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Abstract. Evaluating the influence of anthropogenic emissions changes on air quality requires accounting for the influence of1

meteorological variability. Statistical methods such as multiple linear regression (MLR) models with basic meteorological vari-2

ables are often used to remove meteorological variability and estimate trends in measured pollutant concentrations attributable3

to emissions changes. However, the ability of these widely-used statistical approaches to correct for meteorological variability4

remains unknown, limiting their usefulness in the real-world policy evaluations. Here, we quantify the performance of MLR5

and other quantitative methods using two scenarios simulated by a chemical transport model, GEOS-Chem, as a synthetic6

dataset. Focusing on the impacts of anthropogenic emissions changes in the US (2011 to 2017) and China (2013 to 2017) on7

PM2.5 and O3, we show that widely-used regression methods do not perform well in correcting for meteorological variability8

and identifying long-term trends in ambient pollution related to changes in emissions. The estimation errors, characterized as9

the differences between meteorology-corrected trends and emission-driven trends under constant meteorology scenarios, can10

be reduced by 30%-42% using a random forest model that incorporates both local and regional scale meteorological features.11

We further design a correction method based on GEOS-Chem simulations with constant emission input and quantify the de-12

gree to which emissions and meteorological influences are inseparable, due to their process-based interactions. We conclude13

by providing recommendations for evaluating the effectiveness of emissions reduction policies using statistical approaches.14
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1 Introduction15

Researchers and policy makers have long been interested in understanding the anthropogenic drivers of trends in observed air16

pollutant concentrations in order to inform air quality policies. Declining trends in pollutant concentrations such as particulate17

matter with diameter less than 2.5 microns (PM2.5) have been observed in many countries that adopted policies to limit an-18

thropogenic emissions such as SO2 and NOx, including the US (McClure and Jaffe, 2018) and China (Zhang et al., 2019). As19

information on anthropogenic emissions are often unavailable or very uncertain, researchers and policy makers often rely on20

the trends in measured air pollutants to assess the effects of polices. Evaluating the effectiveness of air quality policies requires21

understanding the degree to which changing trends in observed concentrations can be attributed to anthropogenic emissions22

changes. However, rigorous attribution requires correcting for the influence of changing meteorology, which has become in-23

creasingly important but challenging in a changing climate (Saari et al., 2019). Numerous papers attempt to use statistical24

methods to separate impacts of meteorology from emissions changes in evaluating trends in air quality, but the performances25

of these commonly-used statistical approaches remain unassessed. Further, the impacts of meteorological variability may not26

even be distinguishable from emissions-driven air quality trends, due to their interactions; the magnitude of this interaction also27

remains unquantified. In this paper, we devise a model-based experiment for evaluating the performance of different statistical28

methods used for meteorological corrections. We focus on a case of identifying emissions-driven linear trends in measured29

concentrations of PM2.5 and ozone (O3), when information on the anthropogenic emission is not available.30

Measured pollutant concentrations are often used as the primary basis for evaluating air quality actions. For example in31

2013, China’s central government established targets that aimed to reduce annual average PM2.5 concentrations of three urban32

clusters by 15% to 25% between 2012 and 2017 (State Council of the People’s Republic of China, 2013). This later translated33

into a stringent and binding target of a maximum annual mean PM2.5 concentration of 60 µg/m3 in 2017 for Beijing, which was34

ultimately reached (the 2017 concentration was 58.5 µg m−3) (Beijing Municipal Ecology and Environment Bureau, 2013).35

However, several studies estimated that the concentration would have exceeded this target in Beijing were it not for meteo-36

rological conditions in winter 2017 that favored pollution reductions (Vu et al., 2019; Chen et al., 2019; Cheng et al., 2019).37

The European Union and US Environmental Protection Agency (EPA) use a three-year average of the PM2.5 concentration38

to determine compliance with air quality standards (European Union, 2020; U.S. Environmental Protection Agency, 2019).39

The US EPA has also proposed to use statistical approaches that aim to correct for the impacts of weather variability on O340

concentrations in the designation processes (Wells et al., 2021).41

Many studies use multiple linear regression (MLR) models with basic meteorological variables to correct for meteorological42

variability in order to estimate the impacts of emissions changes on measured air quality (Otero et al., 2018; Zhai et al., 2019;43
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Li et al., 2018, 2020; Han et al., 2020; Chen et al., 2020). Zhai et al. (2019) and Li et al. (2020) use MLR models to estimate the44

degree to which trends in PM2.5 and O3 from 2013 to 2019 in China were driven by anthropogenic emissions changes. They45

first use MLR to predict the PM2.5 and O3 concentrations with meteorological variables, and then interpret the residuals of46

the MLR model as signals resulting from emissions changes. A related approach is to combine MLR with techniques that can47

decompose time series of observed concentrations into long-term, seasonal, and short-term components (e.g., Kolmogorov-48

Zurbenko (KZ) filters (Zurbenko, 1994)). Ma et al. (2016) and Chen et al. (2019) use KZ filters to calculate the long-term49

component of observed PM2.5 and then apply MLR to separate the impacts of long-term meteorological changes on the50

concentrations. Henneman et al. (2015) apply MLR to the short-term component (identified by KZ filters) of air pollutant51

concentrations near Atlanta during 2000 to 2012, to separate the impact of short-term meteorological variability, and then52

estimate the long-term trend in air quality.53

Other statistical methods including non-linear regression or machine learning models have also been used to correct for54

meteorological variability (Holland et al., 1998; Carslaw et al., 2007; Hayn et al., 2009; Vu et al., 2019). One popular method55

is to use a generalized additive model (GAM) to estimate non-linear smooth functions of each meteorological variable within a56

given smoothing function family with penalization on non-smoothness. The US EPA uses a GAM model of temperature, wind57

direction and speed, humidity, pressure, stability, transport trajectories, and synoptic weather to perform weather corrections in58

assessing long term trends in O3 (Camalier et al., 2007). An increasing number of studies use machine learning models (Grange59

et al., 2018; Vu et al., 2019; Zhang et al., 2020; Shi et al., 2021; Qu et al., 2020). Vu et al. (2019) uses a random forest model60

to predict pollutant concentrations in Beijing with time index and meteorological variables and then calculates the “weather-61

normalized” concentration for each day with 1000 sets of meteorological fields drawn from the historical meteorological data.62

