

1 **Measurement Report: Distinct size dependence and**
2 **diurnal variation of OA hygroscopicity, volatility, and**
3 **CCN activity at a rural site in the Pearl River Delta**
4 **(PRD) region, China**

5 Mingfu Cai^{1,2}, Shan Huang^{1*}, Baoling Liang³, Qibin Sun³, Li Liu^{4*}, Bin Yuan¹, Min
6 Shao¹, Weiwei Hu⁵, Wei Chen⁶, Qicong Song¹, Wei Li¹, Yuwen Peng¹, Zelong Wang¹,
7 Duohong Chen⁶, Haobo Tan⁴, Hanbin Xu³, Fei Li^{4,7}, Xuejiao Deng⁴, Tao Deng⁴,
8 Jiaren Sun², and Jun Zhao^{4,8,9}

9 ¹ Institute for Environmental and Climate Research, Jinan University; Guangdong-Hongkong-
10 Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou,
11 511443, China

12 ² Guangdong Province Engineering Laboratory for Air Pollution Control, Guangdong Provincial
13 Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental
14 Sciences, MEE, Guangzhou 510655, China

15 ³ School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and
16 Natural Disaster Studies, and Institute of Earth Climate and Environment System, Sun Yat-sen
17 University, Zhuhai, Guangdong 519082, China

18 ⁴ Institute of Tropical and Marine Meteorology of China Meteorological Administration, Guangzhou
19 510640, China

20 ⁵ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental
21 Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of
22 Sciences, Guangzhou 510640, China

23 ⁶ Guangdong Environmental Monitoring Center, Guangzhou 510308, China

24 ⁷ Xiamen Key Laboratory of Straits Meteorology, Xiamen Meteorological Bureau, Xiamen 361012,
25 China

26 ⁸ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong
27 519082, China

28 ⁹ Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality
29 Change in the Pearl River Estuary, Guangzhou, Guangdong 510275, China

30 *Corresponding authors: Shan Huang (shanhuang_eci@jnu.edu.cn) and Li Liu (liul@gd121.cn)

31 **Abstract.**

32 Organic aerosol (OA) has a significant contribution to cloud formation and hence climate
33 change. However, high uncertainties still exist in its impact on global climate, owing to the varying
34 physical properties affected by the complex formation and aging processes. In this study, the
35 hygroscopicity, volatility, cloud condensation nuclei (CCN) activity, and chemical composition of
36 particles were measured using a series of online instruments at a rural site in the Pearl River Delta
37 (PRD) region of China in Fall 2019. During the campaign, the average hygroscopicity of OA (κ_{OA})
38 increased from 0.058 at 30 nm to 0.09 at 200 nm, suggesting a higher oxidation state of OA at larger
39 particle sizes, supported by a higher fraction of extremely low volatile OA (ELVOA) for larger size
40 particles. Significantly different diurnal patterns of κ_{OA} were observed between Aitken mode and
41 accumulation mode. For Aitken mode (30-100 nm), the κ_{OA} values showed daily minima (0.02-0.07)
42 during daytime, while exhibited a daytime peak (~0.09) in the accumulation mode. Coincidentally, a
43 daytime peak was observed for both aged biomass burning organic aerosol (aBBOA) and less
44 oxygenated organic aerosol (LOOA) based on source apportionment, which were attributed to the
45 aging processes and gas-particle partitioning through photochemical reactions. In addition, the
46 fraction of semi-volatile OA (SVOA) was higher at all measured sizes during daytime than during
47 nighttime. These results indicate that the formation of secondary OA (SOA) through gas-particle
48 partitioning can generally occur at all diameters, while the aging processes of pre-existing particles
49 are more dominated in the accumulation mode. Furthermore, we found that applying a fixed κ_{OA}
50 value (0.1) could lead to an overestimation of the CCN number concentration (N_{CCN}) up to 12%-
51 19% at 0.1%-0.7% supersaturation (SS), which was more obvious at higher SS during daytime.
52 Better prediction of N_{CCN} could be achieved by using size-resolved diurnal κ_{OA} , which indicates that

53 the size-dependence and diurnal variations of κ_{OA} can strongly affect the N_{CCN} at different SS. Our
54 results highlight the need for accurately evaluating the atmospheric evolution of OA at different size
55 ranges, and their impact on the physicochemical properties and hence climate effects.

56

57 **1. Introduction**

58 The impact of aerosol particles on global climate is widely known, including absorbing and
59 scattering solar radiation, and acting as cloud condensation nuclei (CCN). However, the extent of
60 their contribution on the climate forcing is still unclear. Organic aerosol (OA) as a dominant
61 component of fine particles (Jimenez et al., 2009), may contribute the uncertainties of climate effects
62 of particles, mainly owing to unknown sources, physical properties, formation, and aging
63 mechanisms (Volkamer et al., 2006;Kuang et al., 2020b;Rastak et al., 2017). Numerous studies show
64 that secondary organic aerosol (SOA) accounts for a large OA fraction in most atmospheric
65 environments (e.g., Huang et al., 2014;Shrivastava et al., 2017;Kanakidou et al., 2005;Hallquist et
66 al., 2009). Nevertheless, both primary OA (POA) and SOA in the ambient air remain poorly
67 characterized in terms of the formation mechanism and atmospheric evolution, and their particle
68 diameter can vary on a large scale. Their impact on the global climate and atmospheric chemistry is
69 still highly uncertain.

70 A combination of Aerodyne Aerosol Mass Spectrometer (AMS) or Aerosol Chemical Species
71 Monitor (ACSM) with positive matrix factorization (PMF) is widely used for investigating the OA
72 evolution in the atmosphere (Li et al., 2013;Huang et al., 2018;Huang et al., 2014;Chen et al.,

73 2015; Jimenez et al., 2009). For instance, Qin et al. (2017) found that hydrocarbon-like OA (HOA)
74 from traffic emission contributed up to 40% of OA during nighttime, owing to daytime traffic
75 restrictions on heavy vehicles in urban Guangzhou. Kuang et al. (2020a) reported a dominant
76 contribution to oxygenated OA (OOA) through aqueous-phase reaction in the North China Plain
77 (NCP). Guo et al. (2020) observed different SOA mechanisms between clean and pollution episodes
78 in the Pearl River Delta (PRD) region. Nevertheless, the investigation of bulk OA is still insufficient
79 in understanding the aerosol climate effects without the size-resolved characterization. The OA size
80 distribution is largely dependent on its composition, sources and aging level. Li et al. (2012)
81 observed various mass distribution patterns for different species in airborne particulate organics and
82 reported that dehydrated sugars, fossil fuel-derived *n*-alkanes, and PAHs showed a unimodal
83 distribution, while non-dehydrated sugars and plant wax was derived as n-alkanes which presented
84 a bimodal pattern. In the urban region, Aitken mode was mainly dominated by HOA owing to traffic
85 emissions (Zhang et al., 2005b; Cai et al., 2020). In the marine atmosphere, the size distribution of
86 fine mode POA was found to be independent of sea salt, while coarse mode particles tended to be
87 internally mixed with sea salt (Gantt and Meskhidze, 2013). Similarly, the OA physical properties
88 were also found to be size-dependent. Deng et al. (2018) reported a higher OA hygroscopicity
89 ($\kappa_{OA} \approx 0.22$) at about 150 nm than that ($\kappa_{OA} \approx 0.19$) at sub-100 nm at a forest site. In contrast, Zhao
90 et al. (2015) measured size-dependent hygroscopicity and chemical composition for SOA from
91 various procedures and found that κ_{OA} of SOA from α -pinene photooxidation decreased from 0.17
92 at 50 nm to 0.07 at 200 nm, which was attributed to the higher oxidation degree for smaller particles.
93 The size dependence of OA properties in the aforementioned studies might exert impact on the
94 CCN prediction, which is mainly determined by their sources and formation processes. Cai et al.

95 (2018) found that N_{CCN} at 0.1% SS was underestimated by about 10% if a κ_{OA} value of 0.1 was used.
96 A model simulation from Liu and Wang (2010) showed that an increase of about 40-80% for the
97 CCN concentration was obtained by increasing the κ value of POA from 0 to 0.1. Wang et al. (2008)
98 reported that the uncertainties of the first indirect aerosol effect varied from -0.2 to 0.2 $W\ m^{-2}$ for a
99 κ_{OA} value of 0 to 0.25. Rastak et al. (2017) showed that using a single-parameter framework of κ_{OA}
100 in evaluating the climate effects of aerosol could lead to significant errors (about $-1.02\ W\ m^{-2}$),
101 which is the same order as the climate forcing of anthropogenic aerosol during the industrial period.
102 These results further highlight a need for the understanding of the relationship between the OA
103 evolution processes and its impact on the CCN activity at different particle sizes.

104 The OA hygroscopicity and volatility can provide information about the evolution of OA, given
105 that they are often related to the chemical composition of the particles. A positive correlation
106 between the hygroscopicity values and the oxidation degree of OA, including the ratio of atomic
107 oxygen to atomic carbon (O:C), the oxidation state ($\overline{OS_C}$), or the mass fraction of m/z 44 (for CO_2^+)
108 ion fragments in the organic spectra (f_{44}) from chemical composition, were widely reported in the
109 literature (Wu et al., 2013;Pajunoja et al., 2015;Chang et al., 2010). Kim et al. (2020) found that the
110 κ_{OA} was positively and negatively correlated with OOA and HOA at different size ranges,
111 respectively. Deng et al. (2019) reported a decreasing trend of κ_{OA} at a size range of 100-360 nm
112 during daytime in a forest environment, suggesting the formation of biogenic SOA (BSOA) through
113 photochemical oxidation of biogenic volatile organic compounds (BVOCs). The OA volatility,
114 specifically saturation vapor concentration (C^*), is linked to the gas-particle partitioning and aging
115 processes. In general, the C^* value decreases with an increase of the oxidation degree and the
116 number of atomic carbon (Donahue et al., 2011). May et al. (2013) found that most of the biomass-

117 burning POA were semi-volatile. Saha et al. (2017) showed a lower volatility of OA in the afternoon
118 hours using a dual-thermodenuder (TD) system, probably owing to photochemical oxidation of OA.
119 Hong et al. (2017) derived the OA volatility distribution by a combination of the VTMDA
120 measurement and a multi-component evaporation dynamics model, and found a moderate ($R \approx 0.4$)
121 correlation between the OA groups obtained by the VTMDA data and the PMF results, respectively.

122 In this study, we investigate physical properties of OA at different size ranges, and evaluate
123 their influence on the atmospheric CCN concentration. A rural field measurement was conducted at
124 the Heshan site in the Pearl River Delta (PRD) region, China, during Fall 2019 (October and
125 November). The hygroscopicity, volatility, size-resolved CCN activity, and chemical composition
126 were measured by a series of online instruments. The size-resolved hygroscopicity and volatility
127 distribution of organics was investigated. PMF was employed to analyze the sources and processes
128 of OA. The impact of diurnal variation and size dependence of κ_{OA} on the N_{CCN} prediction at
129 different supersaturation (SS) was assessed.

130 **2. Measurement and methodology**

131 **2.1 Measurement site**

132 The field measurements were conducted at the Heshan supersite in the Guangdong province,
133 China during autumntime 2019 (27th September to 17th November 2019). This supersite (22°42'39"
134 1"N, 112°55'35.9"E) is located at the southwest of the PRD region and surrounded by farms and
135 villages, with an altitude of about 40 m. All sample particles first passed through a Nafion dryer
136 (Model MD-700, Perma Pure Inc., USA) to maintain a relative humidity (RH) lower than 30%. The

137 schematic diagram of the experimental setup can be found in Fig. S1. Detailed descriptions of the
138 measurement site and some instruments can be found in Cai et al. (2021a).

