.1.4. Integrated gas phase samples were collected using an automated adsorbent tube (i.e. cartridge) sampling assembly with offline analysis (Ditto et al., 2021; Sheu et al., 2018; Khare et al., 2019). These samples provided targeted measurements of gas-phase compounds ranging in volatility 138 from C_{10} volatile organic compounds (VOCs) to C_{25} semivolatile organic compounds (SVOCs) including hydrocarbons (CH), and functionalized compounds containing 1 oxygen atom (CHO1), and 1 sulfur atom (CHS₁).

2.1.2 Particle measurements

 Particle chemistry was obtained with a high resolution aerosol mass spectrometer (AMS) 143 (Aerodyne) providing mass concentrations of particle species including total organics (OA), NO₃, SO₄ 144 and NH₄ for particles less than \sim 1 µm. Particle size distributions were measured between 60 and 1000 nm at 1 sec time resolution using the Ultra High Sensitivity Aerosol Spectrometer (UHSAS; Droplet

Measurement Technologies). Refractory black carbon (rBC) was measured using a single particle soot

photometer (SP2; Droplet Measurement Technologies).

2.2 Flight and fire description

 A wildfire located near Lac La Loche in Saskatchewan (56.40°N 109.90°W) was detected by satellite on June 23 (Fig. 1; Fig. S1). The fire was ignited by lightning on June 23, 2018 at 19:45 UTC and lasted 50 hrs to June 25 21:41 UTC burning an estimated 10,000 ha before being extinguished by rain. The area burned was mostly mature Jack pine and boreal spruce forest with a smaller fraction of boreal mixed-wood forest. Satellite images from the VIIRS spectroradiometer on the Suomi NPP and NOAA-20 satellites taken on June 25 showed merged fire hot spots with a visible smoke plume moving in a north-westerly direction (Fig. 1; see SI Sect. 2.0 for more details). Lagrangian flight tracks were flown downwind of the wildfire to follow the fire plumes. Multiple horizontal transects, vertically stacked and perpendicular to the plume direction were made at different altitudes from 640 to 1460 m asl (~220 – 1040 m agl, based on 420 m asl at Lac La Loche) forming virtual screens. Five screens were 160 completed over two flights with the closest screen ~10 km and the farthest screen 164 km downwind of the fire, with the screens spaced such that the instruments sampled the same air parcels as they were transported downwind. A vertical profile which typically reached ~2500 m asl was conducted in the plume at each screen to gather information on its vertical structure and the height of the plume. As demonstrated by the elevated CO mixing ratios in Fig. 2, two distinct plumes were identified - a south 165 plume (SP) and north plume (NP), that were transported in parallel in a northwesterly direction. The SP is estimated to be ~42 min old based on the measured wind speed at Screen 1 and the distance from the closest edge of the VIIRS fire hot spots (~10 km). The NP is estimated to be an additional 30 min older 168 than the SP (further details in SI Sect. 2.0). For the purposes of this investigation, only data from Screen 1 are used to characterize the direct emissions from this fire. There were no significant anthropogenic sources like upwind urban or industrial areas, impacting the Screen 1 measurements. Plume evolution

 during transport from Screen 1 to downwind Screens 2 to 5 is discussed in other papers (Ditto et al., 2021; McLagan et al., 2021).

2.3 Emission ratios

 Emission ratios (ERs) were calculated using an integration method (e.g. Yokelson et al., 2009; Garofalo et al., 2019) using the in-plume measurements for the SP and NP. The integration method was carried out for the real-time measurements by first subtracting a background from the in-plume 178 measurements. Background measurements were defined as the average over short time segments (~30) sec) outside and at the same altitude as inside the plume, and typically selected at the ends of the horizontal transects. The background-subtracted plume measurements yielded enhanced plume values 181 (e.g. $\Delta X(t)$) which were then integrated using the plume start and end times guided by when CO mixing ratios were above the CO background. Nominal plume time periods are indicated by the vertical grey bars in Fig. 3 which shows time series for CO, NMOG, OA and acetonitrile for the first 4 of 5 transects on Screen 1. Integrated pollutant values were subsequently normalized by the integrated values of CO (Eq. 1) to account for changes due to dilution producing emission ratios (ER) for the SP and NP for each 186 transect on Screen 1.

188
$$
ER = \frac{\int_{start}^{end} \Delta X(t) (dt)}{\int_{start}^{end} \Delta CO(t) (dt)}
$$
(1)

 CO is known to be a suitable dilution tracer as it has a long atmospheric lifetime of 1-4 months (Seinfeld and Pandis, 1998), is unreactive on the time scale of the measurements. , In this study, ERs were 192 calculated using CO as it was enhanced above a background of $\sim 0.119 \pm 0.005$ ppmv for the plumes measured, there were no other significant CO sources in the study area, and CO is a particularly good tracer for smoldering fires (e.g. Simpson et al., 2011).

 ERs for the AWAS compounds were determined using the average mixing ratio of 3 samples taken in the SP and two in the NP, and the average mixing ratio of two background samples. CO mixing ratios were averaged across the AWAS sample time period. For the integrated cartridges, samples were collected over the lower set of aircraft transects ('LOW') and higher set of transects ('HIGH'), resulting in two integrated cartridge samples for each screen. The HIGH sample was used as the background. The HIGH sample was collected largely outside the wildfire plume, but may have been influenced to some extent from emissions. However, this impact is expected to be minimal as average CO mixing ratios during the HIGH sample were at background levels (~0.14 ppmv). Nevertheless, to address the potential for influence of the plume in the HIGH sample, the ERs are presented as ranges with the lower estimates derived by subtracting the HIGH background sample, and the upper estimates without subtracting the 205 HIGH sample. This calculation is described in Eq. 2 where *Cartridge_{LOW}* represents the LOW cartridge 206 sample measurements, *Cartridge*_{BKGD} is the background derived from the HIGH cartridge sample measurements, and *COLOW*, *COBKGD* are the average CO concentrations during the respective LOW and HIGH cartridge integration time periods. The uncertainty with this bounding analysis is acknowledged, but the I/SVOCs ERs within a plume are likely to vary similar to other work (Hatch et al., 2018).

$$
ER = \frac{Cartridge_{LOW} - Cartridge_{BKGD}}{CO_{LOW} - CO_{BKGD}} \tto \frac{cartridge_{LOW} - 0}{CO_{LOW} - CO_{BKGD}} \t\t(2)
$$

2.4 Emission factors

 Emission factors (EFs) were determined as the mass of species X emitted per unit mass of dry 214 fuel burned in g kg⁻¹ assuming that all of the carbon in the fuel was released into the atmosphere and measured (Ward and Radke, 1993; Yokelson et al., 2007), and that the mass fraction of carbon in the fuel 216 is constant. EFs were determined using Eq. 3 where F_c is the mass fraction of carbon in the fuel and 217 estimated to be 0.5 (de Groot et al., 2009 and references therein), mm_x is the molar mass of the compound 218 of interest, and mm_c is the molar mass of carbon, 12 g mol⁻¹, ΔX is the integrated background-subtracted 219 mixing ratio or concentration of the species of interest, ΔTC is the integrated background-subtracted TC.

220 TC (see Sect. 2.1) was directly measured and includes all the carbon mass in $CO₂$, CO, CH₄, and

 221 NMOG_T, as well as that from particulate black carbon (rBC) and particulate organic carbon (OC) (which

222 were added to the TC), for a complete accounting of all the emitted carbon. For species measured in mass 223 concentration units, Eq. 3 was modified by converting TC to mass concentrations using the measured 224 temperature and pressure, and removing the molar mass ratio term. The EFs for the AWAS and the 225 cartridge samples were derived using the average measurements as discussed for the ER, but with TC as 226 the denominator.

227

228
$$
EF\left(\frac{g}{kg}\right) = F_c \times 1000 \left(\frac{g}{kg}\right) \times \frac{mm_X}{mm_C} \times \frac{\int_{start}^{end} \Delta X(t) \, (dt)}{\int_{start}^{end} \Delta T c(t) \, (dt)}
$$
(3)

229

230 EFs were determined for the SP and NP for each transect, and then averaged to obtain screen-averaged 231 EFs for the SP and the NP, as well as for both plumes together.

232 **2.5 Emissions Uncertainties**

 There is the potential for inherent uncertainties using a plume integration method for calculating EFs and ERs as the ratios derived this way represent the average plume composition and ignore the spatial heterogeneity in wildfire plumes (Palm et al., 2021; Decker et al., 2021; Garofalo et al., 2019), chemical transformation processes, and can also be affected by changing background levels. Pollutants released by wildfires can be influenced by photochemical and physical changes that may take place between the time of emission and the time of measurement, particularly for more reactive compounds (e.g. Palm et al., 2021; Lindaas et al., 2020; Peng et al., 2020; Akagi et al., 2011). Although controlled laboratory studies are well suited to examine direct emissions with minimal aging, they cannot reproduce realistic burning conditions. Field measurements are critical to understand emissions that are impacted by factors such as complex burning dynamics, fuel moisture, temperature and winds (Andreae 2019). 243 Recognizing the challenges of measuring primary emissions by aircraft, at 10 km $\left($ <1 hr) away from the

 fire source, Screen 1 measurements represent some of the freshest emissions measured under wildfire conditions, thus providing best estimates of initial conditions.

 Uncertainties in the EFs and ERs are estimated by summing in quadrature the standard error of the average EF (or ER) and the propagated measurement uncertainties. The standard error is used as description of the uncertainty on the average EF (and ER) characterizing repeated transects across the SP and NP for a total of 20 min of in-plume sampling. The standard error is expected to at least partially capture uncertainties associated with plume aging and vertical plume heterogeneity. As many compounds 251 exhibited significant in-plume enhancements above background levels, uncertainties in the integrated ΔX , 252 ACO and ΔTC values were assumed to be dominated by instrumental (measurement) uncertainties (Table S1, S2). Emissions are not reported for compounds where the average mixing ratios were within 1σ of the background average. The low and high I/SVOCs EFs (and ERs) are provided as estimates of their uncertainties (as described in Sect. 2.3). The derivation of AWAS and cartridge EFs (and ERs) may have potential limitations as they rely on a limited number of samples, with the potential of the AWAS discrete samples capturing only part of a plume.

2.6 Combustion efficiency

 Combustion efficiency (CE) is a useful indicator of the relative proportion of flaming vs smoldering stages of combustion which has a significant influence on the chemical composition of the 261 smoke (see SI Sect. 3.0 for further details). Flaming fires have CE >0.90 (Yokelson et al., 1996) and 262 smoldering fires are typically ~0.8 with a range of 0.65 to 0.85 reported in the literature (Akagi et al., 2011; Yokelson et al., 2003). A modified combustion efficiency (MCE) is commonly calculated 264 assuming that $CO₂+CO$ adequately represents all of the fuel carbon that has been volatilized and detected in ambient air. Here, as the TC in the plume was directly measured, ΔTC was used in Eq. 4 to improve 266 on the estimation of the CE by accounting for all the sources of carbon. ΔCO_2 and ΔTC in Eq. 4 are the integrated, background-subtracted mixing ratios.

$$
269 \t CE = \frac{\Delta CO_2}{\Delta T C} \t(4)
$$

3 Results and Discussion

3.1 Fire combustion state

 The plume-averaged CE for the SP (transects 1 to 4) was 0.84±0.04 and for the NP (transects 1 to 3) 0.82±0.01. Transect 4 was excluded from the calculations for the NP because only a portion of the plume was detectable at this altitude (Fig. 3). The derived CE indicates that the fire was predominantly in a low intensity smoldering phase which is consistent with the satellite-derived fire intensities during the flight (see Fig. 10) and ground-based meteorological observations, and may reflect some residual smoldering combustion (RSC). It is estimated that emissions from this fire were sampled 14 hrs post flaming. Other chemical measurements from this flight also support that the fire was largely smoldering 280 including the detection of elevated $C_2H_4O_2^+$ (levoglucosan fragment from the AMS), and no detectable K⁺ (from the AMS) (Lee et al., 2010). Significant spatial variability in the concentrations of many of the measured species were observed closest to the fire source, while the plumes became more well-mixed as they were transported downwind (Fig. S6). This highlights the complexities of assessing wildfire combustion processes (Ward and Radke, 1993), and in particular, boreal forests have been observed to exhibit greater variability in combustion efficiencies than for other vegetation types (Urbanski et al., 2009).

3.2 General plume features

 Table A1 shows mixing ratios (or concentrations) and background levels of 193 pollutants that were enhanced in the fire plumes. The quantification of this suite of compounds provides new and additional emission estimates to those reported in Simpson et al. (2011) and compiled in Andreae (2019) for the boreal forest ecosystem. Several sulphur-containing compounds and a few other VOCs were not detected (Table S6), and although not part of the measurement suite in the present study, Simpson et al. (2011) did not observe emissions of anthropogenic halocarbons from wildfires in the same boreal forest

 ecosystem. In Fig. 3, the in-plume portions are highlighted by the grey vertical bars and the SP and NP are indicated as the aircraft flew at increasing altitudes to complete five horizontal transects. The lowest 4 296 transects showed enhanced pollutant levels while the $5th$ transect (not shown) was predominantly above the height of the plumes. Higher concentrations were generally observed in the SP compared to the NP, possibly because of some plume dilution in the NP resulting from a change in wind direction prior to sampling. The SP and NP were distinctly separated from each other, with pollutants typically dropping to 300 background levels between the plumes. NMOG_T mixing ratios varied between background levels of \sim 375 ppbv to near 10 ppmv in-plume. CO and acetonitrile, often used as tracers of biomass burning (e.g. Wiggins et al., 2021; Landis et al., 2018; Simpson et al., 2011; de Gouw et al., 2006), reached 6.6 ppmv 303 and 20 ppbv, respectively in the SP, while maximum OA concentrations reached 276 μ g m⁻³, above a 304 background level of \sim 12.5 \pm 0.83 µg m⁻³. OA was the largest contributor to particulate mass (PM) comprising over 90 % of the measured submicron mass with remaining portion comprised of BC, NO3, NH4, and SO⁴ (Fig. S6). Integrated filter samples taken from the aircraft across Screen 1 also showed the presence of a diverse set of functionalized particle-phase organic compounds (Ditto et al., 2021). 308 The most abundant reactive nitrogen compounds (N_r) were in the forms of reduced nitrogen (79 %) 309 with NH₃ comprising 42 % of ΣN_r (Fig. 4) and substantially lower nitrogen oxides i.e. NO_x < 1 ppbv. Dominant proportions of reduced nitrogen in biomass burning emissions were also reported previously (Lindaas et al., 2020; Burling et al., 2011; Yokelson et al., 1996). Nitrogen-containing organics were 312 detected in the present study totalling 3.9 ppbv and 18 % of ΣN_r (Fig. 4), however, other such compounds that were not included with the instrument suite used in this study were also likely emitted. Such compounds could include organic nitrates, amines, amides, heterocyclic compounds, nitriles and nitro compounds that have been found in biomass burning emissions (Roberts et al., 2020; Lindaas et al., 2020; Andreae 2019; Koss et al., 2018; Tomaz et al., 2018; Stockwell et al., 2015). Alkyl nitrates have been identified in biomass burning emissions, but their contributions to total N_r appeared to be small (Juncosa- Calahorrano et al., 2021; Roberts et al., 2020; Lindaas et al., 2020; Simpson et al., 2011; Alvarado et al., 2010; Singh et al., 2010).