They found that the decrease of PM2.5 during 2013 to 2017 was largely driven by emissions reductions, although the magnitude63

of reduction is smaller when correcting for the meteorological variability.64

Despite the large amount of papers which apply various meteorology correction methods, very little is known about whether65

these methods can effectively correct for meteorological variability and thus reveal the underlying causal impacts of anthro-66

pogenic emissions changes. Most studies cite the prediction performance of their statistical models (such as R2 and/or mean67

squared errors) to justify their method choice and analysis. However, good prediction performance does not guarantee cor-68

rect inference of causal effects (Runge et al., 2019). The performance of these meteorology-corrected methods is unable to69

be assessed using observational data alone, as the underlying emission-driven trends without influence from meteorological70

variability cannot be derived from data. Runge et al. documents similar challenges with observational data and proposes to use71

physical models to benchmark causal inference methods in the broader domains of earth sciences (Runge et al., 2019). Further,72

statistical analyses often assume that the influence of meteorological variability on pollutant concentration can be cleanly sepa-73
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rated from the influence of anthropogenic emissions changes. This is not completely possible, as the impacts of meteorological74

variability on pollutant concentration will also vary depending on the emissions. The degree to which this interaction affects75

the ability to calculate emissions-related trends under changing meteorology also remains unknown.76

Here, we conduct a model experiment to evaluate the performance of widely-used statistical models in correcting for meteo-77

rological variability and estimating emissions-driven trends in air quality. We focus on the impacts of anthropogenic emissions78

changes on annual PM2.5 and summer O3 in the US (2011-2017) and China (2013-2017), two periods well-studied in previous79

literature. Using a 3-D atmospheric chemical transport model GEOS-Chem, we simulate two sets of scenarios – “observational80

scenarios” with assimilated meteorological inputs (with interannual variability) and “counterfactual scenarios” with constant81

meteorological inputs. Using simulated daily concentrations in the observational scenarios, we estimate meteorology-corrected82

trends for each grid cell using different statistical correction methods. We then compare the derived trends with the emissions-83

driven trends in the counterfactual scenarios (which are free of meteorological variability by design), calculating the resulting84

“error” in trend estimation. We further design a correction method based on GEOS-Chem constant emission simulations, and85

use it to quantify the degree to which attribution to meteorology and emissions separately is possible. Finally, we apply the86

different statistical correction methods to observational data from surface monitoring networks in the US and China, discussing87

the variability across different methods. We conclude by providing recommendations for techniques to evaluate air pollution88

policies under changing meteorological conditions.89

2 Method90

2.1 GEOS-Chem91

GEOS-Chem is a global three-dimensional chemical transport model driven by assimilated meteorological data from the God-92

dard Earth Observation System (GEOS-5) of the NASA Global Modeling and Assimilation Office (GMAO) (Bey et al. (2001),93

http://www.geos-chem.org/). The simulation of PM2.5 in GEOS-Chem represents an external mixture of secondary inorganic94

aerosols, carbonaceous aerosols, sea salt, and dust aerosols. GEOS-Chem includes detailed O3-NOx-volatile organic carbon95

(VOC)-aerosol-Halogen tropospheric chemistry (Travis et al., 2016; Sherwen et al., 2016). The GEOS-Chem model has been96

previously used to study the changes in PM2.5 and O3 during our studied periods, and model simulations have been shown to97

be consistent with the observed concentrations (e.g., see Li et al. (2017a); Xie et al. (2019) for the US, and Li et al. (2018);98

Lu et al. (2019); Zhai et al. (2021) for China). Studies in both regions show that the GEOS-Chem model is able to reproduce99

the spatial, seasonal, and interannual variability and the long-term trends in observed pollutant concentrations, despite biases100

in absolute concentrations in certain species and regions (Heald et al., 2012; Travis et al., 2016; Tian et al., 2021).101
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We use GEOS-Chem version 12.3.0 with a horizontal resolution of 0.5◦× 0.625◦ in North America and Asia (Wang et al.,102

2004). For each scenario, we first conduct a global run at a horizontal resolution of 4◦× 5◦, with a 12 month spin-up. These103

global runs are then used as the boundary conditions for nested simulations in US and Asia with finer resolution of 0.5◦×0.625◦.104

2.2 GEOS-Chem scenarios105

Table 1 shows the simulations included in our model experiments. We simulate two sets of scenarios – “observational sce-106

narios” with interannual variability in meteorology and “counterfactual scenarios” with constant meteorological inputs. Both107

scenarios use the same emissions inventory as input (see Method 2.3). For each grid cell, we estimate the linear trends in108

pollutant concentrations from simulated daily PM2.5 and O3 concentrations. We focus on the daily 24-hour average PM2.5 of109

all seasons, and the maximum daily average 8-hour (MDA8) O3 in summer (June, July, August). Our GEOS-Chem simulations110

use meteorological fields from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)111

(Gelaro et al., 2017). We aggregate the hourly meteorological data for consistency with the pollutant concentrations: a 24-hour112

average for PM2.5 analysis and the corresponding 8-hour average for O3. Meteorological features that are used in the statistical113

models can be found in 2.4.114

2.2.1 Observational scenarios115

Observational scenarios simulate PM2.5 and O3 under changing emissions and changing meteorological fields. Trends es-116

timated under the observational scenarios (βobs) are subject to the influences of interannual meteorological variability. Our117

model experiments were not specifically designed to reproduce observed air quality in these two regions, but rather to provide118

a realistic test case for our statistical experiments. Nevertheless, as shown in figure A1 and A2, the simulated concentrations in119

PM2.5 and O3 largely reproduce the daily variability in observed pollutant concentrations. The linear trends in simulated PM2.5120

and O3 concentrations in the observational scenario are largely consistent with trends of the measured concentrations. For ex-121

ample, the average trend (±one standard deviation) in the US is -0.27±0.30 µg−3/year (observation) and -0.39±0.24 ppb/year122

(GEOS-Chem) for PM2.5, and -0.91±0.98 ppb/year (observation) and -1.02±0.83 ppb/year (GEOS-Chem) for O3. The only123

exception is that our model cannot reproduce the increasing PM2.5 trends in Northwest US because we do not consider the124

interannual variability in the biomass burning emissions.125

2.2.2 Counterfactual scenarios126

Counterfactual scenarios simulate PM2.5 and O3 under changing emissions but constant meteorology. All simulation years in127

the counterfactual scenario use the meteorological fields of the start year (2011 for US, 2013 for China). Trends estimated128
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under the counterfactual scenario (βcount) are not subject to interannual meteorological variability; we use this as a proxy for129

the trends in pollutant concentrations driven by emissions changes alone.130

2.2.3 Assumptions for GEOS-Chem experiments131

It is important to note that we do not assume our GEOS-Chem simulations perfectly represent the underlying pollutant con-132

centration in the real world (although the model compares relatively well with the observational data). Rather, our main focus133

is to evaluate how much different statistical methods can explain the differences between the observational and counterfactual134

scenarios. The assumption here is that the differences between observational and counterfactual scenarios are useful approxima-135

tions of the impacts of meteorological variability on pollutant concentrations. The implications of uncertainty in GEOS-Chem136

for our results can be found in the discussion section.137

6

https://doi.org/10.5194/acp-2022-232
Preprint. Discussion started: 1 April 2022
c© Author(s) 2022. CC BY 4.0 License.



