
 Reply to reviewer 1: 

 General Comments: 

 The idea of evaluating the performance of statistical and machine learning methods used to 
 correct meteorological variability in emission trends using model results is an interesting 
 one, since there have been many recent papers that have been written that use these 
 methods on real-world data sets, without any real metric of their effectiveness in recovering 
 the true trends in emissions. 

 Overall, this is a well-written paper with a set of carefully designed experiments to assess 
 the performance of different statistical methods to determine meteorology corrected 
 emission trends. The writing is high-quality, includes proper citations, and the figures are 
 clear and easy to understand. I recommend publishing with a few minor corrections to 
 improve the readability of the manuscript and comprehensibility for researchers without a 
 background in statistics. 

 Response:  We would like to thank the reviewer for  the positive assessment of our 
 manuscript and the constructive feedback. We appreciate the opportunity to respond to 
 these thoughtful comments and use these edits to strengthen our paper. Below, we 
 include a detailed response to the reviewer’s comments and suggestions. Reviewer 
 comments are in  italics  , our responses are in plain  text, and changes to the manuscript 
 are in  blue  . The line numbers refer to the line numbers  in the revised version of the 
 paper. 

 There were several places where more detail is warranted. Particularly in the description of 
 the application of the different models, there was not a lot of detail and it was difficult to 
 determine how these methods were applied to the data sets. This is important in assessing 
 the conclusions of the paper, that an RF model is preferable to the other statistical methods, 
 as the specific implementation of each method could have a significant impact on its 
 performance. This is particularly true for the machine learning methods. 

 Response:  Thank you for this comment. We have now  provided further details in the 
 method and SI section. In the public version, code scripts (in R) to implement these 
 methods will be made available to the readers. 

 Lines 205-206: More details on the implementation of LASSO and RF can be found in SI. 

 Lines 462-504: Appendix section Implementation of RF and LASSO 



 Specific Comments: 

 I found the discussion of causal methods in lines 65-76 to be slightly confusing in this paper, 
 since the paper was not focusing on assessing causal links, but rather on testing 
 counterfactuals—this link should have been more directly made clear, especially for the 
 typical reader of this journal who doesn’t have a background in statistics/causal inference. 

 Response:  Thank you for raising this question. The  target of this method is to correctly 
 estimate the emission-driven trend in air quality (for each location), a parameter with causal 
 interpretation. Therefore, we believe our exercise is related to a broader literature that 
 focuses on estimating the causal impacts of anthropogenic emissions change on air quality, 
 under meteorological variability. Nevertheless, the idea of estimating causal links is tightly 
 related to the idea of estimating counterfactuals. We have now provided further clarification 
 in the introduction section. 

 On lines 65-69: Despite a large number of papers which apply various meteorology 
 correction methods, very little is known about whether these methods can effectively correct 
 for meteorological variability and thus realistically estimate the counterfactual air quality and 
 reveal the underlying impacts of anthropogenic emissions changes. Most studies cite the 
 prediction performance of their statistical models (such as R  2  and/or mean squared errors) 
 to justify their method choice and analysis. However, good prediction performance does not 
 guarantee the correct estimation of counterfactuals and causal effects (Runge et al., 2019). 

 It would have been useful to have some type of overview cartoon for the different 
 experiments and their relationship to the terms in equation 1— Table 1 was useful, but I had 
 to read the paper through twice before the different simulations were clear to me, and it 
 would have been helpful to have some visual aid for this. 

 Response:  We agree with the reviewer and have now  provided a schematic flow chart as a 
 visual overview of our methodology (as the current figure 1). 



 Lines 146. What fraction of the meteorology-concentration relationship is due to changes in 
 natural emissions? 