3.3 Total carbon budget

3.3.1 NMOG chemical classes – PTRMS, CIMS, AWAS

 In-plume mixing ratios and the relative contribution of individually measured NMOG species to the sum of those species (ΣNMOG) are shown for 13 chemical classes in Fig. 5. (See Fig. S7 for separate SP and NP chemical classes). The largest chemical classes include carbonyls (acids, aldehydes and ketones), alcohols, hydrocarbons (alkanes, alkenes, alkynes), aromatics (including furans, phenol, 326 benzene and toluene), and nitriles. Hydrocarbons (i.e. C_xH_y , including some aromatics) were responsible for just over half of the ΣNMOG (53 %) (Fig. S8), with 29 % identified as alkenes such as ethene, propadiene, and propene, 19 % alkanes, predominantly ethane, and 3 % alkynes, almost entirely acetylene. Non-aromatic oxygenates accounted for an additional 36 % of the ΣNMOG with roughly equal contributions (9 to 12 %) from acids, aldehydes and alcohols, and a smaller fraction from ketones (5 %). Including other oxygenated compounds such as furanoids and phenol/phenol derivatives, all 332 oxygenates $(C_xH_yO_z)$ comprised 42 % (Fig. S8), of the ΣNMOG.

 A similar range of compound classes has been observed in previous field and laboratory studies, noting that the measured compound suite between studies varies to some extent. For example, Simpson et al. (2011) found a similar distribution of compound classes with 57 measured NMOG species, based on discrete canister samples, in boreal forest wildfires. In that study, oxygenates (non-aromatic) comprised a smaller portion of NMOG (29 %) as major emitted species like acetaldehyde and acetic acid (Fig. 8) were not included. Other studies have also found oxygenates to be a large portion of NMOG emissions across multiple fuel types, including those similar to the current study, ranging from 51 – 68 % (Permar et al., 2021; Koss et al., 2018; Gilman et al., 2015; Akagi et al., 2011) with a range of 25 – 55 % reported in Hatch et al. (2017). The fraction of NMOG oxygenates in the present study (42 %) was closer to those reported in Hatch et al. (2017) when only the most relevant fuel types of pine and spruce were considered (55 % and 43 %, respectively). Similar to previous work (Koss et al., 2018, Stockwell et al., 2015; Hatch et al., 2015), emissions of substituted oxygenates like furanoids (furans+derivatives) and phenolic compounds were observed. Furanoids contributed 4 % of the ΣNMOG mostly due to furfural, furan and

 methyl furan while phenolic compounds eg. guaiacol, methyl guaiacol, contributed 0.5 % of the ΣNMOG (Fig. S9). Although these emissions were less abundant in the present study, they represent important OH reactants (Coggon et al., 2019; Koss et al., 2018; Gilman et al., 2015) with phenols being implicated as precursors to brown carbon formation in secondary organic aerosol (SOA) (Palm et al., 2020).

 Biogenic emissions of terpenoids including isoprene, monoterpenes, carvone, sesquiterpenes, camphor/isomers and terpine-4-ol/cineole/isomers were elevated in the plumes collectively reaching ~2.4 ppbv, and contributing ~2 % to the ΣNMOGs (Fig. S9). Isoprene was ~66 % of these compounds with an additional 32 % from monoterpenes. Emissions of isoprene from biomass burning has been observed from a wide range of fuel types (Hatch et al., 2019). As isoprene is not stored by plants and the measurements were taken ~14 hrs post flaming, it was likely emitted as a combustion product.

 In this study, furfural was the most abundant oxygenated aromatic compound and a factor of 5 times higher than that of phenol. Although Koss et al. (2018) found that phenol and furfural emissions were similar for most fuels tested in the laboratory, furfural emissions derived from multiple wildfires sampled in Permar et al. (2021) were similar to those in the present study, and a factor of 1.6 higher for phenol. As phenol emissions are associated with lignin pyrolysis (Stockwell et al., 2015; Simoneit et al., 1999), the lower emissions in the current study could be because the lignin content in the fuel mixture was lower than fuels used in previous laboratory studies or that most of the phenolic compounds were emitted during the earlier phases of the fire. Several modelling studies have indicated that aromatics and terpenes are insufficient to explain SOA formation in biomass burning plumes (e.g. Hodshire et al., 2019) suggesting the importance of inclusion of other aromatic species such as phenolics and furanoid compounds. However, models typically do not include reactions involving phenolic and furanoids species, especially substituted compounds like furfural, guaiacol, and methyl guaiacol. Box model simulations have also shown that incorporation of OH oxidation of furan, 2-methyfuran, 2,5- 369 dimethylfuran, furfural, 5-methylfurfural, and guaiacol, leads to 10 % more O₃ formed (Coggon et al., 2019).

3.3.2 Intermediate-volatility and semivolatile organic compounds (I/SVOCs)

 Offline analysis of cartridge samples showed a wider range of hydrocarbons and functionalized gas-phase organic compounds not observed in the PTRMS, CIMS, and AWAS measurements, including I/SVOC compounds in the wildfire plume. ERs (Table S7) for species containing carbon and hydrogen, 375 and with either sulfur or oxygen (i.e. CH (hydrocarbons), $CHS₁$ and $CHO₁$ type molecules)) accounted for 376 a sizeable fraction of carbon in the C_{10} to C_{25} range. Additional contributions are expected from more highly functionalized organics in the gas (and particle) phase not reflected in the CH, CHO₁, and CHS₁ compound classes (e.g., gas-phase species with multiple oxygen atoms like vanillic acid or acetovanillone, and gas-phase species containing combinations of oxygen and nitrogen atoms (CHON) (Ditto et al., 2021; 2022)). ERs in the plume varied across the carbon number range; in general, the highest ratios were observed for the complex mixture of hydrocarbons (i.e. CH compounds) broadly 382 peaking at C_{20} -C₂₃ in the SVOC range, with a larger contribution from C₁₀ compounds including monoterpenes. By comparison, the complex mixture of CHO₁ compounds was slightly lower in abundance than CH with contributions from C_{10} monoterpenoid emissions or monoterpene oxidation products. CHS₁ IVOC-SVOCs were the lowest abundance species quantified. CHN₁ compounds represent another observed contributor of IVOCs-SVOCs; the sum of all CHN¹ compound ion abundances was two orders of magnitude smaller than the sum of all CHO¹ species. We note that for CHN1, this qualitative comparison is in terms of ion abundances only, given a lack of appropriate standards to calibrate for the mass spectrometer's response to the complex mixture of reduced nitrogen-containing I/SVOCs.

391 EFs were estimated to be $1.4 \pm 0.037 - 2.4 \pm 0.063$ g kg⁻¹ for CH, $0.81 \pm 0.078 - 0.81 \pm 0.079$ g kg⁻¹ $f_{\rm 2}$ for CHO₁, and 0.21 \pm 0.0033 – 0.22 \pm 0.0060 g kg⁻¹ for CHS₁ species, for a total EF of 2.4 \pm 0.12 – 3.5 \pm 0.15 $g \approx \log^{-1}(T_{\text{table A}})$. Here, the uncertainty represents measurement uncertainty associated with the conversion from signal to mass, and the reported ranges show lower and upper limit EF values that account for a contaminated background and that assume no background concentrations, respectively (as 396 described above). These estimates accounted for C_{11} - C_{25} species and focused on I/SVOCs to avoid double counting the monoterpenes and C_{10} monoterpenoid species, as they were already accounted for in

 the PTRMS data. It is noted that the concentrations estimated for the cartridge samples may be sensitive 399 to variations in sampling efficiency within the under-wing sampling pod across C_{10} - C_{25} though these effects are expected to be minimal for the adsorbent tubes used in this study (Ditto et al., 2021; Sheu et al. 2018). These emission estimates expanded the characterized spectrum of organic species to include IVOC/SVOCs in boreal forest fire emissions, which until now, had only been available from laboratory measurements (Hatch et al., 2018). However, the observed emissions of the complex mixture of hydrocarbons and functionalized species may include contributions from the re-volatilization of compounds previously emitted from upwind oil sands operations and deposited in the forest ecosystem, as

noted in Ditto et al. (2021).

3.3.3 Accounting for the observed carbon

 Measurements of TC, along with the speciated measurements from the PTRMS, CIMS, AWAS and cartridges, provided a unique opportunity to reconcile the TC budget in a wildfire. Fig. 6 shows the TC partitioning based on derived EFs (Sect. 3.5); overlapping compounds from the individual measurement methods were handled as described in SI Sect. 1.1.4. The total EF for all carbon-containing 413 compounds was 1652 g kg⁻¹ and, as expected, $CO₂$ was the dominant contributor comprising >90 % of 414 TC. CO contributed 7.0 % followed by a contribution from $NMOG_T$ of 1.9 % with even smaller 415 contributions observed from CH₄ (0.5 %) followed by OC and BC (not shown) at <0.5 %. The two magnified pie charts (right side), representing the low and high I/SVOC EF estimates, show the percent breakdown of the measured NMOGs, and the remaining unidentified portion of NMOGT. The EF values (2.418) (g C kg⁻¹) are identified in the box below. The ΣNMOG EFs (for PTRMS+CIMS+AWAS measurements), 419 totalling 13.6 ± 0.9 g C kg⁻¹, accounted for 43 ± 3 % of the NMOG_T EF of 31.2 ± 4.7 g C kg⁻¹ (refer to Fig. S10 for the individual SP and NP breakdowns). The ΣNMOG uncertainties were estimated by summing 421 in quadrature the individual compound EF uncertainties for the SP and NP separately, with these uncertainties subsequently summed in quadrature to derive the average ΣNMOG uncertainty (Fig. 6). The cartridge data showed the presence of a range of larger molecular weight I/SVOC compounds

424 between C_{10} and C_{25} with an additional 2.1 to 3.0 g C kg⁻¹ representing 7 to 10 % of NMOG_T. Together, 425 all of the speciated NMOG measurements in this study accounted for 50 ± 3 % to 53 ± 3 % of NMOG_T. The 426 remaining carbon mass was unidentified comprising 47 ± 15 % to 50 ± 15 % of NMOG_T. Despite using four state-of-the-art measurement techniques resulting in an extensive measurement suite, almost half of 428 NMOG_T remained unidentified. This is consistent with previous work estimating ~50 % of NMOG_T by mass as unidentified (Akagi et al., 2011). It is noted, however, that the magnitude of the unidentified portion is partly affected by uncertainties in the speciated measurements. For example, many of the 'calculated' PTRMS compounds are uncertain by an estimated factor of ~2 (SI Sect. 1.1.1, Table S1). Nevertheless, a portion of the unidentified species likely consisted of challenging-to-measure-VOCs and larger I/SVOCs that were highly functionalized or contained molecular features like reduced nitrogen groups (e.g. amines) that have been observed in the gas and particle phase at various sites (Ditto et al., 2020; Ditto et al., 2022). The presence of I/SVOCs in biomass burning emissions has been previously observed in laboratory experiments (e.g. Koss et al., 2018; Hatch et al., 2018; Hatch et al., 2017; Bruns et al., 2016) with smoldering more likely to emit a higher fraction of compounds with low volatility than higher temperature processes (Koss et al., 2018). The unidentified portion may also have been comprised of nitrogen-containing organics (Sect. 3.1). Studies that included measurements of a larger range of nitrogen-containing organics in biomass burning emissions estimated that they comprised < 5-6 % of the total nitrogen budget (Lindaas et al. 2020; Gilman et al., 2015), and thus, an even smaller fraction of NMOGT. Advancing analytical techniques to expand the suite of NMOG speciation will enable further reconciliation of the TC budget which is important for assessing secondary formation processes in the atmosphere.

3.3.4 Volatility distribution of NMOG

 Volatility distributions can help track the full range of organic species to assess their partitioning between the condensed and gas phases (Donahue et al., 2011). Fig. 7 shows the fractional sum of all AMOG EFs within each volatility bin in terms of saturation concentration ranges ($log_{10}C_0$, μ g m⁻³) for the 449 low I/SVOC EF estimate. C_0 values were estimated using the parameterization developed by Li et al.

450 (2016). NMOG emissions from this fire spanned a large range of volatilities from $log_{10}C_0$ of -2 to 10 µg 451 m⁻³ across SVOC to VOC categories. The bin-averaged O/C ratio based on the measurements increased with reduced volatility reflecting the presence of compounds with additional oxygen-containing 453 functional groups. The highest fraction of emissions was present as VOCs with 81 % having $log_{10}C_0 > 6$ 454 µg m⁻³, 9 % as IVOCs having $4 < log_{10}C_0$ µg m⁻³ < 6 µg m⁻³ and 10 % as SVOCs having $log_{10}C_0 < 3$ µg m⁻ $\frac{3}{2}$. These results align with laboratory studies showing that oxygenates comprised more than > 75 % of IVOCs across a range of biomass types with IVOCs accounting for ~11 % of the ΣNMOG (Hatch et al.; 2018). Fig. 7 encompasses the range of volatilities based on all the identified NMOGs in this study that is expected to represent initial emission conditions for modelling downwind chemistry. However, improved speciation, particularly of lower volatility compounds, is needed to further expand the range of volatilities and advance knowledge in gas to particle partitioning processes.