GEOS-Chem

scenarios

Emissions

inventory

Meteorological

fields

Trend

estimates

Meteorological

correction

Counterfactual

scenarios

Changing

2011-2017 (US)

2013-2017 (China)

Constant

2011 (US)

2013 (China)

βcount No correction needed

Observational

scenarios

Changing

2011-2017 (US)

2013-2017 (China)

Changing

2011-2017 (US)

2013-2017 (China)

βuncorrected No correction

βMLR

Linear combination of

local features

βGAM

GAM using

local features

βRF

RF using

local features

βLASSO−regional

LASSO using local

and regional features

βRF−regional

RF using local

and regional features

βgc

Use simulations from

constant emissions

scenarios

Constant

emissions

scenarios

Constant

2011 (US)

2013 (China)

Changing

2011-2017 (US)

2013-2017 (China)

Table 1: Overview of GEOS-Chem scenarios and meteorological correction methods.
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2.3 Emissions inventory138

For the US, we use the National Emissions Inventory 2011 (NEI 2011) as a baseline emissions inventory and scale the emissions139

in 2012 to 2017 to match the annual total emissions each year (U.S. Environmental Protection Agency, 2021a). For China, we140

use the monthly Multi-resolution Emission Inventory for China (MEIC) during 2013 to 2017 (Li et al., 2017b; Zheng et al.,141

2018). During the studied time periods, US and China experienced dramatic decreases in anthropogenic emissions, particularly142

in SO2 and NOx. In the US, the total anthropogenic emissions of SO2 decreased by 57% and NOx emissions decreased by 26%143

during 2011 to 2017 (see figure A3). In China, anthropogenic SO2 emissions decreased by 59% and NOx emissions decreased144

by 21% during the 2013-2017 period (see figure A4).145

Natural emissions of multiple chemical species are calculated online in the simulations (rather than prescribed) in the GEOS-146

Chem model and thus can be influenced by meteorological variability (see Keller et al. (2014) for more details). Impacts of147

meteorology on PM2.5 and O3 concentrations through changes in the natural emissions are considered here as part of the148

meteorology - concentration relationship. These emissions include NOx emissions from lightning and soil processes, sea salt149

emissions, dust emissions, and biogenic volatile organic carbon (VOC) emissions. However, biomass burning emissions are150

prescribed in the GEOS-Chem model and we hold them constant at the level of the start year. We make this simplification151

because the GEOS-Chem model uses prescribed biomass burning emissions from external inventories such as Global Fire152

Emissions Database (Werf et al., 2017), and it is impossible to distinguish natural fire emissions (part of the meteorological153

variability) from anthropogenic fire emissions (e.g., from farm residual burning).154

2.4 Statistical and machine learning models155

2.4.1 Model with local meteorological variables156

We assess the performance of statistical and machine learning models to correct for the meteorological variability in the157

observational scenarios. We evaluate these methods with a commonly-used framework (e.g., used in Li et al. (2018) and158

Zhai et al. (2019)) which models the air pollutant concentrations of each individual grid cell using an additive form of a159

trend component, a meteorology component, and time fixed effects (to capture daily and monthly variability not related to160

meteorology). More specifically, we estimate the following regression equation for each grid cell i:161

yit = βobs
i × t + f i(Xit) + ηit + ϵit (1)162
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where yit denotes the PM2.5 or O3 concentration at grid cell i on day t. t is the time index (e.g., in the US, t=1 for January 1st,163

2011 and t=2 for January 2nd, 2011). Xit denotes the local meteorology features (i.e. meteorological variables in grid cell i on164

day t). ηit is the month-of-year×day-of-month fixed effect to capture daily and monthly variability of pollutant concentrations165

that are not related to the meteorological variability (e.g., seasonal cycle in O3 and PM2.5). ϵit is the normally-distributed error166

term. βobs
i represents the meteorology-corrected trend in PM2.5 or O3 concentration for grid cell i under a specific method.167

We use the absolute differences |βobs
i −βcount

i | to evaluate the performance of different methods to correct for meteorological168

variability for any given grid cell i.169

Here, f i(Xit) represents the specifications of local meteorological features for grid cell i under different methods. In addition170

to the commonly-used multiple linear regression (MLR) model, we also evaluate following models with higher flexibility:171

polynomial regression models (quadratic, cubic), cubic spline models, generalized additive models (GAM, implemented with172

R package “mgcv” by Wood (2011)), and Random Forest (RF) models. We focus on the methods in table 1 in the main173

manuscript, and the performance of the other methods can be found in table A1 and A2. Note that the time fixed effects are174

modelled differently in RF models due to the estimation procedure. More details on the implementation of RF can be found in175

SI.176

We use the following ten variables from MERRA-2 as our selected meteorological features for the statistical analysis: surface177

temperature, precipitation, humidity, planetary boundary layer height, cloud fraction, surface air pressure, and wind speed (U178

and V direction, at surface and 850 hpa level). These variables are the most commonly used features in previous studies. We179

also perform sensitivity analyses that include nine more meteorological features: direct photosynthetically-active radiation,180

diffuse photosynthetically-active radiation, tropopause pressure, friction velocity, top soil moisture, root soil moisture, snow181

depth, surface albedo, and surface air density. These features are selected because they are used as primary or intermediate182

inputs for calculating PM2.5 or O3 concentrations in the GEOS-Chem model and may contain information that help explain183

variability in pollutant concentrations.184

2.4.2 Model with local and regional meteorological variables185

We also evaluate models that use both local and regional meteorological features. Regional meteorological features are impor-186

tant for explaining variability in local pollutant concentrations due to 1) pollution transport from neighboring locations, and187

2) influences from meteorological systems at synoptic scale (i.e. large scale weather systems that span over 1000 kilometers188

such as circulation patterns) (Tai et al., 2012; Shen et al., 2015; Zhang et al., 2018; Leung et al., 2018; Han et al., 2020). As189

the incorporation of both local and regional features can quickly expand the dimensionality of the feature space, here we use190

the Least Absolute Shrinkage and Selection Operator (LASSO) and the Random Forest (RF) model, two statistical models that191
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show good prediction performances with high dimensional data inputs. We estimate the following equations:192

yit = βobs
i × t + gi(Xit,Zt) + ηit + ϵit (2)193

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes the local meteorology features for grid cell194

i on day t. Zt denotes the regional scale meteorology features including the meteorological features for every grid cell in the195

