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Abstract. TS2Halocarbons contained in equipment such as air conditioners, fire extinguishers, and foams con-
tinue to be emitted after production has ceased. These “banks” within equipment and applications are thus
potential sources of future emissions, and must be carefully accounted for in order to differentiate nascent and
potentially illegal production from legal banked emissions. Here, we build on a probabilistic Bayesian model,
previously developed to quantify chlorofluorocarbon (CFC-11, CFC-12, and CFC-113)CE1 banks and their emis-
sions. We extend this model to a suite of banked chemicals regulated under the Montreal Protocol (hydrochlo-
rofluorocarbon, HCFC-22, HCFC-141b, and HCFC-142b, halon 1211 and halon 1301, and CFC-114 and CFC-
115) along with CFC-11, CFC-12, and CFC-113 in order to quantify a fuller range of ozone-depleting substance
(ODS) banks by chemical and equipment type. We show that if atmospheric lifetime and prior assumptions are
accurate, banks are most likely larger than previous international assessments suggest, and that total production
has probably been higher than reported. We identify that banks of greatest climate-relevance, as determined by
global warming potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-
hermetic refrigeration. Halons, CFC-11, and CFC-12 banks dominate the banks weighted by ozone depletion
potential (ODP). Thus, we identify and quantify the uncertainties in substantial banks whose future emissions
will contribute to future global warming and delay ozone-hole recovery if left unrecovered.

1 Introduction

The Montreal Protocol regulates the production of ozone-
depleting substances (ODS), and its implementation has
avoided a world with catastrophic stratospheric ozone deple-
tion (Newman et al., 2009). Globally, there has been a near-5

cessation of chlorofluorocarbon (CFC) and halon production
since 2010, and global production of the replacement hy-

drochlorofluorocarbons (HCFCs) is scheduled to be phased
out by 2030. Despite production phase-out, these chemicals
persist in old equipment produced prior to phase-out, such as 10

refrigeration, air conditioners, foams, and fire extinguishers.
These reservoirs of materials (termed “banks”) continue to be
sources of emissions (e.g., Carpenter et al., 2018). Previously
published estimates of bank sizes and bank emissions vary
widely due to different estimation techniques that incorpo- 15
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rate incomplete or imprecise information (Kuijpers and Ver-
donik, 2009; Montzka et al., 2003). This uncertainty obscures
the ongoing attribution of emissions and undermines inter-
national efforts to evaluate global compliance with the Mon-
treal Protocol. In earlier work, Lickley et al. (2020, 2021) de-5

veloped a Bayesian probabilistic banks model for CFCs that
incorporates the widest range of constraints to date (Lickley
et al., 2020, 2021). Here, we extend this model to the suite of
major chemicals regulated by the Montreal Protocol that are
subject to banking.10

Previously published assessments typically rely on one of
three modeling approaches to estimate bank sizes and then
estimate emissions associated with these banks. In the “top-
down” approach (e.g., Montzka et al., 2003), banks are es-
timated as the cumulative difference between reported pro-15

duction and observationally derived emissions. However, by
taking the cumulative sum of a small difference between two
large values, small biases in emissions or reported produc-
tion estimates can propagate into large biases in bank esti-
mates (Velders and Daniel, 2014). Some type of bias is thus20

expected since total production has very likely been greater
than reported production due to both the under-reporting of
production (e.g., Gamlen et al., 1986; Montzka et al., 2018)
and the exclusion of point-of-production losses in reported
production values. Further,estimates of emissions rely on ob-25

served concentrations along with global lifetime estimates,
which have large uncertainties associated with them (Ko et
al., 2013).