3.4 Emission factors and comparisons with other studies

 EFs (and ERs) in this study are derived for 193 compounds from 15 instruments of which 173 are NMOG species (Table A1). This dataset represents the most extensive range of field-based EFs ever determined for a wildfire in the boreal forest ecosystem. In Fig. 8 average EFs are shown for compounds grouped by a) particles, b) gas-phase inorganics, and c) gas-phase organics. Separate EFs and ERs for the SP and NP are shown in the SI (Figs. S11 to S13). In Fig. 9a-c, EFs are compared with those from other relevant studies. Fig. 9a shows a comparison with boreal forest field measurements largely taken from a compilation by Andreae (2019) referred to as BFF19, as well as values from Akagi et al. (2011) and Liu et al. (2017). This results in a comparison for 50 compounds (35 organics and 15 inorganics/particulate species) with the largest suite of EFs from one study conducted in a similar boreal region as the present study (Simpson et al., 2011). EFs are also compared with laboratory-derived EFs for lodgepole pine Koss et al. (2018; referred to as LAB18) (Fig. 9b), a similar fuel type in the current study, with a total of 99 NMOGs and 3 inorganics in common. In Fig. 9c, EFs are compared with those recently reported in Permar et al. (2021) (referred to as TFF21) based on aircraft measurements of temperate forest wildfires

 in areas mostly dominated by pine, fir and spruce trees, which provides the closest suitable comparison with similar speciated NMOGs under wildfire conditions. Comparisons include 111 NMOGs, and 4 inorganics/black carbon. While the Permar et al. (2021) study was conducted in a temperate forest region, it was at high elevation locations with similar vegetation types as the current study.

3.4.1 Particle species The PM₁ EF (6.8 \pm 0.8 g kg⁻¹) represents the total of all particle component species 482 as measured by the AMS. The PM₁ EF of 6.8 ± 1.1 g kg⁻¹ (Fig. 8a) (accounting for estimated mass differences due to particle diameters (SI Sect. 1.1.2)) falls in the lower end of the large range previously 484 observed for boreal forest wildfires (18.7 \pm 15.9 g kg⁻¹; Fig. 9b). The few PM EFs for BFF19 (n=5) over a limited range of MCEs (i.e. 0.89 to 0.93) shows significant variability consistent with previous work (Jolleys et al., 2015; Akagi et al., 2011; Cubison et al., 2011; Hosseini et al., 2013). OA, accounting for 487 90 % of PM₁, has the largest EF, with comparatively lower EFs for NO₃, BC, NH₄, and SO₄ (Fig. 8a, Fig. S6). This reflects the dominant particle-phase organic carbon content of the burned fuel and correspondingly lower fractions of nitrogen and sulphur-containing compounds. Similar high organic fractions have been previously observed in biomass burning emissions (Liu et al., 2017; May et al., 2014; Hecobian et al., 2011). ERs similarly highlight the dominant OA emissions. Although the magnitude of EFs between the SP and NP are within their derived uncertainties, the ERs showed differences by up to 70 % for NH⁴ (Fig. S12) suggesting some differences in photochemistry between the two plumes. EFs and ERs for chemically-speciated particle species derived in this study represent the first such measurements under boreal forest wildfire conditions. EFs for chemically speciated compounds are not found in BFF19 (except BC), but when compared with available values for U.S. temperate forest wildfires 497 (Liu et al., 2017) are found to be lower for OA (Fig. 9a), SO_4 , NO₃ and NH₄ by factors of 3.7, 5.0, 5.3, and 3.0, respectively. Although differences in fuel type burned between the present study (mature Jack pine, boreal spruce, boreal mixed-wood) and Liu et al. (2017) (mixed conifer, grass, brush and chaparral) may influence the chemical composition of emissions, these large differences suggest the importance of other factors in controlling OA emissions. The lower OA emissions under smoldering conditions in the

 current study compared to Liu et al. (2017) with higher combustion efficiencies (0.877 to 0.935) conflicts with some findings showing increased OA emissions with lower fire intensities (Liu et al., 2017, Burling 504 et al., 2011). However, the relationship between EF_{OA} and combustion efficiency can be impacted by multiple factors such as OA loading, gas-particle partitioning related to dilution, and fuel moisture content 506 (May et al., 2014). The EF_{OA} in the current study (6.6±2.6 g kg⁻¹) lies in the range of EF_{OA} reported for 507 prescribed burns across three temperate ecosystems $(2.8\pm1.6 \text{ to } 11.2\pm2.7 \text{ g kg}^{-1})$ (May et al., 2014). This may imply that the low intensity, surface, smoldering wildfire conditions in the present study (Sect. 3.1) may be similar to prescribed burn conditions which are typically low intensity fires that are restricted to the forest floor and understory, and conducted under controlled and consistent meteorological and fuel moisture conditions (Yokelson et al., 2013; Carter and Foster, 2004). Inorganic PM emissions, however, are likely more dependent on fuel elemental composition than combustion efficiency (Liu et al., 2017). Differences in fuel composition between boreal and temperate forest ecosystems are inferred through 514 comparisons of NO_x and SO₂ emissions. For example, the average NO_x and SO₂ EFs for boreal forests, are lower than the average EFs for temperate forests by factors of 2.5 and 3.0, respectively. The lower NO_x and SO₂ emissions from boreal vs temperate forest wildfires are likely reflective of the reduced S and N content in boreal biomass (Bond-Lamberty et al., 2006) relative to conifer (Misel, 2012) fuels in the western U.S., as well as the possible influence of lower anthropogenic sources of nitrogen and sulphur atmospheric deposition in boreal forests (Jia et al., 2016).

 3.4.2 Gas-phase inorganic species The largest average EFs for inorganic gases (Fig. 8b; separate NP 522 and SP Fig. S11) were from reduced nitrogen compounds dominated by NH₃ (0.63 \pm 0.14 g kg⁻¹) and followed by HCN (0.31 \pm 0.07 g kg⁻¹), with lower EFs for oxidized nitrogen compounds such as NO₂ 524 (0.15 \pm 0.04 g kg⁻¹) and HONO (0.02 \pm 0.012 g kg⁻¹). This is consistent with previous work identifying elevated emissions of NH³ and HCN during smoldering conditions, whereas emissions of HONO and NO_x are primarily associated with flaming combustion (e.g. Roberts et al., 2020; Akagi et al., 2013; 527 Yokelson et al., 1997; Griffith et al., 1991). The EFs for CO₂ and CO from the present study are

 comparable within uncertainties of that previously reported for BFF19 (Table A1). However, EFs for 529 most other gaseous inorganic species were lower than the BFF19 EF average including $NH₃$ HONO, and 530 NO_x by factors of 4.0, 20, and 7.1, respectively(Fig. 9a). There are only a limited number of studies reporting EFs for these compounds in the BFF19 category. For example, there are only 4 previously 532 reported BFF19 EFs for NH₃ (2.5 \pm 1.8 g kg⁻¹) showing a large range of values. Although these comparisons are limited by the few reported values in the literature, the differences indicate a strong sensitivity towards factors like fire intensity, chemical reactivity, fuel type and moisture, and 535 meteorology. In contrast, EFs for HCN derived in the current study $(0.31\pm0.07 \text{ g kg}^{-1})$ lie within the 536 range of BFF19, LAB18 and TFF21 values $(0.28\pm0.06 \text{ to } 0.53\pm0.30 \text{ g kg}^{-1})$, (Figs 9a, b, c, respectively) and does not vary widely suggesting that HCN may be less sensitive to burning characteristics. HCN is of concern due to its impacts on human health particularly since biomass burning emissions are responsible for the majority of the global HCN (Moussa et al., 2016 and references therein).

 3.4.3 Gas-phase organic species In Fig. 8c, the top 25 average EFs for gas-phase organic species are shown in decreasing order of magnitude. The most abundant emissions were from the lower molecular weight compounds; such trends are generally in agreement with previous field-based measurements for a range of fuel types (e.g. Permar et al., 2021; Andreae, 2019; Liu et al., 2017; Simpson et al., 2011; Urbanski et al., 2009). Excluding CH4, the largest EFs were associated with methanol, followed by 546 ethene, ethane, acetic acid, acetaldehyde, formaldehyde, and acetone ranging from 1.9 ± 0.4 g kg⁻¹ to 0.82 \pm 0.22 g kg⁻¹ for these compounds. Noting some variations related to differences in measurement methods, other studies have identified many of these same species as dominating biomass burning emissions (e.g. Permar et al., 2021; Simpson et al., 2011; Akagi et al., 2011). For example, Simpson et al. (2011) found that 5 of the same compounds in the present study including formaldehyde, methanol, ethene, ethane and acetone were in the top 10 NMOG EFs from aircraft-based measurements made of boreal forest wildfires in northern Saskatchewan, Canada, and within ~300 km of the current study. In the present study, the top 24 NMOG compounds accounted for 81 % of the ΣNMOG by total molecular

 mass with lower emissions from the remaining 149 measured compounds. In western U.S. wildfires, small emissions from 151 species were found to account for almost half of ΣNMOG (Permar et al., 2021).EFs for the NP and SP generally agreed within their uncertainties with larger differences for some of the more reactive species like isoprene, monoterpenes, and furan. For example, the SP EF for isoprene 558 was a factor of 3.4 lower than that for the NP (0.64 \pm 0.34 g kg⁻¹) (Fig. S13). Although the reasons for 559 these differences are not yet known, observations of higher O_3 in the SP (52.4 \pm 3.0 ppbv) compared to the NP (44.7±3.6 ppbv) suggest the influence of higher oxidant chemistry in the SP emissions compared to 561 the NP.

562 To compare the total NMOG derived in the present study with those from previous studies that 563 typically sum up their speciated measurements i.e. ΣNMOG, estimates were made using two methods: 1. 564 increasing the ΣNMOG to account for the unidentified portion of NMOG_T; and 2. adjusting the NMOG_T 565 to reflect the total molecular mass (not just the carbon portion). For method 1, the $\Sigma NMOG$ EF 566 (including the I/SVOCs) in this study $(24.5\pm1.6 \text{ to } 25.6\pm1.6 \text{ g kg}^{-1})$ was increased by 50 and 47 % (Fig. 567 6), respectively, equalling 36.8 ± 11.3 to 37.6 ± 12.2 g kg⁻¹. This estimate assumes that the carbon 568 distribution is the same as the identified, speciated measurements. For method 2, based on the speciated 569 measurements, the average molecular mass was 100 g mol⁻¹ and the average carbon number was 6 570 resulting in ~28±24 % of the molecular fraction represented by atoms other than carbon. Adjusting the 571 NMOG_T of 31.2 \pm 3.8 g C kg⁻¹ upwards by 28 \pm 24 % to reflect the additional molecular mass results in a 572 NMOG of 39.9 \pm 5.8 g kg⁻¹. The resulting estimated NMOG in this study of 36.8 \pm 11.3 to 39.9 \pm 5.8 g kg⁻¹ 573 lies between the estimated average of 58.7 g kg⁻¹ for the BFF19 (Fig. 9a) and those estimated from the 574 ΣNMOG EFs of 25.0 g kg⁻¹ (LAB18) (Fig. 9b), and 26.1 \pm 6.9 g kg⁻¹ (TFF21) (Fig. 9c) derived from 575 laboratory- and field-based studies (Table A1). In contrast to the current work, previous estimates of 576 NMOG_T are likely to underestimate total NMOG emissions as they typically represent the sum of 577 measured species only. Some studies have attempted to account for NMOG_T by including the sum of 578 measured plus estimates of 'unknown' portions of NMOGs (ΣNMOGs) (Permar et al., 2021; Koss et al., 579 2018; Stockwell et al., 2015; Gilman et al., 2015). The BFF19 EF was recently doubled from 29.3 ± 10.1 g

580 kg⁻¹ to 58.7 g kg⁻¹ to account for unidentified NMOGs where the ΣNMOGs were measured by FTIR, GC and PTRMS (Andreae, 2019; Akagi et al., 2011). These results support that doubling the ΣNMOG 582 provides a reasonable estimate the $NMOG_T$. It is noted, however, that the average BFF19 NMOG EF is ~1.5 times higher than that derived in the present study, however, this may reflect variability in NMOG emissions even within the same boreal biome.

 Although it is known that acidic compounds are emitted from biomass burning, few studies have quantified their emissions, particularly under field conditions (Andreae, 2019; Veres et al., 2010; Yokelson et al., 2009; Goode et al.; 2000). In this study, EFs for 22 organic acidic compounds were derived (Table A1) representing the most detailed set of organic acid EFs from biomass burning for any ecosystem (Andreae, 2019). The largest EFs for these compounds include acetic acid, C4 oxo-carboxylic acids, and pyruvic acid, all of which are found among the top 24 NMOGs (Fig. 8c). For those measurements that are available for comparison, EFs in the present study were lower for formic acid and acetic acid compared toBFF19, and were also lower than in LAB18, and TFF21, ranging from factors of 1.7 to 8.8 (Figs. 9a, b, c). Organic acids that were in common with TFF21 and LAB18 (Table A1) had lower EFs, with the exception of pyruvic acid, which was substantially higher (> factor of 37) in the present study. Differences in fuel type may be an important factor in the variability of these comparisons. Based on laboratory experiments, Veres et al. (2010) found a large range (factor of 5 to 13) of organic acid emissions with different fuel types suggesting that the lignin content of the fuel could be a source of biomass burning organic acid emissions. Emissions for 10 organic acids that have not previously been reported, as well as several inorganic acids including nitrous acid, isocyanic acid, and peroxynitric acid, are included in Table A1. These acids, representing 9 % of the ΣNMOGs (Fig. 5), are an important class of oxygenates as they can form additional PM (Reid et al., 2005) and influence the hygroscopicity of smoke particles (Rogers et al., 1991; Kotchenruther and Hobbs, 1998). 604 Isoprene and monoterpenes, with similar EFs \sim 0.41 \pm 0.19 g kg⁻¹, represented 16th and 18th,

respectively, of the top 24 NMOG EFs in this study. Terpenes are known to be emitted from a range of

 biomass burning fuels (Andreae, 2019 and references therein), but there have been few measurements in boreal forest wildfire plumes (Simpson et al., 2011; Andreae, 2019). It is noted that PTRMS measurements of IVOCs like sesquiterpenes likely represent lower limits as they tend to be easily lost to 609 sample inlet lines due to their low volatility. The isoprene average EF of 0.42 ± 0.26 g kg⁻¹ was more than 610 a factor of 5 higher, while the monoterpenes EF, 0.41 ± 0.19 g kg⁻¹, was substantially lower than the only reported EF for boreal forest wildfires (Simpson et al., 2011). The difference in EFs for isoprene would 612 be even greater if only the NP EF (0.64 \pm 0.34 g kg⁻¹) is compared (if it is assumed that isoprene emissions were influenced by photochemical losses in the SP). As the present study and the Simpson et al. (2011) study were conducted in similar locations (i.e. boreal forest region within ~300 km of each other), and comparable background levels, these differences are likely driven by fire combustion state, despite having similar study-averaged MCEs. The majority of monoterpenes are stored in plant tissues (resin stores) for long periods of time, but isoprene is synthesized and immediately released by plants, and can also be emitted as a combustion product (Ciccioli et al., 2014; Akagi et al., 2013). Hatch et al. (2019) found that a wide range of terpenoids are released across a variety of biomass types with variable emissions that were dependent on plant species, and specifically related to their fuel resin stores. In the present study, monoterpenes may have 'boiled-off' through distillation processes in the early stages of the fire resulting 622 in lower monoterpenes emissions at the aircraft sampling time, \sim 14 hrs post-flaming. In contrast, the Simpson et al. (2011) study sampled comparatively earlier and more intense fire stages where higher monoterpene emissions were likely released from live or recently fallen trees that still contained significant resin stores. The monoterpenes EF reported by Simpson et al. (2011) was likely even higher given only two monoterpenes were speciated and emissions of other terpenes were likely (Hatch et al., 2019). Higher isoprene emissions in the present study compared to Simpson et al. (2011) could be related to the comparatively larger smoldering component. Although limited data exist on the release of isoprene as a function of fire intensity, negative relationships between isoprene and MCE were observed in Australian temperate forest fires (Guérette et al., 2018) and wheat fields (Kumar et al., 2018).

