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Abstract. Evaluating the influence of anthropogenic emissions changes on air quality requires accounting for the influence of1

meteorological variability. Statistical methods such as multiple linear regression (MLR) models with basic meteorological vari-2

ables are often used to remove meteorological variability and estimate trends in measured pollutant concentrations attributable3

to emissions changes. However, the ability of these widely-used statistical approaches to correct for meteorological variability4

remains unknown, limiting their usefulness in the real-world policy evaluations. Here, we quantify the performance of MLR5

and other quantitative methods using simulations from a chemical transport model, GEOS-Chem, as a synthetic dataset. Focus-6

ing on the impacts of anthropogenic emissions changes in the US (2011 to 2017) and China (2013 to 2017) on PM2.5 and O3,7

we show that widely-used regression methods do not perform well in correcting for meteorological variability and identifying8

long-term trends in ambient pollution related to changes in emissions. The estimation errors, characterized as the differences9

between meteorology-corrected trends and emission-driven trends under constant meteorology scenarios, can be reduced by10

30%-42% using a random forest model that incorporates both local and regional scale meteorological features. We further11

design a correction method based on GEOS-Chem simulations with constant emission input and quantify the degree to which12

anthropogenic emissions and meteorological influences are inseparable, due to their process-based interactions. We conclude13

by providing recommendations for evaluating the impacts of anthropogenic emissions changes on air quality using statistical14

approaches.15
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1 Introduction16

Researchers and policy makers have long been interested in understanding the anthropogenic drivers of trends in observed air17

pollutant concentrations in order to inform air quality policies. Declining trends in pollutant concentrations such as particulate18

matter with diameter less than 2.5 microns (PM2.5) have been observed in many countries that adopted policies to limit19

anthropogenic emissions such as SO2 and NOx, including the US (McClure and Jaffe, 2018) and China (Zhang et al., 2019). As20

information on anthropogenic emissions are often unavailable or very uncertain, researchers and policy makers often rely on the21

trends in measured air pollutants to assess the effects of polices. Attributing trends in observed concentrations to anthropogenic22

emissions changes requires correcting for the influence of changing meteorology, which has become increasingly important but23

challenging in a changing climate (Saari et al., 2019). Numerous papers attempt to use statistical methods to separate impacts of24

meteorology from emissions changes in evaluating trends in air quality, but the performance of these commonly-used statistical25

approaches remains unassessed. Further, the impacts of meteorological variability may not even be distinguishable from air26

quality trends driven by anthropogenic emission changes, due to their interactions; the magnitude of this interaction also27

remains unquantified. In this paper, we devise a model-based experiment for evaluating the performance of different statistical28

methods used for meteorological corrections. We focus on a case of identifying emissions-driven linear trends in measured29

concentrations of PM2.5 and ozone (O3), when information on the anthropogenic emission is not available.30

Measured pollutant concentrations are often used as the primary basis for evaluating air quality actions. For example, in31

2013, China’s central government established targets that aimed to reduce annual average PM2.5 concentrations of three urban32

clusters by 15% to 25% between 2012 and 2017 (State Council of the People’s Republic of China, 2013). This later translated33

into a stringent and binding target of a maximum annual mean PM2.5 concentration of 60 µg/m3 in 2017 for Beijing, which was34

ultimately reached (the 2017 concentration was 58.5 µg m−3) (Beijing Municipal Ecology and Environment Bureau, 2013).35

However, several studies estimated that the concentration would have exceeded this target in Beijing were it not for meteo-36

rological conditions in winter 2017 that favored pollution reductions (Vu et al., 2019; Chen et al., 2019; Cheng et al., 2019).37

The European Union and US Environmental Protection Agency (EPA) use a three-year average of the PM2.5 concentration38

to determine compliance with air quality standards (European Union, 2020; U.S. Environmental Protection Agency, 2019).39

The US EPA has also proposed to use statistical approaches that aim to correct for the impacts of weather variability on O340

concentrations in the designation processes (Wells et al., 2021).41

Many studies use multiple linear regression (MLR) models with basic meteorological variables to correct for meteorological42

variability in order to estimate the impacts of emissions changes on measured air quality (Otero et al., 2018; Zhai et al., 2019;43

Li et al., 2018, 2020; Han et al., 2020; Chen et al., 2020). Zhai et al. (2019) and Li et al. (2020) use MLR models to estimate the44
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degree to which trends in PM2.5 and O3 from 2013 to 2019 in China were driven by anthropogenic emissions changes. They45

first use MLR to predict the PM2.5 and O3 concentrations with meteorological variables, and then interpret the residuals of46

the MLR model as signals resulting from emissions changes. A related approach is to combine MLR with techniques that can47

decompose time series of observed concentrations into long-term, seasonal, and short-term components (e.g., Kolmogorov-48

Zurbenko (KZ) filters (Zurbenko, 1994)). Ma et al. (2016) and Chen et al. (2019) use KZ filters to calculate the long-term49

component of observed PM2.5 and then apply MLR to separate the impacts of long-term meteorological changes on the50

concentrations. Henneman et al. (2015) apply MLR to the short-term component (identified by KZ filters) of air pollutant51

concentrations near Atlanta during 2000 to 2012, to separate the impact of short-term meteorological variability, and then52

estimate the long-term trend in air quality.53

Other statistical methods including non-linear regression or machine learning models have also been used to correct for54

meteorological variability (Holland et al., 1998; Carslaw et al., 2007; Hayn et al., 2009; Vu et al., 2019). One popular method55

is to use a generalized additive model (GAM) to estimate non-linear smooth functions of each meteorological variable within a56

given smoothing function family with penalization on non-smoothness. The US EPA uses a GAM model of temperature, wind57

direction and speed, humidity, pressure, stability, transport trajectories, and synoptic weather to perform weather corrections in58

assessing long term trends in O3 (Camalier et al., 2007). An increasing number of studies use machine learning models (Grange59

et al., 2018; Vu et al., 2019; Zhang et al., 2020; Shi et al., 2021; Qu et al., 2020). Vu et al. (2019) use a random forest model60

to predict pollutant concentrations in Beijing with time index and meteorological variables and then calculates the “weather-61

normalized” concentration for each day with 1000 sets of meteorological fields drawn from the historical meteorological data.62