US on day t (98 cells in 4×5 degrees; we choose a relatively coarse resolution due to computational cost). Meteorological196

information in each location in the US may help explain the pollutant concentrations in grid cell i. In total, we have 10 local197

features (Xit) and 10×98=980 regional scale features (Zt). The coefficient βobs
i is obtained with the double machine learning198

approach by Chernozhukov et al. (2018). More details on the implementation of LASSO and RF can be found in SI.199

2.5 Correction approach using GEOS-Chem constant emissions scenario200

We further design and evaluate an approach to correct for meteorology variability with GEOS-Chem simulations (referred201

to as “constant-emis” approach). The “constant-emis” approach uses GEOS-Chem simulations with constant anthropogenic202

emissions and changing meteorological fields (“constant emissions scenarios” in table 1). All years in the constant emissions203

scenario use anthropogenic emissions of the start year (2011 for US, 2013 for China). We estimate the following equations:204

yit = βgc
i × t + SIMit + ηit + ϵit (3)205

where SIMit denotes the simulated concentrations on day t in grid cell i in the constant emissions scenarios. SIMit serves a206

similar purpose as the term “f i(Xit)” in equation 1, but comes from the GEOS-Chem simulation. Some previous studies have207

also used model simulations with constant emissions input as a way to characterize meteorological variability (Zhong et al.,208

2018; Zhao et al., 2020). βgc
i is the estimated meteorology-corrected trend in PM2.5 or O3 concentration using this model-based209

correction method.210

Compared to previous statistical and machine learning approaches, the “constant-emis” approach better captures the meteo-211

rological variability as simulated in GEOS-Chem (as SIMit are directly taken from GEOS-Chem). Therefore, the difference212

between the trend estimates (βgc) and counterfactual trends (βcount) provides a conceptual lower bound for estimation er-213

rors using the framework of equation 1 to perform meteorological corrections. The commonly-used framework of equation214

1 assumes that the impacts of meteorology variability can be separated from the impacts of anthropogenic emissions. In our215

experiments, this assumption indicates that the differences between the counterfactual scenario and the observational scenario216

10

https://doi.org/10.5194/acp-2022-232
Preprint. Discussion started: 1 April 2022
c© Author(s) 2022. CC BY 4.0 License.



can be solely explained by the meteorological variables. However, the difference in pollutant concentrations between these217

scenarios is also in part driven by emissions in their interaction with meteorology (despite the fact that our different scenar-218

ios use the same emissions inventory). We use |βgc
i −βcount

i | to quantify the estimation error associated with ignoring such219

interactions in this framework.220

2.6 Air quality observation data221

We use the surface air quality measurements from the Air Quality Systems administered by the US EPA (U.S. Environmental222

Protection Agency, 2021b). We use the daily 24-hour average of PM2.5 concentrations for all months and the daily maximum223

8-hour average (MDA8) O3 concentrations for June, July and August. Figure A1 shows the locations, trends in measured224

concentrations, and correlations between GEOS-Chem simulations and measured concentrations.225

The surface air quality measurements in China come from the monitoring network from China’s Ministry of Ecology and226

Environment China’s Ministry of Ecology and Environment (2021). The monitoring network was launched in 2013 and has227

expanded to all prefecture level cities in mainland China. We use the daily 24-hour average of PM2.5 concentrations and the228

MDA8 O3 concentrations for summer. Figure A2 shows the locations, trends in measured concentrations, and correlations229

between GEOS-Chem simulations and measured concentrations.230

We use the meteorological variables from MERRA-2 when performing meteorology corrections at these monitoring stations,231

because the meteorology information is not available for all these variables at the station level. This is consistent with previous232

analysis estimating the meteorology-corrected trends of the observational air quality data (e.g., Li et al. (2018)).233

3 Results234

3.1 Performance of different correction methods: US (2011-2017)235

Figure 1A and 1C show the trends in PM2.5 and O3 concentrations in the counterfactual scenarios in the US. When holding236

meteorological fields constant across years, decreasing trends in the simulated PM2.5 concentrations across the US result from237

decreasing anthropogenic emissions. In particular, the counterfactual scenario has substantial declining trends in PM2.5 in the238

East US where SO2 emissions decreased dramatically. The scenario also has negative linear trends in O3 concentrations in all239

but three grid cells in the West. Increases in summer O3 in these locations result from the non-linear relationship between O3240

concentrations and NOx emissions.241

Figure 1B shows the degree to which different meteorological correction methods can recover the emissions-driven trends in242

the counterfactual scenarios. The figure shows the magnitude of estimation error in trend estimates in PM2.5 for each grid box243
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(|βobs−βcount|). When no correction for meteorology is performed (“uncorrected” in figure 1B), we observe large estimation244

errors in trend estimates over the Northeast and Southern US by up to 0.25 µg m−3/year, an error that is 50% of the trend245

estimates under the counterfactual scenarios. We find that the widely-used MLR method does not help reduce these errors246

in PM2.5 trend attribution. MLR has a modest impact on reducing the errors in Northeast US, but it does not decrease the247

errors over the Southern US and leads to higher errors over Midwest. Nationwide, the average magnitude of errors (relative248

to the counterfactual scenario) slightly increases with the MLR correction (0.083 µg m−3/year) compared to the uncorrected249

case (0.066 µg m−3/year). Among the five methods, we find that the RF model using both local and regional scale features250

(“RF-regional” in figure 1) offers the best performance in recovering the trends in the counterfactual scenarios and is the only251

method that yields smaller errors than the uncorrected case (the nationwide average error decreased by 0.019 µg m−3/year,252

or 28% less). The RF-regional model also outperforms the RF-local and LASSO-regional models, suggesting the importance253

of considering non-linearity, interactions between different meteorological features, and regional meteorology information in254

correctly adjusting for the impacts of meteorology.255

Meteorological variability has a substantial influence on the summertime O3 trends in the US during this period (as shown in256

figure 1D). Relative to the counterfactual scenario, the uncorrected O3 trends are biased by over 1-2 ppb/year in large areas of257

California, Midwest and Southern US (as much as 320% of the counterfactual trends). This is largely driven by the fact that the258