 Several furanoid compounds also exhibited significant emissions (Fig. 8c) including furfural, 632 furan, and methyl furan ranking $12th$, $19th$, and $22nd$ of the top 24 organic compounds, respectively. Emissions of furanoids have been observed for a wide range of fuel types (Hatch et al., 2017; Simpson et al., 2011). Agreement within uncertainties was found with BFF19 for furfural, and furan (Fig 9a). The 635 EFs for furan $(0.39\pm0.19 \text{ g kg}^{-1})$ and furfural $(0.65\pm0.31 \text{ g kg}^{-1})$ were also similar to that in LAB18 (Fig. 9b), and TFF21 (Fig. 9c), as well as other ecosystems (Andreae, 2019) suggesting their emissions were relatively insensitive to fire intensity and fuel mixture. The comparisons in Fig. 9 indicate that for the higher emitting species, the current results are fairly similar, but for the lower emitting species, these results are lower than previous reported values. These comparisons provide context for the emissions reported in the present study and moves towards improved statistics to better constrain wildfire emissions. Additional factors are considered to explain variability in emissions between this study and other reported values, as well as within this study (NP vs SP). Differences and variability in burn conditions (e.g. fire intensity, winds, fuel density, flame dynamics, fuel moisture) likely influence these comparisons; the Screen 1 measurements in the present study were taken from 9-10 am LT when the fire was in a low intensity, smoldering state, while those in Permar et al. (2021) and Simpson et al. (2011) took place during mid-day under active wildfire conditions. Aircraft measurements in general have a higher probability of sampling variable burn conditions compared to laboratory studies (Hodshire et al., 2019), and as such, aircraft-derived EFs are likely to reflect variability for reactive species as speculated earlier with isoprene. Particularly for reactive species that can exhibit complex variation across plumes, EFs (and ERs) derived by integrating across plumes can be biased low, (Sect. 2.5; Peng et al., 2021; Decker et al., 2021). Also, EFs derived using TC in this study may result in lower, albeit small, EFs compared to reported values that do not account for all the carbon (estimated to be 1-2 % (Akagi et al., 2011)). **3.5 Evaluation of emissions models**

3.5.1 Comparison of EFs with the model emissions speciation profile

 EFs derived in the present study are compared with those that are currently incorporated into the emissions component of the FireWork modelling system using the Forest Fire Emissions Prediction

 System (CFFEPS). CFFEPS uses EFs allocated for 3 combustion states (flaming, smoldering and residual) and for 8 species including lumped non-methane hydrocarbons (NMHC) based on United States vegetation data compiled in Urbanski et al. (2014) (Table 3 in Chen et al., 2019). Fig. 9d (bolded compounds) shows that the smoldering EFs in the present study were comparable for CO, CH⁴ and 662 NMOG,but lower for PM_1 ($PM_{2.5}$), NH₃, SO₂ and NO_x by factors of 3.4, 2.4, 6.6 and 17, respectively. The lower EFs for these species implies that the CFFEPS EFs would not adequately capture their total emissions under smoldering conditions for the boreal fuel in the current measurement study. 665 For incorporation into numerical air quality models, total organic gas ($TOG=NMOG+CH₄$) emissions are typically split into detailed chemical components using chemical mass speciation profiles, and converted to lumped chemical mechanism species. In the FireWork modelling system, the smoldering combustion TOG is split into components based on EPA's SPECIATEv4.5 profile (#95428) (US EPA 2016, Urbanski et al.; 2014 - supplement Table A.2, Boreal Forest Duff/Organic soil). This profile is ultimately compiled using laboratory data from Yokelson et al. (2013), Bertschi et al. (2003), and Yokelson et al. (1997) based entirely on U.S. fuel types. EFs in the present study were found to be

generally lower than the laboratory-based EFs for 74 species in common ranging from factors of 1.7 to

8.5 including for monoterpenes, formic acid, phenol, and furan (Fig. 9d). A few species including

 furfural, propane nitrile and ethyl styrene are comparable, while isoprene and pyruvic acid are notably higher by factors 2 to 5.3.

 For a research version of the FireWork system, the component speciation is mapped to the SAPRC-11 chemical mechanism species (Carter and Heo, 2013) with detailed oxygenated compounds and aromatic species, largely to better represent SOA formation processes. For comparison with the measurement derived speciation profile in this study, EFs were first mapped to SAPRC-11 species and normalized by the total identified mass species fraction without unknowns to obtain mass fractions of relevant model mechanism species (Table S9). Comparing the normalized mass fractions for similar mechanism species (Fig. S14) showed a substantially lower fraction of reactive alkanes (ALK5) with an estimated 5 % in this study compared to 28 % in the SPECIATEv4.5 wildfire smoldering profile. Mass

 fractions in this study are notably higher for the ACYL, ETHE, and ISOP lumped model species by factors of 13, 7 and 51. The mass fraction of CH⁴ is also different with 24 % of TOG in this study compared to 4 % from the SPECIATE4.5 profile. The measurement derived chemical speciation profile is expected to be different from the average speciation profile from EPA's SPECIATEv4.5 due to differences in chemical species identification, fuel type, fire and measurement conditions, and uncertainties on how measured compounds are mapped to lumped mechanism species. The emissions profile developed in the present study can be used to improve predictions of wildfire smoldering emissions specific to the Canadian boreal forest.

3.5.2 Linking aircraft and satellite observations to evaluate modelled emissions diurnal variability

 Wildfires generally exhibit a diurnal cycle with fire intensities maximizing late afternoon and diminishing at night having important implications for fire emissions (Chen et al., 2019). Evaluating modelled emissions throughout the diurnal cycle with observations is a critical step in verifying smoke predictions. Emissions models mostly parameterize diurnal fire emissions with prescribed profiles that distribute daily total emissions to hourly. In CFFEPS, a diurnal profile is applied to allocate daily burn area to hourly intervals, with highest activity in the late afternoon. The actual fuel consumed, and thus, hourly emissions, is then calculated with depth of burn estimates driven by hourly meteorology (Chen et al., 2019). In Fig. 10, for the wildfire in the present study, the hourly CFFEPS-predicted emissions (orange dots) for selected compounds are shown between 2018-06-24 17:00 UTC and 2018-06-25 21:00 UTC, spanning the aircraft sample time (red arrow at 15:00 UTC). After 21:00 UTC, the discrepancy between the CFFEPS-predicted emissions and FRP increased as a result of rain that passed through the area that is not considered in the model bottom-up emission estimates (not shown in the figure). The burning phases are outlined in the figure where flaming (light pink background) is assumed to occur when the atmospheric conditions alongside fire behaviour and emissions model outputs infer a fireline intensity $708 \rightarrow 4,000 \text{ kW m}^{-1}$ (Forestry Canada Fire Danger Rating Group, 1992), and a smoldering fire (blue 709 background) for intensity $\langle 4000 \text{ kW m}^{-1} \rangle$. The fire intensity distinction between flaming and smoldering

710 roughly aligns with the observed minimum for this particular fire with the fire radiative power (FRP, grey 711 dots) retrieval from the GOES-16 satellite sensor of 500 MW where smoldering occurs <500 MW and 712 flaming for >500 MW. The 500 MW threshold over the approximately 1,700 ha of actively smoldering 713 area observed by overnight VIIRS thermal detections gives an estimated energy density of 0.29 MW ha⁻¹. This energy density threshold for smoldering $\langle 0.29 \text{ MW} \rangle$ ha⁻¹ found in this study is in agreement with 715 O'Brien et al. (2015) who found flaming combustion at >0.4 MW ha⁻¹ for lower intensity flaming fires 716 and smoldering combustion at lower energy densities. The FRP represents the sum over all hotspots of 717 this fire for each 15-min observation period. Emission rates in metric tonnes per hour $(t h⁻¹)$ were derived 718 from selected aircraft measurements using a mass balance method that was designed to estimate pollutant 719 transfer rates through virtual screens using aircraft flight data (Gordon et al., 2015) (see SI Methods). 720 Emission rates were estimated to be 29 \pm 2.1 t h⁻¹ for PM₁, 433 \pm 26.7 t h⁻¹ for CO, 0.65 \pm 0.03 t h⁻¹ for NO_x 721 (as NO), and 2.7 \pm 0.16 t h⁻¹ for NH₃ (red arrows). Emission rates were also derived from satellite 722 observations (black arrows) for CO, NO_x , and $NH₃$. Emissions of CO were estimated using a flux method 723 as described in Stockwell et al. (2021) using TROPOMI satellite observations yielding 1670 ± 670 t h⁻¹ at 724 19:06 UTC and 4050 ± 1620 t h⁻¹ at 20:48 UTC. NO_x emissions (9.1 \pm 3.4; scaled to t NO h⁻¹ at 19:06 UTC 725 (not enough high-quality observations for the 20:48 UTC overpass) were derived from the TROPOMI 726 NO₂ dataset using an Exponentially Modified Gaussian approach (Griffin et al., 2021). NH₃ emission 727 rates $(5.6\pm3.9 \text{ t h}^{-1})$ were derived from CRIS satellite observations at the satellite overpass time of 19:00 728 UTC by applying a flux method (Adams et al., 2019).

729 The aircraft measurements were taken when the FRP was low reflecting a smoldering surface 730 fire. However, the satellite overpass occurred ~4 hrs later than the aircraft measurements close to the 731 FRP daily maximum, after which rain passed through the area. The CFFEPS model, exhibiting a 732 prescribed diurnal pattern, captures the increase in NO_x and $NH₃$ emissions between that derived from the 733 aircraft and satellites transitioning from a smoldering to predominantly flaming fire; NO_x emissions 734 increased by a factor >10, whereas the NH₃ emissions increased by a factor of approximately 2. This is in 735 agreement with recent laboratory measurements that found that the release of NO_x is favoured during the

736 flaming stage and the release of reduced forms of nitrogen, such as $NH₃$, is favoured during the

 smoldering phase (Roberts et al., 2020) (also see Fig. 4). However, the CFFEPS CO emission rates do not track the increase in CO emissions between the aircraft-derived value and the two TROPOMI values, indicating that the CO EF for flaming is low in the model. This highlights the need to validate model emission rates with measurements to adjust and update the EFs accordingly.

741 The aircraft- and satellite-derived emission rates for CO , NO_x and $NH₃$ were each ratioed to FRP 742 (in units of t h⁻¹ MW⁻¹, referred to as $R_{species/FRP}$) to represent the two end burning states ie. smoldering and 743 flaming conditions. R_{species/FRP} values were estimated for the flaming and smoldering phases of the fire and it was assumed that flaming occurred for FRP >500 MW and smoldering for FRP < 500 MW. . The CO Rspecies/FRP values were roughly twice as large during smoldering compared to flaming. For the two 746 satellite overpasses during the flaming phase of the fire, the $R_{\text{CO/FRP}}$ values were within the uncertainties 747 (19:06 UTC R_{CO/FRP} = 0.47 \pm 0.25 t h⁻¹ MW⁻¹; 20:48 UTC R_{CO/FRP} = 0.43 \pm 0.23 t h⁻¹ MW⁻¹). The R_{NOx/FRP} 748 value for NO_x is also twice as large for flaming compared to smoldering, and for NH₃, the R_{NH3/FRP} value is ~5 times larger for smoldering than flaming. Total emissions were then estimated by integrating the GOES FRP over the period 2018-06-24 17:00 UTC to 2018-06-25 23:00 UTC (after which no more hot spots were detected by GOES and the fire presumably extinguished), and applying the derived smoldering 752 and flaming R_{species/FRP} values. Assuming that the fire went out when GOES did not observe any hot spots, 753 total emissions for this fire of CO, NO_x and NH₃ are estimated at $22,000\pm8700$, 104 ± 42 , and 84 ± 33 tonnes, respectively. If the fire is assumed to have continued burning when GOES did not detect any fire hot spots (between 22:00 - 04:00 UTC and 07:00 - 15:00 UTC, with an FRP of 150 MW (~GOES detection limit; Roberts et al., 2015), the emissions increase to 24,000±9600, 106±43 and 98±39 tonnes, respectively, providing an upper limit of emissions. The combination of aircraft and satellite-derived emission estimates for multiple species helps to obtain the diurnal variability of emissions and to obtain more complete details on the emission information across different burning stages.

4. Summary and Implications

 This study provides detailed emissions information for boreal forest wildfires under smoldering combustion conditions. Consistent with previous results, highly speciated airborne measurements showed a large diversity of chemical classes highlighting the complexity of emissions. Despite extensive 764 speciation across a range of NMOG volatilities, a substantial portion of NMOG_T remained unidentified (47 \pm 15 to 50 \pm 15 %) and is expected to be comprised of more highly functionalized VOCs and I/SVOCs. Although these compounds are challenging to measure, their characterization is necessary to more fully understand particle-gas partitioning processes related to the formation of SOA. Methodological advancements to achieve higher time resolution speciated measurements of I/SVOCs would move towards further NMOG_T closure and span a more complete range of volatilities. A detailed suite of EFs that were derived in this study builds on previous work (e.g. Simpson et al., 2011; Andreae 2019) and can be used to improve chemical speciation profiles that are relevant for air quality modelling of boreal forest wildfires. Aircraft-derived emission estimates were paired with those from satellite observations demonstrating their combined usefulness in assessing modelled emissions diurnal variability. As satellite instrumentation and methodologies advance, linking emissions derived from aircraft (and ground) observations for additional compounds will improve the ability to simulate and predict the diurnal variation in wildfire emissions. The results presented here represent only one smoldering boreal forest wildfire with limited in-plume sampling times. Additional measurements are needed under a variety of fire conditions (combustion state, fire stage, biomass mixtures, time of day, etc) in order to elucidate the major controlling factors and

improve statistical representation for constraining and modelling these sources. For example,

measurements are needed to assess dark chemistry reactions in biomass burning emissions which have

been shown to be important in the formation of OA (Kodros et al., 2020) and brown carbon (Palm et al.;

2020). In addition, reduced actinic flux associated with high particle loadings in biomass burning

emissions can influence plume chemistry (e.g. Juncosa-Calahorrano et al., 2021; Parrington et al., 2013).