They found that the decrease of PM2.5 during 2013 to 2017 was largely driven by emissions reductions, although the magnitude63

of reduction is smaller when correcting for meteorological variability.64

Despite a large number of papers which apply various meteorology correction methods, very little is known about whether65

these methods can effectively correct for meteorological variability and thus realistically estimate the counterfactual air quality66

and reveal the underlying impacts of anthropogenic emissions changes. Most studies cite the prediction performance of their67

statistical models (such as R2 and/or mean squared errors) to justify their method choice and analysis. However, good pre-68

diction performance does not guarantee the correct estimation of counterfactuals and causal effects (Runge et al., 2019). The69

performance of these meteorology-corrected methods is unable to be assessed using observational data alone, as the underly-70

ing emission-driven trends without influence from meteorological variability cannot be derived from data. Further, statistical71

analyses often assume that the influence of meteorological variability on pollutant concentration can be cleanly separated from72

the influence of anthropogenic emissions changes. This is not completely possible, as the impacts of meteorological variability73
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on pollutant concentration will also vary depending on the emissions. The degree to which this interaction affects the ability to74

calculate emissions-related trends under changing meteorology also remains unknown.75

Here, we conduct a model experiment to evaluate the performance of widely-used statistical models in correcting for me-76

teorological variability and estimating emissions-driven trends in air quality (see figure 1). We focus on the impacts of an-77

thropogenic emissions changes on annual PM2.5 and summer O3 in the US (2011-2017) and China (2013-2017), two periods78

well-studied in previous literature. Using a 3-D atmospheric chemical transport model GEOS-Chem, we simulate two sets of79

scenarios – “observational scenarios” with assimilated meteorological inputs (with interannual variability) and “counterfactual80

scenarios” with constant meteorological inputs. Using simulated daily concentrations in the observational scenarios, we es-81

timate meteorology-corrected trends for each grid cell from regression models using different statistical correction methods.82

We then compare the derived trends with the emissions-driven trends in the counterfactual scenarios (which are free of mete-83

orological variability by design), calculating the resulting “error” in trend estimation. We further design a correction method84

based on GEOS-Chem constant emission simulations, and use it to quantify the degree to which attribution to meteorology and85

emissions separately is possible. Finally, we apply the different statistical correction methods to observational data from sur-86

face monitoring networks in the US and China, discussing the variability across different methods. We conclude by providing87

recommendations for techniques to evaluate air pollution policies under changing meteorological conditions.88

2 Method89

2.1 GEOS-Chem90

GEOS-Chem is a global three-dimensional chemical transport model driven by assimilated meteorological data from the God-91

dard Earth Observation System (GEOS-5) of the NASA Global Modeling and Assimilation Office (GMAO) (Bey et al. (2001),92

http://www.geos-chem.org/). The simulation of PM2.5 in GEOS-Chem represents an external mixture of secondary inorganic93

aerosols, carbonaceous aerosols, sea salt, and dust aerosols. GEOS-Chem includes detailed O3-NOx-volatile organic carbon94

(VOC)-aerosol-halogen tropospheric chemistry (Travis et al., 2016; Sherwen et al., 2016). The GEOS-Chem model has been95

previously used to study the changes in PM2.5 and O3 during our studied periods, and model simulations have been shown to96

be consistent with the observed concentrations (e.g., see Li et al. (2017a); Xie et al. (2019) for the US, and Li et al. (2018);97

Lu et al. (2019); Zhai et al. (2021) for China). Studies in both regions show that the GEOS-Chem model is able to reproduce98

the spatial, seasonal, and interannual variability and the long-term trends in observed pollutant concentrations, despite biases99

in absolute concentrations in certain species and regions (Heald et al., 2012; Travis et al., 2016; Tian et al., 2021).100
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Figure 1. Overview of research methodology. Terms and coefficients are linked to the associated terms in equation 1 and table 1.

We use GEOS-Chem version 12.3.0 with a horizontal resolution of 0.5◦× 0.625◦ in North America and Asia (Wang et al.,101

2004). For each scenario, we first conduct a global run at a horizontal resolution of 4◦× 5◦, with a 12 month spin-up. These102

global runs are then used as the boundary conditions for nested simulations in US and Asia with finer resolution of 0.5◦×0.625◦.103

2.2 GEOS-Chem scenarios104

Table 1 shows the simulations included in our model experiments. We simulate two sets of scenarios – “observational scenarios”105

with interannual variability in meteorology and “counterfactual scenarios” with constant meteorological inputs. Both scenarios106

use the same emissions inventory as input (see section 2.3). For each grid cell, we estimate the linear trends in pollutant107

concentrations from simulated daily PM2.5 and O3 concentrations. We focus on the daily 24-hour average PM2.5 over all108

seasons, and the maximum daily average 8-hour (MDA8) O3 in summer (June, July, August). Our focus on the three summer109

months is consistent with many previous studies (e.g., Shen et al. (2015)), although this may not capture the peak ozone110

season for certain regions of the US and China. Our GEOS-Chem simulations use meteorological fields from the Modern-111

Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). We aggregate the112

hourly meteorological data for consistency with the pollutant concentrations: a 24-hour average for PM2.5 analysis and the113

corresponding 8-hour average for O3. Meteorological features that are used in the statistical models can be found in section114

2.4.115
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2.2.1 Observational scenarios116

Observational scenarios simulate PM2.5 and O3 under changing emissions and changing meteorological fields. Trends es-117

timated under the observational scenarios (βobs) are subject to the influences of interannual meteorological variability. Our118

model experiments were not specifically designed to reproduce observed air quality in these two regions, but rather to pro-119

vide a realistic test case to evaluate the performances of statistical methods. Nevertheless, as shown in figure A1 and A2, the120

simulated concentrations in PM2.5 and O3 largely reproduce the daily variability in observed pollutant concentrations. The121

linear trends in simulated PM2.5 and O3 concentrations in the observational scenario are largely consistent with trends of the122

measured concentrations. For example, the average trend (±one standard deviation) in the US is -0.27±0.30 µg−3/year (obser-123

vation) and -0.39±0.24 ppb/year (GEOS-Chem) for PM2.5, and -0.91±0.98 ppb/year (observation) and -1.02±0.83 ppb/year124

(GEOS-Chem) for O3. The only exception is that our model cannot reproduce the increasing PM2.5 trends in the Northwest125

US because we do not consider interannual variability in biomass burning emissions.126

2.2.2 Counterfactual scenarios127

Counterfactual scenarios simulate PM2.5 and O3 under changing emissions but constant meteorology. All simulation years in128

the counterfactual scenario use the meteorological fields of the start year (2011 for US, 2013 for China). Trends estimated129

under the counterfactual scenario (βcount) are not subject to interannual meteorological variability; we use this as a proxy for130

the trends in pollutant concentrations driven by emissions changes alone. In a sensitivity analysis, we also simulate the counter-131

factual scenario for China using the meteorological fields at the end year 2017 (at 4×5 degree resolution, due to computational132

constraints). We find that the linear trend in PM2.5 and O3 for each grid cell is highly consistent in the counterfactual scenarios133

across the choice of the meteorological years (see figure A5).134

2.2.3 Assumptions for GEOS-Chem experiments135

It is important to note that we do not assume our GEOS-Chem simulations perfectly represent the underlying pollutant con-136

centration in the real world (although the model compares relatively well with the observational data). Rather, our main focus137

is to evaluate how much different statistical methods can explain the differences between the observational and counterfactual138

scenarios. The assumption here is that the differences between observational and counterfactual scenarios are useful approxima-139

tions of the impacts of meteorological variability on pollutant concentrations. The implications of uncertainty in GEOS-Chem140

for our results can be found in the discussion section.141
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βcount