139 **2.2 Instrumentation**

140 **2.2.1 Aerosol hygroscopicity and volatility measurement**

141 Size-resolved hygroscopicity and volatility of particles were measured by a H/V-TDMA
142 (model M3000, Bmet Inc., China). The instrument consists of two differential mobility analyzers
143 (DMA1 and DMA2, model 3081 L, TSI Inc., USA), a Nafion humidifier (Model MD-700, Perma
144 Pure Inc., USA), a heater tube, and a condensation particle counter (CPC, model 3788, TSI Inc.,
145 USA). The instrument was operated in H- and V- mode during the measurement with a cycle time
146 of about 3-4 h. The dried sample particles were firstly charged by an X-ray neutralizer and then
147 classified by DMA1 at six diameters (30, 50, 80, 100, 150, and 200 nm). In the H-mode, the chosen
148 particles with a specific dry diameter (D_0) were sequentially humidified by the Nafion humidifier
149 to achieve 90% of RH. A combination of DMA2 and CPC were employed to measure the size
150 distribution of humidified particles (Dp_{wet}). The hygroscopic growth factor (GF) at a certain dry
151 diameter can be defined as:

152
$$GF(D_0) = \frac{Dp_{wet}}{D_0} \quad (1)$$

153 In the V-mode, the selected particles from DMA1 were heated in the heater tube at 100, 150,
154 200, and 250°C, respectively. Similar to the H mode, the size distribution of heated particles along
155 with particles at room temperature (25°C) was measured by the DMA2 and CPC. The volatility
156 shrink factor (VSF) at a certain diameter and temperature is then defined as:

157
$$VSF(T, D_0) = \frac{Dp(T)}{D_0} \quad (2)$$

158 Before the campaign, standard polystyrene latex spheres (PSLs; with a size of 20, 50, and 200
159 nm), ammonium sulfate, and sodium chloride were used to calibrate the diameter classification of
160 DMAs, hygroscopicity measurement, and the transport efficiency of particles in the heater tube,
161 respectively. For the H/V-TDMA data, the TDMAfit algorithm (Stolzenburg and McMurry, 2008)
162 was applied to fit the growth factor and volatility shrink factor probability density function (GF-
163 PDF and VSF-PDF) with various DMA transfer functions. The detailed data inversion processes
164 can be found in Tan et al. (2013a).

165 **2.2.2 The size-resolved CCN activity and particle number size distribution measurement**

166 A combination of a cloud condensation nuclei counter (CCNc, model 200, DMT Inc., USA)
167 and a scanning mobility particle sizer (SMPS, model 3938L75, TSI Inc., USA) was employed to
168 measure size resolved CCN activity. The supersaturation (SS) of each column (A and B) of CCNc
169 was set to be 0.1%, 0.2% and 0.4% (for column A), and 0.7%, 0.9% and 1.0% (for column B),
170 respectively. During the measurement, the SMPS was operated at a scanning mode. The sample
171 particles were firstly neutralized by an X-ray neutralizer (model 3088, TSI Inc., USA) and were
172 subsequently classified by a DMA. The classified particles were then split into three paths: one to a
173 CPC (model 3756, TSI Inc., USA) for measurement of particle number concentration (with a flow
174 rate of 0.6 LPM) and two to the CCNc for measurement of the CCN number concentration (N_{CCN})
175 at a specific SS (with a flow rate of 0.5 LPM).

176 The particle number size distribution (PNSD) in a size range of 1 nm-10 μ m was measured by
177 a suite of instruments including a diethylene glycol scanning mobility particle sizer (DEG-SMPS,

178 model 3938E77, TSI Inc., USA), a SMPS (model 3938L75, TSI Inc., USA), and an aerodynamic
179 particle sizer (APS, model 3321, TSI Inc., USA). The detailed description of these instruments can
180 be found in Cai et al. (2021a). Before the measurement, the SMPSs were calibrated with PSLs (20,
181 50 and 200 nm) and the CCNC was calibrated with ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$) particles at
182 selected SSs (0.1%, 0.2%, 0.4%, 0.7%, 0.9%, and 1.0%, Sect. S1).

183 **2.2.3 Aerosol chemical composition measurement**

184 The size-resolved chemical composition of ambient aerosol particles was measured by a soot
185 particle aerosol mass spectrometer (SP-AMS, Aerodyne Research, Inc., USA). The principle and
186 operation of the instrument are generally the same as a high resolution time-of-flight aerosol mass
187 spectrometer (HR-ToF-AMS) (Canagaratna et al., 2007). In addition to an original tungsten
188 vaporizer ($\sim 600^\circ\text{C}$), a soot-particle module which mainly contains a Nd:YAG (1064 nm) laser was
189 integrated into HR-ToF-AMS for vaporizing refractory species (Onasch et al., 2012). As a result,
190 SP-AMS can provide chemical information for non-refractory species (nitrate, sulfate, ammonium,
191 chloride, and organics) as well as refractory species such as refractory black carbon (rBC) and
192 several metals. During the campaign, SP-AMS was run between V mode (only tungsten vaporizer)
193 and SP mode (tungsten and laser vaporizers) with a time resolution of 1 min. In order to minimize
194 disturbance caused by mode switch, 15 min averaged data are used in the present study. More details
195 on the quantification using ionization efficiency, composition dependent collection efficiency and
196 external instrument as well as software for SP-AMS data analysis could be found in Kuang et al.
197 (2021).

198 Facilitated by the time-of-flight chamber in SP-AMS, the particle mass size distribution can be

199 measured in submicrometer size range, specifically, 40 to 800 nm in vacuum aerodynamic diameter
200 (D_{va}). The mass size distribution for relevant AMS species was used in this study for investigating
201 the link between particle chemical composition and volatility/hygroscopicity. Since SP-AMS
202 provided the size distribution versus D_{va}, the equation below was used to convert D_{va} into mobility
203 diameter (D_p).

$$204 D_p = \frac{D_{va}}{S \times \frac{\rho_p}{\rho_0}} \quad (3)$$

205 where S is the shape factor, ρ_p is the particle density, and ρ₀ is the density for water (1 kg m⁻³). In
206 this study, we estimate that the particles were close to sphere due to high RH in the PRD and thus a
207 shape factor of 0.8 was applied. An overall particle density of 1.6 kg m⁻³ is used.

208 Based on high resolution data from SP-AMS, source apportionment was performed for organic
209 aerosols (OA) in the bulk PM₁ with positive matrix factorization (PMF, Paatero, 1997; Paatero and
210 Tapper, 1994) following the instruction in Ulbrich et al., 2009. The input data, selection of solutions,
211 mass spectral profile, and time series of each factor can be found in Kuang et al. (2021). In brief,
212 OA measured at the Heshan site could be divided into six components with identified sources and
213 processes, including two from primary sources and four factors corresponding to secondary
214 formation: a hydrocarbon-like OA (HOA) contributed mainly by vehicle exhausts mixed with
215 cooking emissions, a biomass burning OA (BBOA) related to biomass burning combustion from the
216 surrounding villages, an aged BBOA (aBBOA), a more oxygenated OA (MOOA) from regional
217 transport, a less oxygenated OA (LOOA) provided by daytime photochemical formation, and a
218 nighttime-formed OA (Night-OA) related to secondary formation during nighttime.

219 **2.3 Methodology**

220 **2.3.1 Estimates of hygroscopicity**

221 The hygroscopicity parameter κ can be obtained under subsaturation condition by the H/V-
222 TDMA measurement and supersaturation condition by the CCNc measurement. The κ value
223 (κ_{HTDMA}) can be estimated from the growth factor measured by H/V-TDMA (Petters and
224 Kreidenweis, 2007):

225
$$\kappa_{HTDMA} = (GF^3 - 1) \left[\frac{1}{RH} \exp \left(\frac{4\sigma_{s/a} M_w}{RT \rho_w D_p} - 1 \right) \right] \quad (4)$$

226 where $\sigma_{s/a}$ is the surface tension of the solution/air interface and the solution is temporarily assumed
227 to be pure water (0.0728 N m⁻¹ at 298.15 K), M_w is the molecular weight of water (0.018 kg mol⁻¹),
228 R is the universal gas constant (8.314 J mol⁻¹ K⁻¹), T is the thermodynamic temperature in Kelvin
229 (298.15 K), ρ_w is the density of water (about 997.04 kg m⁻³ at 298.15 K) and D_p is the particle
230 diameter in meters.

231 For the CCNc measurement, the κ value (κ_{CCN}) is calculated from the critical supersaturation
232 (Sc) and the critical diameter (D_{50}) by the following equation (Petters and Kreidenweis, 2007):

233
$$\kappa_{CCN} = \frac{4A^3}{27D_{50}^3(\ln Sc)^2}, A = \frac{4\sigma_{s/a} M_w}{RT \rho_w} \quad (5)$$

234 The critical diameter, D_{50} , is defined as the diameter at which 50% of the particles are activated
235 at a specific SS, and can be obtained from the N_{CCN} and N_{CN} measured by the CCNc and SMPS
236 system:

237
$$\frac{N_{CCN}}{N_{CN}} = \frac{B}{1 + \left(\frac{D_p}{D_{50}} \right)^C} \quad (6)$$

238 where the B and C are fitting coefficients.

239 **2.3.2 Derivation of the size-resolved hygroscopicity of organic matter**

240 The size-resolved chemical composition is adopted to derive the size-dependent hygroscopicity
241 of organic matter (κ_{OA}). However, the AMS cannot provide sufficient information of the size-
242 resolved species, especially for small size particles (< 100 nm) owing to the low mass concentration.
243 Thalman et al. (2017) proposed a method to reconstruct the size-resolved chemical composition,
244 which combines a time-resolved bulk mass concentration and an average mass distribution.
245 Nevertheless, the variation of mass distribution was not considered in this method. In this study, a
246 bimodal lognormal distribution function method was adopted and the one-hour average mass
247 distribution was fitted to obtain the reconstructed size-resolved chemical composition. The average
248 mass distribution with bimodal lognormal fitted modes of each species was shown in Fig. S2.

249 According to the ZSR mixing rule (Zdanovskii, 1948; Stokes and Robinson, 1966), the
250 hygroscopicity of particles (κ_{AMS}) can be calculated based on the SP-AMS measurement, assuming
251 an internal mixing state for all particles:

252
$$\kappa_{AMS} = \sum_i \kappa_i \varepsilon_i \quad (7)$$

253 where κ_i is the κ value of each component and ε_i is the volume fraction of corresponding species in
254 particles. The mole concentrations of the inorganic species are estimated based on the NH_4^+ , SO_4^{2-} ,
255 and NO_3^- measured by the AMS (Gysel et al., 2007):

256
$$n_{\text{NH}_4\text{NO}_3} = n_{\text{NO}_3^-}$$

257
$$n_{\text{H}_2\text{SO}_4} = \max(0, N_{\text{SO}_4^{2-}} - n_{\text{NH}_4^+} + n_{\text{NO}_3^-})$$

258
$$n_{\text{NH}_4\text{HSO}_4} = \min(2n_{\text{SO}_4^{2-}} - n_{\text{NH}_4^+} + n_{\text{NO}_3^-}, n_{\text{NH}_4^+} - n_{\text{NO}_3^-})$$

259
$$n_{(\text{NH}_4)_2\text{SO}_4} = \max(n_{\text{NH}_4^+} - n_{\text{NO}_3^-} - n_{\text{SO}_4^{2-}}, 0)$$

$$260 \qquad n_{HNO_3} = 0 \qquad (8)$$

261 where n denotes the number of moles of each component (NH_4^+ , SO_4^{2-} and NO_3^-), ε_{org} and ε_{BC}
 262 were obtained from mass concentration measured by the SP-AMS. The density and κ value of each
 263 component were listed in Table 1.

264 The κ_{OA} can be calculated based on the size-resolved chemical composition and H/V-TMDA
265 measurement using following equation:

$$266 \quad \kappa_{OA} = \frac{\kappa_{HTDMA} - (\kappa_{inorgs} \varepsilon_{inorgs} + \kappa_{BC} \varepsilon_{BC})}{\varepsilon_{org}} \quad (9)$$

267 2.3.3 Volatility data

268 During the heating process, some particles could be lost between DMA₁ and DMA₂ due to
 269 complete evaporation (CV), thermophoresis, and Brownian diffusion (Philippin et al., 2004).
 270 Owing to these losses, the V-mode measurement does not represent the actual volatility distribution
 271 of the monodisperse particles. The sodium chloride (NaCl) particles, which do not evaporate at the
 272 set temperature in this measurement, were used to determine the particle losses owing to
 273 thermophoretic forces and diffusion. The size- and temperature-dependent transmission efficiency
 274 ($\eta(D_p, T)$) of NaCl in the heater was shown in Fig. S3. Thus, the number fraction of CV group
 275 ($NF_{CV}(D_p, T)$) at a certain diameter and temperature can be calculated using the following equation
 276 (Cheung et al., 2016):

$$277 \quad NF_{CV}(D_p, T) = 1 - \frac{N'(D_p, T)}{N(D_p)\eta(D_p, T)} \quad (10)$$

278 where $N'(D_p, T)$ is the number concentration of particles at a specific diameter and temperature
 279 after heating, which was measured by the CPC in the H/V-TDMA. The $N(D_p)$ is the number
 280 concentration of particles with a diameter D_p before heating, which was provided by the SMPS

281 measurement. The volume fraction remaining (VFR) after heating for the measured particles can be
282 obtained according to the following equation:

283
$$VFR(D_p, T) = \sum_i VSF_i^3(D_p, T) NF_i(D_p, T) [1 - NF_{CV}(D_p, T)] \quad (11)$$

284 where i represents the i th VSF bin, and NF_i is the number fraction of particles with VSF_i , which is
285 calculated based on the VSF-PDF ($c(VSF, D_p, T)$):

286
$$NF_i = \int_{VSF_i}^{VSF_{i+1}} c(VSF, D_p, T) dVSF \quad (12)$$

287 The mass fraction remaining (MFR) was assumed to be proportional to VFR, assuming that
288 the density of particles was constant before and after heating.