The second approach relies on a “bottom-up” accounting
method (Ashford et al., 2004; Campbell et al., 2005) where30

the inventory of sales by equipment type are carefully tallied
along with estimated release rates by application use. The
bottom-up approach also relies on sales data from surveys of
various equipment types and products as well as estimates of
their respective leakage rates (Campbell et al., 2005). These35

are all subject to uncertainties, which contribute to uncertain-
ties in bottom-up bank estimates as well. A limitation of the
bottom-up accounting method is that observed atmospheric
concentrations are used only as a qualitative check and are
not explicitly accounted for in the analysis. Another impor-40

tant limitation is that data used in this method are unobserved
and rather rely on estimated processes along with reported
data, such as production or sales of equipment. Thus any
bias in reporting could propagate into large biases in bank
estimates.45

The third approach, and the one used in more recent ozone
assessments such as the World Meteorological Organization
(WMO, 2011, 2018, 2014), uses a hybrid approach to calcu-
late banks. Bottom-up banks estimated for 2008 are used as
a starting point for the calculations. These banks are taken50

from Campbell et al. (2005) and represent interpolated val-
ues from the 2002 and 2015 estimates. The banks are then
brought forward to the present time by adding the cumulate
reported production and subtracting the cumulative obser-
vationally derived emission from 2008 through the present.55

This approach is consistent with 2008 bottom-up bank es-
timates by design, however, as time between 2008 and the
present has grown, the cumulative errors associated with the
top-down approach become larger.

The modeling approach applied in the present study re- 60

lies on Bayesian inference of banks (Lickley et al., 2020,
2021) where banks are estimated using an approach called
the Bayesian Parameter Estimation (BPE). In this approach,
a simulation model of the bottom-up method is developed,
where prior distributions of input parameters are constructed 65

from previously published values, accounting for large un-
certainties in production and bank release rates. The simu-
lation model simultaneously models banks, emissions, and
atmospheric concentrations. Parameters in the simulation
model are then conditioned (or updated) on observed con- 70

centrations by applying Bayes’ RuleCE2 . The final result is
a posterior distribution of banks by chemical and equipment
type, along with an updated estimate of production and re-
lease rates for each equipment type. This approach incor-
porates data and assumptions from both the bottom-up and 75

top-down approaches, providing a simulation model consis-
tent with the bottom-up accounting method while also being
consistent with observed concentrations within their uncer-
tainties.

The remainder of the paper includes the following: Sect. 2 80

presents the Bayesian modeling approach along with data
used in the analysis. Section 3 provides a summary of the
results of our analysis for each of the chemicals considered
here. Finally, Sect. 4 provides a discussion of our primary
findings and limitations of the analysis. 85

2 Methods

The Bayesian modeling approach from Lickley et al. (2020,
2021) draws on a Bayesian analysis approach called
Bayesian melding, designed by Poole and Raftery (2000),
that allows us to apply inference to a deterministic simulation 90

model. We employ a version of this method that we hence-
forth refer to as the Bayesian Parameter Estimation (BPE),
which allows for input parameter uncertainty (Hong et al.,
2005; Bates et al., 2003). The model flow is implemented as
follows: first we develop a deterministic simulation model, 95

representing the “bottom-up” accounting method that simul-
taneously simulates banks, emissions, and mole fractions
for each chemical and equipment type. In this analysis, the
chemicals considered include CFC-11, CFC-12, CFC-113,
CFC-114, CFC-115, HCFC-22, HCFC-141b, HCFC-142b, 100

halon 1201, and halon 1311. Prior distributions for each of
the input parameters are based on previously published esti-
mates. We then specify the likelihood function as a function
of the difference between observed and simulated mole frac-
tions. Finally, we estimate posterior distributions of both the 105

input and output parameters by implementing Bayes’ Rule
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using a sampling procedure. Each of the steps of the BPE are
described in more detail below.

2.1 Simulation model

The simulation model, comprised of Eqs. (1)–(5), simultane-
ously models banks, emissions, and mole fractions for each5

chemical by equipment type for all years with available data
up until 2019. Starting dates differ by chemical, see the Sup-
plementTS4 for details. The simulation model is specified as
follows:

Bj, t+1 =
(
1−RFj, t

)
×Bj, t + (1−DEj, t )×Pj, t , (1)10

where Bj, t , is banks and Pj, t is production of equipment
category j in year t . The fraction of the released bank is re-
flected by RFj, t and DEj, t reflects the fraction of production
that is directly emitted in equipment category j in year t .
These same parameters are used to simulate emissions,Ej, t :15

Ej, t+1 = RFj, t ×Bj, t +DEj, t ×Pj, t . (2)

Total banks, BTotal, t , and total emissions, ETotal, t , are then
estimated as the sum across all N equipment categories:

BTotal, t =
∑N

j=1
Bj, t , (3)