Observational

scenarios
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GAM using
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RF using
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LASSO using local
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βRF−regional
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and regional features
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constant emissions
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Constant

emissions

scenarios

Constant

2011 (US)

2013 (China)

Changing

2011-2017 (US)

2013-2017 (China)

Table 1: Overview of GEOS-Chem scenarios and meteorological correction methods.
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2.3 Emissions inventory142

For the US, we use the National Emissions Inventory 2011 (NEI 2011) as a baseline emissions inventory and scale the emissions143

in 2012 to 2017 to match the annual total emissions each year (U.S. Environmental Protection Agency, 2021b). For China,144

we use the monthly Multi-resolution Emission Inventory for China (MEIC) during 2013 to 2017 (Li et al., 2017b; Zheng145

et al., 2018). During the studied time periods, the US and China experienced dramatic decreases in anthropogenic emissions,146

particularly in SO2 and NOx. In the US, total anthropogenic emissions of SO2 decreased by 57% and NOx emissions decreased147

by 26% during 2011 to 2017 (see figure A3). In China, anthropogenic SO2 emissions decreased by 59% and NOx emissions148

decreased by 21% during the 2013-2017 period (see figure A4).149

Natural emissions of multiple chemical species are calculated online in the simulations (rather than prescribed) in the GEOS-150

Chem model and thus can be influenced by meteorological variability (see Keller et al. (2014) for more details). Impacts of151

meteorology on PM2.5 and O3 concentrations through changes in the natural emissions are considered here as part of the152

meteorology - concentration relationship. These emissions include NOx emissions from lightning and soil processes, sea salt153

emissions, dust emissions, and biogenic volatile organic carbon (VOC) emissions. However, biomass burning emissions are154

prescribed in the GEOS-Chem model and we hold them constant at the level of the start year. We make this simplification155

because the GEOS-Chem model uses biomass burning emissions from external inventories such as Global Fire Emissions156

Database (Werf et al., 2017), and it is impossible to distinguish natural fire emissions (part of the meteorological variability)157

from anthropogenic fire emissions (e.g., from farm residual burning). The role of natural emission changes in the meteorology-158

air quality relationship is further expanded on in the discussion section.159

2.4 Statistical and machine learning models160

2.4.1 Model with local meteorological variables161

We assess the performance of statistical and machine learning models to correct for the meteorological variability in the162

observational scenarios. We evaluate these methods with a commonly-used framework (e.g., used in Li et al. (2018) and163

Zhai et al. (2019)) which models the air pollutant concentrations of each individual grid cell using an additive form of a164

trend component, a meteorology component, and time fixed effects (to capture daily and monthly variability not related to165

meteorology). More specifically, we estimate the following regression equation for each grid cell i:166

yit = βobs
i × t+ f i(Xit)+ ηit + ϵit (1)167
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where yit denotes the PM2.5 or O3 concentration at grid cell i on day t. t is the time index (e.g., in the US, t=1 for January 1st,168

2011 and t=2 for January 2nd, 2011). Xit denotes the local meteorology features (i.e. meteorological variables in grid cell i on169

day t). ηit is the month-of-year×day-of-month fixed effect to capture daily and monthly variability of pollutant concentrations170

that are not related to the meteorological variability (e.g., seasonal cycle in O3 and PM2.5). ϵit is the normally-distributed error171

term. βobs
i represents the meteorology-corrected trend in PM2.5 or O3 concentration for grid cell i estimated with the standard172

ordinary least square method. We use the absolute differences |βobs
i −βcount

i | to evaluate the performance of different methods173

to correct for meteorological variability for any given grid cell i.174

Here, f i(Xit) represents the specifications of local meteorological features for grid cell i under different methods. In addition175

to the commonly-used multiple linear regression (MLR) model, we also evaluate following models with higher flexibility:176

polynomial regression models (quadratic, cubic), cubic spline models, generalized additive models (GAM, implemented with177

R package “mgcv” by Wood (2011)), and Random Forest (RF) models. We refer to the trend estimates estimated without178

f i(Xit) as “uncorrected”. We focus on the methods in table 1 in the main manuscript, and the performance of the other179

methods can be found in table A1 and A2. Note that the time fixed effects are modelled differently in RF models due to the180

estimation procedure. More details on the implementation of RF can be found in SI.181

We use the following ten variables from MERRA-2 as our selected meteorological features for the statistical analysis: surface182

temperature, precipitation, humidity, planetary boundary layer height, cloud fraction, surface air pressure, and wind speed (U183

and V direction, at surface and 850 hpa level). These variables are the most commonly used features in previous studies. We184

also perform sensitivity analyses that include nine more meteorological features: direct photosynthetically-active radiation,185

diffuse photosynthetically-active radiation, tropopause pressure, friction velocity, top soil moisture, root soil moisture, snow186

depth, surface albedo, and surface air density. These features are selected because they are used as primary or intermediate187

inputs for calculating PM2.5 or O3 concentrations in the GEOS-Chem model and may contain information that help explain188

variability in pollutant concentrations.189

2.4.2 Model with local and regional meteorological variables190

We also evaluate models that use both local and regional meteorological features. Regional meteorological features are impor-191

tant for explaining variability in local pollutant concentrations due to 1) pollution transport from neighboring locations, and192

2) influences from meteorological systems at synoptic scale (i.e. large scale weather systems that span over 1000 kilometers193

such as circulation patterns) (Tai et al., 2012; Shen et al., 2015; Zhang et al., 2018; Leung et al., 2018; Han et al., 2020). As194

the incorporation of both local and regional features can quickly expand the dimensionality of the feature space, here we use195

the Least Absolute Shrinkage and Selection Operator (LASSO) and the Random Forest (RF) model, two statistical models that196
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show good prediction performances with high dimensional data inputs. We estimate the following equations:197

yit = βobs
i × t+ gi(Xit,Zt)+ ηit + ϵit (2)198

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes the local meteorology features for grid cell199

i on day t. Zt denotes the regional scale meteorology features including the meteorological features for every grid cell in the200