289 **2.3.4 Multi-component evaporation dynamics model**

290 Based on the volatility basis set (VBS) framework (Donahue et al., 2011), the organic matter
291 was classified into three organic groups based on the saturation concentration ($C^*(T_{ref})$,
292 $T_{ref}=298.15$ K): extremely low volatility organic aerosol (ELVOA, $C^*=10^{-5}$ $\mu\text{g m}^{-3}$), low volatility
293 organic aerosol (LVOA, $C^*=10^{-2}$ $\mu\text{g m}^{-3}$), and semi-volatility organic aerosol (SVOA, $C^*=10$ $\mu\text{g m}^{-$
294 3).

295 A multi-component evaporation dynamics model described by Lee et al. (2011) was used to
296 simulate the evaporation of particles in the heated tube of the H/V-TDMA by solving the mass
297 transfer regime equation, in order to obtain the size-resolved distribution of the aforementioned
298 three OA groups. The MFR, residence time (about 4.11 s) in the heater tube, the temperature of the
299 heater tube, particle number concentration, particle sizes, chemical composition, and
300 thermophysical properties of each species (Table 2) were input into the model. The particles were
301 assumed to be internally mixed with organic and inorganic species, including three organic groups,

302 NH₄NO₃, (NH₄)₂SO₄, and black carbon (BC). The mass transfer of each component *i* between the
 303 aerosol and gas phases in the transition regime was calculated from the following equation:

$$304 \frac{dm_{p,i}}{dt} = 2\pi D_i D_p f(Kn, \alpha) (C_{i,g} - f_i C_i^*(T) \exp(\frac{4\sigma_s/a M_i}{D_p \rho_i R T}))$$

$$305 \frac{dC_{i,g}}{dt} = -\frac{dm_{p,i}}{dt} N_p(D_p) \quad (13)$$

306 where $m_{p,i}$ (μg) is the mass of species *i* in a single particle, $C_{i,g}$ ($\mu\text{g m}^{-3}$) is its gas-phase
 307 concentration, D_i ($\text{m}^2 \text{ s}^{-1}$) is the diffusion coefficient for species *i* in air, D_p (m) is the particle
 308 diameter, $f(Kn, \alpha)$ is a correction term to account for non-continuum mass transfer depending on
 309 Knudsen number (Kn) and mass accommodation coefficient (α), f_i is the mole fraction of species
 310 *i*, $C_i^*(T)$ is the saturation concentration at temperature (T) of the heater tube, M_i (kg mol^{-1}) is the
 311 molecular weight of species *i*, ρ_i (kg m^{-3}) is its density and $N_p(D_p)$ (cm^{-3}) is the number
 312 concentration of particles with a diameter D_p .

313 The correction term $f(Kn, \alpha)$ is determined by the following equation (Seinfeld and Pandis,
 314 2016):

$$315 f(Kn, \alpha) = \frac{1+Kn}{1+2Kn(1+Kn)/\alpha}$$

$$316 Kn = \frac{2\lambda_i}{D_p} \quad (14)$$

317 where λ_i is the mean free path of species *i* in the air, which is defined as $\lambda_i = \frac{2D_i}{c_i}$. The c_i is the mean
 318 speed of species *i* and $c_i = \sqrt{\frac{8RT}{\pi M_i}}$.

319 The temperature-dependent $C_i^*(T)$ is estimated from the Clausius-Clapeyron equation:

$$320 C_i^*(T) = C_i^*(T_{ref}) \exp \left[\frac{\Delta H_{vap,i}}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right] \frac{T_{ref}}{T} \quad (15)$$

321 where $\Delta H_{vap,i}$ (kJ mol^{-1}) is the enthalpy of vaporization. The known mass fractions of NH₄NO₃,
 322 (NH₄)₂SO₄, and BC were calculated respectively, based on the SP-AMS measurement. The time
 323 step of the model was set to be 10^{-3} s. The characteristics of each species were listed in Table 2. The

324 mass fraction of each organic group in different particle sizes was derived by minimizing the squared
325 residuals (SSR) values, $SSR = \sum_{T_i=T_1}^{T_5} [MFR_{model}(T_i, Dp) - MFR_{measured}(T_i, Dp)]^2$. The non-
326 linear constrained optimization function “fmincon” in MATLAB (version 2016a, Mathworks Inc.)
327 was used to obtain the optimal fitted result. A constrained of $\sum f_{i,inorganics} + \sum f_{i,organics} = 1$ is used.

328 The modeled MFR is strongly dependent on the values of vaporization enthalpy (ΔH_{vap}) and
329 mass accommodation coefficient (α) (Lee et al., 2010;Lee et al., 2011). Thus, a sensitivity test is
330 performed to determine the ΔH_{vap} of OA and α based on the campaign average data (Fig. S4). A
331 linear relationship was adopted between ΔH_{vap} and $\log_{10} C_i^*(T_{ref})$, $\Delta H_{vap} = -a \cdot$
332 $\log_{10} C_i^*(T_{ref}) + b$, where a and b are fitting parameters (Epstein et al., 2010). The a and b values
333 are set to be [0, 4, 8, 12] and [50, 80, 100, 150, 200] in the sensitivity test, respectively, along with
334 $\alpha = [0.01, 0.09, 0.1, 0.5, 0.7, 0.9, 1]$. The results show that the measured MFR was reproduced well
335 (with the lowest SSR of 0.0205, Fig. S5) by using $\Delta H_{vap}=80 \text{ kJ mol}^{-1}$ with α of 0.09, 0.1 and 0.7,
336 respectively. For simplicity, $\Delta H_{vap}=80 \text{ kJ mol}^{-1}$ and $\alpha=0.09$ are considered as the best estimation
337 and adopted in the simulation of the whole campaign datasets. The extracted α value was consistent
338 with the values ($\alpha \leq 0.1$) reported previously (Saha et al., 2015;Park et al., 2013;Saleh et al.,
339 2008;Cappa and Jimenez, 2010), indicating significant resistance to mass transfer during
340 evaporation. In addition, the ΔH_{vap} of OA is of the same magnitude (80-150 kJ mol^{-1}) as reported
341 in the literature (Hong et al., 2017;Saha et al., 2017;Riipinen et al., 2010).

342 Note that the decomposition of particles during the heating process is ignored in the model.
343 Kiyoura and Urano (1970) suggested that ammonium sulfate would decompose to ammonium
344 bisulfate (NH_4HSO_4) or triammonium hydrogen sulfate ($\text{NH}_4)_3\text{H}(\text{SO}_4)_2$, and ammonia (NH_3) when
345 heated to around 160-180 °C. Wang and Hildebrandt Ruiz (2018) also observed thermal

346 decomposition of organics and ammonium sulfate during evaporation by using a Filter Inlet for
347 Gases and AEROsols chemical-ionization mass spectrometer (FIGAERO-CIMS). It suggests that,
348 besides sublimation, decomposition might occur during evaporation of particles. However, the
349 mechanisms of decomposition are complex and remain unclear, which is difficult to simulate in our
350 model. We roughly estimated uncertainty caused by the decomposition and found that ignoring the
351 decomposition of organics would lead to an underestimation of SVOA, while the decomposition of
352 $(\text{NH}_4)_2\text{SO}_4$ played a minor role in the simulation (Sect. S2). However, the exact effects are still
353 highly uncertain. We hence exclude the decomposition of particles from the model for simplicity.

354 **3 Results and discussion**

355 **3.1 Overview**

356 Figure 1 shows the temporal profile of PNSD (a), aerosol chemical composition and total mass
357 concentration of $\text{PM}_{2.5}$ (b), mass fraction of each component (c), and wind speed and direction (d)
358 during the measurements. Note that the SP-AMS measurement started on 12th October. According
359 to the PNSD data, a total number of 20 new particle formation (NPF) events were observed during
360 the whole campaign. The background particles mainly exhibited unimodal distribution which
361 peaked at a size range of about 80-150 nm. The average particle number concentration (N_{CN}) in the
362 size range of 3-1000 nm was about 12700 cm^{-3} , much lower than that from the rural measurement
363 (18150 cm^{-3}) in 2006 in the PRD region (Rose et al., 2010). A wide accumulation mode was
364 observed during the period prevalent with north wind direction, implying that the air mass from the
365 north could bring pollutants from the city cluster around Guangzhou to the measurement site.

366 The chemical composition and the corresponding mass fraction measured by the SP-AMS (Fig.
367 1 b and c) were consistent with those of PNSD, which showed a significantly high mass
368 concentration of organics when the wind was from the north. The average mass fraction of PM_1 was
369 dominated by organics (51.8%), followed by sulfate (17.5%), nitrate (10.2%), BC (9.9%),
370 ammonium (8.8%), and chloride (1.7%). The mass concentration of organics varied from 3.3 to
371 $123.4 \mu g m^{-3}$, with an average value of $20.3 \mu g m^{-3}$, lower than the value ($25.7 \mu g m^{-3}$) reported in
372 Guangzhou city (Qin et al., 2017), but significantly higher than that was observed ($4.1 \mu g m^{-3}$) in
373 Hong Kong (Lee et al., 2013). The mass distribution of the chemical species at the Heshan site was
374 similar to that measured in inland China (Chen et al., 2015;Huang et al., 2014), which was
375 dominated by organics from anthropogenic emissions. A distinguished and reproducible diurnal
376 pattern of the mass fraction was observed during the measurement (Fig. 1c), implying that the
377 particle composition was more affected by local emission or photochemical production than other
378 pathways. Organics showed a diurnal pattern with bimodal peaks respectively in the afternoon and
379 evening, which will be discussed later in section 3.3. The temporal profile of GF-PDF (Fig. 2)
380 measured by the H/V-TDMA was consistent with that of chemical composition, which showed a
381 significant diurnal pattern. This suggested that particles at all diameters could be affected by
382 atmospheric chemical processes and local emissions, which will be further discussed in section 3.3.
383 The H/V-TDMA data from 18th to 26th October and 29th October to 3rd November were not available
384 due to instrumental failure. In general, the GF-PDF exhibited a bimodal distribution for particles
385 larger than 30 nm, with a significant more-hygroscopic (MH, $GF > 1.33$) or less-hygroscopic (LH,
386 $1.11 < GF < 1.33$) mode and a less obvious non-hygroscopic (NH, $GF < 1.11$), indicating that these
387 particles were partly externally mixed. The NH mode with primary emissions (e.g., fresh black

388 carbon and some organics) was more obvious in a size range of 50-150 nm than others, suggesting
389 that these particles were more affected by local anthropogenic emissions. The above observation
390 was supported by the size distribution of the BC mass fraction (Fig. S6), which peaked at a size range
391 of about 50-150 nm. Besides, the MH mode shifted to a higher GF value with an increase of particle
392 sizes, implying that larger particles were more aged with a higher fraction of inorganic salt (Fig. S6)
393 and well separated from the freshly emitted counterparts. A similar phenomenal pattern was
394 previously observed in the urban environment, including the PRD region (Hong et al., 2018; Cai et
395 al., 2017; Jiang et al., 2016; Tan et al., 2013b), the North China Plain (Liu et al., 2011; Ma et al., 2016)
396 and other city regions around the world (Yuan et al., 2020; Mochida et al., 2006; Massling et al.,
397 2005).