The emissions information in this work can be used for evaluation and improvements of models that are

essential for reliable predictions of boreal forest wildfire pollutants and their downwind chemistry.

Acknowledgements

References

- 814 Adams, C., McLinden, C. A., Shephard, M. W., Dickson, N., Dammers, E., Chen, J., Makar, P., Cady-
815 Pereira, K. E., Tam, N., Kharol, S. K., Lamsal, L. N., and Krotkov, N. A.: Satellite-derived emissions o
- Pereira, K. E., Tam, N., Kharol, S. K., Lamsal, L. N., and Krotkov, N. A.: Satellite-derived emissions of
- carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort
- McMurray area, Atmos. Chem. Phys., 19, 2577-2599, https://doi.org/10.5194/acp-19-2577-2019, 2019.
-
- Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E., Barsanti, K. C., Stockwell, C. E.,
- Yokelson, R. J., Presto, A. A., Robinson, A. L., Sullivan, R. C., and Donahue, N. M.: Production of
- secondary organic aerosol during aging of biomass burning smoke from fresh fuels and its relationship to
- VOC Precursors, J. Geophys. Res.-Atmos, 124, 3583-3606, https://doi.org/10.1029/2018JD029068, 2019.
-
- Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and
- 825 Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
-
- 828 Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S.
829 P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and
- P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and
- particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397-1421,
- https://doi.org/10.5194/acp-12-1397-2012, 2012.
- 832
833

Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R.,

- Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and
- Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South
- Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141-1165, https://doi.org/10.5194/acp-13- 1141-2013, 2013.
-
- Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K. E., Perring,
- A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R.,
- Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A.,
- Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten,
- A., Crounse, J., Clair, J. M. S., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le
- 844 Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, https://doi.org/10.5194/acp-10-9739-2010, 2010.
-
- 848 Andreae, M. O.: Emission of trace gases and aerosols from biomass burning an updated assessment,
849 Atmos. Chem. Phys., 19, 8523-8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. Biomass burni Atmos. Chem. Phys., 19, 8523-8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. Biomass burning 850 emission factors [https://edmond.mpdl.mpg.de/imeji/collection/op2vVE8m0us_gcGC,](https://edmond.mpdl.mpg.de/imeji/collection/op2vVE8m0us_gcGC) ver 14 Apr 2021.
-
- 852 Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global 853 Biogeochem. Cv., 15, 955-966, https://doi.org/10.1029/2000GB001382, 2001.
- Biogeochem. Cy., 15, 955-966, https://doi.org/10.1029/2000GB001382, 2001.
-
- Baumgardner, D., Kok, G., and Raga, G.: Warming of the Arctic lower stratosphere by light absorbing
- particles, Geophys. Res. Lett., 31, L06117, https://doi.org/10.1029/2003GL018883, 2004.
-
- Bertschi, I., Yokelson, R. J., Ward, D. E., Babbitt, R. E., Susott, R. A., Goode, J. G., and Hao, W. M.:
- Trace gas and particle emissions from fires in large diameter and belowground biomass fuels, J. Geophys. Res.-Atmos, 108, 8472, https://doi.org/10.1029/2002JD002100, 2003.
-
- Bond-Lamberty, B., Gower, S. T., Wang, C., Cyr, P., and Veldhuis, H.: Nitrogen dynamics of a boreal
- black spruce wildfire chronosequence, Biogeochemistry, 81, 1-16, [https://doi.org/10.1007/s10533-006-](https://doi.org/10.1007/s10533-006-9025-7) [9025-7,](https://doi.org/10.1007/s10533-006-9025-7) 2006.
-
- Bruns, E. A., El Haddad, I., Slowik, J. G., Kilic, D., Klein, F., Baltensperger, U., and Prevot, A. S. H.:
- Identification of significant precursor gases of secondary organic aerosols from residential wood combustion, Sci. Rep., 6, [https://doi.org/10.1038/srep27881,](https://doi.org/10.1038/srep27881) 2016.
- 869
870
- Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P., Wold, C. E., Griffith, D. W. T., Johnson, T.
- 871 J., Reardon, J., and Weise, D. R.: Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States, Atmos. Chem. Phys., 11, 12197-12216, particles emitted by prescribed fires in the United States, Atmos. Chem. Phys., 11, 12197-12216,
- https://doi.org/10.5194/acp-11-12197-2011, 2011.
-
- 875 Bush, E. and Lemmen, D. S.: Canada's changing climate report, Government of Canada, Ottawa, ON., 444 pp., www.ChangingClimate.ca/CCCR2019, 2019.
- Campos, I., Abrantes, N., Pereira, P., Micaelo, A. C., Vale, C., and Keizer, J. J.: Forest fires as potential 879 triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem,
880 Land Degrad. Dev., 30, 2360-2370, https://doi.org/10.1002/ldr.3427, 2019.
- Land Degrad. Dev., 30, 2360-2370, https://doi.org/10.1002/ldr.3427, 2019.
- 882 Carter, W. P. L. and Heo, G.: Development of revised SAPRC aromatics mechanisms, Atmos. Environ., 77, 404-414, [https://doi.org/10.1016/j.atmosenv.2013.05.021,](https://doi.org/10.1016/j.atmosenv.2013.05.021) 2013.
- 884
885 Carter, M.C., and Foster, C.D., Prescribed burning and productivity in southern pine forests: a review: Forest Ecol. Mgmt., 191, 93-109, 2004.
- Cascio, W. E.: Wildland fire smoke and human health, Sci. Total Environ., 624, 586-595, https://doi.org/10.1016/j.scitotenv.2017.12.086, 2018.
-

- Chen, J., Anderson, K., Pavlovic, R., Moran, M. D., Englefield, P., Thompson, D. K., Munoz-Alpizar, R.,
- and Landry, H.: The FireWork v2.0 air quality forecast system with biomass burning emissions from the
- Canadian Forest Fire Emissions Prediction System v2.03, Geosci. Model Dev., 12, 3283-3310, https://doi.org/10.5194/gmd-12-3283-2019, 2019.
-
- Cherry, N. and Haynes, W.: Effects of the Fort McMurray wildfires on the health of evacuated workers: follow-up of 2 cohorts, Can. Med. Assoc. J., 5, E638-E645, https://doi.org/10.9778/cmajo.20170047, 2017.
-
- Ciccioli, P., Centritto, M., and Loreto, F.: Biogenic volatile organic compound emissions from vegetation fires, Plant, Cell Environ., 37, 1810-1825, https://doi.org/10.1111/pce.12336, 2014.
-
- Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., Hagan, D. H., Selimovic, V., Zarzana, K. J., Brown, S. S., Roberts, J. M., Müller, M., Yokelson, R., Wisthaler, A., Krechmer, J. E.,
- Jimenez, J. L., Cappa, C., Kroll, J. H., de Gouw, J., and Warneke, C.: OH chemistry of non-methane
- organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the
- influence of furans and oxygenated aromatics on ozone and secondary NMOG formation, Atmos. Chem.
- Phys., 19, 14875-14899, https://doi.org/10.5194/acp-19-14875-2019, 2019.
-
- Cole, A. S., Steffen, A., Eckley, C. S., Narayan, J., Pilote, M., Tordon, R., Graydon, J. A., St. Louis, V.
- 911 L., Xu, X., and Branfireun, B. A.: A survey of mercury in air and precipitation across Canada: Patterns
- and trends, Atmosphere, 5, 635-668, https://doi.org/10.3390/atmos5030635, 2014.
-
- Cubison, M.J., Ortega, A.M., Haves, P.L., Farmer, D.K., Day, D., Lechner, M.J., Brune, W.H., Apel, E.,
-
- 915 Diskin, G.S., Fisher, J.A., Fuelberg, H.E., Hecobian, A., Knapp, D.J., Mikoviny, T., Riemer, D., Sachse, G.W., Sessions, W., Weber, R.J., Weinheimer, A.J., Wisthaler, A., and J.L. Jimenez: Effects of aging on G.W., Sessions, W., Weber, R.J., Weinheimer, A.J., Wisthaler, A., and J.L. Jimenez: Effects of aging on
- organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys.,
- 918 11, 12049-12064, doi:10.5194/acp-11-12049-2011, 2011.
-
- de Gouw, J. A., Warneke, C., Stohl, A., Wollny, A. G., Brock, C. A., Cooper, O. R., Holloway, J. S.,
- Trainer, M., Fehsenfeld, F. C., Atlas, E. L., Donnelly, S. G., Stroud, V., and Lueb, A.: The VOC
- 922 composition of merged and aged forest fire plumes from Alaska and Western Canada, J. Geophys. Res.-
923 Atmos. 111. D10303. https://doi.org/10.1029/2005JD006175. 2006. Atmos, 111, D10303, https://doi.org/10.1029/2005JD006175, 2006.
-
- 925 de Groot, W. J., Pritchard, J. M., and Lynham, T. J.: Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires, Can. J. Forest Res., 39, 367-382, https://doi.org/10.1139/x08-192, 2009.
-
- 928 Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K.-E., Pollack, I., Ryerson, T. B., Peischl, J., Edwards, 929 P., Dubé, W. P., Markovic, M. Z., Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J., P., Dubé, W. P., Markovic, M. Z., Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J.,
- 930 Hatch, L. E., Barsanti, K. C., and Brown, S. S.: Nighttime chemical transformation in biomass burning
931 plumes: A box model analysis Initialized with aircraft observations. Environ. Sci. Technol., 53, 2529-
- plumes: A box model analysis Initialized with aircraft observations, Environ. Sci. Technol., 53, 2529-
- 2538, https://doi.org/10.1021/acs.est.8b05359, 2019.
-
- Decker, Z.C., Wang. S., Novel analysis to quantify plume crosswind heterogeneity applied to biomass burning smoke, EST, 2021.
-
- Ditto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L., and Gentner, D. R.: Nontargeted Tandem
- 938 Mass Spectrometry Analysis Reveals Diversity and Variability in Aerosol Functional Groups across
939 Multiple Sites, Seasons, and Times of Day, Environmental Science and Technology Letters, 7, 60-
- 939 Multiple Sites, Seasons, and Times of Day, Environmental Science and Technology Letters, 7, 60-
940 69, https://doi.org/10.1021/acs.estlett.9b00702, 2020. 69, [https://doi.org/10.1021/acs.estlett.9b00702,](https://doi.org/10.1021/acs.estlett.9b00702) 2020.
-
- Ditto, J. C., He, M., Hass-Mitchell, T. N., Moussa, S. G., Hayden, K., Li, S. M., Liggio, J., Leithead, A.,
- Lee, P., Wheeler, M. J., Wentzell, J. J. B., and Gentner, D. R.: Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic
- compounds, Atmos. Chem. Phys., 21, 255-267, https://doi.org/10.5194/acp-21-255-2021, 2021.
-
- Ditto, J. C., Machesky, J., and Gentner, D. R.: Analysis of reduced and oxidized nitrogen-containing organic compounds at a coastal site in summer and winter, Atmos. Chem. Phys., 22, 3045-
- 3065, [https://doi.org/10.5194/acp-22-3045-2022,](https://doi.org/10.5194/acp-22-3045-2022) 2022.
- Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis
- set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303-3318,
- [https://doi.org/10.5194/acp-11-3303-2011,](https://doi.org/10.5194/acp-11-3303-2011) 2011.
-
- EPA: Air method, toxic organics-15 (TO-15): Compendium of methods for the determination of toxic organic compounds in ambient air, second edition: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS)." EPA 625/R-96/010b, 1999.
-
- Finlay, S. E., Moffat, A., Gazzard, R., Baker, D., and Murray, V.: Health impacts of wildfires, PLoS
- Curr., 4, e4f959951cce959952c, https://doi.org/10.1371/4f959951cce2c, 2012.
-
- Forestry Canada Fire Danger Rating Group: Development and structure of the Canadian Forest Fire
- Behaviour Prediction System, Forestry Canada, Headquarters, Fire Danger Group and Science and
- Sustainable Development Directorate, Ottawa, Information Report ST-X-3, 64 p., 992.
- Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M., and Farmer, D. K.: Emission and evolution of submicron organic aerosol in smoke from wildfires in the Western United 969 States, ACS Earth Space Chem., 3, 1237-1247, https://doi.org/10.1021/acsearthspacechem.9b00125,
970 2019.
-

2019.