ETotal, t =
∑N

j=1
Ej, t . (4)20

For chemicals where feedstock usage is reported, an addi-
tional term in Eq. (4) is included that accounts for feedstock
emissions. Emissions, along with an assumed atmospheric
lifetime, τt , taken as the SPARC (2013)TS5 multimodel time-
varying mean, are then used to simulate atmospheric mole25

fractions, MFt :

MFt+1 = exp
(
−1
τt

)
×MFt +A×ETotal, t , (5)

where A is a constant that converts units of emissions by
mass to units of mole fractions, and also takes into account
a fixed factor of 1.07 taken from Daniel et al. (2007)TS6 that30

accounts for the discrepancy between surface mole fraction
concentrations and the global mean value.

2.2 Prior distributions

The input parameters in the simulation model described
above require initial values to be assigned, along with35

their probability distributions. These prior distributions (“pri-
ors”) are developed to estimate mole fractions, emissions,
and banks for CFC-11, CFC-12, CFC-113, CFC-114, CFC-
115, HCFC-22, HCFC-141b, HCFC-142b, halon 1201, and
halon 1311. Categories of bank equipment are defined by40

the categorization provided by the Alternative Fluorocarbons
Environmental Acceptability Study (AFEAS 2001) which

varies by compound (shown in Table 1). For halons, there
is a single category of bank (fire extinguishing agent).

The AFEAS data report global annual production up 45

to 2001, categorized by equipment type, which is gener-
ally grouped as short, medium and longCE3 banks. We use
AFEAS data and categorization to develop our production
priors and adopt the WMO (2003) correction where AFEAS
production values are used up until 1989 and then scaled 50

to match the United Nations Environmental Programme’s
(UNEP) global production values for all years following
1989. After AFEAS data ends, we assume that the relative
production in each category remains constant for all years
following 2001. Uncertainty in production priors is assumed 55

to follow a multivariate log-normal distribution, where tem-
poral correlation in production reporting bias is estimated in
the BPE. Prior distributionsCE4 differ by chemical and are
developed to be wide enough for atmospheric mole fraction
priors to contain observations. See the SupplementTS7 for de- 60

tails on production priors for each chemical.
The emissions function by bank equipment type can be

characterized by the fraction of production that is directly
emitted during the year of production (DE) and the fraction
of the bank that is emitted in each subsequent year. Prior es- 65

timates for the emissions functionCE5 come from previously
reported data and differ by chemical and equipment type (see
the SupplementTS8 ). Broadly speaking, it has been estimated
that chemicals contained in short banks are fully emitted
within the first 2 years after production, medium banks lose 70

about 10 %–20 % of their material each year, and long banks
can lose as little as 2 % of their material each year (Ashford et
al., 2004). We use previously published estimates to develop
emissions function priors specific to each chemical and bank
type along with wide uncertainties, as specified in the Sup- 75

plementTS9 .
Amounts of halocarbons used for feedstock production are

available annually (UNEP/TEAP, 2021). A prior mean leak-
age rate of 2 % was assumed during production, which re-
flects an approximate average of values across different fa- 80

cilities (MCTOC, 2019).

2.3 Likelihood function

For each chemical, the likelihood function is a multivariate
normal likelihood function of the difference between mod-
eled and observed mole fractions: 85

P (Dt1, . . .DtN |θ )=
1

(2π )
N
2
√
|S|

exp
{
−

1
2
1T S−11

}
, (6)

whereDt1, . . .DtN is yearly globally averaged observed mole
fractions for all years where observations are available and
TS10θ represents that vector of input and output parameters
from the simulation model. The 1 denotes an N × 1TS11 90

vector of the difference between yearly observed and mod-
eled mole fractions and is assumed to have a mean zero, and
covariance function S. Therefore, S represents the sum of
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Table 1. Application type of halocarbon banks by chemical.