398 Table 3 summaries the N_{CCN} , activation ratio (AR), D_{50} , and κ_{CCN} values at 0.1%, 0.2%, 0.4%,
399 0.7%, 0.9%, and 1.0% SS during the campaign. The activation ratio is defined as the ratio of N_{CCN}
400 to N_{CN} , that is, $AR = N_{CCN}/N_{CN}$. The average N_{CCN} at 0.1%, 0.2%, 0.4%, 0.7%, 0.9%, and 1.0% SS
401 was about 2507, 4322, 5854, 6834, 7497, and 7862 cm^{-3} , respectively. The N_{CCN} at 0.7% SS was
402 lower than that measured (7900 cm^{-3} at 0.7% SS) in urban Guangzhou (Cai et al., 2018) and at a
403 suburban site (14400 cm^{-3} at 0.864% SS) in the North China Plain (Zhang et al., 2020), but
404 significantly higher than that measured at an urban site (2776 cm^{-3} at 0.68% SS) in São Paulo, Brazil
405 (Almeida et al., 2014). The average AR at the above six SS was 0.20, 0.34, 0.45, 0.52, 0.57, and
406 0.60, respectively. The AR at 0.7% SS was lower than the measured value (0.64 at 0.7% SS) in the
407 urban Guangzhou (Cai et al., 2018), while the corresponding D_{50} (52.56 nm) was lower than that
408 (58.45 nm) in the Guangzhou campaign, implying a higher CCN activity at this site. Thus, the lower
409 AR in this autumn campaign suggested that particles were more centered at smaller sizes, which

410 might be attributed to frequently occurred NPF at the Heshan site. The average κ values obtained
411 using HTDMA fall in a range of 0.1-0.17 at 30-200 nm (Fig. S7a), which were possibly attributed
412 to a high fraction of organic matter (Fig. S6). The κ_{AMS} is slightly higher than the κ_{HTDMA} and the
413 differences become larger with decreasing particle sizes. This was probably due to the overestimated
414 κ_{OA} at a small size range, which will be discussed in the next section. The hygroscopicity parameter
415 κ values obtained by the CCNc method were 0.48, 0.47, 0.31, 0.22, 0.20, and 0.20 at the above SS,
416 respectively, which were much higher than those measured by the HTDMA in this study. This
417 significant discrepancy between the measured κ_{CCN} and κ_{HTDMA} values might suggest that the water
418 uptake behavior is different under super- and sub-saturation condition, which is likely attributed to
419 the surfactant effect. It was reported that organic matter in the particles could serve as surfactant and
420 lower surface tension by about $0.01\text{-}0.032\text{ N m}^{-1}$, leading to a higher CCN activity and thus a higher
421 κ_{CCN} (Petters and Kreidenweis, 2013; Ovadnevaite et al., 2017; Liu et al., 2018). According to Eqs.
422 (4) and (5), the κ_{CCN} was more susceptibly affected by the value of surface tension than that of
423 κ_{HTDMA} , which would lead to the discrepancy between κ_{CCN} and κ_{HTDMA} values. The surfactant effect
424 is closely related to the presence of liquid-liquid phase separation (LLPS) for organic-containing
425 particles at high RH (Renbaum-Wolff et al., 2016; Ruehl and Wilson, 2014). Once LLPS occurred,
426 the organic film on the droplet surface would decrease surface tension and enhance water uptake.
427 For particles of organic/inorganic mixture, the LLPS can occur when the O:C is lower than 0.8
428 (Bertram et al., 2011; Song et al., 2012a, b; Schill and Tolbert, 2013). The average O:C obtained
429 using AMS is about 0.53 in this campaign, suggesting that the LLPS likely occurred at
430 supersaturation conditions. Meanwhile, the variation of the discrepancy between κ_{CCN} and κ_{HTDMA}
431 is statistically insignificant during clean and polluted periods (Fig. S7b and S7c), implying that the

432 surfactant effect was hardly affected by pollution condition. Note that surface tension effect is not
433 the only factor which leads to a higher κ_{CCN} . It was found that κ_{CCN} could be higher than κ_{HTDMA} ,
434 since the existence of the slightly soluble compounds inhibits water uptake under subsaturation
435 conditions (Zhao et al., 2016; Pajunoja et al., 2015; Dusek et al., 2011; Petters et al., 2009; Hong et
436 al., 2014; Hansen et al., 2015). Other factors, such as different parameters used in the CCNc and
437 HTMDA calibration and function groups associated with the carbon chain, can lead to a gap between
438 κ_{HTDMA} and κ_{CCN} (Rose et al., 2008; Wex et al., 2009). More future work is needed to better
439 understand this water uptake mechanism and to improve the prediction of aerosol-cloud-climate
440 interactions.

441 **3.2 The average size-resolved hygroscopicity and volatility of OA**

442 The composition of organics could vary on a large scale with diameters due to different sources
443 and aging processes, which would further affect their properties. Figure 3 presents the average size-
444 resolved hygroscopicity and volatility of OA. The κ_{OA} values (vertical red lines in Fig. 3) ranged
445 from 0.058 to 0.09, within the range (0.05-0.15 at 100 nm) previously reported in the PRD region
446 (Hong et al., 2018) and slightly higher than that (0.03-0.06 at 250 nm) at a mountain site in Germany
447 (Wu et al., 2013). In general, the κ_{OA} values increased with particle sizes from 0.058 at 30 nm to
448 0.09 at 150 and 200 nm, similar to the feature observed in urban and forest environments (Kim et
449 al., 2020; Deng et al., 2019). The increases of the κ_{OA} values with particle sizes could be explained
450 by the oxidation level of organic aerosols (Massoli et al., 2010; Lambe et al., 2011; Xu et al., 2021).
451 Specifically, the hygroscopicity of OA was often found to be positively correlated to its oxidation
452 level (Mei et al., 2013; Lambe et al., 2011), which was usually represented by f_{44} , O/C ratio, or $\overline{OS_c}$.

453 Thus, the higher κ_{OA} values at larger particle diameters in this study might correspond to a higher
454 aging degree of these particles, and this was confirmed by the increasing trend of f_{44} with particle
455 diameters, i.e., the increasing fraction of CO_2^+ in OA in large particles (Fig. S8). Previous field
456 studies also indicated that f_{44} increased with particle diameters (Kim et al., 2020; Cai et al., 2018),
457 leading to a higher κ_{OA} value.

458 Besides the hygroscopicity of OA, we observed the size dependence of volatility. As shown in
459 Fig. 3, the mass fraction of ELVOA increases from 0.16 to 0.30 with the particle diameter, indicating
460 that the particles could be more aged at larger diameters, consistent with the higher κ_{OA} values as
461 discussed above. The ELVOA fraction in this campaign was higher than that in Beijing in summer
462 (0.13) measured by a thermodenuder (TD) coupled to an AMS (Xu et al., 2019), but similar to that
463 in Athens (0.3) using a similar TD system (Louvaris et al., 2017). The SVOA generally contributed
464 42%-57% to the OA at all measured sizes, comparable to the values reported in Centreville and
465 Raleigh (66-75%, Saha et al., 2017), Beijing (64%, Xu et al., 2019) and Mexico City (39%-73%,
466 Cappa and Jimenez, 2010). Note that the relationship between volatility and oxidation state of OA
467 is not usually strong. Saha et al. (2017) reported weak correlations ($R < 0.3$) between the mean
468 volatility ($\overline{C^*}$) and the mean oxidation state ($\overline{OS_C}$). Hong et al. (2017) also found that the volatility
469 distribution of OA derived from the combined V-TDMA and evaporation dynamic model could not
470 be fully explained by the organic fractions determined by the PMF analysis based on the AMS data.
471 This is probably because the volatility was not only dependent on the $\overline{OS_C}$, but also the number of
472 atomic carbon (Donahue et al., 2011). In spite of this, the size-resolved volatility distribution can
473 provide a rough estimate of the aging degree of OA.

474 **3.3 The diurnal variation of OA hygroscopicity and volatility**

475 As discussed in Sect. 3.2, the hygroscopicity and volatility of OA could vary on a large range

476 with particle diameters, which might be attributed to photochemical reactions and the OA sources.

477 In this section, the diurnal variation of hygroscopicity and volatility of OA at different particle sizes

478 was investigated, in combination with the PMF results. In general, the mass fraction of organics

479 showed an obvious diurnal pattern during the whole campaign, with two peaks at about 14:00 and

480 19:00 LT (Fig. 4a), implying significant impacts of photochemical reactions and local emissions.

481 Based on the PMF results (Fig. 5), the afternoon peak was attributed to secondary organics aerosol

482 (SOA) formation (aBBOA and LOOA) during daytime, while the evening peak was explained by

483 local residential activity (e.g., biomass burning and cooking, HOA and BBOA), as will be discussed

484 later. A similar late-afternoon peak was observed in Hong Kong (Lee et al., 2013), where the OA

485 enhancement was mainly contributed by traffic emissions. The f_{44} remained at a high level during

486 daytime, consistent with strong photochemical reactions. A similar diurnal pattern was observed in

487 the urban and sub-urban regions (Hong et al., 2018; Hu et al., 2016; Thalman et al., 2017), suggesting

488 the consistent aging processes of pre-existing OA. In contrast, Deng et al. (2019) reported a relative

489 low OA oxidation state during daytime in a forest environment, which could be explained by the

490 SOA formation through photochemical oxidation of BVOCs.

491 The calculated κ_{HTDMA} and κ_{AMS} (the blue and red lines in Fig. 4b, respectively) values at 200

492 nm based on Eqs. (4) and (7) both reached minimum during daytime which was consistent with high

493 OA fractions. This may be explained by lower hygroscopic of OA than inorganics as found in

494 previous studies (Pajunoja et al., 2015; Zhao et al., 2015; Kuang et al., 2020b) as well as the low κ_i

495 values shown in Table 1. Although OA in a higher oxidation state could be hydrophilic (Massoli et
496 al., 2010), the primary OA is usually considered to be hydrophobic substance and their mixture
497 would be less hygroscopic (usually with average $\kappa = 0.1$). The κ_{AMS} values were generally consistent
498 with those of the κ_{HTDMA} during daytime while the overestimated κ_{OA} was observed during nighttime.
499 This implies a lower κ_{OA} value than 0.1 at 200 nm during the nighttime, probably due to less
500 oxidation processes at night than those under the sunlight.

501 The average diurnal profile of PNSD is shown in Fig. 4c. Besides a stable accumulation mode
502 peaked at around 100 nm, a significantly growing mode of particle number from 20 nm to 80 nm
503 was observed from 12:00 to 20:00 LT, which could be attributed to the frequently occurred NPF
504 during the campaign (Fig. 1a).

505 The size-resolved diurnal variations of κ_{OA} was explored in Fig. 6. Note that the κ_{OA} values are
506 presented in 2-hour resolution due to the low data coverage (Figs. 1 and 2). In general, a significantly
507 different pattern was observed between Aitken mode and accumulation mode. For Aitken mode
508 particles (30-100 nm), the κ_{OA} values were higher (0.05-0.1) before dawn than those (0.02-0.07)
509 during daytime, while this trend began to overturn at 150 and 200 nm, where the κ_{OA} values peaked
510 at noon (~ 0.09 , Fig. 6). As reported in literature, the hygroscopicity of organics was partly dependent
511 on the aging degree (Liu et al., 2021; Zhao et al., 2016; Kim et al., 2020). The diurnal characteristics
512 of the size-resolved κ_{OA} indicate that the OA in small particles (30-100 nm) was fresh and became
513 aged in large particles. For the same campaign, Kuang et al. (2021) reported the bulk κ_{OA} of PM_1
514 based on aerosol optical hygroscopicity measurements, which could provide high time resolution
515 data of κ_{OA} . The relationship between κ_{OA} and different OA factors was investigated, which showed
516 a negative correlation ($R=-0.25$) between LOOA and κ_{OA} , while a positive correlation ($R=0.35$)

517 between aBBOA and κ_{OA} . Thus, the decrease of κ_{OA} for Aitken mode particles during daytime might
518 be attributed to the daytime formation of LOOA through gas-particle partitioning (Fig. 5). A similar
519 phenomenon was reported by Deng et al. (2019) in a forest environment, which might be attributed
520 to the photochemical reactions of BVOCs. Therefore, OA in small particles might be less aged and
521 was primarily contributed by photochemical oxidation of VOCs. In contrast, it is likely that the
522 accumulation mode particles became aged through photochemical oxidation during daylight, as
523 evidenced by higher fractions of ELVOA at 200 nm and higher κ_{OA} (Figs. 6 and 7) during daytime.
524 According to the PMF analysis, the daytime formation of aBBOA likely resulted from the aging
525 processes of primary OA or biomass burning related precursors (Fig. 5). As suggested by Kuang et
526 al. (2021), the daytime formation of aBBOA (Fig. 5) would lead to an increase of κ_{OA} , which likely
527 explained the noontime κ_{OA} peak at 150 and 200 nm. It suggested that the OA in the accumulation
528 mode was more influenced by the aging processes through photochemical reactions (leading to
529 aBBOA formation).