- 972 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw. J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality
- Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality
- impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos.
- Chem. Phys., 15, 13915-13938, https://doi.org/10.5194/acp-15-13915-2015, 2015.
-
- Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E., Davies, M. A., and Hao, W. M.:
- 978 Measurements of excess O_3 , CO_2 , CO , CH_4 , C_2H_4 , C_2H_2 , HCN , NO , NH_3 , $HCOOH$, CH_3COOH , $HCHO$, 979 and CH_3OH in 1997 Alaskan biomass burning plumes by airborne fourier transform infrared spectroscopy
- 979 and CH₃OH in 1997 Alaskan biomass burning plumes by airborne fourier transform infrared spectroscopy
980 (AFTIR), J. Geophys. Res., 105, 22147-22166, https://doi.org/10.1029/2000JD900287, 2000. (AFTIR), J. Geophys. Res., 105, 22147-22166, https://doi.org/10.1029/2000JD900287, 2000.
-
- Gordon, M., Li, S. M., Staebler, R., Darlington, A., Hayden, K., O'Brien, J., and Wolde, M.: Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations, Atmos. Meas. Tech., 8, 3745-3765, https://doi.org/10.5194/amt-8-3745-2015, 2015.
- 985
986 Griffin, D., McLinden, C. A., Dammers, E., Adams, C., Stockwell, C., Warneke, C., Bourgeois, I.,
- Peischl, J., Ryerson, T. B., Zarzana, K. J., Rowe, J. P., Volkamer, R., Knote, C., Kille, N., Koenig, T. K.,
- 988 Lee, C. F., Rollins, D., Rickly, P. S., Chen, J., Fehr, L., Bourassa, A., Degenstein, D., Hayden, K., 989 Mihele, C., Wren, S. N., Liggio, J., Akingunola, A., and Makar, P.: Biomass burning nitrogen diox
- 989 Mihele, C., Wren, S. N., Liggio, J., Akingunola, A., and Makar, P.: Biomass burning nitrogen dioxide
990 emissions derived from space with TROPOMI: methodology and validation. Atmos. Meas. Tech.
- emissions derived from space with TROPOMI: methodology and validation, Atmos. Meas. Tech.
- Discuss. [preprint], https://doi.org/10.5194/amt-2021-223, in review, 2021.
- 992
993

993 Griffith, D. W. T., Mankin, W. G., Coffey, M. T., Ward, D. E., and Riebau, A.: FTIR remote sensing of
994 biomass burning emissions of CO₂. CO, CH₄, CH₂O, NO, NO₂, NH₃, and N₂O, in: Global Biomass 994 biomass burning emissions of CO_2 , CO , CH_4 , CH_2O , NO , NO_2 , NH_3 , and N_2O , in: Global Biomass 995 Burning: Atmospheric. Climatic. and Biospheric Implications. edited by: Levine. J. S., MIT Press. 995 Burning: Atmospheric, Climatic, and Biospheric Implications, edited by: Levine, J. S., MIT Press, Cambride, MA, United States, 230-241, 1991. Cambride, MA, United States, 230-241, 1991.

Guérette, E. A., Paton-Walsh, C., Desservettaz, M., Smith, T. E. L., Volkova, L., Weston, C. J., and

- 999 Meyer, C. P.: Emissions of trace gases from Australian temperate forest fires: Emission factors and 1000 dependence on modified combustion efficiency, Atmos. Chem. Phys., 18, 3717-3735. dependence on modified combustion efficiency, Atmos. Chem. Phys., 18, 3717-3735,
- https://doi.org/10.5194/acp-18-3717-2018, 2018.
-
- Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., and Barsanti, K. C.: Identification
- and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional
- gas chromatography–time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865-1899, https://doi.org/10.5194/acp-15-1865-2015, 2015.
-
- Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H., and Barsanti, K. C.:
- Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-
- dimensional gas chromatography, Atmos. Chem. Phys., 18, 17801-17817, [https://doi.org/10.5194/acp-18-](https://doi.org/10.5194/acp-18-17801-2018) [17801-2018,](https://doi.org/10.5194/acp-18-17801-2018) 2018.
-
- Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J.,
- and Barsanti, K. C.: Multi-instrument comparison and compilation of non-methane organic gas emissions
- 1015 from biomass burning and implications for smoke-derived secondary organic aerosol precursors, Atmos.
1016 Chem. Phys., 17, 1471-1489, https://doi.org/10.5194/acp-17-1471-2017, 2017.
- Chem. Phys., 17, 1471-1489, https://doi.org/10.5194/acp-17-1471-2017, 2017.
-
- Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., York, R. A.,
- Foster, D., Stephens, S. L., Goldstein, A. H., and Barsanti, K. C.: Highly speciated measurements of
- 1020 terpenoids emitted from laboratory and mixed-conifer forest prescribed fires, Environ. Sci. Technol., 53,
1021 9418-9428. https://doi.org/10.1021/acs.est.9b02612. 2019. 9418-9428, https://doi.org/10.1021/acs.est.9b02612, 2019.
-
- 1022
1023
- Hecobian, A., Liu, Z., Hennigan, C. J., Huey, L. G., Jimenez, J. L., Cubison, M. J., Vay, S., Diskin, G. S.,
- Sachse, G. W., Wisthaler, A., Mikoviny, T., Weinheimer, A. J., Liao, J., Knapp, D. J., Wennberg, P. O.,
- 1025 Kürten, A., Crounse, J. D., Clair, J. S., Wang, Y., and Weber, R. J.: Comparison of chemical 1026 characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the
- ARCTAS/CARB-2008 field campaign, Atmos. Chem. Phys., 11, 13325-13337,
- https://doi.org/10.5194/acp-11-13325-2011, 2011.
- 1029
1030
- 1030 Hodshire, A. L., Akherati, A., Alvarado, M. J., Brown-Steiner, B., Jathar, S. H., Jimenez, J. L., 1031 Kreidenweis, S. M., Lonsdale, C. R., Onasch, T. B., Ortega, A. M., and Pierce, J. R.: Aging eff
- Kreidenweis, S. M., Lonsdale, C. R., Onasch, T. B., Ortega, A. M., and Pierce, J. R.: Aging effects on
- biomass burning aerosol mass and composition: A critical review of field and laboratory studies, Environ.
- Sci. Technol., 53, 10007-10022, https://doi.org/10.1021/acs.est.9b02588, 2019.
-
- 1035 Hosseini, S., Urbanski, S., Dixit, P., Li, Q., Burling, I., Yokelson, R., Johnson, T.E., Sharivastava, M., 1036 Jung, H., Weise, D.R., Miller, W., and Cocker, D.: Laboratory characterization of PM emissions from Jung, H., Weise, D.R., Miller, W., and Cocker, D.: Laboratory characterization of PM emissions from
- combustion of wildland biomass fuels, J. Geophys. Res., 118, 9914-9929,
- [https://doi.org/10.1002/jgrd.50481,](https://doi.org/10.1002/jgrd.50481) 2013.
- 1039
1040 Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements, Sci. Rep., 6, 19810, [https://doi.org/10.1038/srep19810,](https://doi.org/10.1038/srep19810) 2016.
-
- 1044 Johnstone, J. F., Hollingsworth, T. N., Chapin III, F. S., and Mack, M. C.: Changes in fire regime break
1045 the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biol., 16, 1281-129 1045 the legacy lock on successional trajectories in Alaskan boreal forest, Global Change Biol., 16, 1281-1295, 1046 https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010. https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010.
- Jolley, M.D., Coe, H., McFiggans, G., Taylor, J.W., O'Shea, S.J., Le Breton, M., Bauguitte, S.J.-B.,
- 1049 Moller, S., Di Carlo, P., Aruffo, E., Palmer, P.I., Lee, J.D., Percival, C.J., and Gallagher, M.W.:
1050 Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires.
- Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires, Atmos. Chem. Phys., 15, 3077-3095, doi:10.5194/acp-15-3077-2015, 2015.
-
- Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q., Flocke, F., Pollack, I. B.,
- 1054 Garofalo, L. A., Farmer, D. K., Pierce, J. R., Collett Jr., J. L., Weinheimer, A., Campos, T., Hornbrook,
1055 R. S., Hall, S. R., Ullmann, K., Pothier, M. A., Apel, E. C., Permar, W., Hu, L., Hills, A. J., Montzka, D
- R. S., Hall, S. R., Ullmann, K., Pothier, M. A., Apel, E. C., Permar, W., Hu, L., Hills, A. J., Montzka, D.,
- Tyndall, G., Thornton, J. A., and Fischer, E. V.: Daytime oxidized reactive nitrogen partitioning in
- 1057 western U.S. wildfire smoke plumes, J. Geophys. Res.-Atmos, 126, e2020JD033484, 1058 https://doi.org/10.1029/2020JD033484, 2021.
- https://doi.org/10.1029/2020JD033484, 2021.
- 1059
1060
- Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J.,
- Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated
- with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–
- 554, [https://doi.org/10.5194/bg-9-527-2012,](https://doi.org/10.5194/bg-9-527-2012) 2012.
- Kallenborn, R., Halsall, C., Dellong, M., and Carlsson, P.: The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants, J. Environ. Monitor., 14, 2854-2869, https://doi.org/10.1039/c2em30519d, 2012.
- Khare, P., Marcotte, A., Sheu, R., Walsh, A. N., Ditto, J. C., and Gentner, D. R.: Advances in offline approaches for trace measurements of complex organic compound mixtures via soft ionization and high-
- 1070 resolution tandem mass spectrometry, J. Chromatogr. A, 1598, 163-
1071 174. https://doi.org/10.1016/i.chroma.2019.03.037. 2019.
- 174, <https://doi.org/10.1016/j.chroma.2019.03.037,> 2019.
- 1073 Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato, S., Florou, K., Skyllakou, K., 1074 Kaltsonoudis, C., Nenes, A., and Pandis, S. N.: Rapid dark aging of biomass burning as an overlooked Kaltsonoudis, C., Nenes, A., and Pandis, S. N.: Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol, P. Natl. Acad. Sci. USA, 117, 33028-33033, https://doi.org/10.1073/pnas.2010365117, 2020.
-

- Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Koike, M., and Miyakawa, T.:
- 1079 Consistency and traceability of black carbon measurements made by laser-induced incandescence,
1080 thermal-optical transmittance, and filter-based photo-absorption techniques, Aerosol Sci. Tech., 45
- 1080 thermal-optical transmittance, and filter-based photo-absorption techniques, Aerosol Sci. Tech., 45, 295-
1081 312. https://doi.org/10.1080/02786826.2010.533215. 2011. 312, https://doi.org/10.1080/02786826.2010.533215, 2011.
-
- Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B.,
- Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J.,
- and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification,
- 1086 quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment,
1087 Atmos. Chem. Phys., 18, 3299-3319, https://doi.org/10.5194/acp-18-3299-2018, 2018. Atmos. Chem. Phys., 18, 3299-3319, https://doi.org/10.5194/acp-18-3299-2018, 2018.
-
- 1089 Kotchenruther, R. A. and Hobbs, P. V.: Humidification factors of aerosols from biomass burning in 1090 Brazil, J. Geophys. Res.-Atmos, 103, 32081-32089, https://doi.org/10.1029/98JD00340, 1998. Brazil, J. Geophys. Res.-Atmos, 103, 32081-32089[, https://doi.org/10.1029/98JD00340,](https://doi.org/10.1029/98JD00340) 1998.
- Kou-Giesbrecht, S. and Menge, D.: Nitrogen-fixing trees could exacerbate climate change under elevated nitrogen deposition, Nat. Commun., 10, 1493, https://doi.org/10.1038/s41467-019-09424-2, 2019.
- 1095 Kumar, V., Chandra, B. P., and Sinha, V.: Large unexplained suite of chemically reactive compounds
1096 present in ambient air due to biomass fires. Sci. Rep., 8, 626, https://doi.org/10.1038/s41598-017-1913 1096 present in ambient air due to biomass fires, Sci. Rep., 8, 626, https://doi.org/10.1038/s41598-017-19139-
1097 3, 2018. 3, 2018.
-
- Laborde, M., Mertes, P., Zieger, P., Dommen, J., Baltensperger, U., and Gysel, M.: Sensitivity of the Single Particle Soot Photometer to different black carbon types, Atmos. Meas. Tech., 5, 1031-1043, https://doi.org/10.5194/amt-5-1031-2012, 2012.
-
- Landis, M. S., Edgerton, E. S., White, E. M., Wentworth, G. R., Sullivan, A. P., and Dillner, A. M.: The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca
- Oil Sands Region, Alberta, Canada, Sci. Total Environ., 618, 1665-1676,
- https://doi.org/10.1016/j.scitotenv.2017.10.008, 2018.
-
- Lee, T., Sullivan, A. P., Mack, L., Jimenez, J. L., Kreidenweis, S. M., Onasch, T. B., Worsnop, D. R.,
- 1109 Malm, W., Wold, C. E., Hao, W. M., and Collett Jr, J. L.: Chemical smoke marker emissions during
1110 flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci. Tech., 44.
- 1110 flaming and smoldering phases of laboratory open burning of wildland fuels, Aerosol Sci. Tech., 44, i-v, https://doi.org/10.1080/02786826.2010.499884. 2010.
- https://doi.org/10.1080/02786826.2010.499884, 2010.
-
- Leifer, I., Melton, C. Tratt, D.M., Buckland, K.N., Clarisse, L., Coheur, P., Frash, J., Gupta, M., Johnson,
- P.D., Leen, J.B., Van Damme, M., Whitburn, S., and Yurganov, L.: Remote sensing and in situ
- measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA, Environ.
- Poll., 221, 37-51, [https://doi.org/10.1016/j.envpol.2016.09.083,](https://doi.org/10.1016/j.envpol.2016.09.083) 2017.
- 1117
1118
- Lerner, B. M., Gilman, J. B., Aikin, K. C., Atlas, E. L., Goldan, P. D., Graus, M., Hendershot, R.,
- Isaacman-VanWertz, G. A., Koss, A., Kuster, W. C., Lueb, R. A., McLaughlin, R. J., Peischl, J., Sueper,
- D., Ryerson, T. B., Tokarek, T. W., Warneke, C., Yuan, B., and de Gouw, J. A.: An improved, automated
- whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic
- 1122 compounds in the atmosphere, Atmos. Meas. Tech., 10, 291-313, https://doi.org/10.5194/amt-10-291-
1123 2017, 2017.
- 2017, 2017.
-
- 1124
1125 Li, Y., Poschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the
- chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327-3344, [https://doi.org/10.5194/acp-](https://doi.org/10.5194/acp-16-3327-2016)[16-3327-2016,](https://doi.org/10.5194/acp-16-3327-2016) 2016.
-
- Lindaas, J., Pollack, I. B., Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., Campos, T.
- L., Flocke, F., Weinheimer, A. J., Montzka, D. D., Tyndall, G. S., Palm, B. B., Peng, Q., Thornton, J. A.,
- Permar, W., Wielgasz, C., Hu, L., Ottmar, R. D., Restaino, J. C., Hudak, A. T., Ku, I.-T., Zhou, Y., Sive,
- 1132 B. C., Sullivan, A., Collett Jr, J. L., and Fischer, E. V.: Emissions of reactive nitrogen from western U.S. 1133 wildfires during summer 2018. J. Geophys. Res.-Atmos. 125. e2020JD032657.
- wildfires during summer 2018, J. Geophys. Res.-Atmos, 125, e2020JD032657,
- https://doi.org/10.1029/2020JD032657, 2020.
-

Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J., Müller, M., Jimenez, J. L.,

- 1137 Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., 1138 Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L., Meinardi, S
- Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L., Meinardi, S.,
- Mikoviny, T., Onasch, T. B., Palm, B. B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W.,
- Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A. P., Wennberg, P.
- 1141 O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements of western U.S. wildfire emissions:
1142 Comparison with prescribed burning and air quality implications, J. Geophys. Res.-Atmos., 122, 6
- Comparison with prescribed burning and air quality implications, J. Geophys. Res.-Atmos., 122, 6108-
- 6129, https://doi.org/10.1002/2016JD026315, 2017.
-