Chemical Short bank Medium bank Long bank

CFC-11 Aerosols Non-hermetic refrigeration Closed-cell foam
Open-cell foam

CFC-12 Aerosols Non-hermetic refrigeration Refrigeration
Open-cell foam

CFC-113 Solvents Heat pump

CFC-114 Heat pump

CFC-115 Propellant Air conditioning

HCFC-22 Open-cell foam Non-hermetic refrigeration Foam

HCFC-141b Open-cell foam Non-hermetic refrigeration Foam

HCFC-142b Non-hermetic refrigeration Foam

Halon-1211 Fire extinguishing agent

Halon-1301 Fire extinguishing agent

uncertainties between observed and modeled mole fractions.
While there are published estimates of uncertainties in ob-
served mole fractions, we do not know the uncertainties in
modeled mole fractions. We therefore estimate S separately
for each chemical, as is done in Lickley et al. (2020). The5

off-diagonals in the covariance function incorporate a corre-
lation term, ρS, which accounts for our assumption that there
is high autocorrelation in the bias between modeled and ob-
served mole fractions. Correlation terms for each chemical
are reported in the SupplementTS12 along with prior esti-10

mates of the uncertainty parameters used for diagonal ele-
ments in S. Each column and row in S is therefore populated
as

Si, j = σiσjρ
|i−j |

S ,

where σi and σj represent the sum of the uncertainties in15

observed and modeled mole fractions at time i and j , respec-
tively, and are inferred in the BPE, whereas ρS is prescribed.

Observations come from the Advanced Global Atmo-
spheric Gas Experiment (AGAGE; https://agage.mit.edu, last
access:TS13 ) data set (Prinn et al., 2000, 2018), with the ex-20

ception of CFC-11 and CFC-12 which, following Lickley et
al. (2021), come from the AGAGE and the National Oceano-
graphic and Atmospheric Administration’s (NOAA) merged
data sets (Engel et al., 2019). Data are aggregated into annual
global mean mole fractions. The time frame of availability of25

observations differs by chemical (see the SupplementTS14 ).

2.4 Posterior distributions

Following Bayes’ Rule, we specify our posterior distribution
as

P (θ |Dt1, . . .,DtN )=
P (θ )P (Dt1, . . .DtN |θ )

P (Dt1, . . .DtN )
, (7)30

where P (θ ) represents the joint prior distribution of the input
and output parameters described in the simulation model in
Sect. 2.1.

The analytical form of the posterior distribution is in-
tractable. Thus, we estimate the posterior distributionCE6 us- 35

ing a sampling procedure (the sampling importance resam-
pling (SIR) method) to estimate the marginal posterior distri-
butions (Hong et al., 2005; Bates et al., 2003; Rubin, 1988).
To implement SIR we draw 1 000 000 samples from the pri-
ors, run the simulation model, and then resample from the 40

priors 100 000 times using an importance ratio, which is pro-
portional to the likelihood function. These sample sizes were
chosen such that multiple iterations of the model produce
consistent results.

3 Results 45

Figure 1 shows observed globally averaged mole fractions
compared to the BPE ofCE7 mole fractions for each chemi-
cal. Figure 2 shows BPE and observationally derived emis-
sions, assuming the SPARC multimodel time-varying mean
lifetime for each species. Posterior estimates agree well with 50

observations for the majority of time periods and chemicals.
Note, however, that BPEs from Lickley et al. (2021) match
observed and observationally derived estimates more closely
for CFC-11 than they do in the present analysis. We attribute
this difference in consistency to atmospheric lifetimes being 55

assumed in the present analysis, while they were inferred
in Lickley et al. (2021), who found inferred lifetimes to be
somewhat shorter than the SPARC multimodel mean val-
uesCE8 . Shorter lifetimes would allow modeled mole frac-
tions to decline more quickly following 1990, matching ob- 60

servations better. A notable discrepancy occurs for CFC-115,

https://agage.mit.edu
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where modeled mole fractions are increasing throughout the
entire simulation period, whereas observed mole fractions
from 2000 onwards are relatively constant. This discrepancy
could be explained by the large uncertainties in atmospheric
lifetimes of CFC-115 (Vollmer et al., 2018), if atmospheric5

lifetimes are in fact substantially shorter than the SPARC
multimodel mean.