530 The average size-resolved volatility distribution of OA during daytime (8:00 to 16:00 LT) and
531 nighttime (20:00 to 4:00 LT) was demonstrated in Fig. 7. A higher fraction of semi-volatile organic
532 aerosol (SVOA) was observed at six measured sizes (30, 50, 80, 100, 150, and 200 nm) during
533 daytime. SVOA was usually related to primary emission (e.g., traffic, biomass burning) and gas-
534 particle partitioning (Donahue et al., 2012; Jathar et al., 2020; Hong et al., 2017; Saha et al., 2017).
535 Two primary emission factors, BBOA and HOA, remained at a relative low level during daytime,
536 suggesting that the higher fraction of SVOA during daylight might be more originated from gas-
537 particle partitioning. Note that gas-particle partitioning (leading to LOOA formation) could occur
538 at all measured diameters, as shown by the higher daytime fractions of SVOA (Fig. 7). In summary,

539 the above results indicate that the negative effect of LOOA on κ_{OA} might exist at all diameters, while
540 the positive effect of aBBOA was more dominant at larger particle sizes.

541 Meanwhile, the decreasing trend of κ_{OA} was observed from 18:00 to 24:00 at 80 and 100 nm
542 which might be related to the high mass fraction of OA from primary emissions (HOA and BBOA,
543 Fig. 5), owing to their hydrophobic nature. These two primary factors were associated with traffic
544 emissions, cooking and biomass burning. Zhang et al. (2005b) constructed the size distribution of
545 HOA based on the size-resolved m/z 44 and 57 from the AMS measurement and showed that HOA
546 was dominant (~75%) in ultrafine particles ($D_{va} < 100$ nm). The size-resolved PMF results from Sun
547 et al. (2012) also indicated a high mass fraction of HOA (0.3-0.4) in Aitken mode particles. The
548 mass distribution of BC could be used to represent the distribution of primary OA (Cubison et al.,
549 2008; Wang et al., 2010; Zhang et al., 2005a) due to similar source origins for BC and HOA/BBOA.
550 The average mass fraction of BC peaked at about 80-100 nm (Fig. S6a), suggesting that HOA and
551 BBOA might be dominant at this size range. The BC peaks at 80 nm and 100 nm were consistent
552 with those of the SVOA mass fraction (Fig. 3), which was attributed to biomass burning as similar
553 characteristics for the BC peak were shown in other studies (May et al., 2013; Huffman et al.,
554 2009; Donahue et al., 2011). Furthermore, this conclusion was supported by the hygroscopicity
555 measurements as a significant NH mode for 80-100 nm particles was found (Fig. 2). Overall, these
556 results highlight that the diurnal variation of physicochemical properties of OA could vary in a large
557 range with particle diameters, and further investigation is needed.

558 **3.4 Implication for CCN activity**

559 The CCN activity and its prediction is essential in global climate model and evaluation. A κ_{OA}

560 value of 0.1~0.15 was widely adopted in the prediction of N_{CCN} based on aerosol chemical
561 composition (Meng et al., 2014; Wang et al., 2010; Almeida et al., 2014). As discussed in Sect. 3.3,
562 the κ_{OA} values might be dependent on particle sizes and vary diurnally, which in turn affect N_{CCN} .
563 Here, different κ_{OA} values were adopted to predict N_{CCN} and the impact of κ_{OA} on N_{CCN} was
564 investigated through comparison between the predicted and measured N_{CCN} . Note that we only
565 discussed the N_{CCN} at 0.1%, 0.2%, 0.4% and 0.7% SS, since the D_{50} at higher SS (0.9% and 1.0%)
566 was within a narrow range (35-60 nm).

567 The N_{CCN} at a certain SS can be calculated using PNSD and D_{50} :

$$568 N_{CCN,p}(SS) = \int_{D_{50}}^{\infty} n_i d\log Dp_i \quad (16)$$

569 where n_i is the particle distribution function at Dp_i and D_{50} is determined from the κ_{AMS} using Eqs.
570 (5) and (7). The D_{50} at 0.1%, 0.2%, 0.4% and 0.7% SS ranged from about 130-160 nm, 90-110 nm,
571 60-80 nm and 45-60 nm, respectively. Three κ_{OA} schemes were proposed to predict N_{CCN} : (1) fixed
572 κ_{OA} , where κ_{OA} was assumed to be 0.1 for all size particles. (2) size-resolved κ_{OA} (SR κ_{OA}), where
573 κ_{OA} was taken from average size-resolved κ_{OA} (κ_{OA} at 50, 80, 100 and 150 nm for 0.7%, 0.4%, 0.2%
574 and 0.1% SS, respectively) in Sect. 3.2. (3) size-resolved diurnal κ_{OA} (SR diurnal κ_{OA}), where κ_{OA}
575 was the average diurnal value of κ_{OA} at each diameter (κ_{OA} at 50, 80, 100 and 150 nm for 0.7%,
576 0.4%, 0.2% and 0.1% SS, respectively) as shown in Sect. 3.3. The κ_{AMS} was calculated based on the
577 chemical composition at the corresponding D_{50} range. Note that the N_{CCN} prediction based on the
578 SR diurnal κ_{OA} scheme was presented in 2 h time resolution and the particles were assumed to be
579 internally mixed in Eq. (16). The internal mixing assumption could slightly increase the predicted
580 N_{CCN} by about 6-10% (Sect. S3). As aforementioned, organics can increase the CCN activity by
581 decreasing surface tension, which might lead to significant discrepancy between κ_{HTDMA} and κ_{CCN}

582 in this campaign (Fig. S7). In addition, this effect could result in a significant underestimation of
583 N_{CCN} (Ovadnevaite et al., 2017; Liu et al., 2018; Good et al., 2010; Noziere, 2016).

584 Here, we evaluate the surface tension effect by comparing κ_{HTDMA} and κ_{CCN} as a function of
585 $\sigma_{s/a}$ (Fig. S9). The κ_{CCN} reached κ_{HTDMA} when the $\sigma_{s/a}$ values were set to be about 0.059 N m^{-1} at
586 0.7%, 0.9% and 1.0% SS, 0.053 N m^{-1} at 0.4% SS, 0.047 N m^{-1} at 0.2% SS, and 0.049 N m^{-1} at 0.1%
587 SS, respectively. Thus, we adopted $\sigma_{s/a}$ values of 0.049, 0.047, 0.053 and 0.059 N m^{-1} to predict
588 N_{CCN} at 0.1%, 0.2%, 0.4% and 0.7% SS, respectively. In general, the N_{CCN} prediction could be
589 significantly improved by considering the surfactant effect (Fig. S10). The N_{CCN} was slightly
590 overestimated by using reduced $\sigma_{s/a}$ values, which was probably due to using a fixed κ_{OA} values.
591 This bias could be corrected by adopting SR κ_{OA} scheme (Fig. S11).

592 The deviation of the N_{CCN} prediction ($\delta_{N_{CCN}}$) at a certain SS is defined as (Cai et al., 2021b):

$$593 \delta_{N_{CCN}}(SS) = \frac{N_{CCN,m}(SS) - N_{CCN,p}(SS)}{N_{CCN,m}(SS)} 100\% \quad (17)$$

594 where $N_{CCN,m}(SS)$ is the measured N_{CCN} at a specific SS. A negative $\delta_{N_{CCN}}$ indicates an
595 overestimate of N_{CCN} , and vice versa.

596 Figure 8 shows the $\delta_{N_{CCN}}$ at different SS for the three κ_{OA} schemes. Fixed κ_{OA} scheme gave
597 generally a negative value of $\delta_{N_{CCN}}$ (-0.18 to -0.02) at 0.7% SS, indicating an N_{CCN} overestimation,
598 due to lower κ_{OA} values for smaller particles. A significant diurnal pattern of $\delta_{N_{CCN}}$ was observed at
599 all SS. The $\delta_{N_{CCN}}$ was relatively higher during daytime at 0.1% SS, while an opposite pattern was
600 shown at high SS, consistent with the size-dependent variation of κ_{OA} (Fig. 6). Hence, the fixed κ_{OA}
601 scheme could lead to an obvious discrepancy in the N_{CCN} prediction as SS increased. The results
602 based on the SR κ_{OA} scheme showed that the minimum $\delta_{N_{CCN}}$ value at 0.7% SS increased from -
603 0.18 in the fixed κ_{OA} scheme to -0.08, indicating the improvement for the N_{CCN} prediction at high

604 SS (Fig. 8b). However, only minor improvement was observed at SS lower than 0.4 % because of
605 the low employed κ_{OA} (about 0.08), which was close to the κ_{OA} value (0.1) adopted in the fixed κ_{OA}
606 scheme. A significant difference of $\delta_{N_{CCN}}$ was still observed in the diurnal pattern at high and low
607 SS, implying the impact of the diurnal variation of κ_{OA} on the N_{CCN} prediction. To further investigate
608 this impact, the SR diurnal κ_{OA} scheme was employed to calculate $\delta_{N_{CCN}}$ and the results were shown
609 in Fig. 8c. The $\delta_{N_{CCN}}$ value at 0.7% SS varied from -0.04 to 0.09 with an average value of 0, whereas
610 it ranged from 0 to 0.11 at 0.1% SS. Hence, the discrepancies of $\delta_{N_{CCN}}$ among different SS became
611 minor compared to the other two schemes as a relatively flat diurnal pattern of $\delta_{N_{CCN}}$ was observed
612 at all SS. It implies that better prediction of N_{CCN} could be achieved by considering the diurnal
613 variation and the size dependence of κ_{OA} .

614 **4. Conclusions**

615 A rural field measurement was conducted at the Heshan supersite in the PRD region of China
616 during October and November 2019. We investigated the diurnal variation and size dependence in
617 the hygroscopicity and volatility of OA in combination with the PMF analysis of the AMS data. The
618 impacts of OA on the CCN number concentration at different SS were discussed for various given
619 size-dependent κ_{OA} values.

620 In general, the average κ_{OA} values varied from 0.058 at 30 nm to 0.09 at 200 nm, indicating a
621 higher oxidation degree of OA at larger sizes than at smaller sizes. This is consistent with particle
622 volatility: the mass fraction of ELVOA increased (0.16-0.30) with increasing particle diameters.

623 Our results suggest that the formation and aging processes of OA might vary with particle sizes.

624 An oppositely diurnal pattern of κ_{OA} was observed between Aitken mode (30-100 nm) and
625 Accumulation mode (150 and 200 nm) particles, suggesting different atmospheric evolution
626 processes of OA at different diameters. The gas-particle partitioning could decrease the κ_{OA} , while
627 the aging processes of preexisting particles could enhance the hygroscopicity of OA. For Aitken
628 mode particles (30-100 nm), the κ_{OA} values reached minimal (0.02-0.07) during daytime.
629 Meanwhile, a daytime peak was observed for the κ_{OA} value (~0.09) in the accumulation mode (150
630 and 200 nm), suggesting that the aging processes of preexisting particles were more dominant at
631 accumulation mode particles. In addition, the mass fraction of SVOA was higher during daytime at
632 all measured diameters, implying that the formation of LOOA through gas-particle partitioning was
633 independent of particle diameters.

634 The impact of the size-resolved diurnal variation of κ_{OA} on the N_{CCN} was investigated. The use
635 of fixed κ_{OA} ($\kappa_{OA}=0.1$) overestimated the N_{CCN} up to 18% at 0.7% SS. The diurnal deviation became
636 obvious at 0.7% SS and minor at 0.1% SS during daytime, owing to the size-dependent variation of
637 κ_{OA} . The N_{CCN} prediction at 0.7% SS was improved if the SR κ_{OA} scheme was used, while the
638 diurnal variation of $\delta_{N_{CCN}}$ still existed. Better predictions can be obtained by using SR diurnal κ_{OA} .
639 Our results highlight that the physical properties of OA can vary in a large range at different size
640 ranges due to the formation and aging processes, and the size-resolved diurnal variation in κ_{OA} plays
641 an important role in the N_{CCN} prediction at different SS. Further studies on the size-resolved
642 physicochemical properties of OA should be performed in different environments to better
643 understand their impact on cloud formation and hence climate.

644
645 *Data availability.* Data from the measurements are available at
31

646 <https://doi.org/10.6084/m9.figshare.18094277.v1> (Cai et al., 2022).

647

648 *Supplement.* The supplement related to this article is available online at xxx.

649

650 *Author contributions.* **MC, SH, BY and LL** designed the research. **MC, SH, MS, BY, YP, ZW, DC,**

651 **WC, QS, WL, BL and QS** performed the measurements. **MC, SH, BL, QS, LL, BY, WH, WC,**

652 **QS, WL, YP, ZW, HT, HX, FL, DX, TD, JS and JZ** analyzed the data. **MC, SH and LL** wrote the

653 paper with contributions from all co-authors.

654

655 *Competing interests.* The authors declare that they have no conflict of interest.