Loehman, R. A., Reinhardt, E., and Riley, K. L.: Wildland fire emissions, carbon, and climate: Seeing the

- forest and the trees A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems, For. Ecol. Manag., 317, 9-19, https://doi.org/10.1016/j.foreco.2013.04.014, 2014.
-
- Matz, C.J., Egyed, M., Xi, G., Racine, J., Pavlovic, R., Rittmaster, R., Henderson, S.B., and Stieb, D.M.:
- Health impact analysis of PM2.5 from wildfire smoke in Canada (2013-2015, 2017-2018), Sci. Total
- Environ., 725(10), https://doi.org/10.1016/j.scitotenv.2020.138506, 2020.
-

May, A. A., McMeeking, G. R., Lee, T., Taylor, J. W., Craven, J. S., Burling, I., Sullivan, A. P., Akagi,

- S., Collett Jr., J. L., Flynn, M., Coe, H., Urbanski, S. P., Seinfeld, J. H., Yokelson, R. J., and Kreidenweis,
- S. M.: Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements, J. Geophys. Res.-Atmos, 119, 11826-11849, https://doi.org/10.1002/2014JD021848,
- 2014.
- McGee, T., McFarlane, B., and Tymstra, C.: Chapter 3 - Wildfire: A Canadian Perspective, in: Wildfire
-
- 1160 Hazards, Risks and Disasters, edited by: Shroder, J. F., and Paton, D., Elsevier, Amsterdam, The 1161 Netherlands, 35-58, https://doi.org/10.1016/B978-0-12-410434-1.00003-8, 2015. Netherlands, 35-58, https://doi.org/10.1016/B978-0-12-410434-1.00003-8, 2015.
-
- McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K., and Steffen, A.: Where there is smoke there
- is mercury: Assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties
- associated with upscaling emissions estimates, Atmos. Chem. Phys., 21, 5635-5653,
- https://doi.org/10.5194/acp-21-5635-2021, 2021.
- 1167
1168
- McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett Jr., J. L., Hao, W.
- M., Holden, A. S., Kirchstetter, T. W., Malm, W. C., Moosmüller, H., Sullivan, A. P., and Wold, C. E.:
- Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory, J.
- Geophys. Res.-Atmos, 114, D19210, https://doi.org/10.1029/2009JD011836, 2009.
- 1172
1173 Miller, D. J., Sun, K., Zondlo, M. A., Kanter, D., Dubovik, O., Welton, E. J., Winker, D. M., and Ginoux, P.: Assessing boreal forest fire smoke aerosol impacts on U.S. air quality: A case study using multiple
- data sets, J. Geophys. Res.-Atmos, 116, D22209, https://doi.org/10.1029/2011JD016170, 2011.
-
- Moteki, N. and Kondo, Y.: Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation, Aerosol Sci. Tech., 44, 663-675, https://doi.org/10.1080/02786826.2010.484450, 2010.
-
- Moussa, S. G., Leithead, A., Li, S. M., Chan, T. W., Wentzell, J. J. B., Stroud, C., Zhang, J. H., Lee, P.,
- 1182 Lu, G., Brook, J. R., Hayden, K., Narayan, J., and Liggio, J.: Emissions of hydrogen cyanide from on-
1183 cad gasoline and diesel vehicles. Atmos. Environ... 131, 185-195.
- road gasoline and diesel vehicles, Atmos. Environ., 131, 185-195,
- [https://doi.org/10.1016/j.atmosenv.2016.01.050,](https://doi.org/10.1016/j.atmosenv.2016.01.050) 2016.
-
- NRCan, Blueprint for wildland fire science in Canada (2019-2029), Sankey, S., Technical
- Coordinator. Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, 45p, https://cfs.nrcan.gc.ca/publications?id=39429, 2018.
-
- O'Brien, J. J., Loudermilk, E. L., Hornsby, B. S., Hudak, A. T., Bright, B. C., Dickinson, M. B., Hiers, J. K., Teske, C., and Ottmar, R. D.: High-resolution infrared thermography for capturing wildland fire
- behaviour: RxCADRE 2012, Int. J. Wildland Fire, 25, 62-75, [https://doi.org/10.1071/WF14165,](https://doi.org/10.1071/WF14165) 2015.
- 1193
1194
- Palm, B. B., Peng, Q., Fredrickson, C. D., Lee, B. H., Garofalo, L. A., Pothier, M. A., Kreidenweis, S.
- 1195 M., Farmer, D. K., Pokhrel, R. P., Shen, Y., Murphy, S. M., Permar, W., Hu, L., Campos, T. L., Hall, S. 1196 R., Ullmann, K., Zhang, X., Flocke, F., Fischer, E. V., and Thornton, J. A.: Quantification of organic R., Ullmann, K., Zhang, X., Flocke, F., Fischer, E. V., and Thornton, J. A.: Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes, P. Natl. Acad. Sci. USA, 117, 29469-29477,
- https://doi.org/10.1073/pnas.2012218117, 2020.
- 1199
1200
- Peng, Q., Palm, B. B., Melander, K. E., Lee, B. H., Hall, S. R., Ullmann, K., Campos, T., Weinheimer, A.
- J., Apel, E. C., Hornbrook, R. S., Hills, A. J., Montzka, D. D., Flocke, F., Hu, L., Permar, W., Wielgasz,
- 1202 C., Lindaas, J., Pollack, I. B., Fischer, E. V., Bertram, T. H., and Thornton, J. A.: HONO Emissions from
1203 Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke, Environ, Sci.
- Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke, Environ. Sci.
- Technol., 54, 5954-5963, [https://doi.org/10.1021/acs.est.0c00126,](https://doi.org/10.1021/acs.est.0c00126) 2020.
-
- Permar, W., Wang, Q., Selimovic, V., Wielgasz, C., Yokelson, R. J., Hornbrook, R. S., Hills, A. J., Apel,
- E. C., Ku, I.-T., Zhou, Y., Sive, B. C., Sullivan, A. P., Collett Jr, J. L., Campos, T. L., Palm, B. B., Peng,
- 1208 Q., Thornton, J. A., Garofalo, L. A., Farmer, D. K., Kreidenweis, S. M., Levin, E. J. T., DeMott, P. J., 1209 Flocke, F., Fischer, E. V., and Hu, L.: Emissions of trace organic gases from western U.S. wildfires ba
- Flocke, F., Fischer, E. V., and Hu, L.: Emissions of trace organic gases from western U.S. wildfires based
- on WE-CAN aircraft measurements, J. Geophys. Res.-Atmos, 126, e2020JD033838,
- https://doi.org/10.1029/2020JD033838, 2021.
- 1212
1213
- Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C.,
- Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur,
- E. A., and Zender, C. S.: The impact of boreal forest fire on climate warming, Science, 314, 1130-1132, https://doi.org/10.1126/science.1132075, 2006.
-
- 1217
1218 Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., and Elliott, C. T.: Critical review of
- health impacts of wildfire smoke exposure, Environ. Health Persp., 124, 1334-1343,
- https://doi.org/10.1289/ehp.1409277, 2016.
- 1221
1222 1222 Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part 1223 II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5, 799-825. II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799-825, [https://doi.org/10.5194/acp-5-799-2005,](https://doi.org/10.5194/acp-5-799-2005) 2005.
-
- Roberts, J. M., Stockwell, C. E., Yokelson, R. J., de Gouw, J., Liu, Y., Selimovic, V., Koss, A. R.,
- 1227 Sekimoto, K., Coggon, M. M., Yuan, B., Zarzana, K. J., Brown, S. S., Santin, C., Doerr, S. H., and 1228 Warneke, C.: The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2
- Warneke, C.: The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study, Atmos. Chem. Phys., 20, 8807-8826, https://doi.org/10.5194/acp-20-8807-2020, 2020.
- 1230
1231
	- Roberts, G., Wooster, M. J., Xu, W., Freeborn, P. H., Morcrette, J. J., Jones, L., Benedetti, A., Jiangping,
- 1232 H., Fisher, D., and Kaiser, J. W.: LSA SAF Meteosat FRP products Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. C
- demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS), Atmos. Chem. Phys., 15, 13241-13267[, https://doi.org/10.5194/acp-15-13241-2015,](https://doi.org/10.5194/acp-15-13241-2015) 2015.
-
- Rogers, C. F., Hudson, J. G., Hallett, J., and Penner, J. E.: Cloud Droplet Nucleation by Crude-Oil Smoke 1237 and Coagulated Crude-Oil Wood Smoke Particles, Atmos. Environ. a-Gen, 25, 2571-2580, 1238 https://doi.org/10.1016/0960-1686(91)90174-6, 1991. [https://doi.org/10.1016/0960-1686\(91\)90174-6,](https://doi.org/10.1016/0960-1686(91)90174-6) 1991.
-
- 1240 Rogers, H. M., Ditto, J. C., and Gentner, D. R.: Evidence for impacts on surface-level air quality in the northeastern US from long-distance transport of smoke from North American fires during the Long Isla 1241 northeastern US from long-distance transport of smoke from North American fires during the Long Island
1242 Sound Tropospheric Ozone Study (LISTOS) 2018, Atmos. Chem. Phys., 20, 671-
- Sound Tropospheric Ozone Study (LISTOS) 2018, Atmos. Chem. Phys., 20, 671-
- 682, <https://doi.org/10.5194/acp-20-671-2020,> 2020.
-
- Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M.,
- Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., 1247 Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and 1248 Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols fi Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res.-Atmos, 111, D16207,
- https://doi.org/10.1029/2006JD007076, 2006.
- 1251
1252 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.: Forest disturbances under climate change, Nat. Clim. Change, 7, 395-402,
- https://doi.org/10.1038/nclimate3303, 2017.
-
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, New York, 1998.
-
- Sekimoto, K., Li, S.-M., Yuan, B., Koss, A., Coggon, M., Warneke, C., and de Gouw, J.: Calculation of
- the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using
- molecular properties, Int. J. Mass Spectrom., 421, 71-94, https://doi.org/10.1016/j.ijms.2017.04.006,
- 2017.
- Sheu, R., Marcotte, A., Khare, P., Charan, S., Ditto, J. C., and Gentner, D. R.: Advances in offline
- approaches for chemically speciated measurements of trace gas-phase organic compounds via adsorbent 1267 tubes in an integrated sampling-to-analysis system, J. Chromatogr. A, 1575, 80-
1268 90. https://doi.org/10.1016/i.chroma.2018.09.014. 2018.
- 90, <https://doi.org/10.1016/j.chroma.2018.09.014,> 2018.
-
- Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos.
- Environ., 33, 173-182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
-
- Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E.,
- Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler,
- A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke
- 1277 plumes: C_1 - C_{10} volatile organic compounds (VOCs), CO_2 , CO , NO_2 , NO , HCN and CH_3CN , Atmos.
1278 Chem. Phys., 11, 6445-6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.
- Chem. Phys., 11, 6445-6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.
- Singh, H. B., Anderson, B. E., Brune, W. H., Cai, C., Cohen, R. C., Crawford, J. H., Cubison, M. J.,
- Czech, E. P., Emmons, L., Fuelberg, H. E., Huey, G., Jacob, D. J., Jimenez, J. L., Kaduwela, A., Kondo,
- 1282 Y., Mao, J., Olson, J. R., Sachse, G. W., Vay, S. A., Weinheimer, A., Wennberg, P. O., and Wisthaler, A.:
1283 Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and
- Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and
- California forest fire emissions, Atmos. Environ., 44, 4553-4564,
- https://doi.org/10.1016/j.atmosenv.2010.08.026, 2010.
- 1287 Stephens, M., Turner, N., and Sandberg, J.: Particle identification by laser-induced incandescence in a
1288 solid-state laser cavity, Appl. Optics, 42, 3726-3736, https://doi.org/10.1364/ao.42.003726, 2003. solid-state laser cavity, Appl. Optics, 42, 3726-3736, https://doi.org/10.1364/ao.42.003726, 2003.
- Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer- reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845-865, https://doi.org/10.5194/acp-15-845-2015, 2015.
-
- Stockwell, C. E., Kupc, A., Witkowski, B., Talukdar, R. K., Liu, Y., Selimovic, V., Zarzana, K. J.,
- Sekimoto, K., Warneke, C., Washenfelder, R. A., Yokelson, R. J., Middlebrook, A. M., and Roberts, J. 1297 M.: Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument, Atmos. Meas. Tech., 11, organic carbon and comparison to a particle mass measurement instrument, Atmos. Meas. Tech., 11, 2749-2768, https://doi.org/10.5194/amt-11-2749-2018, 2018.
-
- Stockwell, C. E., Bela, M., Coggon, M. M., Gkatzelis, G. I., Wiggins, E. B., Gargulinski, E. M., Shingler, T., Fenn, M., Griffin, D., Holmes, C. D., Ye, X., Saide, P. E., Bourgeois, I., Peischl, J., Womack, C. C.,
- Washenfelder, R. A., Veres, P. R., Neuman, J. A., Gilman, J. B., Lamplugh, A., Schwantes, R. H.,
- McKeen, S. A., Wisthaler, A., Piel, F., Guo, H., Campuzano-Jost, P., Jimenez, J. L., Fried, A., Hanisco,
- T. F., Huey, L. G., Kondragunta, S., Zhang, X., Perring, A., Katich, J. M., Diskin, G. S., Nowak, J. B.,
- Bui, T. P., Halliday, H. S., Pereira, G., James, E. P., Ahmadov, R., McLinden, C. A., Soja, A. J., Moore,
- R. H., Hair, J. W., and Warneke, C.: Airborne emission rate measurements validate remote sensing
- observations and emission inventories of western U.S. wildfires, ES&T, 56, 7564-7577, [https://doi.org/10.1021/acs.est.1c07121,](https://doi.org/10.1021/acs.est.1c07121) 2021.
-
- 1310
1311 1311 Urbanski, S.: Wildland fire emissions, carbon, and climate: Emission factors, For. Ecol. Manag., 317, 51-
1312 60. https://doi.org/10.1016/i.foreco.2013.05.045. 2014.
- 60, https://doi.org/10.1016/j.foreco.2013.05.045, 2014.
-
- Urbanski, S. P.: Combustion efficiency and emission factors for wildfire-season fires in mixed conifer
- 1315 forests of the Northern Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241-7262, 1316 https://doi.org/10.5194/acp-13-7241-2013, 2013.
- https://doi.org/10.5194/acp-13-7241-2013, 2013.
-
- Urbanski, S. P., Hao, W. M., and Baker, S.: Chapter 4 Chemical Composition of Wildland Fire
- Emissions, in: Developments in Environmental Science, edited by: Bytnerowicz, A., Arbaugh, M. J.,
- Riebau, A. R., and Andersen, C., Elsevier, Amsterdam, The Netherlands, 79-107,
- https://doi.org/10.1016/S1474-8177(08)00004-1, 2009.
- 1323 Uresk, D. W., Cline, J. F., and Rickard, W. H.: Growth rates of a cheatgrass community and some
1324 associated factors. J. Range Manage.. 32. 168-170. https://doi.org/10.2307/3897114. 1979. associated factors, J. Range Manage., 32, 168-170, [https://doi.org/10.2307/3897114,](https://doi.org/10.2307/3897114) 1979.
-
- 1326 US EPA, SPECIATE Version 4.5 Database Development Documentation, Final Report EPA/600/R-
1327 16/294, September 2016. Available https://www.epa.gov/air-emissions-modeling/speciate. 16/294, September 2016. Available https://www.epa.gov/air-emissions-modeling/speciate.
- 1329 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr, A. F.:
1330 Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423-3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
- van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, [https://doi.org/10.5194/essd-9-](https://doi.org/10.5194/essd-9-697-2017) [697-2017,](https://doi.org/10.5194/essd-9-697-2017) 2017.
- Veres, P., Roberts, J. M., Burling, I. R., Warneke, C., de Gouw, J., and Yokelson, R. J.: Measurements of 1339 gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-
1340 ionization mass spectrometry, J. Geophys. Res.-Atmos, 115, D23302, ionization mass spectrometry, J. Geophys. Res.-Atmos, 115, D23302,
- https://doi.org/10.1029/2010JD014033, 2010.
-
- Ward, D. E. and Radke, L. F.: Emissions measurements from vegetation fires: A comparative evaluation of methods and results, in: Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires. Dahlem Workshop Reports: Environmental Sciences Research Report 13, edited by: Crutzen, P. J., and Goldammer, J. G., John Wiley & Sons, Chischester, England, 53-76, 1993.
- Whitman, E., Parisien, M. A., Thompson, D. K., and Flannigan, M. D.: Short-interval wildfire and 1350 drought overwhelm boreal forest resilience, Sci. Rep., 9, 18796, https://doi.org/10.1038/s41598-019-
1351 55036-7, 2019. 55036-7, 2019.
-
- Wiggins, E. B., Andrews, A., Sweeney, C., Miller, J. B., Miller, C. E., Veraverbeke, S., Commane, R.,
- Wofsy, S., Henderson, J. M., and Randerson, J. T.: Boreal forest fire CO and CH⁴ emission factors derived from tower observations in Alaska during the extreme fire season of 2015, Atmos. Chem. Phys.,
- 21, 8557-8574, https://doi.org/10.5194/acp-21-8557-2021, 2021.
-
- Wiggins, E. B., Soja, A. J., Gargulinski, E., Halliday, H. S., Pierce, R. B., Schmidt, C. C., Nowak, J. B.,
- 1359 DiGangi, J. P., Diskin, G. S., Katich, J. M., Perring, A. E., Schwarz, J. P., Anderson, B. E., Chen, G., 1360 Crosbie, E. C., Jordan, C., Robinson, C. E., Sanchez, K. J., Shingler, T. J., Shook, M., Thornhill, K. L
- Crosbie, E. C., Jordan, C., Robinson, C. E., Sanchez, K. J., Shingler, T. J., Shook, M., Thornhill, K. L.,
- Winstead, E. L., Ziemba, L. D., and Moore, R. H.: High Temporal Resolution Satellite Observations of
- Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions, Geophys. Res.
- Lett., 47, [https://doi.org/10.1029/2020GL090707,](https://doi.org/10.1029/2020GL090707) 2020.
-
- Wotton, B. M., Nock, C. A., and Flannigan, M. D.: Forest fire occurrence and climate change in Canada, Int. J. Wildland Fire, 19, 253-271, https://doi.org/10.1071/WF09002, 2010.
-
- 1367
1368 Yokelson, R. J., Bertschi, I. T., Christian, T. J., Hobbs, P. V., Ward, D. E., and Hao, W. M.: Trace gas
- measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne
- Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res.-Atmos, 108, 8478,
- https://doi.org/10.1029/2002JD002322, 2003.
- 1372
1373
- Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., Akagi, S. K.,
- 1374 Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., 1375 Hosseini. S., Miller, J. W., Cocker, D. R., Jung, H., and Weise, D. R.: Coupling field and laboratory
- Hosseini, S., Miller, J. W., Cocker, D. R., Jung, H., and Weise, D. R.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed
- fires, Atmos. Chem. Phys., 13, 89-116, [https://doi.org/10.5194/acp-13-89-2013,](https://doi.org/10.5194/acp-13-89-2013) 2013.
-
- Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., Campos, T., Shinozuka,
- Y., Kapustin, V., Clarke, A. D., Weinheimer, A., Knapp, D. J., Montzka, D. D., Holloway, J., Weibring,
- P., Flocke, F., Zheng, W., Toohey, D., Wennberg, P. O., Wiedinmyer, C., Mauldin, L., Fried, A., Richter,
- 1382 D., Walega, J., Jimenez, J. L., Adachi, K., Buseck, P. R., Hall, S. R., and Shetter, R.: Emissions from
1383 biomass burning in the Yucatan. Atmos. Chem. Phys., 9, 5785-5812. https://doi.org/10.5194/acp-9-57
- biomass burning in the Yucatan, Atmos. Chem. Phys., 9, 5785-5812, https://doi.org/10.5194/acp-9-5785- 2009, 2009.
-
- Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D., Bertschi, I.,
- 1387 Griffith, D. W. T., and Hao, W. M.: Emissions of formaldehyde, acetic acid, methanol, and other trace 1388 gases from biomass fires in North Carolina measured by airborne Fourier transform infrared gases from biomass fires in North Carolina measured by airborne Fourier transform infrared
- spectroscopy, J. Geophys. Res.-Atmos, 104, 30109-30125, https://doi.org/10.1029/1999JD900817, 1999.
- 1390
1391 1391 Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path Fourier transform infrared studies of 1392 large-scale laboratory biomass fires. J. Geophys. Res.-Atmos. 101. 21067-21080. large-scale laboratory biomass fires, J. Geophys. Res.-Atmos, 101, 21067-21080,
- https://doi.org/10.1029/96JD01800, 1996.
-
- Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., and Hao, W. M.: The tropical forest and fire emissions experiment: Overview and airborne fire emission factor measurements, Atmos. Chem. Phys., 7, 5175-5196, https://doi.org/10.5194/acp-7-5175-2007, 2007.
-
- Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W. T.: Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy, J. Geophys. Res.-Atmos, 102, 18865-18877, https://doi.org/10.1029/97JD00852, 1997.
-