2011 and 2012 summer was particularly hot in these regions and led to higher concentrations of O3 at the beginning of this 7-259

year period (see figure A6 for the Southern and Midwest US). Therefore, failure to correct for meteorological variability results260

in much more negative trend estimates in the O3 concentrations in these areas compared to the counterfactual scenario (see261

figure A5). Meteorology corrections with MLR or GAM help reduce these estimation errors substantially (nationwide average262

error is reduced by 51% using MLR or 57% using GAM compared to uncorrected trends), while large errors still persist263

in the Midwest and South. Similar to the case of PM2.5, the RF-regional model offers the best performance in correcting for264

meteorological variability (the national average error is further reduced by 42%, compared to MLR), and it is especially helpful265

in reducing the errors over the Midwest and South (regional average error is reduced by 64% and 44%, respectively, compared266

to MLR).267

3.2 Performance of different correction methods: China (2013-2017)268

Figure 2A and 2C show the trends in PM2.5 and O3 concentrations in the counterfactual scenarios in China. We find a sub-269

stantial decline in simulated PM2.5 concentration during 2013 to 2017, particularly in eastern and central China. In contrast,270

there is little change in the simulated PM2.5 concentrations in western China in the counterfactual scenario, where PM2.5 is271

dominated by dust species largely driven by natural processes (see figure A8). For summer O3, there are decreasing trends in272
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Figure 1. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in the US. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the absolute magnitude of errors of trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs−βcount|). The average of the absolute errors for each method is shown in the
figure. Unit of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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the counterfactual scenario in most parts of China, except for North China and some urban areas. This is largely consistent with273

previous studies that attempt to attribute emissions-related changes in O3 concentrations during this period based on modeling274

or observational data (Li et al., 2018, 2020; Lu et al., 2020).275

Figure 2B shows the magnitude of estimation errors in the trend estimates of annual PM2.5 in China under different correction276

methods. We find the underlying meteorological variability has a substantial impact on PM2.5 trends in China during this period.277

We observe large differences between the uncorrected and counterfactual trends in simulated PM2.5 concentrations, particularly278

in Northwest and Northeast China. Similar to the model experiments in the US, we find that MLR and GAM methods fail to279

correct for this underlying meteorological variability and lead to further increases in estimation errors in many locations.280

Relative to the counterfactual scenario, the nationwide average error increases to 0.90 µg m−3/year with MLR and 1.06 µg281

m−3/year with GAM (compared to 0.89 µg m−3/year with no correction). We find that the RF-regional model recovers the282

counterfactual trends better than other methods (nationwide average error: 0.64 µg m−3/year; an improvement by 30% relative283

to MLR), but it is still not able to correct for the persistent estimation errors over Northwest China. We further analyze the284

performance of correction methods for the different component species of PM2.5. As shown in figure A9 and A10, the MLR285

model is particularly unable to correct for the impacts of meteorological variability on nitrate and dust species. Compared286

with MLR, the RF-regional model better corrects for the impacts of meteorology on secondary organic aerosol species in287

South and Central China and ammonium in Northeast, but only yields modest improvement in correcting for the errors in dust288

concentrations over Northwest China (see figure A11). In a sensitivity analysis, we use an approach that first fits RF-regional289

models of each individual PM2.5 species, and then combine predictions to each species to derive trend estimates. The results290

are largely similar to the main approach that fits models to the total PM2.5 concentration (see figure A12).291

Figure 2D shows the magnitude of errors in the trend estimates for summer O3 under different correction methods in292

China. We find that the MLR model only modestly reduces the estimation errors compared to the uncorrected cases, and the293

RF-regional model offers the best overall performance. The nationwide average error is reduced to 0.28 ppb/year using the RF-294

regional model (relative to 0.43 ppb/year uncorrected and 0.41 ppb/year with MLR). Similar to the evaluation of summer time295

O3 in the US, we find the non-linear models (GAM, RF-local) perform better than MLR, but are not as good as the RF-regional296

model. Surprisingly, the LASSO-regional model performs the worst in recovering the counterfactual trends. This suggests the297

importance of considering non-linearity and regional meteorological features in understanding the O3 – meteorology relation-298

ships. Compared to the US case, we find the impacts of meteorological variability on O3 and the method performances are299

much more spatially heterogeneous (see figure A5, A7), which may be partially due to the more heterogeneous O3 regimes in300

China during this period.301
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Figure 2. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in China. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the absolute magnitude of errors of trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs−βcount|). The average of the absolute errors for each method is shown in the
figure. The unit of the trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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3.3 Limitations in separating meteorological and emissions influence: quantified with constant emission scenarios302

In our model experiments in both US and China, we find large differences remain between the trends evaluated with statistical303

models (even the best-performed RF-regional model) and counterfactual trends. The remaining differences could result from304

two different factors: 1) the statistical model cannot capture the complex relationship between meteorology and pollutant305

concentrations, and/or 2) the differences between the observational scenarios and counterfactual scenarios depend not only306

on the meteorological variability but also the anthropogenic emissions in their interaction with meteorology (i.e. impacts of307

meteorology on air quality also depends on the level of emissions).308

We quantify the potential magnitude of this second factor using our constant-emis approach. As the constant-emis approach309

captures the exact relationship between meteorology and pollutant concentrations in GEOS-Chem, the error of the constant-310

emis approach is only associated with the second factor above and thus provides a conceptual lower bound of the estimation311

errors that can be achievable by any statistical approaches. Figure 3 shows the estimation errors of trend estimates using the312

constant emissions scenarios simulated by GEOS-Chem. We focus on the trends in summer O3 in the US and annual PM2.5 in313

China, for which we see the largest impacts of meteorological variability on the pollutant trends and the largest improvements314

in reducing estimation errors from the correction methods. Compared to the statistical models (e.g., MLR and RF-regional315

in figure 3A and 3C), trends evaluated using the constant-emis approach are very similar to the trends in the counterfactual316

scenarios. The national average error of trend estimates is only 0.04 ppb/year for the O3 trends in the US (relative to 0.33317

ppb/year under MLR or 0.19 ppb/year under RF-regional), and only 0.08 µg m−3/year for the PM2.5 trends in China (relative318

to 0.91 µg m−3/year under MLR or 0.64 µg m−3/year under RF-regional).319

However, the estimation errors calculated above are non-negligible and can be large in certain regions. As shown in Figure320

3B and 3D, the constant-emis approach generally yields trend estimates biased by 10% relative to the counterfactual trends, but321

the errors can be up to 40% in certain areas. This error term is the result of ignoring how emissions could potentially influence322

the impacts of meteorology on the pollutant concentrations – that is, the impacts of the same meteorological variability on323

concentrations may be different in the start year (with high emissions) compared to the end year (with low emissions).324

3.4 Application to observational data325

Figure 4 shows the regional trends in O3 in the US and trends in PM2.5 in China estimated from the GEOS-Chem simulations326

and the measured concentrations from surface monitoring networks (only grid cells that overlap with monitor locations are327

shown here). As shown in figure 4A, how to correct for meteorological variability is important for attributing summer O3328

trends to emissions reductions in the US. Based on measured concentrations, the regional average uncorrected O3 trend is329
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Figure 3. Panels A and C show the histogram of estimation errors in trend estimates assessed using MLR, RF-regional and constant-emis.
Panels B and D show the percentage of the errors assessed with the constant-emis method relative to the trends in the counterfactual scenario
(|βgc−βcount|/|βcount|). Panels B and D only show grid cells with a trend in the counterfactual scenarios >0.2 ppb/year or >0.2 µg
m−3/year; remaining grid cells are shown in gray. Panels A and B illustrate the summer O3 trends in the US. Panels C and D illustrate the
annual PM2.5 trends in China.