656

657 *Financial support.* This work was supported by the Key-Area Research and Development Program

658 of Guangdong Province (grant no. 2019B110206001), the National Key R&D Plan of China (grant

659 no. 2019YFE0106300 and 2018YFC0213904), the National Natural Science Foundation of China

660 (grant nos. 41877302, 91644225, 41775117 and 41807302), Guangdong Natural Science Funds for

661 Distinguished Young Scholar (grant no. 2018B030306037), Guangdong Innovative and

662 Entrepreneurial Research Team Program (grant no. 2016ZT06N263), Guangdong Province Key

663 Laboratory for Climate Change and Natural Disaster Studies (grant no. 2020B1212060025),

664 Guangdong Basic and Applied Basic Research Foundation (grant nos. 2019A1515110790 and

665 2019A1515110791), Science and Technology Research project of Guangdong Meteorological

666 Bureau (grant no. GRMC2018M07), the Natural Science Foundation of Guangdong Province,

667 China (grant no. 2016A030311007), Science and Technology Innovation Team Plan of Guangdong

668 Meteorological Bureau (grant no. GRMCTD202003), and Science and Technology Program of
669 Guangdong Province (Science and Technology Innovation Platform Category, No.
670 2019B121201002).

671

672 *Acknowledgements.* Additional support from the crew of the Heshan supersite and Guangdong
673 Environmental Monitoring Center is greatly acknowledged.

674

675 **References**

676 Almeida, G. P., Brito, J., Morales, C. A., Andrade, M. F., and Artaxo, P.: Measured and
677 modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of
678 aerosol size-resolved chemical composition on CCN concentration prediction, *Atmos. Chem. Phys.*,
679 14, 7559-7572, 10.5194/acp-14-7559-2014, 2014.

680 Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu,
681 A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation,
682 efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water
683 using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the
684 organic component, *Atmos. Chem. Phys.*, 11, 10995-11006, 10.5194/acp-11-10995-2011, 2011.

685 Cai, J., Chu, B., Yao, L., Yan, C., Heikkinen, L. M., Zheng, F., Li, C., Fan, X., Zhang, S., Yang,
686 D., Wang, Y., Kokkonen, T. V., Chan, T., Zhou, Y., Dada, L., Liu, Y., He, H., Paasonen, P., Kujansuu,
687 J. T., Petäjä, T., Mohr, C., Kangasluoma, J., Bianchi, F., Sun, Y., Croteau, P. L., Worsnop, D. R.,
688 Kerminen, V. M., Du, W., Kulmala, M., and Daellenbach, K. R.: Size-segregated particle number
689 and mass concentrations from different emission sources in urban Beijing, *Atmos. Chem. Phys.*, 20,
690 12721-12740, 10.5194/acp-20-12721-2020, 2020.

691 Cai, M., Huang, S., Li, L., Yuan, B., Shao, M., and Zhao, J.: Distinct size dependence and
692 diurnal variation of OA hygroscopicity, volatility, and CCN activity at a rural site in the Pearl River

693 Delta (PRD) region, China. figshare. Dataset., <https://doi.org/10.6084/m9.figshare.18094277.v1>,
694 2022.

695 Cai, M., Tan, H., Chan, C. K., Mochida, M., Hatakeyama, S., Kondo, Y., Schurman, M. I., Xu,
696 H., Li, F., and Shimada, K.: Comparison of Aerosol Hygroscopicity, Volatility, and Chemical
697 Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa,
698 Aerosol Air Qual. Res., 2017.

699 Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., and Zhao, J.:
700 The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol
701 hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014,
702 Atmos. Chem. Phys., 18, 16419-16437, 2018.

703 Cai, M., Liang, B., Sun, Q., Liu, L., Yuan, B., Shao, M., Huang, S., Peng, Y., Wang, Z., Tan,
704 H., Li, F., Xu, H., Chen, D., and Zhao, J.: The important roles of surface tension and growth rate in
705 the contribution of new particle formation (NPF) to cloud condensation nuclei (CCN) number
706 concentration: evidence from field measurements in southern China, Atmos. Chem. Phys., 21, 8575-
707 8592, 10.5194/acp-21-8575-2021, 2021a.

708 Cai, M. F., Liang, B. L., Sun, Q. B., Zhou, S. Z., Yuan, B., Shao, M., Tan, H. B., Xu, Y. S., Ren,
709 L. H., and Zhao, J.: Contribution of New Particle Formation to Cloud Condensation Nuclei Activity
710 and its Controlling Factors in a Mountain Region of Inland China, J. Geophys. Res. Atmos., 126,
711 e2020JD034302, <https://doi.org/10.1029/2020JD034302>, 2021b.

712 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch,
713 T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M.,
714 Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and
715 microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer,
716 Mass Spectrom. Rev., 26, 185-222, 10.1002/mas.20115, 2007.

717 Cappa, C. D., and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic
718 aerosol, Atmos. Chem. Phys., 10, 5409-5424, 10.5194/acp-10-5409-2010, 2010.

719 Chang, R. Y. W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J., Leaitch,
720 W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (κ) of ambient organic aerosol at a field
721 site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation,

722 Atmos. Chem. Phys., 10, 5047-5064, 2010.

723 Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang,
724 Z. F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron aerosols
725 above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, Atmos. Chem.
726 Phys., 15, 12879-12895, 10.5194/acp-15-12879-2015, 2015.

727 Chen, J., Budisulistiorini, S. H., Itoh, M., Lee, W. C., Miyakawa, T., Komazaki, Y., Yang, L. D.
728 Q., and Kuwata, M.: Water uptake by fresh Indonesian peat burning particles is limited by water-
729 soluble organic matter, Atmos. Chem. Phys., 17, 11591-11604, 10.5194/acp-17-11591-2017, 2017.

730 Cheung, H. H., Tan, H., Xu, H., Li, F., Wu, C., Yu, J. Z., and Chan, C. K.: Measurements of
731 non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in
732 Guangzhou, China, Atmos. Chem. Phys., 16, 8431-8446, 2016.

733 Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L., Prather,
734 K., Hering, S., and Jimenez, J. L.: The influence of chemical composition and mixing state of Los
735 Angeles urban aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8, 5649-5667,
736 10.5194/acp-8-5649-2008, 2008.

737 Deng, Y., Kagami, S., Ogawa, S., Kawana, K., Nakayama, T., Kubodera, R., Adachi, K.,
738 Hussein, T., Miyazaki, Y., and Mochida, M.: Hygroscopicity of Organic Aerosols and Their
739 Contributions to CCN Concentrations Over a Midlatitude Forest in Japan, J. Geophys. Res. Atmos.,
740 123, 9703-9723, 10.1029/2017JD027292, 2018.

741 Deng, Y., Yai, H., Fujinari, H., Kawana, K., Nakayama, T., and Mochida, M.: Diurnal variation
742 and size dependence of the hygroscopicity of organic aerosol at a forest site in Wakayama, Japan:
743 their relationship to CCN concentrations, Atmos. Chem. Phys., 19, 5889-5903, 10.5194/acp-19-
744 5889-2019, 2019.

745 Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional
746 volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303-3318,
747 10.5194/acp-11-3303-2011, 2011.

748 Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility
749 basis set – Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12, 615-634,
750 10.5194/acp-12-615-2012, 2012.

751 Dusek, U., Frank, G. P., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G.,
752 Hennig, T., Wiedensohler, A., and Andreae, M. O.: Water uptake by biomass burning aerosol at sub-
753 and supersaturated conditions: closure studies and implications for the role of organics, *Atmos.*
754 *Chem. Phys.*, 11, 9519-9532, 10.5194/acp-11-9519-2011, 2011.

755 Engelhart, G. J., Moore, R. H., Nenes, A., and Pandis, S. N.: Cloud condensation nuclei activity
756 of isoprene secondary organic aerosol, *J. Geophys. Res. Atmos.*, 116,
757 <https://doi.org/10.1029/2010JD014706>, 2011.

758 Epstein, S. A., Riipinen, I., and Donahue, N. M.: A Semiempirical Correlation between
759 Enthalpy of Vaporization and Saturation Concentration for Organic Aerosol, *Environ. Sci. Technol.*,
760 44, 743-748, 10.1021/es902497z, 2010.

761 Gantt, B., and Meskhidze, N.: The physical and chemical characteristics of marine primary
762 organic aerosol: a review, *Atmos. Chem. Phys.*, 13, 3979-3996, 10.5194/acp-13-3979-2013, 2013.

763 Good, N., Topping, D., Allan, J., Flynn, M., Fuentes, E., Irwin, M., Williams, P., Coe, H., and
764 McFiggans, G.: Consistency between parameterisations of aerosol hygroscopicity and CCN activity
765 during the RHaMBLe discovery cruise, *Atmos. Chem. Phys.*, 10, 3189-3203, 2010.

766 Guo, J., Zhou, S., Cai, M., Zhao, J., Song, W., Zhao, W., Hu, W., Sun, Y., He, Y., Yang, C., Xu,
767 X., Zhang, Z., Cheng, P., Fan, Q., Hang, J., Fan, S., Wang, X., and Wang, X.: Characterization of
768 submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during
769 wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China, *Atmos.*
770 *Chem. Phys.*, 20, 7595-7615, 10.5194/acp-20-7595-2020, 2020.

771 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams,
772 P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition
773 and hygroscopic growth of aerosol particles during TORCH2, *Atmos. Chem. Phys.*, 7, 6131-6144,
774 10.5194/acp-7-6131-2007, 2007.

775 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,
776 J., Donahue, N., George, C., and Goldstein, A.: The formation, properties and impact of secondary
777 organic aerosol: current and emerging issues, *Atmospheric chemistry and physics*, 9, 5155-5236,
778 2009.

779 Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T.,

780 Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of
781 limonene-derived organosulfates and their mixtures with ammonium sulfate, *Atmos. Chem. Phys.*, 15,
782 14071-14089, 10.5194/acp-15-14071-2015, 2015.

783 Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., Cahill, J. F., Duong, H.
784 T., Sorooshian, A., Jonsson, H. H., Shiraiwa, M., Zuend, A., Nenes, A., Prather, K. A., Flagan, R. C., and
785 Seinfeld, J. H.: Composition and hygroscopicity of the Los Angeles Aerosol: CalNex, *Journal of*
786 *Geophysical Research: Atmospheres*, 118, 3016-3036, <https://doi.org/10.1002/jgrd.50307>, 2013.

787 Hong, J., Äijälä, M., Häme, S. A. K., Hao, L., Duplissy, J., Heikkinen, L. M., Nie, W., Mikkilä,
788 J., Kulmala, M., Prisle, N. L., Virtanen, A., Ehn, M., Paasonen, P., Worsnop, D. R., Riipinen, I.,
789 Petäjä, T., and Kerminen, V. M.: Estimates of the organic aerosol volatility in a boreal forest using
790 two independent methods, *Atmos. Chem. Phys.*, 17, 4387-4399, 10.5194/acp-17-4387-2017, 2017.

791 Hong, J., Xu, H., Tan, H., Yin, C., Hao, L., Li, F., Cai, M., Deng, X., Wang, N., Su, H., Cheng,
792 Y., Wang, L., Petäjä, T., and Kerminen, V. M.: Mixing state and particle hygroscopicity of organic-
793 dominated aerosols over the Pearl River Delta region in China, *Atmos. Chem. Phys.*, 18, 14079-
794 14094, 10.5194/acp-18-14079-2018, 2018.

795 Hong, J., Häkkinen, S. A. K., Paramonov, M., Äijälä, M., Hakala, J., Nieminen, T., Mikkilä, J.,
796 Prisle, N. L., Kulmala, M., Riipinen, I., Bilde, M., Kerminen, V. M., and Petäjä, T.: Hygroscopicity, CCN
797 and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the
798 summer of 2010, *Atmos. Chem. Phys.*, 14, 4733-4748, 10.5194/acp-14-4733-2014, 2014.

799 Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng, J.,
800 Zeng, L., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols
801 in Beijing: Contrast between summer and winter, *J. Geophys. Res. Atmos.*, 121, 1955-1977,
802 <https://doi.org/10.1002/2015JD024020>, 2016.

803 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik,
804 J. G., Platt, S. M., and Canonaco, F.: High secondary aerosol contribution to particulate pollution
805 during haze events in China, *Nature*, 514, 218, 2014.

806 Huang, S., Wu, Z., Poulain, L., van Pinxteren, M., Merkel, M., Assmann, D., Herrmann, H.,
807 and Wiedensohler, A.: Source apportionment of the organic aerosol over the Atlantic Ocean from
808 53°N to 53°S: significant contributions from marine emissions and long-range transport, *Atmos.*

809 Chem. Phys., 18, 18043-18062, 10.5194/acp-18-18043-2018, 2018.

810 Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I. M., DeCarlo, P. F.,
811 Sueper, D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J., and Jimenez, J. L.: Chemically-resolved
812 aerosol volatility measurements from two megacity field studies, Atmos. Chem. Phys., 9, 7161-
813 7182, 10.5194/acp-9-7161-2009, 2009.