Figure 3 provides a comparison of BPE bank estimates
alongside previously published bank estimates. The BPE
bank estimates are generally higher than other published val-10

ues. This can be explained by production uncertainties that
are accounted for in the present analysis. Our analysis sug-
gests that production has most likely been underreported for
nearly all chemicals. Table 2 provides a summary of our es-
timated bias in cumulative reported production throughout15

the simulation period for each chemical type. With the ex-
ception of CFC-113 and CFC-115, we find our inferred cu-
mulative production to be significantly higher than reported
production (at the 1-sigma level), with our median estimate
suggesting that production was as little as 9 % higher than20

reported for CFC-12 and as high as 50 % higher than re-
ported for halon 1211. Note, however, that high uncertainties
in lifetimes for halon 1211 exist (Ko et al., 2013) and could
explain part of this discrepancy. We would expect any consis-
tent bias in reported production to be a bias low, since con-25

sistent undercounting of production is more plausible than
overcounting production. The exception for this would be
the base year, which refernces reduction targetsCE10 . In this
instance, we would expect overreporting for this year to be
more likely. Another possible explanation for the discrep-30

ancy in production estimates is that total reported chemical
production under UNEP does not account for leakage during
chemical manufacturing, but rather only leakage that occurs
during the application of the chemical. To our knowledge,
this potential leakage during chemical manufacturing has not35

been well-documented or previously quantified.
Figure 4 shows the breakdown of emissions by equipment

type over time. For CFCs, emissions from short banks tend to
peak around 1990, as spray applications were banned earlier
than other applications, after which emissions from medium40

and long banks become more dominant emission sources.
This is to be expected as the phase-out of production after
1990 would lead to more CFC emissions from existing banks
rather than new, short-lived equipment. For HCFC-22, most
of the emission throughout the entire time period is from45

medium banks, which is largely non-hermetic refrigeration.
Long banks (i.e., foams) dominate emissions for HCFC-141b
and for HCFC-142b, where both foams and non-hermetic re-
frigeration are prominent emission sources throughout the
simulation period. Estimated feedstock emissions averaged50

over 2010–2019 are shown in Table 3. The HCFC-22 is the
largest source of feedstock emissions by mass, but CFC-
113 feedstock emissions are estimated to be larger when
weighted by global warming potential (GWP100) and ODP.

Figure 5 shows the relative quantity of banked materials 55

by chemical type. Banks are weighted by mass (Fig. 5a), by
GWP100 (Fig. 5b), and ODP (Fig. 5c). Our best estimate is
that the sum of the HCFCs currently comprise about 77 % of
banks by mass. However, in terms of climate impacts, CFC-
11, CFC-12, and HCFC-22 are the largest banked materials 60

weighted by GWP100, accounting for 36 %, 14 %, and 36 %
of current banks, respectively. When banks are weighted by
ODP, CFC-11 and CFC-12 represent 46 % and halons also
represent 46 % of current banked chemicals.

Figure 6 shows the composition of banks by chemical 65

type. This, together with Fig. 5, provides insight into the
most prominent banked sources of halocarbons with regards
to GWP100 and ODP. In terms of GWP100, CFC-11 banks
largely reside in foams, whereas CFC-12 and HCFC-22 are
largely in non-hermetic refrigeration. The latter may be more 70

readily recoverable. In terms of ODP, CFC-11 foams and
CFC-12 non-hermetic refrigeration remain important, along
with halons which are all contained in fire extinguishers, a
recoverable reservoir.

4 Discussion and conclusions 75

This analysis suggests that if lifetime assumptions are cor-
rect, published bank estimates using either the top-down
or bottom-up approaches were likely underestimating bank
sizes for all banked chemicals due to underreporting of pro-
duction (see Table 2). The Bayesian approach used in this 80

analysis does not assume that production is known precisely,
but rather jointly infers production along with the other pa-
rameters in the simulation model, providing probabilistic es-
timates of historical production values. Previously published
bank estimates (Ashford et al., 2004; Kuijpers and Verdonik, 85

2009; Montzka et al., 2003) do not infer production, but
rather assume that it is known, or consider different scenar-
ios. We argue that production assumptions have been biased
low due to underreporting of total production and potentially
unaccounted for leakage during chemical manufacturing, and 90

thus have led to published bank estimates that were also bi-
ased low.