-1.49 ppb/year and -1.15 ppb/year in Midwest and Southern US, respectively, which overestimates the reductions in concen-330

trations attributable to anthropogenic emissions changes. Correcting for the meteorological variability with MLR model yields331

regional average trend at -0.54 ppb/year in Midwest (a decrease by 53% in magnitude relative to uncorrected trends) and -0.71332

ppb/year in the Southern US (a decrease by 52%). RF-regional model further reduces the absolute magnitude of the declines333

in O3 attributable to emissions reductions to -0.02 ppb/year for Midwest and -0.40 ppb/year for the Southern US. Importantly,334

these patterns are consistent with the results from our model experiments in these regions. For example in the GEOS-Chem335

simulation, the RF-regional model also estimates a much less negative emissions-driven trend in the Southern US compared to336

the uncorrected case and MLR estimates. For the GEOS-Chem simulations, RF-regional estimates are 39% smaller than MLR337

estimates, and this is comparable to the magnitude changes for the observational data (RF-regional estimates are 44% smaller338

than MLR). As the RF-regional model performs the best in recovering counterfactual trends in the GEOS-Chem simulations,339
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this suggests RF-regional may also perform the best in recovering the underlying emission-driven trends when applying to the340

observational data.341

Figure 4B shows the trends in PM2.5 concentrations estimated from the GEOS-Chem simulation and the observational data342

from China’s surface monitoring network using different correction methods. Based on the observational data, our analysis343

reveals that the choice of methods for meteorological correction can yield very different results for certain regions. Much344

smaller reduction of PM2.5 concentrations is attributed to anthropogenic emissions changes in the North, Northeast and East of345

China using the RF-regional model, relative to the MLR estimates. For example, the average emissions-driven trend estimated346

from the observational data is -4.9 µg m−3/year in Beijing under the RF-regional model, compared with -9.6 µg m−3/year347

under the MLR model. These patterns are consistent with the patterns of the trend estimates estimated from our GEOS-Chem348

simulations with different statistical methods.349

Counterfactual 
Uncorrected

MLR
GAM

RF-regional

A       US O3 B       China PM2.5

Counterfactual
Uncorrected

MLR
GAM

RF-regional

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

West South

Midwest Northeast

−0.6−0.30.00.3−0.6−0.30.00.3

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

●

●

Observations

GEOS−Chem

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

West South

Midwest Northeast

−0.6−0.30.00.3−0.6−0.30.00.3

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

●

●

Observations

GEOS−Chem

West South

Midwest Northeast

−2 −1 0 1 −2 −1 0 1

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

South Central East

Northwest North Northeast

−10 −5 0 5 −10 −5 0 5 −10 −5 0 5

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

counterfcatual
Uncorrected

MLR
GAM

RF−synoptic

ppb/year μg m-3/year

Figure 4. Trends in O3 in the US (panel A) and PM2.5 in China (panel B) estimated from the observational data (red) and GEOS-Chem sim-
ulations (blue) under different correction methods. Trends in pollutant concentrations are estimated at the monitor level (for the observational
data) or at the grid cell level (for GEOS-Chem simulations). The point indicates the average value of the assessed trends of all monitors (or
grid cells) within a region. The error bars show the 10th and 90th percentile of the assessed trends of all monitors/grid cells within a region.
Panel A illustrates the summer O3 trends in the US (unit: ppb/year). Panel B illustrates the annual PM2.5 trends in China (unit: µg/m3/year).
We classify the US states into four regions according to the US Census Bureau and classify China’s provinces into six regions based on the
structure of China’s subnational electric grid.
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4 Discussion350

We designed a model experiment that enables us to directly quantify the performance of different statistical models to evaluate351

the causal trends in pollutant concentrations driven by anthropogenic emissions changes. Based on our evaluations of either352

PM2.5 or O3 trends across US and China during periods of recent emission declines, our analysis shows that widely-used MLR353

and GAM methods do not perform well in correcting for the meteorological variability and recovering simulated emissions-354

driven trends. We propose a random forest model that uses both local and regional meteorological features, which offers the355

best overall performance in recovering the emissions-driven trends across both species and countries. Applying this model to356

observational data suggests that estimates based on MLR or similar methods may overestimate the impacts of anthropogenic357

emissions changes on the decline of pollutant concentrations in certain regions in the US and China. However, the RF-regional358

method does not outperform all the other approaches in every location despite its better overall performance (see figures A13359

and A14). This suggests that using multiple statistical approaches may be necessary to derive robust conclusions for attributing360

pollutant trends to emission changes.361

With our model experiments, we also quantify the estimation errors in assuming the emission impacts can be perfectly362

separated from the meteorological variability. These errors likely bound the estimation errors that can be achieved by any363

statistical corrections of meteorological variability with this assumption. In the future, more complex statistical and machine364

learning methods could be applied to distinguish emissions- and meteorologically-driven changes, but attribution solely based365

on observed concentrations and meteorology will be limited by physical interactions between emissions and meteorology. We366

find that the estimation errors resulting from these interactions are overall much smaller compared to the estimation errors367

of the existing statistical methods, but can still be important for certain regions at certain times. Furthermore, the intertwined368

relationships between emissions and meteorology are also much more complex in reality compared to our model experiments.369

For example, meteorology can also directly influence anthropogenic emissions (e.g., increased electricity consumption during370

extreme weather conditions (U.S. Energy Information Agency, 2019; He et al., 2020)). Therefore, the estimation errors that can371

be achieved by more flexible statistical models can potentially be even bigger than the errors quantified with our constant-emis372

approach.373

While the GEOS-Chem model provides us with a framework for causal experiments to test statistical methods, its use374

in our model experiments introduces some uncertainty and limitations. Specifically, our experiments assess the performance375

of statistical methods in correcting for the meteorology-pollution relationships encoded in GEOS-Chem, which may differ376

from the complex relationships observed in the observational data. Several studies have shown that GEOS-Chem and similar377

models do not capture certain meteorology-pollution relationships in the observational data (e.g., temperature - O3 relationship378
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(Porter and Heald (2019)) and influence of regional meteorological patterns (Fiore et al. (2009))). The relationships encoded379

in GEOS-Chem may be different from the underlying meteorology-pollution relationships in the following three ways: (1)380

parameters in GEOS-Chem that describe these relationships are uncertain; (2) the relationships in GEOS-Chem are incorrect381

or incomplete; and (3) the relationships in GEOS-Chem are deterministic compared to the potential stochastic underlying382

processes. While the parameterization schemes of the model may have little impact on our assessment of the statistical methods383

if the functional forms are correct, different functional forms may affect the relative performance of various statistical methods.384