814 Jathar, S. H., Sharma, N., Galang, A., Vanderheyden, C., Takhar, M., Chan, A. W. H., Pierce, J.
815 R., and Volckens, J.: Measuring and modeling the primary organic aerosol volatility from a modern
816 non-road diesel engine, Atmos. Environ., 223, 117221,
817 <https://doi.org/10.1016/j.atmosenv.2019.117221>, 2020.

818 Jiang, R., Tan, H., Tang, L., Cai, M., Yin, Y., Li, F., Liu, L., Xu, H., Chan, P. W., and Deng, X.:
819 Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl
820 River Delta region, China, Atmos. Res., 169, 160-170, 2016.

821 Jimenez, J. L., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., DeCarlo, P.
822 F., Allan, J. D., Coe, H., and Ng, N.: Evolution of organic aerosols in the atmosphere, Science, 326,
823 1525-1529, 2009.

824 Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R. V.,
825 Ervens, B., Nenes, A., and Nielsen, C.: Organic aerosol and global climate modelling: a review,
826 Atmos. Chem. Phys., 5, 1053-1123, 2005.

827 Kim, N., Yum, S. S., Park, M., Park, J. S., Shin, H. J., and Ahn, J. Y.: Hygroscopicity of urban
828 aerosols and its link to size-resolved chemical composition during spring and summer in Seoul,
829 Korea, Atmos. Chem. Phys., 20, 11245-11262, 10.5194/acp-20-11245-2020, 2020.

830 Kiyoura, R., and Urano, K.: Mechanism, Kinetics, and Equilibrium of Thermal Decomposition
831 of Ammonium Sulfate, Ind. Eng. Chem. Process Des. Dev. , 9, 489-494, 10.1021/i260036a001,
832 1970.

833 Kuang, Y., He, Y., Xu, W., Yuan, B., Zhang, G., Ma, Z., Wu, C., Wang, C., Wang, S., Zhang,
834 S., Tao, J., Ma, N., Su, H., Cheng, Y., Shao, M., and Sun, Y.: Photochemical Aqueous-Phase
835 Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China
836 Plain, Environ. Sci. Technol., 54, 3849-3860, 10.1021/acs.est.9b06836, 2020a.

837 Kuang, Y., Xu, W., Tao, J., Ma, N., Zhao, C., and Shao, M.: A Review on Laboratory Studies

838 and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization
839 Based on Oxidation Levels, *Curr. Pollut. Rep.*, 10.1007/s40726-020-00164-2, 2020b.

840 Kuang, Y., Huang, S., Xue, B., Luo, B., Song, Q., Chen, W., Hu, W., Li, W., Zhao, P., Cai, M.,
841 Peng, Y., Qi, J., Li, T., Wang, S., Chen, D., Yue, D., Yuan, B., and Shao, M.: Contrasting effects of
842 secondary organic aerosol formations on organic aerosol hygroscopicity, *Atmos. Chem. Phys.*, 21,
843 10375-10391, 10.5194/acp-21-10375-2021, 2021.

844 Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams,
845 L. R., Worsnop, D. R., Brune, W. H., and Davidovits, P.: Laboratory studies of the chemical
846 composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and
847 oxidized primary organic aerosol (OPOA), *Atmos. Chem. Phys.*, 11, 8913-8928, 10.5194/acp-11-
848 8913-2011, 2011.

849 Lee, B.-H., Kostenidou, E., Hildebrandt, L., Riipinen, I., Engelhart, G., Mohr, C., DeCarlo, P.,
850 Mihalopoulos, N., Prevot, A., Baltensperger, U.: Measurement of the ambient organic aerosol
851 volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-
852 2008), *Atmos. Chem. Phys.*, 10, 12149-12160, 2010.

853 Lee, B.-H., Pierce, J. R., Engelhart, G. J., and Pandis, S. N.: Volatility of secondary organic
854 aerosol from the ozonolysis of monoterpenes, *Atmos. Environ.*, 45, 2443-2452, 2011.

855 Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K., and Chan, C. K.: Physical and chemical
856 characterization of ambient aerosol by HR-ToF-AMS at a suburban site in Hong Kong during
857 springtime 2011, *J. Geophys. Res. Atmos.*, 118, 8625-8639, 2013.

858 Li, J., Wang, G., Zhou, B., Cheng, C., Cao, J., Shen, Z., and An, Z.: Airborne particulate
859 organics at the summit (2060m, a.s.l.) of Mt. Hua in central China during winter: Implications for
860 biofuel and coal combustion, *Atmos. Res.*, 106, 108-119,
861 <https://doi.org/10.1016/j.atmosres.2011.11.012>, 2012.

862 Li, Y. J., Lee, B., Yu, J., Ng, N., and Chan, C. K.: Evaluating the degree of oxygenation of
863 organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight
864 aerosol mass spectrometry (HR-ToF-AMS), *Atmos. Chem. Phys.*, 13, 8739-8753, 2013.

865 Liu, J., Zhang, F., Xu, W., Sun, Y., Chen, L., Li, S., Ren, J., Hu, B., Wu, H., and Zhang, R.:
866 Hygroscopicity of Organic Aerosols Linked to Formation Mechanisms, *Geophys. Res. Lett.*, 48,

867 e2020GL091683, <https://doi.org/10.1029/2020GL091683>, 2021.

868 Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y. M., Gong, Z., Amorim, J.

869 C., Bertram, A. K., and Martin, S. T.: Resolving the mechanisms of hygroscopic growth and cloud

870 condensation nuclei activity for organic particulate matter, *Nat. Commun.*, 9, 4076,

871 10.1038/s41467-018-06622-2, 2018.

872 Liu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z.,

873 Ma, N., Mildenberger, K., Henning, S., Stratmann, F., and Wiedensohler, A.: Hygroscopic properties

874 of aerosol particles at high relative humidity and their diurnal variations in the North China Plain,

875 *Atmos. Chem. Phys.*, 11, 3479-3494, 10.5194/acp-11-3479-2011, 2011.

876 Liu, X., and Wang, J.: How important is organic aerosol hygroscopicity to aerosol indirect

877 forcing?, *Environ. Res. Lett.*, 5, 044010, 10.1088/1748-9326/5/4/044010, 2010.

878 Louvaris, E. E., Florou, K., Karnezi, E., Papanastasiou, D. K., Gkatzelis, G. I., and Pandis, S.

879 N.: Volatility of source apportioned wintertime organic aerosol in the city of Athens, *Atmos.*

880 *Environ.*, 158, 138-147, <https://doi.org/10.1016/j.atmosenv.2017.03.042>, 2017.

881 Noziere, B.: Don't forget the surface, *Science*, 351, 1396-1397, 10.1126/science.aaf3253, 2016.

882 Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., and Kuang,

883 Y.: Variation of CCN activity during new particle formation events in the North China Plain, *Atmos.*

884 *Chem. Phys.*, 16, 8593-8607, 2016.

885 Massling, A., Stock, M., and Wiedensohler, A.: Diurnal, weekly, and seasonal variation of

886 hygroscopic properties of submicrometer urban aerosol particles, *Atmos. Environ.*, 39, 3911-3922,

887 10.1016/j.atmosenv.2005.03.020, 2005.

888 Massoli, P., Lambe, A., Ahern, A., Williams, L., Ehn, M., Mikkilä, J., Canagaratna, M., Brune,

889 W., Onasch, T., and Jayne, J.: Relationship between aerosol oxidation level and hygroscopic

890 properties of laboratory generated secondary organic aerosol (SOA) particles, *Geophys. Res. Lett.*,

891 37, 2010.

892 May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T., Collett Jr., J. L., Jimenez, J.

893 L., Kreidenweis, S. M., and Robinson, A. L.: Gas-particle partitioning of primary organic aerosol

894 emissions: 3. Biomass burning, *J. Geophys. Res. Atmos.*, 118, 11,327-311,338,

895 <https://doi.org/10.1002/jgrd.50828>, 2013.

896 Mei, F., Setyan, A., Zhang, Q., and Wang, J.: CCN activity of organic aerosols observed
897 downwind of urban emissions during CARES, *Atmos. Chem. Phys.*, 13, 12155-12169, 2013.

898 Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved cloud
899 condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong,
900 *Atmos. Chem. Phys.*, 14, 10267-10282, 10.5194/acp-14-10267-2014, 2014.

901 Mochida, M., Kuwata, M., Miyakawa, T., Takegawa, N., Kawamura, K., and Kondo, Y.:
902 Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in
903 Tokyo, *J. Geophys. Res.*, 111, D23204, 10.1029/2005jd006980, 2006.

904 Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L., Williams, L. R., Davidovits,
905 P., and Worsnop, D. R.: Soot Particle Aerosol Mass Spectrometer: Development, Validation, and
906 Initial Application, *Aerosol Sci. Tech.*, 46, 804-817, 10.1080/02786826.2012.663948, 2012.

907 Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari,
908 S., Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O' Dowd, C.: Surface tension
909 prevails over solute effect in organic-influenced cloud droplet activation, *Nature*, 546, 637-641,
910 10.1038/nature22806, 2017.

911 Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor model with
912 optimal utilization of error estimates of data values, *Environmetrics*, 5, 111-126,
913 10.1002/env.3170050203, 1994.

914 Paatero, P.: Least squares formulation of robust non-negative factor analysis, *Chemometr Intell
915 Lab*, 37, 23-35, 10.1016/S0169-7439(96)00044-5, 1997.

916 Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan, J. F., Hao, L.,
917 Paramonov, M., Hong, J., and Prisle, N. L.: Adsorptive uptake of water by semisolid secondary
918 organic aerosols, *Geophys. Res. Lett.*, 42, 3063-3068, 2015.

919 Park, S. H., Rogak, S. N., and Grieshop, A. P.: A Two-Dimensional Laminar Flow Model for
920 Thermenuders Applied to Vapor Pressure Measurements, *Aerosol Sci. Technol.*, 47, 283-293,
921 10.1080/02786826.2012.750711, 2013.

922 Petters, M., and Kreidenweis, S.: A single parameter representation of hygroscopic growth and
923 cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961-1971, 2007.

924 Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R.,

925 Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between
926 hygroscopic growth and activation for secondary organic aerosol – Part 2: Theoretical approaches,
927 *Atmos. Chem. Phys.*, 9, 3999-4009, 10.5194/acp-9-3999-2009, 2009.

928 Petters, M., and Kreidenweis, S.: A single parameter representation of hygroscopic growth and
929 cloud condensation nucleus activity—Part 3: Including surfactant partitioning, *Atmos. Chem. Phys.*,
930 13, 1081-1091, 2013.

931 Philippin, S., Wiedensohler, A., and Stratmann, F.: Measurements of non-volatile fractions of
932 pollution aerosols with an eight-tube volatility tandem differential mobility analyzer (VTDMA-8),
933 *J. Aerosol Sci.*, 35, 185-203, <http://dx.doi.org/10.1016/j.jaerosci.2003.07.004>, 2004.

934 Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prévôt, A. S. H., and
935 Chan, C. K.: The role of traffic emissions in particulate organics and nitrate at a downwind site in
936 the periphery of Guangzhou, China, *Atmos. Chem. Phys.*, 1-31, 2017.

937 Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge, D. G., Kirkevåg,
938 A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci, R.,
939 Petäjä, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S.,
940 Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A., Virtanen, A., and Riipinen,
941 I.: Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and
942 its importance for climate, *Geophys. Res. Lett.*, 44, 5167-5177, 10.1002/2017GL073056, 2017.

943 Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson, J. W., Geiger, F. M.,
944 Martin, S. T., and Bertram, A. K.: Observations and implications of liquid–liquid phase separation at high
945 relative humidities in secondary organic material produced by α -pinene ozonolysis without inorganic
946 salts, *Atmos. Chem. Phys.*, 16, 7969-7979, 10.5194/acp-16-7969-2016, 2016.

947 Riipinen, I., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Equilibration time scales of
948 organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics, *Atmos.*
949 *Environ.*, 44, 597-607, <https://doi.org/10.1016/j.atmosenv.2009.11.022>, 2010.

950 Rose, D., Gunthe, S., Mikhailov, E., Frank, G., Dusek, U., Andreae, M. O., and Pöschl, U.:
951 Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter
952 (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory
953 and experiment, *Atmospheric Chemistry and Physics*, 8, 1153-1179, 2008.