 Response:  Natural emissions are often calculated online  in GEOS-Chem and are therefore 
 hard to separate from the direct effect of meteorology on air quality. To at least partially 
 answer this question, here we focus on soil NOx emissions and biogenic secondary organic 
 aerosol emissions in the US as two examples to understand the variability of natural 
 emissions across different meteorological years. We find that the annual total soil NOx 
 emission (in the US) varies by as much as 38% across years (total soil NOx emissions in 
 2012 are 38% larger than 2014), and biogenic SOA emission varies by as much as 25%. 
 The variability in soil NOx and biogenic SOA is equivalent to 7% of the anthropogenic NO 
 emissions, and 8% of the anthropogenic SOA emissions. Variability in soil NOx and 
 biogenic SOA is slightly larger during the summer season. Nevertheless, our results 
 suggest that the contribution of natural emission changes to the meteorology-concentration 
 relationship is relatively small compared to the direct influence of meteorological variables 
 on air quality. This is consistent with previous analyses; for example, Porter and Heald find 
 that the soil NOx emission changes can explain ~10% of the ozone-temperature 
 relationship in the US. We should note that the changes in biomass burning emissions due 
 to climate variability could be potentially large, especially in regions like the western US, but 
 they are held constant in the current model experiments for simplicity. We have now added 
 a paragraph in the discussion section on the role of natural emissions in the 
 meteorology-concentration relationship. 

 On lines 390-401: Changes in natural emissions due to meteorological variability play an 
 important role in the air quality-meteorology relationship. Our model experiment considers 
 natural emission changes that can be simulated online with assimilated meteorological 
 fields in GEOS-Chem, including soil NOx emissions, biogenic VOC emissions, and dust 
 emissions. We find that the statistical models perform notably worse in correcting for the 
 variability in dust-related PM  2.5  (see figure A12 for results using RF-regional), likely because 
 dustPM  2.5  is extremely variable, with zero concentration on most non-dust days but 
 extremely high concentration during the occasional dust storms. Our findings can potentially 
 shed light on another important source of natural emissions, wildfire emissions, which are 
 also quite variable but have become an increasingly important contributor to PM  2.5  and O  3  in 
 certain regions (e.g., western US) (Burke et al., 2021). While emissions from biomass 
 burning are held constant in our model experiments as the wildfire emissions are prescribed 
 in GEOS-Chem, wildfire emissions are significantly influenced by climatic variability 
 (Abatzoglou et al., 2016,  Xie et al., 2022) and will likely be a substantial challenge for any 
 meteorological correction method in the future that attempts to separate changes in 
 anthropogenic emissions from the variability in climate and associated natural emissions. 



 Is there a clear separation between the training and test data for the Random Forest? As I 
 understand this was in part the point of the double-machine learning method, but this should 
 be more clearly spelled out. It would obviously be problematic if both the training and test 
 data are used to evaluate the performance of the RF method to recover the emission-driven 
 trends, as this would give an artificially good performance for this method. 

 Response:  Thank you for raising this important question.  With the double machine learning 
 method, we implement a sample splitting step while implementing the RF model. We first 
 randomly partition each dataset (timeseries) into 4 folds. We use 75% of the data as training 
 data and the remaining 25% for predictions. This step is then repeated four times to derive 
 the predictions of the full timeseries, to avoid the risk of overfitting. We have now provided 
 further details in the method and appendix sections. 

 On lines 204-206: In particular, the hyper-parameters and coefficients of LASSO and RF are 
 selected and fitted using 4-fold cross-validation to avoid the “overfitting risk”. More details 
 on the implementation of LASSO and RF can be found in SI. 

 It is also important to note that we quantify the performance of RF and other methods using 
 the differences between “meteorology-corrected” trends (  β  obs  ) and the counterfactual trends 
 (  β  count  ), instead of their performance in predicting  the pollutant concentration. Therefore, if 
 the RF model “overfits the data”, it would actually result in a large error and a poor 
 performance when compared with the counterfactual trends. This is because the overly fit 
 RF model would attribute all variability of PM and O3 to the meteorological variables, and 
 therefore estimate a close-to-zero trend in air quality driven by emissions. In fact, if we 
 implement the RF method without the sample-splitting step, we would have an average 
 error of over 0.15 ug/m  3  /year, larger than any evaluated methods (e.g., 0.047 ug/m  3  /year 
 from a properly implemented RF model). 

 Lines 500-504 in the appendix. 

 Lines 170-176. Can you spell out what you mean by the “uncorrected” method here? Does 
 that mean the term f  i  (X  it  ) is neglected in equation  1? 

 Response:  Yes, this is correct. “Uncorrected” means  simply fitting a trend without the term 
 f  i  (X  it  ) (with only the time fixed effects included). We have further clarified this in the method 
 section. 