US on day t (98 cells in 4×5 degrees; we choose a relatively coarse resolution due to computational cost). Meteorological201

information in each location in the US may help explain the pollutant concentrations in grid cell i. In total, we have 10 local202

features (Xit) and 10×98=980 regional scale features (Zt). The coefficient βobs
i is obtained with the double machine learning203

approach by Chernozhukov et al. (2018). In particular, the hyper-parameters and coefficients of LASSO and RF are selected204

and fitted using 4-fold cross-validation to avoid the “overfitting risk”. More details on the implementation of LASSO and RF205

can be found in SI.206

2.5 Correction approach using GEOS-Chem constant emissions scenario207

We further design and evaluate an approach to correct for meteorology variability with GEOS-Chem simulations (referred208

to as “constant-emis” approach). The “constant-emis” approach uses GEOS-Chem simulations with constant anthropogenic209

emissions and changing meteorological fields (“constant emissions scenarios” in table 1). All years in the constant emissions210

scenario use anthropogenic emissions of the start year (2011 for US, 2013 for China). We estimate the following equations:211

yit = βgc
i × t+SIMit + ηit + ϵit (3)212

where SIMit denotes the simulated concentrations on day t in grid cell i in the constant emissions scenarios. SIMit serves a213

similar purpose as the term “f i(Xit)” in equation 1, but comes from the GEOS-Chem simulation. Some previous studies have214

also used model simulations with constant emissions input as a way to characterize meteorological variability (Zhong et al.,215

2018; Zhao et al., 2020). βgc
i is the estimated meteorology-corrected trend in PM2.5 or O3 concentration using this model-based216

correction method.217

Compared to previous statistical and machine learning approaches, the “constant-emis” approach better captures the meteo-218

rological variability as simulated in GEOS-Chem (as SIMit are directly taken from GEOS-Chem). Therefore, the difference219

between the trend estimates (βgc) and counterfactual trends (βcount) provides a conceptual minimum for estimation errors us-220

ing the framework of equation 1 to perform meteorological corrections. The commonly-used framework of equation 1 assumes221
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that the impacts of meteorology variability can be separated from the impacts of anthropogenic emissions. In our experiments,222

this assumption indicates that the differences between the counterfactual scenario and the observational scenario can be solely223

explained by the meteorological variables. However, the difference in pollutant concentrations between these scenarios is also224

in part driven by emissions in their interaction with meteorology (despite the fact that our different scenarios use the same225

emissions inventory). We use |βgc
i −βcount

i | to quantify the estimation error associated with ignoring such interactions in this226

framework.227

2.6 Air quality observation data228

We use the surface air quality measurements from the Air Quality Systems administered by the US EPA (U.S. Environmental229

Protection Agency, 2021c). We use the daily 24-hour average of PM2.5 concentrations for all months and the daily maximum230

8-hour average (MDA8) O3 concentrations for June, July and August. Figure A1 shows the locations, trends in measured231

concentrations, and correlations between GEOS-Chem simulations and measured concentrations.232

The surface air quality measurements in China come from the monitoring network from China’s Ministry of Ecology and233

Environment (2021). The monitoring network was launched in 2013 and has expanded to all prefecture level cities in mainland234

China. We use the daily 24-hour average of PM2.5 concentrations and the MDA8 O3 concentrations for summer. Figure A2235

shows the locations, trends in measured concentrations, and correlations between GEOS-Chem simulations and measured236

concentrations.237

We use the meteorological variables from MERRA-2 when performing meteorology corrections at these monitoring stations,238

because the meteorology information is not available for all these variables at the station level. This is consistent with previous239

analysis estimating the meteorology-corrected trends using observational air quality data (e.g., Li et al. (2018)).240

3 Results241

3.1 Performance of different correction methods: US (2011-2017)242

Figure 2A and 2C show the trends in PM2.5 and O3 concentrations in the counterfactual scenarios in the US. When holding243

meteorological fields constant across years, decreasing trends in the simulated PM2.5 concentrations across the US result from244

decreasing anthropogenic emissions. The counterfactual scenario also shows negative linear trends in O3 concentrations in all245

but three grid cells in the West. Increases in summer O3 in these locations result from the non-linear relationship between O3246

concentrations and NOx emissions.247
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Figure 2B and 2D show the degree to which different meteorological correction methods can recover the emissions-driven248

trends in the counterfactual scenarios. When no correction for meteorology is performed (“uncorrected” in figure 2B), we249

observe large estimation errors in trend estimates over the Northeast and Southern US by up to 0.25 µg m−3/year, an error250

that is 50% of the counterfactual trends. We find that the widely-used MLR method does not help reduce these errors in PM2.5251

trend attributions. MLR has a modest impact on reducing the errors in Northeast US, but it does not decrease the errors over252

the Southern US and leads to even higher errors over Midwest. Nationwide, the average magnitude of errors (relative to the253

counterfactual scenario) increases with the MLR correction (0.083 µg m−3/year) compared to the uncorrected case (0.066 µg254

m−3/year). Among the five methods, we find that the RF model using both local and regional scale features (“RF-regional” in255

figure 2) offers the best performance in recovering the trends in the counterfactual scenarios and is the only method that yields256

smaller errors than the uncorrected case (the nationwide average error decreased by 0.019 µg m−3/year, or 28% less). The257

RF-regional model also outperforms the RF-local and LASSO-regional models, suggesting the importance of considering non-258

linearity, interactions between different meteorological features, and regional meteorology information in correctly adjusting259

for the impacts of meteorology.260

Meteorological variability also has a substantial influence on the summertime O3 trends in the US during this period (as261

shown in figure 2D). Relative to the counterfactual scenario, the uncorrected O3 trends are biased by over 1-2 ppb/year in large262

areas of California, Midwest and Southern US (as much as 320% of the counterfactual trends). This is largely driven by the fact263

that the 2011 and 2012 summer was particularly hot in these regions and led to higher concentrations of O3 at the beginning of264

this 7-year period (see figure A7 for the Southern and Midwest US). Therefore, failure to correct for meteorological variability265

results in much more negative trend estimates in the O3 concentrations in these areas compared to the counterfactual scenario266

(see figure A6). Meteorology corrections with MLR or GAM help reduce these estimation errors substantially (nationwide267

average error is reduced by 51% using MLR or 57% using GAM compared to uncorrected trends), while large errors still268

persist in the Midwest and South. Similar to the case of PM2.5, the RF-regional model offers the best performance in correcting269

for meteorological variability (the national average error is further reduced by 42%, compared to MLR), and it is especially270

helpful in reducing the errors over the Midwest and South (regional average error is reduced by 64% and 44%, respectively,271

compared to MLR).272

3.2 Performance of different correction methods: China (2013-2017)273

Figure 3A and 3C show the trends in PM2.5 and O3 concentrations in the counterfactual scenarios in China. We find a sub-274

stantial decline in simulated PM2.5 concentration during 2013 to 2017, particularly in eastern and central China. In contrast,275

there is little change in the simulated PM2.5 concentrations in western China in the counterfactual scenario, where PM2.5 is276
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Figure 2. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in the US. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the absolute magnitude of errors of trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs −βcount|). The average of the absolute errors for each method is shown in the
figure. Unit of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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dominated by dust species largely driven by natural processes (see figure A9). For summer O3, there are decreasing trends in277