The performance of any individual statistical method is likely to be worse in the real world compared to its ability to reproduce385

a deterministic meteorology-pollution relationship encoded in GEOS-Chem. Further model-based experiments could apply our386

methods to different atmospheric models in order to test if these conclusions differ by different models.387

Our research reveals multiple directions for future research to enhance our understanding of the usage of statistical models388

to evaluate trends in pollutant concentrations under changing meteorological conditions. One key but challenging question389

is to better understand the estimation errors of these existing approaches, e.g. why the MLR model is able to correct for390

the meteorological variability in some locations but not others. In this paper, we only test a selection of methods based on391

their popularity in the existing literature and propose a simple-to-use model (RF-regional). More complex models (such as392

convolutional neural networks) may offer better performance, but the estimation error will likely be bounded by the errors of the393

constant-emis approach. Our work only evaluates the statistical and machine learning models in expressions 1 and 2, which only394

represent one (popular) set of evaluations that performs location-specific trend estimation with adjustments for meteorology and395

secular trends. However, other statistical model specifications specifically targeted to questions of meteorological interaction396

or that permit borrowing information across locations may generate different results. A deeper investigation of the estimation397

error due to assuming perfect separation between meteorology and emission is also essential for understanding how we should398

interpret studies that use these statistical methods. For example, further work could explore how these errors will vary by399

the magnitude of emissions reductions and the chemistry regimes. Our analysis suggests the relative performance of different400

methods is largely similar in monitoring data and the GEOS-Chem experiments (at least for certain regions). It is interesting to401

further explore how the patterns of performance might differ across different types of monitor locations and conditions.402

5 Recommendations for attributing trends to emissions changes403

Using statistical methods to causally infer relationships between simulated air pollutant concentrations and anthropogenic404

emissions is challenging, not to mention understanding the drivers of observed air pollutants in the real world. Understanding405

the uncertainty of statistical models in characterizing the meteorology-pollution relationship is essential to evaluating the406
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effectiveness of policy interventions with observational data. Here, we make several recommendations to researchers and407

policy makers based on our analysis.408

For those who aim to infer causal effects of emissions changes on air quality based on observational data on concentrations409

and meteorology, we recommend using multiple statistical methods to correct for the meteorological variability when evalu-410

ating the impacts of policies or interventions on air quality. From our two case studies, we find a relatively large variability411

between the trend parameters estimated by different statistical methods (especially at the grid cell or monitor level). Some412

methods perform better in certain locations but not in others (though RF-regional is the best-performing method overall). Us-413

ing multiple approaches (linear/non-linear and at local/regional scale) may help to quantify uncertainty related to meteorology414

corrections. These findings also suggest that empirical analyses may benefit from considering the impacts of meteorological415

variability on air quality separately for each region or even for each monitor location (if data permits), instead of attempting416

to determine a general relationship between meteorological variability and air pollution over a large spatial domain. Finally,417

analysts should be particularly cautious when using statistical methods to estimate impacts of anthropogenic emissions on air418

quality in regions where pollution variability is dominated by meteorologically-influenced environmental processes such as419

dust emissions, as we consistently show that typical statistical methods (in combination with the standard set of meteorological420

variables) do not work well in those regions.421

Due to the non-negligible estimation errors in recovering the counterfactual trends even with the best-performed statistical422

approach we test, we believe these statistical analyses are most useful in understanding the patterns of anthropogenic emissions423

on air quality when aggregated across larger spatial areas, rather than providing specific trends for individual monitor locations.424

There is a higher degree of consistency among the trend estimates across different methods when aggregated at regional level,425

but assessment at local level is more sensitive to method choices. The absolute magnitude of monitor-level trends need to be426

interpreted with caution, considering both the uncertainty from the statistical methods and also the limit of meteorological427

correction due to ignoring the interactions between meteorology and emissions.428

Because measured pollutant concentrations are subject to the influence of underlying meteorological variability, many efforts429

have attempted to correct for the impacts of meteorological variability and use “meteorology-corrected” concentrations and430

trends to assist in evaluating the effectiveness of air quality policies. Our study evaluates existing methods that aim to correct for431

the meteorological variability and finds many of these methods do not perform well. This raises potential concerns about the use432

of “meteorology-corrected” concentrations as targets for policy evaluation. Meteorology-corrected concentrations and trends433

remain useful metrics to quantify the influence of emissions. However, a more comprehensive evaluation of the effectiveness434

of policy requires interpreting measurements with all available tools, ideally including both statistical analyses and physical435

models.436
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Appendix: Supplementary methods446

Implementation of LASSO and RF447

As the incorporation of both local and regional features can quickly expand the dimensionality of the feature space, we use448

the Least Absolute Shrinkage and Selection Operator (LASSO) and the Random Forest (RF) model to assess the importance449

of regional meteorological features. Both methods are commonly-used approach with good prediction performances with high450

dimensional data inputs, and are thus appropriate for the analysis with a large number of regional meteorological features. For451

these two methods, we rewrite equation 1 as the following:452

yit = βobs
i × t + gi(Xit,Zt,Wt) + ϵit (1)453

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes the local meteorology features for grid cell454

i on day t. Zt denotes the regional scale meteorology features including the meteorological features for all grid cells in the455

US on day t (98 cells in 4×5 degrees; we choose a relatively coarse resolution due to computational cost). Meteorological456

information in each location in the US may help explain the pollutant concentrations in grid cell i. In total, we have 10 local457

features (Xit) and 10×98=980 regional scale features (Zt). Wt denotes the day and month variable to model the daily and458

monthly variability in pollutant that are unrelated to meteorological variability. For LASSO, we use month-of-year×day-of-459

month fixed effect (same as all the other methods except for RF), and these fixed effects are not penalized in the LASSO460

regression. For RF, we use the month-of-year variable (from 1 to 12), and day-of-month variable (from 1 to 31), due to the461

inefficient performance of RF working with large number of fixed effects. Thus, the difference between RF and the other462

methods may also come from the different choice of modeling monthly and daily variability.463