Discrepancies between observed mole fractions and BPE-
derived mole fractions are notable for the suite of chemi-
cals considered here. While the majority fall within the 90 % 95

confidence interval throughout most of the time periods, the
trends in concentrations between observations and inferred
mole fractions do not always agree. This discrepancy could
be related to our partitioning of production type following
2003 (i.e., after AFEAS data end). Another important limita- 100

tion in this analysis is in the treatment of atmospheric life-
times, which could also explain some of these discrepan-
cies. The present analysis assumes that atmospheric lifetimes
are known and equal to the SPARC (2013)TS18 multimodel
time-varying mean lifetimes. However, previous work has 105

indicated potential biases in SPARC lifetimes, for example
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Figure 1. Modeled mole fractions versus observed mole fractions. Red lines indicate the posterior median mole fraction estimate from the
Bayesian Parameter Estimation CE9 (BPE), with shaded regions indicating the 90 % confidence interval. Blue lines indicate globally averaged
observed mole fractions.

Figure 2. Modeled emissions versus observationally derived emissions. Red lines indicate the posterior median emissions estimate from
the Bayesian Parameter Estimation (BPE), with shaded regions indicating the 90 % confidence interval. Blue lines indicate observationally
derived emissions assuming the SPARC multimodel time-varying mean lifetimes.
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Figure 3. Magnitudes of bank estimates. The red lines indicate the median posterior estimate of banks from the Bayesian analysis, with
shading indicating the 90 % confidence interval. Previously published bank estimates are provided for comparison from TEAP (2009)TS15 ,
WMO (2007)TS16 , WMO (2018) and Lickley et al. (2020) along with the hybrid approach updated to current estimated starting values.

Table 2. Estimated bias in cumulative reported production. Values indicate the percent difference between inferred cumulative production
from the onset of production to 2019 relative to reported production, for all uses except feedstock production. Positive values indicate the
percent by which inferred production is higher than reported.

Chemical name CFC-11 CFC-12 CFC-113 CFC-114 CFC-115

Median percentage 12 % 9 % −1 % 11 % −1 %
inferred bias (16th, (9 %, 13 %) (7 %, 11 %) (−3 %, 0 %) (9 %, 13 %) (−2 %, 5 %)
84th percentile)

Median absolute 1146 1208 −37 58 −2
inferred bias (16th, (900, 1291) (976, 1439) (−76, −3) (46, 70) (−4, 11)
84th percentile) [Gg]

Chemical name HCFC-22 HCFC-141b HCFC-142b Halon 1211 Halon 1301

Median percentage 10 % 12 % 22 % 50 % 24 %
inferred bias (16th, (6 %, 13 %) (6 %, 19 %) (17 %, 28 %) (41 %, 59 %) (18 %, 32 %)
84th percentile)

Median absolute 1249 315 220 137 36
inferred bias (16th, (828, 1712) (153, 511) (166, 281) (114, 164) (26, 49)
84th percentile) [Gg]

for CFCs (Lickley et al., 2021). The potential bias in atmo-
spheric lifetimes would result in biased bank estimates in the
present paper and requires further analysis.

This modeling approach makes no assumptions about end-
of-life (EOL) emissions. Certain bank estimates assume that5

applications are dismantled at the end of their lifetime, which

would contribute to both decreased banks and increased
emissions at fixed years after production (e.g., UNEP/TEAP,
2019). We do not make this assumption as we believe it
would be more realistic for dismantling of equipment to oc- 10

cur over a range of years after production, which would ef-
fectively be captured by our bank release fraction estimate.
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Figure 4. Emissions by source – Estimates of emissions by various equipment types, summarized in Table 1, are shown here along with
estimated emissions from feedstock usage. Lines indicate the median estimate, with the shaded region indicating the 90 % confidence interval.
Halons are not included in this figure as 100 % of halon emissions come from the same application and are thus identical to Fig. 2 halon
totals.

Table 3. Estimated feedstock emissions averaged from 2010–2019 from the Bayesian analysis. Emissions are weighted by mass, global
warming potential (GWP100) relative to CO2 over a 100-year time horizon for a CO2 concentration of 391 ppm, and by ozone depletion
potential (ODP) relative to CFC-11 (WMO, 2018).