 On lines 178-180: We refer to the trend estimates estimated without f  i  (X  it  )  as “uncorrected”. 



 Section 3.4. How are the observations corrected? Are these using the meteorological 
 correction models as determined from the GEOS-Chem model? 

 Response:  For the observational data of PM  2.5  and  O  3  from the surface monitors, they are 
 corrected with the same kind of statistical models such as MLR and RF (as in the 
 GEOS-Chem analysis), but with different numerical coefficients. For example, we also use a 
 MLR with the ten meteorological variables to perform meteorological corrections for the 
 observational air quality data, but the regression coefficients are determined directly from 
 the observational data, and are thus different from the model used for GEOS-Chem. We 
 have provided further clarification in the method section. 

 On lines 332-333: Here, to correct for the meteorology variability in observational data, we 
 implement the same set of statistical methods as shown in Table1, but with different 
 numerical coefficients directly derived from the observational data. 



 Reply to reviewer 2: 

 Overall, I think this is a novel approach to the characterization of meteorological 
 adjustments to air pollutant concentration trends and it is worth publishing. The use of air 
 quality models to create a synthetic dataset by which meteorological adjustment methods 
 can be evaluated has not been previously published that I am aware of. The selection of air 
 quality model, statistical adjustment methods, and regions are appropriate and the 
 presentation as a whole is clear and well thought-out. I have several minor concerns listed 
 below that I think could be addressed through minor revisions. 

 Response:  We thank the reviewer for the positive assessment of the paper, and the 
 thoughtful and constructive feedback. We appreciate the opportunity to respond to these 
 detailed comments to strengthen our paper.  Below, we include a detailed response to the 
 reviewer’s comments and suggestions. Reviewer comments are in  italics  , our 
 responses are in plain text, and changes to the manuscript are in  blue  . The  line 
 numbers  refer to the line numbers in the revised version of the paper. 

 - From the manuscript, it isn't clear how the linear trend estimates are calculated. Are they 
 calculated using linear regression or some other method (e.g. Theil-Sen)? 

 Response:  The linear trend estimates are calculated  with the standard ordinary least 
 square approach from regression models with different forms of the meteorology correction 
 methods (for example, linear or non-linear combinations of the meteorological variables). 
 We further clarified this in the method section. 

 On lines 172-173:  β  obs  represents the meteorology-corrected trend in PM  2.5  or O  3 

 concentration for grid cell  i  estimated with the standard  ordinary least square method. 

 - One of my biggest concerns is that the time period (7 years for U.S., 5 years for China) is 
 too short to calculate meaningful trend estimates, and because of this, the trend estimates 
 themselves may be a source of additional uncertainty. I fully understand the time and 
 resource constraints of running chemical transport models, therefore, I'm not suggesting 
 that this must be done, but merely that this is addressed as a limitation in the discussion. As 
 a potential future research application, one could expand this type of analysis to a set of 
 model runs evaluated over a longer time period, such as EPA's EQUATES series for 
 2002-2017 (https://www.epa.gov/cmaq/equates). The emissions and meteorology inputs for 
 the EQUATES model runs are available from this website. 



 Response:  We agree with the reviewer's comment regarding the length of the simulations. 
 Following this suggestion, we have now added discussion regarding the length of the 
 simulation, and we further suggest potential future studies in the discussion section. The 
 EPA’s EQUATES series seems like a promising starting point for a future study on that front, 
 but as the reviewer points out, would require additional simulations of the counterfactual 
 scenario (e.g., with constant meteorology) to apply our approach. 

 On lines 409-412: Constrained by computational resources and availability of emission 
 inventories, our simulation only covers a relatively short time period which could result in 
 additional uncertainty in the linear trend estimates. When possible, future studies could 
 evaluate performances of the statistical models with longer simulations and alternative trend 
 estimates (such as the Theil-Sen estimator) 

 - Another potential source of uncertainty in this application is the choice of meteorological 
 year for the set of model runs where the meteorology is held constant. For example, as the 
 authors describe, the 2011 year which was held constant for the U.S. was unusually hot and 
 dry throughout the central region of the country. As a sensitivity analysis, I think it would be 
 useful to see how much the predictions change by holding the meteorology constant using 
 other years. For example, 2013 and 2014 were cooler and wetter than average for much of 
 the U.S. For the current manuscript, I think it would be sufficient for the authors to address 
 this point in the discussion. 