 Yu, S.: Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review, Atmos. Res., 53, 185-217, https://doi.org/10.1016/S0169-8095(00)00037-5, 2000.

-
- Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W., Thornberry, T. D., Gao, R.-S., Davis, S. M., Wolf, E. T., Gouw, J. d., Peterson, D. A., Fromm, M. D., and Robock, A.: Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume, Science, 365, 587-590, https://doi.org/10.1126/science.aax1748, 2019.
- Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T., and Molina, M. J.:
- Atmospheric new particle formation enhanced by organic acids, Science, 304, 1487-1490,
- https://doi.org/10.1126/science.1095139, 2004.
-

1416
1417

Figure 1. Corrected reflectance satellite image from the VIIRS spectroradiometer on the Suomi

NPP and NOAA-20 satellites taken on June 25, 2018. The fire hot spots for the wildfire of

 interest are indicated by the red dots. Flight tracks were flown at Lagrangian distances downwind of the wildfire. Multiple transects at varying altitudes perpendicular to the plume

direction formed 5 virtual screens. Plume direction of travel is indicated by the red arrow. The

location of the Alberta oil sands mining facilities are shown in white.

 Figure 2. Flight tracks coloured by CO mixing ratio (ppmv) for Screens 1 to 4. The two plumes are identified as south plume (SP) and north plume (NP). The fire perimeter surrounding the detected MODIS-derived 'hot spots' on June 25, 2018 is shown in the green hatched area. The

1429 source of the NP is expected to be the same hot spots as the SP but ~ 30 min older; see Sect. 2.2.

The small blue arrows along the flight tracks indicate the aircraft measured wind direction with

the average wind direction depicted with the large grey arrow. Distances between screens are

- shown in the grey arrows.
-

1434
1435 Figure 3. Time series of NMOGs (ppmv), acetonitrile (C_2H_3N ; ppbv) and CO (ppmv), as well as 1436 OA concentrations (μ g m⁻³) and altitude for Screen 1. The in-plume portions are indicated by the vertical grey bars. The aircraft flew back and forth across the plumes at increasing altitudes to complete five transects; a transect represents one pass across the SP and NP at the same altitude.

Figure 4. Background-subtracted average Screen 1 in-plume mixing ratios of measured gas- and

1443 particle-phase N-containing species (N_r) and their fractional contribution to the total summed N_r 1444 species. The N_r species are grouped into categories of reduced inorganics, reduced organics, oxidized inorganics and oxidized organics with reduced species in shades of red and oxidized species in shades of blue.

-
-
-
-
-
-
-
-

1455
1456

Figure 5. Background-subtracted average mixing ratios of individually measured NMOGs

shown for thirteen chemical classes. In some cases, compounds are double- (or triple-) counted if

they can be identified in more than one category. For example, phenol is an alcohol + an

aromatic; guaiacol is an alcohol + an ether + an aromatic. In the pie chart, the *Other* category

includes amides, amines, ethers, thiols and sulfides. The unidentified category contains

molecular formulas detected, but the compound(s) could not be identified.

1462
1463

Figure 6. Total carbon (TC) partitioning based on EFs (carbon fraction). The bar chart shows the stacked EFs for carbon-containing compounds with the middle pie chart showing their percent contributions to the TC. The two magnified pie charts (right side), representing the low and high I/SVOC EF estimates, show the percent breakdown of the measured NMOGs and the 1467 remaining unidentified portion. The EF values ($g C kg^{-1}$) are provided in the box. Note that all the

1468 EFs shown in Table A1 were converted to g C kg⁻¹ for this breakdown

1472
1473 Figure 7. Fraction of total ΣNMOG emissions in each volatility bin, as well as the bin-averaged 1474 O/C ratio spanning VOCs, IVOCs and SVOCs. Data is included from PTRMS, CIMS, AWAS 1475 and cartridge measurements. The O/C ratio is derived for only the PTRMS, CIMS and AWAS 1476 measurements and the errors bars indicate the standard deviation of the average O/C ratio. 1477

Figure 8. Average emission factors (g kg⁻¹) of a) particle species; b) inorganic gas-phase species, and c) the top 25 measured gas-phase organic species. C4 acids = C4 oxo-carboxylic acids; propadiene =

1481 the top 25 measured gas-phase organic species. C4 acids = C4 oxo-carboxylic acids; propadiene = 1482 fragments/propadiene; hydroxy acetone = hydroxy acetone/ ethyl formate. Organic species 1482 fragments/propadiene; hydroxy acetone = hydroxy acetone/ ethyl formate. Organic species neasurements are from the PTRMS, CIMS and AWAS.

measurements are from the PTRMS, CIMS and AWAS.

1484
1485 Figure 9. Comparison of averaged emission factors with a) boreal forest field-based measurements (Andreae, 2019; Akagi et al., 2011; Liu et al., 2017), b) laboratory-based measurements of lodgepole pine (Koss et al., 2018), c) temperate forest field-based measurements (Permar et al., 2021), and d) those used in CFFEPS (Urbanski et al., 2014). See Table S8 for compound comparisons that don't have exact matches.

-
-
-

 Figure 10. Fire radiative power (FRP; in MW) from GOES-R (grey dots) and emissions from the CFFEPS model (orange dots) from 2018-06-24 17:00 UTC to 2018-06-25 21:00 UTC. Local 1499 time = UTC – 6 hrs. Aircraft-derived emission rates are shown for a) PM₁, b) CO, c) NO_x (as 1500 NO) and d) NH₃ (in t h⁻¹; red arrow) at 15:00 UTC when the aircraft flew closest to the fire. The 1501 corresponding TROPOMI satellite-derived emission rates are also shown (in $t h^{-1}$; black arrows). Note, the aircraft flight time occurred when the fire intensity reflected a surface, smoldering fire and the satellite overpass time took place when the fire had transitioned to a crown (flaming) fire. The smoldering and flaming time periods are coloured in blue and pink, respectively.

1506 **Table A1**

1507

1508 Summary of in-plume and background average mixing ratios (or concentrations), emission

- 1509 factors (g kg⁻¹) (EF) and emission ratios (ppbv ppmv⁻¹ except CO_2 which is in units of ppmv
- 1510 ppmv⁻¹; particulates in μ g m⁻³ ppm⁻¹ and GEM in ng m⁻³ ppmv⁻¹) (ER) for the SP, NP, and the EF 1511 average of the two plumes. In-plume and background averages are in units of ug m^{-3} for
- 1512 particulates, ppbv for gas-phase compounds, except GEM which is ng m^{-3} , and CO_2 is ppmv.
- 1513 Compounds are grouped by particulate species, and inorganic and organic gas-phase species and
- 1514 sorted by increasing molecular weight. $PM₁$ is the sum of the AMS-derived particulate species.
- 1515 The CE was 0.84±0.04 and 0.82±0.01 for the SP and NP, respectively. For comparison, EFs are
- 1516 also included from previously published literature including Andreae $(2019)^1$, Koss et al.
- 1517 $(2018)^2$, Permar et al. $(2021)^3$, and Liu et al. $(2017)^4$. The Andreae (2019) PM EF represents 1518 PM2.5. See Table S8 for compounds that did not have exact matches for comparison to literature
- 1519 values. To derive the EF for species measured in mass concentration units, Eq. 3 was modified
- 1520 by converting TC to mass concentrations using the measured temperature and pressure, and

1521 removing the molar mass ratio term. * Indicates that the compound was 'calculated' (SI Sect

- 1522 1.1.1) while the remaining compounds were calibrated. Uncertainties were estimated by
- 1523 summing in quadrature the standard error of the average EF (or ER) and the measurement
- 1524 uncertainties (see Sect. 2.5).
- 1525 1526