the counterfactual scenario in most parts of China, except for North China and some urban areas. This is largely consistent with278

previous studies that attempt to attribute emissions-related changes in O3 concentrations during this period based on modeling279

or observational data (Li et al., 2018, 2020; Lu et al., 2020).280

Figure 3B shows the magnitude of estimation errors in the trend estimates of annual PM2.5 in China under different correction281

methods. We find the underlying meteorological variability has a substantial impact on PM2.5 trends in China during this282

period. We observe large differences between the uncorrected and counterfactual trends in simulated PM2.5 concentrations,283

particularly in Northwest and Northeast China. Similar to the model experiments in the US, we find that MLR and GAM284

methods fail to correct for this underlying meteorological variability and lead to further increases in estimation errors in many285

locations. Relative to the counterfactual scenario, the nationwide average error increases to 0.90 µg m−3/year with MLR286

and 1.06 µg m−3/year with GAM (compared to 0.89 µg m−3/year with no correction). We find that the RF-regional model287

recovers the counterfactual trends better than other methods (nationwide average error: 0.64 µg m−3/year; an improvement by288

30% relative to MLR), but it is still not able to correct for the persistent estimation errors over Northwest China. We further289

analyze the performance of correction methods for the different component species of PM2.5. As shown in figure A10 and290

A11, the MLR model is particularly unable to correct for the impacts of meteorological variability on nitrate and dust species.291

Compared with MLR, the RF-regional model better corrects for the impacts of meteorology on secondary organic aerosol292

species in South and Central China and ammonium in Northeast, but only yields modest improvement in correcting for the293

errors in dust concentrations over Northwest China (see figure A12). In a sensitivity analysis, we use an approach that first fits294

RF-regional models of each individual PM2.5 species, and then combines predictions for each species to derive trend estimates.295

The results are largely similar to the main approach that directly fits the total PM2.5 concentration (see figure A13).296

Figure 3D shows the magnitude of errors in the trend estimates for summer O3 under different correction methods in297

China. We find that the MLR model only modestly reduces the estimation errors compared to the uncorrected cases, and the298

RF-regional model offers the best overall performance. The nationwide average error is reduced to 0.28 ppb/year using the RF-299

regional model (relative to 0.43 ppb/year uncorrected and 0.41 ppb/year with MLR). Similar to the evaluation of summer time300

O3 in the US, we find the non-linear models (GAM, RF-local) perform better than MLR, but are not as good as the RF-regional301

model. Surprisingly, the LASSO-regional model performs the worst in recovering the counterfactual trends. Compared to the302

US case, we find that the impacts of meteorological variability on O3 and the method performances are much more spatially303

heterogeneous (see figure A6, A8), which may be partially due to the more heterogeneous O3 regimes in China during this304

period.305
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Figure 3. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in China. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the absolute magnitude of errors of trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs −βcount|). The average of the absolute errors for each method is shown in the
figure. The unit of the trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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3.3 Limitations in separating meteorological and emissions influence: quantified with constant emission scenarios306

In our model experiments in both US and China, we find large differences remain between the trends evaluated with statistical307

models (even the best-performing RF-regional model) and counterfactual trends. The remaining differences could result from308

two different factors: 1) the statistical model cannot capture the complex relationship between meteorology and pollutant309

concentrations, and/or 2) the differences between the observational scenarios and counterfactual scenarios depend not only310

on the meteorological variability but also the anthropogenic emissions in their interaction with meteorology (i.e. impacts of311

meteorology on air quality also depend on the level of emissions).312

We quantify the potential magnitude of this second factor using our constant-emis approach. As the constant-emis approach313

captures the exact relationship between meteorology and pollutant concentrations in GEOS-Chem, the error of the constant-314

emis approach is only associated with the second factor above and thus provides a conceptual minimum of the estimation errors315

that can be achievable by any statistical approach. Figure 4 shows the estimation errors of trend estimates using the constant316

emissions scenarios simulated by GEOS-Chem. We focus on the trends in summer O3 in the US and annual PM2.5 in China, for317

which we see the largest impacts of meteorological variability on the pollutant trends and the largest improvements in reducing318

estimation errors from the correction methods. Compared to the statistical models (e.g., MLR and RF-regional in figure 4A319

and 4C), trends evaluated using the constant-emis approach are very similar to the trends in the counterfactual scenarios. The320

national average error of trend estimates is only 0.04 ppb/year for the O3 trends in the US (relative to 0.33 ppb/year under MLR321

or 0.19 ppb/year under RF-regional), and only 0.08 µg m−3/year for the PM2.5 trends in China (relative to 0.91 µg m−3/year322

under MLR or 0.64 µg m−3/year under RF-regional).323

However, the estimation errors calculated above are still non-negligible and can be large in certain regions. As shown in Fig-324

ure 4B and 4D, the constant-emis approach generally yields trend estimates biased by 10% relative to the counterfactual trends,325

but the errors can be up to 40% in certain areas. This error term is the result of ignoring how emissions could potentially influ-326

ence the impacts of meteorology on the pollutant concentrations – that is, the impacts of the same meteorological variability327

on concentrations may be different in the start year (with high emissions) compared to the end year (with low emissions).328

3.4 Application to observational data329

Figure 5 shows the regional trends in O3 in the US and trends in PM2.5 in China estimated from the observaional data from330

surface monitoring networks and the GEOS-Chem simulations (only grid cells that overlap with monitor locations are shown331

here). Here, to correct for the meteorology variability in observational data, we implement the same set of statistical methods332

as shown in Table 1, but with different numerical coefficients directly derived from the observational data. When applying333
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Figure 4. Panels A and C show the histogram of estimation errors in trend estimates assessed using MLR, RF-regional and constant-
emis. Panels B and D show the errors assessed with the constant-emis method as a percentage of the trends in the counterfactual scenario
(|βgc −βcount|/|βcount|). Panels B and D only show grid cells with a trend in the counterfactual scenarios >0.2 ppb/year or >0.2 µg
m−3/year; remaining grid cells are shown in gray. Panels A and B illustrate the summer O3 trends in the US. Panels C and D illustrate the
annual PM2.5 trends in China.

different meteorological correction methods to the observational data, our analysis reveals that the choice of methods for334

meteorological correction can yield very different results for certain regions. For example, the regional average uncorrected O3335

trend is -1.49 ppb/year and -1.15 ppb/year in Midwest and Southern US, respectively, which overestimates the reductions in336

concentrations attributable to anthropogenic emissions changes (figure 5A). Correcting for the meteorological variability with337

MLR model yields regional average trend at -0.54 ppb/year in Midwest (a decrease by 53% in magnitude relative to uncorrected338

trends) and -0.71 ppb/year in the Southern US (a decrease by 52%). RF-regional model further reduces the absolute magnitude339

of the declines in O3 attributable to emissions reductions to -0.02 ppb/year for Midwest and -0.40 ppb/year for the Southern340