Feedstockemissions CFC-113 HCFC-22 HCFC-142b

By mass 3.4 Gg yr−1 TS17 9.3 Gg yr−1 2.1 Gg yr−1

By GWP100 20 838 Gg yr−1 16 591 Gg yr−1 4302 Gg yr−1

By ODP 2.8 Gg yr−1 0.3 Gg yr−1 0.1 Gg yr−1

We do however test the sensitivity of our bank estimate to
EOL emissions occurring in a single year after production.
This we term the EOL scenario and test the sensitivity of
banks for CFC-11, CFC-12, and HCFC-22, the three largest
banks by global warming potential. The modeling approach5

is described in the SupplementCE11 and results are shown in
Fig. SM1 therein. Perhaps unexpectedly, posterior bank es-
timates of CFC-11 are ∼ 25 % higher in 2020 in the EOL
scenario relative to the scenario described in the main text.
However, banks in the EOL scenario are decreasing faster10

than those described in the main text. The larger bank size
is due to posterior bank release fractions being ∼ 2 % for the
EOL scenario relative to 3 % for the scenario described in the
main text. The faster depletion of the banks in 2020 can be
explained by the addition of the EOL decommissioning pa-15

rameter. These larger bank estimates reflect the consistency
of the Bayesian modeling approach where all parameters are
jointly inferred. Including an additional process in the model
requires that multiple parameters be updated to be consistent
with observations. For CFC-12, the EOL scenario produces20

significantly smaller banks from about 1990 onwards. How-

ever, the emissions profile has an artificial dip in emissions
relative to observationally derived emissions, suggesting that
a set year for decommissioning is not a realistic modeling
assumption. For HCFC-22, banks are not substantially dif- 25

ferent between the two scenarios.
There are important discrepancies between CFC-113 feed-

stock emissions inferred here and those estimated in the pre-
vious analysis (Lickley et al., 2020). In Lickley et al. (2020),
feedstock emissions were assumed to be the difference be- 30

tween observationally derived emissions and inferred bank
emissions. In the present analysis, prior distributionsCE12 of
feedstock production and leakage rates are developed and
feedstock emissions are then inferred. In the present anal-
ysis, observationally derived CFC-113 emissions are higher 35

than total BPE-inferred emissions at the 1-sigma level from
2010 onwards. This suggests that either observationally de-
rived emissions are too high, or our BPEs are too low. In
Lickley et al. (2021), we find that atmospheric lifetimes of
CFC-113 are most likely lower than the SPARC multimodel 40

time-varying mean used in the present analysis. This would
imply that the observationally derived emissions shown in
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Figure 5. Total banks by mass, global warming potential (GWP100; WMO, 2018), and ozone depleting potential (ODP; WMO, 2018). Bank
estimates reported in the above figures are the median estimates from the Bayesian analysis.

Figure 6. Bank size by equipment type. Bank estimates reported in the above figures are the median estimates from the Bayesian analysis. In
the above legends, “cc” refers to closed-cell foams, “non-h ref.” refers to non-hermetic refrigeration, “ref.” refers to refrigeration, and “A/C”
refers to air conditioning.

Fig. 2 are biased low, suggesting an even larger discrepancy
between BPE-inferred total emissions and observationally
derived emissions. Therefore, it seems plausible that the dis-
crepancy is due to prior feedstock emissions estimates being
biased low due to larger leakage, or CFC-113 is being pro-5

duced for a use that is not allowed under the Montreal Proto-
col.

Finally, some important details about production and de-
struction were not fully accounted for in this analysis. For

one, feedstock priors were only included for CFC-113, 10

HCFC-22, and HCFC-142b, which could be limiting our as-
sessment of the sources of emissions for other chemicals.
However, published feedstock values for other chemicals
are not available and leakage rates in feedstock applications
may be uncertain. In addition, we do not account for non- 15

dispersive production in our analysis, namely the production
of chemicals as by-products. It is possible, for example, that
some of the discrepancies in CFC-115 emissions could be ex-
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plained by non-dispersive emissions as identified by Vollmer
et al. (2018). Moreover, we do not consider EOL destruction
of equipment as there are no published records, to our knowl-
edge, of these processes. Finally, we were not able to account
for a more detailed breakdown in production by equipment5

type than what has been published by AFEAS, which dis-
cretizes production into, at most, four categories of equip-
ment, and does not provide data beyond 2003. Without pub-
licly available details of these processes, modeling of banks
and emissions will continue to be limited.10
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