The coefficient βobs
i is obtained with the following procedure using the double machine learning approach by Chernozhukov464

et al. (2018).465

(1) We first partition the time series of {yit, Xit, Zt, Wt} into 4 folds. We use 75% of the data as training data and the466

remaining 25% for predictions. We train the following two models on the training data:467

yit = f(Xit,Zt,Wt)468

t = g(Xit,Zt,Wt)469
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(2) We then apply models f(.) and g(.) to the prediction set to get predictions of yit and t for the rest 25% of the data. The470

above process is repeated four times to derive predictions for the entire time series (predictions denoted as ŷit and t̂).471

(3) We calculate the residuals of each model ỹit = yit− ŷit and t̃ = t− t̂. The coefficient of interest βobs
i is then calculated472

as:473

βobs
i =

∑
t t̃ỹit∑
t t̃t

474

this is equivalent to setting up a linear regression of ỹit ∼ t̃ and obtain the slope coefficients (as shown by Chernozhukov et al.475

(2018)).476

The hyper-parameters of RF and LASSO are tuned with 4-fold cross validation. We also perform two sensitivity analyses: 1)477

with a different spatial resolution of the regional scale features (2×2.5 degrees instead of 4×5 degrees), and 2) with different478

numbers of folds to estimate the trend coefficients. Our results are similar across these sensitivity analyses (see figure A15).479

The double machine learning framework involves a sample partition procedure (steps (1) and (2) above). This procedure,480

however, does not fit the purpose of including time fixed effects in the LASSO model (as randomly partitioned training and481

test sets could have very unbalanced number of observations from a given month-day pair). Therefore, step (1) and (2) are only482

implemented for the RF model, and coefficients of the LASSO model is directly derived from step (3) without sample splitting.483

This is okay for the LASSO model as the risk of “overfitting” has already been eliminated by using the tuned penalizing factor484

(i.e. the hyper-parameters) derived from a 4-fold cross-validation.485
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Appendix: SI tables and figures486

Model Annual PM2.5 in the US Summer O3 in the US

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.066 28% 27% 0.67 154% 84%

MLR (5 features) 0.092 43% 44% 0.38 84% 71%

MLR (10 features) 0.083 40% 40% 0.33 71% 64%

Quadratic 0.088 40% 42% 0.29 60% 58%

Cubic 0.075 39% 41% 0.28 60% 58%

Spline 0.076 40% 41% 0.28 61% 59%

GAM 0.076 40% 43% 0.29 61% 58%

RF-local 0.067 33% 39% 0.34 78% 70%

LASSO-regional 0.078 31% 33% 0.31 68% 65%

RF-regional 0.047 25% 23% 0.19 46% 47%

Table A1. Estimation errors of trend estimates in the US under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Model Annual PM2.5 in China Summer O3 in China

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.89 224% 77% 0.43 95% 74%

MLR (5 features) 1.07 193% 80% 0.42 90% 68%

MLR (10 features) 0.90 159% 79% 0.41 85% 68%

Quadratic 1.00 142% 82% 0.36 76% 62%

Cubic 1.07 143% 82% 0.34 68% 59%

Spline 1.08 140% 84% 0.33 69% 59%

GAM 1.06 139% 82% 0.35 72% 59%

RF-local 0.99 172% 82% 0.31 64% 58%

LASSO-regional 0.83 184% 75% 0.46 98% 73%

RF-regional 0.64 152% 67% 0.28 61% 58%

Table A2. Estimation errors of trend estimates in China under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Figure A1. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the
monitoring network and GEOS-Chem simulations in the US (2011-2017). Panels A and B show the trends in monitored concentrations
(dots) and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and D
show the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations.
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Figure A2. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the surface
monitoring network and GEOS-Chem simulations in China (2014-2017). Panels A and B show the trends in monitored concentrations (dots)
and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and D show
the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations.
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Figure A3. National total anthropogenic emissions in the US (2011- 2017). The emissions data is derived from the national total emissions
of criterion air pollutants reported by the US EPA Air Emissions Inventory.
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Figure A4. National total anthropogenic emissions in China (2013- 2017). The emissions data is derived from the Multi-resolution Emission
Inventory (MEIC).
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Figure A5. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in the US. Panels A and C show trend
estimates under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction
methods compared with the counterfactual scenarios (βobs−βcount). The average of the absolute error for each method is shown in the
figure. Unit of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure A6. Deviations of meteorological features from the 7-year average in the US (South and Midwest). The deviation is quantified in the
units of standard deviation (SD) across the 7-year period. Zero indicates the 7-year average. This plot shows the summer time average of
daily MDA8 meteorological variables for each year aggregated over South and Midwest US.
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Figure A7. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in China. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction methods
compared with the counterfactual scenarios (βobs−βcount). The average of the absolute error for each method is shown in the figure. Unit
of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure A8. Concentrations of component species of PM2.5 in China (average across 2013-2017). The figure shows concentrations of sulfate
(SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA), and dust.
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Figure A9. Counterfactual trends of component species of PM2.5 in China. The figure shows counterfactual trends of total PM2.5, anthro-
pogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon
(OC), secondary organic aerosol (SOA), and dust.
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Figure A10. Differences between counterfactual trends and trends evaluated under MLR (βMLR−βcount) of component species of PM2.5

in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4),
nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure A11. Differences between counterfactual trends and trends evaluated under RF-regional (βRF−regional−βcount) of component
species of PM2.5 in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt),
sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure A12. Histograms of estimation errors of trend estimates under two implementations of the RF-regional method (China PM2.5). The
upper panels (Combined) show results of fitting RF models to the combined concentrations of PM2.5 to directly estimate trends (the main
results). The lower panels (By species) show results of fitting RF models to individual PM2.5 species and then combine predictions to estimate
trends. The left panels show results for total PM2.5 and right panels show results for anthropogenic PM2.5 (total PM2.5 excluding dust and
sea salt). Average of the estimation errors for each implementation is shown in the figure.
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Figure A13. Best-performing correction method for each grid cell (US). For each method, the figure shows the grid cells at which the trend
estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure A14. Best-performing correction method for each grid cell (China). For each method, the figure shows the grid cells at which the
trend estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure A15. Histograms of estimation errors of trend estimates under different implementations of the RF-regional method (US O−3). From
left to right: Main (the main results), More features (including 9 extra meteorological features), 2x2.5 (using regional features with spatial
resolution of 2×2.5◦, instead of 4×5◦), fold=2 (using 2 folds for data-splitting and cross-fitting), fold=8 (using 8 folds for data-splitting and
cross-fitting). Average of the absolute error for each implementation is shown in the figure. Here we only use a random subset of all the grid
cells in the US due to high computational cost.
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