US. Importantly, these patterns are consistent with the results from our model experiments in these regions: the RF-regional341

model also estimates a much less negative emissions-driven trend in the Southern US compared to the uncorrected case and342

MLR estimates in the GEOS-Chem simulations. For the GEOS-Chem simulations, RF-regional estimates are 39% smaller than343
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MLR estimates, and this is comparable to the magnitude changes for the observational data (RF-regional estimates are 44%344

smaller than MLR). As the RF-regional model outperforms the other correction methods in recovering counterfactual trends in345

the GEOS-Chem simulations, this potentially also suggests a better performance of RF-regional in recovering the underlying346

emission-driven trends when applying to the observational data.347

We find similar consistency of the method performances between observational data and GEOS-Chem simulations in China348

as well (figure 5B). When applying to the observational data from the surface monitoring network, much smaller reduction349

of PM2.5 concentrations is attributed to anthropogenic emissions changes in the North, Northeast and East of China using350

the RF-regional model, relative to the MLR estimates. For example, the average emissions-driven trend estimated from the351

observational data is -4.9 µg m−3/year in Beijing under the RF-regional model, compared with -9.6 µg m−3/year under the352

MLR model. These patterns are consistent with the patterns of the trend estimates estimated from our GEOS-Chem simulations353

with different statistical methods.354
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Figure 5. Trends in O3 in the US (panel A) and PM2.5 in China (panel B) estimated from the observational data (red) and GEOS-Chem sim-
ulations (blue) under different correction methods. Trends in pollutant concentrations are estimated at the monitor level (for the observational
data) or at the grid cell level (for GEOS-Chem simulations). The point indicates the average value of the assessed trends of all monitors (or
grid cells) within a region. The error bars show the 10th and 90th percentile of the assessed trends of all monitors/grid cells within a region.
Panel A illustrates the summer O3 trends in the US (unit: ppb/year). Panel B illustrates the annual PM2.5 trends in China (unit: µg/m3/year).
We classify the US states into four regions according to the US Census Bureau and classify China’s provinces into six regions based on
the structure of China’s subnational electric grid. Observational data are derived from U.S. Environmental Protection Agency (2021c) and
China’s Ministry of Ecology and Environment (2021).
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4 Discussion355

We designed a model experiment that enables us to directly quantify the performance of different statistical models to evaluate356

the trends in pollutant concentrations driven by anthropogenic emissions changes. Based on our evaluations of either PM2.5357

or O3 trends across US and China during periods of recent emission declines, our analysis shows that widely-used MLR358

and GAM methods do not perform well in correcting for the meteorological variability and recovering simulated emissions-359

driven trends. We propose a random forest model that uses both local and regional meteorological features, which offers the360

best overall performance in recovering the emissions-driven trends across both species and countries. Applying this model to361

observational data suggests that estimates based on MLR or similar methods may overestimate the impacts of anthropogenic362

emissions changes on the decline of pollutant concentrations in certain regions in the US and China. However, the RF-regional363

method does not outperform all the other approaches in every location despite its better overall performance (see figures A14364

and A15). This suggests that using multiple statistical approaches may be necessary to derive robust conclusions for attributing365

pollutant trends to emission changes.366

With our model experiments, we also quantify the estimation errors in assuming emission impacts can be perfectly separated367

from meteorological variability. These errors likely bound the estimation errors that can be achieved by any statistical methods368

with this assumption. In the future, more complex statistical and machine learning methods could be applied to distinguish369

emissions- and meteorologically-driven changes, but attribution solely based on observed concentrations and meteorology will370

be limited by physical interactions between emissions and meteorology. We find that the estimation errors resulting from these371

interactions are overall much smaller compared to the estimation errors of the existing statistical methods, but can still be372

important for certain regions at certain times. However, the intertwined relationships between anthropogenic emissions and373

meteorology are often much more complex in reality compared to our model experiments. For example, meteorology can also374

directly influence anthropogenic emissions (e.g., increased electricity consumption during extreme weather conditions (U.S.375

Energy Information Agency, 2019; He et al., 2020)). Therefore, the estimation errors that can be achieved by more flexible376

statistical models can potentially be even larger than the errors quantified with our constant-emis approach.377

While the GEOS-Chem model provides us with a framework to test statistical methods, its use in our model experiments378

introduces some uncertainty and limitations. Specifically, our experiments assess the performance of statistical methods in cor-379

recting for the meteorology-pollution relationships encoded in GEOS-Chem, which may differ from the complex relationships380

in the observational data. Several studies have shown that GEOS-Chem and similar models do not capture certain meteorology-381

pollution relationships in the observational data (e.g., temperature - O3 relationship (Porter and Heald (2019)) and influence382

of regional meteorological patterns (Fiore et al. (2009))). The relationships encoded in GEOS-Chem may be different from383
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the underlying meteorology-pollution relationships in the following three ways: (1) parameters in GEOS-Chem that describe384

these relationships are uncertain; (2) the relationships in GEOS-Chem are incorrect or incomplete; and (3) the relationships385

in GEOS-Chem are deterministic compared to the potential stochastic underlying processes. Therefore, the performance of386

any individual statistical method is likely to be worse in the real world compared to its ability to reproduce a deterministic387

meteorology-pollution relationship encoded in GEOS-Chem. Further model-based experiments could apply our methods to388

different atmospheric models in order to test if these conclusions differ by different models.389

Changes in natural emissions due to meteorological variability play an important role in the air quality-meteorology relation-390

ship. Our model experiment considers natural emission changes that can be simulated online with assimilated meteorological391

fields in GEOS-Chem, including soil NOx emissions, biogenic VOC emissions, and dust emissions. We find that the statistical392

models (such as RF-regional) performs notably worse in correcting for the variability in dust-related PM2.5 (see figure A12),393

likely because dust PM2.5 is extremely variable, with zero concentration in most non-dust days but extremely high concentra-394

tion during the occasional dust storms. Our findings can potentially shed light on another important source of natural emissions,395

wildfire emissions, which are also quite variable but have become an increasingly important contributor to PM2.5 and O3 in396

certain regions (e.g., western US) (Burke et al., 2021). While emissions from biomass burning are held constant in our model397

experiments as the wildfire emissions are prescribed in GEOS-Chem, wildfire emissions are significantly influenced by climatic398

variability (Abatzoglou and Williams, 2016; Xie et al., 2022) and will likely be a substantial challenge for any meteorological399

correction method in the future that attempts to separate changes in anthropogenic emissions from the variability in climate400

and associated natural emissions.401

Our research reveals multiple directions for future research to enhance our understanding of the usage of statistical models402

to evaluate trends in pollutant concentrations under changing meteorological conditions. One key but challenging question403