 Response:  Thank you for raising this issue. We agree with the reviewer that it would be 
 important to better understand how the choice of the meteorological year could influence 
 our results. In a sensitivity run we previously did, we simulated the counterfactual scenario 
 (constant-meteorology) for China using the meteorological fields at the end year 2017 (at 
 4x5 degree resolution). We find that the linear trend in PM  2.5  and O  3  for each grid cell is 
 highly consistent in the counterfactual scenarios regardless of the choice of the 
 meteorological years (see figure below). As the meteorological conditions are quite different 
 between 2013 and 2017 in China (e.g., the winter of 2013 was particularly bad for air quality 
 in Northern China due to several stagnation episodes, while the meteorological conditions in 
 winter 2017 favored the dispersion of air pollutants), the findings from this sensitivity 
 analysis potentially also apply to the US case. This suggests the potential influence due to 
 the choice of meteorological year is relatively small here in our cases. We have now 
 discussed this sensitivity analysis in the method section and added the following figure in 
 the SI. 



 Lines 131-134: In a sensitivity analysis, we also simulate the counterfactual scenario for 
 China using the meteorological fields at the end year 2017 (at 4x5 degree resolution, due to 
 computational constraints). We find that the linear trend in PM  2.5  and O  3  for each grid cell is 
 highly consistent in the counterfactual scenarios across the choice of the meteorological 
 years (see figure A5). 

 - The choice of the June-August period for ozone does not capture the period of maximum 
 ozone concentrations for all regions of the U.S. For example, the southeast U.S. typically 
 sees its highest ozone concentrations in April or May, while California may experience peak 
 ozone in September or October. I think a period of April to October would be sufficient to 
 capture the peak ozone concentrations in all regions of the U.S. Again, nothing needs to be 
 redone, but it would be useful to discuss this in the manuscript. 

 Response:  Thank you for this suggestion. We have now  noted this limitation in our method 
 section. 

 On lines 109-111: Our focus on the three summer months is consistent with many previous 
 studies (e.g., Shen et al., 2015), although this may not capture the peak ozone season for 
 certain regions of the US and China. 



 - As far as the interaction between meteorological and emissions-based effects, I agree that 
 this is both a concern and a major challenge for any meteorological adjustment approach, 
 and ultimately, it may not be possible to estimate the magnitude of these interactions. One 
 major source of these interactions, especially in recent years, is wildfires: dry meteorological 
 conditions contribute to more wildfires, and more wildfires contribute additional emissions. 
 Wildfires are especially difficult to capture in a chemical transport model due to their 
 unpredictability and the difficulty of characterizing their emissions. As wildfires can be an 
 especially large contributor to PM2.5 concentrations, it would be useful to see them 
 discussed in the context of their contribution to met/emissions interactions and overall 
 uncertainty. 

 Response:  Thank you for raising this very important issue. We completely agree with the 
 reviewer that wildfires (or PM/O3 caused by natural emissions in general) are likely major 
 sources of meteorological-emissions interaction. While our focus is largely on the 
 interactions between meteorology and anthropogenic emissions and the challenge of 
 diagnosing the effects of anthropogenic emissions, we have now provided further 
 discussion on this issue. 

 On lines 395-401: Our findings can potentially shed light on another important source of 
 natural emissions, wildfire emissions, which are also quite variable but have become an 
 increasingly important contributor to PM  2.5  and O  3  in certain regions (e.g., western US) 
 (Burke et al., 2021). While emissions from biomass burning are held constant in our model 
 experiments as the wildfire emissions are prescribed in GEOS-Chem, wildfire emissions are 
 significantly influenced by climatic variability (Abatzoglou et al., 2016,  Xie et al., 2022) and 
 will likely be a substantial challenge for any meteorological correction method in the future 
 that attempts to separate changes in anthropogenic emissions from the variability in climate 
 and associated natural emissions. 

 - While I don't plan to list them all here, I noticed several typos and minor grammatical 
 errors in the manuscript while reading it. 

 Response:  Thank you! We have now proofread the manuscript  from the beginning to the 
 end and corrected typos and grammatical errors. 