is to better understand the estimation errors of these existing approaches, e.g. why the MLR model is able to correct for the404

meteorological variability in some locations but not others. In this paper, we only test a selection of methods based on their405

popularity in the existing literature and propose a simple-to-use model (RF-regional). More complex models (such as convo-406

lutional neural networks) may offer better performance, but the estimation error will likely be bounded by the errors of the407

constant-emis approach. Our work only evaluates the statistical and machine learning models in expressions 1 and 2, which408

only represent one (popular) set of evaluations that performs location-specific trend estimation with adjustments for meteo-409

rology and secular trends. However, other statistical model specifications specifically targeted to questions of meteorological410

interaction or that permit borrowing information across locations may generate different results. Constrained by computational411

resources and availability of emission inventories, our simulation only covers a relatively short time period which could result412

in additional uncertainty in the linear trend estimates. When possible, future studies could evaluate performances of the statisti-413
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cal models with longer simulations and alternative trend estimates (such as the Theil-Sen estimator). A deeper investigation of414

the estimation error due to assuming perfect separation between meteorology and emission is also essential for understanding415

how we should interpret studies that use these statistical methods. For example, further work could explore how these errors416

will vary by the magnitude of emissions reductions and the chemistry regimes.417

5 Recommendations for attributing trends to emissions changes418

Using statistical methods to causally infer relationships between simulated air pollutant concentrations and anthropogenic419

emissions is challenging, and doing so in contexts of observational data is even more challenging. Understanding the uncer-420

tainty of statistical models in characterizing the meteorology-pollution relationship is essential to evaluating the effectiveness421

of policy interventions with observational data. Here, we make several recommendations to researchers and policy makers422

based on our analysis.423

For those who aim to infer causal effects of emissions changes on air quality based on observational data on concentrations424

and meteorology, we recommend using multiple statistical methods to correct for meteorological variability when evaluating425

the impacts of policies or interventions on air quality. From our two case studies, we find a relatively large variation between the426

trend parameters estimated by different statistical methods (especially at the grid cell or monitor level). Some methods perform427

better in certain locations but not in others (though RF-regional is the best-performing method overall). Using multiple ap-428

proaches (linear/non-linear and at local/regional scale) may help to quantify uncertainty related to meteorological corrections.429

These findings also suggest that empirical analyses may benefit from considering the impacts of meteorological variability on430

air quality separately for each region or even for each monitor location (if data permits), instead of attempting to determine a431

general relationship between meteorological variability and air pollution over a large spatial domain. Finally, analysts should432

be particularly cautious when using statistical methods to estimate impacts of anthropogenic emissions on air quality in regions433

where pollution variability is dominated by meteorologically-influenced environmental processes such as dust emissions, as434

we consistently show that typical statistical methods (in combination with the standard set of meteorological variables) do not435

work well in those regions.436

Due to the non-negligible estimation errors in recovering the counterfactual trends even with the best-performing statistical437

approach we test, we believe these statistical analyses are most useful in understanding the patterns of anthropogenic emissions438

on air quality when aggregated across larger spatial areas, rather than providing specific trends for individual monitor locations.439

There is a higher degree of consistency among the trend estimates across different methods when aggregated at regional level,440

but assessment at local level is more sensitive to method choice. The absolute magnitude of monitor-level trends needs to be441
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interpreted with caution, considering both the uncertainty from the statistical methods and also the limit of meteorological442

correction due to ignoring the interactions between meteorology and emissions.443

Because measured pollutant concentrations are subject to the influence of underlying meteorological variability, many efforts444

have attempted to correct for the impacts of meteorological variability and use “meteorology-corrected” concentrations and445

trends to assist in evaluating the effectiveness of air quality policies. Our study evaluates existing methods that aim to correct for446

the meteorological variability and finds many of these methods do not perform well. This raises potential concerns about the use447

of “meteorology-corrected” concentrations as targets for policy evaluation. Meteorology-corrected concentrations and trends448

remain useful metrics to quantify the influence of emissions. However, a more comprehensive evaluation of the effectiveness449

of policy requires interpreting measurements with all available tools, ideally including both statistical analyses and physical450

models.451
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Appendix: Supplementary methods461

Implementation of LASSO and RF462

As the incorporation of both local and regional features can quickly expand the dimensionality of the feature space, we use the463

Least Absolute Shrinkage and Selection Operator (LASSO) and the Random Forest (RF) model to assess the importance of464

regional meteorological features. Both methods are commonly-used approaches with good prediction performance with high465

dimensional data inputs, and are thus appropriate for an analysis with a large number of regional meteorological features. For466

these two methods, we rewrite equation 1 as the following:467

yit = βobs
i × t+ gi(Xit,Zt,Wt)+ ϵit (1)468

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes the local meteorological features for grid cell469

i on day t. Zt denotes the regional scale meteorology features including those for all grid cells in the US on day t (98 cells in470

4×5 degrees; we choose a relatively coarse resolution due to computational cost). Meteorological information in each location471

in the US may help explain the pollutant concentrations in grid cell i. In total, we have 10 local features (Xit) and 10×98=980472

regional scale features (Zt). Wt denotes the day and month variable to model the daily and monthly variability in pollutant473

concentrations that are unrelated to meteorological variability. For LASSO, we use month-of-year×day-of-month fixed effect474

(same as all the other methods except for RF), and these fixed effects are not penalized in the LASSO regression. For RF, we475

use the month-of-year variable (from 1 to 12), and day-of-month variable (from 1 to 31), due to the inefficient performance of476

RF working with a large number of fixed effects. Thus, the difference between RF and the other methods may also come from477

the different choices in modeling monthly and daily variability.478

The coefficient βobs
i is obtained with the following procedure using the double machine learning approach by Chernozhukov479

et al. (2018):480

(1) We first partition the time series of {yit, Xit, Zt, Wt} into 4 folds. We use 75% of the data as training data and the481

remaining 25% for predictions. We train the following two models on the training data:482

yit = f(Xit,Zt,Wt)483

t= g(Xit,Zt,Wt)484
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(2) We then apply models f(.) and g(.) to the prediction set to get predictions of yit and t for the rest 25% of the data. The485

above process is repeated four times to derive predictions for the entire time series (predictions denoted as ŷit and t̂).486

(3) We calculate the residuals of each model ỹit = yit − ŷit and t̃= t− t̂. The coefficient of interest βobs
i is then calculated487

as:488

βobs
i =

∑
t t̃ỹit∑
t t̃t

489

This is equivalent to setting up a linear regression of ỹit ∼ t̃ and obtaining the slope coefficients (as shown by Chernozhukov490

et al. (2018)).491

The hyper-parameters of RF and LASSO are tuned with 4-fold cross validation. We also perform two sensitivity analyses: 1)492

with a different spatial resolution for the regional scale features (2×2.5 degrees instead of 4×5 degrees), and 2) with different493

numbers of folds to estimate the trend coefficients. Our results are similar across these sensitivity analyses (see figure A16).494

The double machine learning framework involves a sample partition procedure (steps (1) and (2) above). This procedure,495

however, does not fit the purpose of including time fixed effects in the LASSO model (as randomly partitioned training and496

test sets could have very unbalanced number of observations from a given month-day pair). Therefore, step (1) and (2) are only497

implemented for the RF model, and coefficients of the LASSO model are directly derived from step (3) without sample splitting.498

This is acceptable for the LASSO model as the risk of “overfitting” has already been eliminated by using the tuned penalizing499

factor (i.e. the hyper-parameters) derived from a 4-fold cross-validation. It is important to note that we quantify the performance500

of RF and other methods using the differences between “meteorology-corrected” trends (βobs) and the counterfactual trends501

(βcount), instead of their performance in predicting the pollutant concentration. Therefore, if the RF model “overfits the data”,502

it would actually result in a large error, because the overly fit RF model would attribute all variability of PM2.5 and O3 to the503

meteorological variables and estimate a close-to-zero trend.504
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Appendix: SI tables and figures505

Model Annual PM2.5 in the US Summer O3 in the US

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.066 28% 27% 0.67 154% 84%

MLR (5 features) 0.092 43% 44% 0.38 84% 71%

MLR (10 features) 0.083 40% 40% 0.33 71% 64%

Quadratic 0.088 40% 42% 0.29 60% 58%

Cubic 0.075 39% 41% 0.28 60% 58%

Spline 0.076 40% 41% 0.28 61% 59%

GAM 0.076 40% 43% 0.29 61% 58%

RF-local 0.067 33% 39% 0.34 78% 70%

LASSO-regional 0.078 31% 33% 0.31 68% 65%

RF-regional 0.047 25% 23% 0.19 46% 47%

Table A1. Estimation errors of trend estimates in the US under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Model Annual PM2.5 in China Summer O3 in China

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.89 224% 77% 0.43 95% 74%

MLR (5 features) 1.07 193% 80% 0.42 90% 68%

MLR (10 features) 0.90 159% 79% 0.41 85% 68%

Quadratic 1.00 142% 82% 0.36 76% 62%

Cubic 1.07 143% 82% 0.34 68% 59%

Spline 1.08 140% 84% 0.33 69% 59%

GAM 1.06 139% 82% 0.35 72% 59%

RF-local 0.99 172% 82% 0.31 64% 58%

LASSO-regional 0.83 184% 75% 0.46 98% 73%

RF-regional 0.64 152% 67% 0.28 61% 58%

Table A2. Estimation errors of trend estimates in China under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Figure A1. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the
monitoring network and GEOS-Chem simulations in the US (2011-2017). Panels A and B show the trends in monitored concentrations
(dots) and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and
D show the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations. Observational air
quality data is derived from U.S. Environmental Protection Agency (2021c).
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Figure A2. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the surface
monitoring network and GEOS-Chem simulations in China (2014-2017). Panels A and B show the trends in monitored concentrations (dots)
and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and D show
the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations. Observational air quality
data is derived from China’s Ministry of Ecology and Environment (2021).
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Figure A3. National total anthropogenic emissions in the US (2011- 2017). The emissions data is derived from the national total emissions
of criteria air pollutants reported by the US EPA Air Emissions Inventory (U.S. Environmental Protection Agency, 2021a). Changes in
emissions between 2011 and 2017 as percentages of the emissions in 2011 are presented in the figure.
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Figure A4. National total anthropogenic emissions in China (2013- 2017). The emissions data is derived from the Multi-resolution Emission
Inventory (MEIC) (Li et al., 2017b). Changes in emissions between 2013 and 2017 as percentages of the emissions in 2013 are presented in
the figure.
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Figure A5. Counterfactual trends in O3 (unit: ppb/yr) and PM2.5 (unit: µg m−3/year) in China with different meteorological years. Each dot
represents one grid cell in China. The x-axis shows the trends in air quality in the counterfactual scenario using the meteorological field in
2013, and the Y-axis shows the trends in air quality in the counterfactual scenario using the meteorological field in 2017. Results here are
derived from simulation at 4×5 degrees.
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Figure A6. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in the US. Panels A and C show trend
estimates under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction
methods compared with the counterfactual scenarios (βobs −βcount). The average of the absolute error for each method is shown in the
figure. Unit of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure A7. Deviations of meteorological features from the 7-year average in the US (South and Midwest). The deviation is quantified in the
units of standard deviation (SD) across the 7-year period. Zero indicates the 7-year average. This plot shows the summer time average of
daily MDA8 meteorological variables for each year aggregated over South and Midwest US.

34



Figure A8. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in China. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction methods
compared with the counterfactual scenarios (βobs −βcount). The average of the absolute error for each method is shown in the figure. Unit
of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure A9. Concentrations of component species of PM2.5 in China (average across 2013-2017). The figure shows concentrations of sulfate
(SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA), and dust.
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Figure A10. Counterfactual trends of component species of PM2.5 in China. The figure shows counterfactual trends of total PM2.5, anthro-
pogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon
(OC), secondary organic aerosol (SOA), and dust.
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Figure A11. Differences between counterfactual trends and trends evaluated under MLR (βMLR −βcount) of component species of PM2.5

in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4),
nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure A12. Differences between counterfactual trends and trends evaluated under RF-regional (βRF−regional −βcount) of component
species of PM2.5 in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt),
sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure A13. Histograms of estimation errors of trend estimates in PM2.5 under two implementations of the RF-regional method (applied to
China). The upper panels (Combined) show results of fitting RF models to the total concentrations of PM2.5 to directly estimate trends (the
main results). The lower panels (By species) show results of fitting RF models to individual PM2.5 species and then combine predictions to
estimate trends. The left panels show results for total PM2.5 and right panels show results for anthropogenic PM2.5 (total PM2.5 excluding
dust and sea salt). Average of the estimation errors across all grid cells is shown in the figure.
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Figure A14. Best-performing correction method for each grid cell (US). For each method, the figure shows the grid cells at which the trend
estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure A15. Best-performing correction method for each grid cell (China). For each method, the figure shows the grid cells at which the
trend estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure A16. Histograms of estimation errors of trend estimates in O3 under different implementations of the RF-regional method (applied
to the US). From left to right: Main (the main results), More features (including 9 extra meteorological features), 2x2.5 (using regional
features with spatial resolution at 2×2.5◦, instead of 4×5◦), fold=2 (using 2 folds for data-splitting and cross-fitting), fold=8 (using 8 folds
for data-splitting and cross-fitting). Average of the absolute error for each implementation is shown in the figure. Here we only use a random
subset of all the grid cells in the US due to high computational cost.
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