954 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M.
955 O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the
956 mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the
957 modeling of aerosol particle hygroscopicity and CCN activity, *Atmos. Chem. Phys.*, 10, 3365-3383,
958 10.5194/acp-10-3365-2010, 2010.

959 Ruehl, C. R. and Wilson, K. R.: Surface organic monolayers control the hygroscopic growth of
960 submicrometer particles at high relative humidity, *The Journal of Physical Chemistry A*, 118, 3952-3966,
961 2014.

962 Saha, P. K., Khlystov, A., Grieshop, A. P.: Determining aerosol volatility parameters using a
963 “Dual Thermodenuder” system: application to laboratory-generated organic aerosols, *Aerosol Sci.
964 Tech.*, 49, 620-632, 2015.

965 Saha, P. K., Khlystov, A., Yahya, K., Zhang, Y., Xu, L., Ng, N. L., Grieshop, A. P.: Quantifying
966 the volatility of organic aerosol in the southeastern US, *Atmos. Chem. Phys.*, 17, 501-520, 2017.

967 Saleh, R., Walker, J., and Khlystov, A.: Determination of saturation pressure and enthalpy of
968 vaporization of semi-volatile aerosols: The integrated volume method, *J. Aerosol Sci.*, 39, 876-887,
969 <https://doi.org/10.1016/j.jaerosci.2008.06.004>, 2008.

970 Schill, G. P. and Tolbert, M. A.: Heterogeneous ice nucleation on phase-separated organic-sulfate
971 particles: effect of liquid vs. glassy coatings, *Atmos. Chem. Phys.*, 13, 4681-4695, 10.5194/acp-13-4681-
972 2013, 2013.

973 Schill, G. P. and Tolbert, M. A.: Heterogeneous ice nucleation on phase-separated organic-sulfate
974 particles: effect of liquid vs. glassy coatings, *Atmos. Chem. Phys.*, 13, 4681-4695, 10.5194/acp-13-4681-
975 2013, 2013.

976 Seinfeld, J. H., and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution to
977 climate change*, John Wiley & Sons, 2016.

978 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang,
979 C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J.
980 H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A.,
981 Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol:
982 Implications for global climate forcing, *Rev. Geophys.*, 55, 509-559,

983 https://doi.org/10.1002/2016RG000540, 2017.

984 Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and
985 morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, *Atmos. Chem.*
986 *Phys.*, 12, 2691-2712, 10.5194/acp-12-2691-2012, 2012a.

987 Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation in
988 aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity, *Geophys.*
989 *Res. Lett.*, 39, https://doi.org/10.1029/2012GL052807, 2012b.

990 Stokes, R., and Robinson, R.: Interactions in aqueous nonelectrolyte solutions. I. Solute-
991 solvent equilibria, *J. Phys. Chem.*, 70, 2126-2131, 1966.

992 Stolzenburg, M. R., and McMurry, P. H.: Equations Governing Single and Tandem DMA
993 Configurations and a New Lognormal Approximation to the Transfer Function, *Aerosol Sci. Tech.*,
994 42, 421-432, 10.1080/02786820802157823, 2008.

995 Sun, Y. L., Zhang, Q., Schwab, J. J., Yang, T., Ng, N. L., and Demerjian, K. L.: Factor analysis
996 of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass
997 spectrometer measurements, *Atmos. Chem. Phys.*, 12, 8537-8551, 10.5194/acp-12-8537-2012,
998 2012.

999 Tan, H., Xu, H., Wan, Q., Li, F., Deng, X., Chan, P. W., Xia, D., and Yin, Y.: Design and
1000 Application of an Unattended Multifunctional H-TDMA System, *J. Atmos. Oceanic Tech.*, 30, 1136-
1001 1148, 10.1175/JTECH-D-12-00129.1, 2013a.

1002 Tan, H., Yin, Y., Gu, X., Li, F., Chan, P. W., Xu, H., Deng, X., and Wan, Q.: An observational
1003 study of the hygroscopic properties of aerosols over the Pearl River Delta region, *Atmos. Environ.*,
1004 77, 817-826, http://dx.doi.org/10.1016/j.atmosenv.2013.05.049, 2013b.

1005 Thalman, R., Sá, S. S. d., Palm, B. B., Barbosa, H. M., Pöhlker, M. L., Alexander, M. L., Brito,
1006 J., Carbone, S., Castillo, P., Day, D. A.: CCN activity and organic hygroscopicity of aerosols
1007 downwind of an urban region in central Amazonia: seasonal and diel variations and impact of
1008 anthropogenic emissions, *Atmos. Chem. Phys.*, 17, 11779-11801, 2017.

1009 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
1010 Interpretation of organic components from Positive Matrix Factorization of aerosol mass
1011 spectrometric data, *Atmos. Chem. Phys.*, 9, 2891-2918, 10.5194/acp-9-2891-2009, 2009.

1012 Volkamer, R., Jimenez, J. L., Martini, F. S., Dzepina, K., Qi, Z., Salcedo, D., Molina, L. T.,
1013 Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol formation from anthropogenic air
1014 pollution: Rapid and higher than expected, *Geophys. Res. Lett.*, 33, 254-269, 2006.

1015 Wang, D. S., and Hildebrandt Ruiz, L.: Chlorine-initiated oxidation of n-alkanes under high-
1016 NO_x conditions: insights into secondary organic aerosol composition and volatility using a
1017 FIGAERO–CIMS, *Atmos. Chem. Phys.*, 18, 15535-15553, 10.5194/acp-18-15535-2018, 2018.

1018 Wang, J., Lee, Y. N., Daum, P. H., Jayne, J., and Alexander, M. L.: Effects of aerosol organics
1019 on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect, *Atmos. Chem.*
1020 *Phys.*, 8, 6325-6339, 10.5194/acp-8-6325-2008, 2008.

1021 Wang, J., Cubison, M., Aiken, A., Jimenez, J., and Collins, D.: The importance of aerosol
1022 mixing state and size-resolved composition on CCN concentration and the variation of the
1023 importance with atmospheric aging of aerosols, *Atmos. Chem. Phys.*, 10, 7267-7283, 2010.

1024 Wex, H., Petters, M. D., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain,
1025 L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth
1026 and activation for secondary organic aerosol: Part 1 – Evidence from measurements, *Atmos. Chem. Phys.*,
1027 9, 3987-3997, 10.5194/acp-9-3987-2009, 2009.

1028 Wu, Z. J., Poulain, L., Henning, S., Dieckmann, K., Birmili, W., Merkel, M., van Pinxteren,
1029 D., Spindler, G., Müller, K., Stratmann, F., Herrmann, H., and Wiedensohler, A.: Relating particle
1030 hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign,
1031 *Atmos. Chem. Phys.*, 13, 7983-7996, 10.5194/acp-13-7983-2013, 2013.

1032 Xu, W., Chen, C., Qiu, Y., Xie, C., Chen, Y., Ma, N., Xu, W., Fu, P., Wang, Z., Pan, X., Zhu, J.,
1033 Ng, N. L., and Sun, Y.: Size-resolved characterization of organic aerosol in the North China Plain:
1034 new insights from high resolution spectral analysis, *Environ. Sci. Atmos.*, 1, 346-358,
1035 10.1039/D1EA00025J, 2021.

1036 Xu, W., Xie, C., Karnezi, E., Zhang, Q., Wang, J., Pandis, S. N., Ge, X., Zhang, J., An, J., Wang,
1037 Q., Zhao, J., Du, W., Qiu, Y., Zhou, W., He, Y., Li, Y., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and
1038 Sun, Y.: Summertime aerosol volatility measurements in Beijing, China, *Atmos. Chem. Phys.*, 19,
1039 10205-10216, 10.5194/acp-19-10205-2019, 2019.

1040 Yuan, L., Zhang, X., Feng, M., Liu, X., Che, Y., Xu, H., Schaefer, K., Wang, S., and Zhou, Y.:

1041 Size-resolved hygroscopic behaviour and mixing state of submicron aerosols in a megacity of the
1042 Sichuan Basin during pollution and fireworks episodes, *Atmos. Environ.*, 226, 117393,
1043 <https://doi.org/10.1016/j.atmosenv.2020.117393>, 2020.

1044 Zdanovskii, A.: NOVYI METOD RASCHETA RASTVORIMOSTEI ELEKTROLITOV V
1045 MNOGOKOMPONENTNYKH SISTEMAKH. 1, *Zhurnal Fizicheskoi Khimii*, 22, 1478-1485,
1046 1948.

1047 Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Time-and size-
1048 resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol
1049 sources and processes, *J. Geophys. Res. Atmos.*, 1984–2012, 110, 2005a.

1050 Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and
1051 oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols,
1052 *Atmos. Chem. Phys.*, 5, 3289-3311, 10.5194/acp-5-3289-2005, 2005b.

1053 Zhang, Y., Tao, J., Ma, N., Kuang, Y., Wang, Z., Cheng, P., Xu, W., Yang, W., Zhang, S., Xiong,
1054 C., Dong, W., Xie, L., Sun, Y., Fu, P., Zhou, G., Cheng, Y., and Su, H.: Predicting cloud condensation
1055 nuclei number concentration based on conventional measurements of aerosol properties in the North
1056 China Plain, *Sci. Tot. Environ.*, 719, 137473, <https://doi.org/10.1016/j.scitotenv.2020.137473>, 2020.

1057 Zhao, D. F., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Kiendler-Scharr, A., Tillmann,
1058 R., Wahner, A., Flores, J. M., Rudich, Y., Watne, Å. K., Hallquist, M., Wildt, J., and Mentel, T. F.:
1059 Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud
1060 condensation nuclei, *Geophys. Res. Lett.*, 42, 10,920-910,928,
1061 <https://doi.org/10.1002/2015GL066497>, 2015.

1062 Zhao, D. F., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Fuchs, H., Kiendler-Scharr, A.,
1063 Tillmann, R., Wahner, A., Watne, Å. K., Hallquist, M., Flores, J. M., Rudich, Y., Kristensen, K.,
1064 Hansen, A. M. K., Glasius, M., Kourtchev, I., Kalberer, M., and Mentel, T. F.: Cloud condensation
1065 nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic
1066 secondary organic aerosol (SOA), *Atmos. Chem. Phys.*, 16, 1105-1121, 10.5194/acp-16-1105-2016,
1067 2016.

1068

1069 Table 1. The density and the κ value of the related species used in this study.

Species	Density (kg m ⁻³)	κ
NH_4NO_3	1720 ^a	0.58 ^b
NH_4HSO_4	1780 ^a	0.56 ^b
H_2SO_4	1830 ^a	0.90 ^b
$(\text{NH}_4)_2\text{SO}_4$	1769 ^a	0.48 ^b
Organics	1400 ^a	0.10 ^b
BC	1770 ^c	0 ^d

1070 ^a From Gysel et al. (2007); ^b From (Cai et al., 2018); ^c From Deng et al. (2019); ^d Assumed to be 0.

1071

1072 Table 2. Thermophysical properties of each component used in the multi-component evaporation
 1073 dynamics model.

Parameters	ELVOA	LVOA	SVOA	Ammonium		
				Nitrate	Sulfate	Carbon
$C_i^*(T_{ref})$ ($\mu\text{g m}^{-3}$) ^a	10^{-5}	10^{-2}	10	76	2×10^{-3}	10^{-30}
D_i ($\text{m}^2 \text{s}^{-1}$) ^b	5×10^{-6}					
$\sigma_{s/a}$ (N m^{-1}) ^c	0.05	0.05	0.05	0.05	0.05	0.05
M_i (kg mol^{-1})	0.2	0.2	0.2	0.08	0.132	0.28
ρ_i (kg m^{-3})	1400	1400	1400	1720	1769	1770
$\Delta H_{vap,i}$ (kJ mol^{-1}) ^d	80	80	80	152	94	100
α ^e	0.09	0.09	0.09	0.09	0.09	0.09

1074 ^a From Hong et al. (2017); ^b From Riipinen et al. (2010); ^c From Riipinen et al. (2010); ^d The ΔH_{vap}
 1075 values of organics are obtained from the sensitivity test shown in Fig. S4 and the values of inorganic
 1076 species are from Hong et al. (2017); ^e Obtained from the sensitivity test shown in Fig. S4.

1077

1078 Table 3. The average and standard deviation values (mean \pm std) of N_{CCN} , AR, D_{50} , and κ_{CCN} at 0.1%,
 1079 0.2%, 0.4%, 0.7%, 0.9% and 1.0% SS during the campaign.

SS	0.1%	0.2%	0.4%	0.7%	0.9%	1.0%
N_{CCN}	2507 ± 1187	4322 ± 1981	5843 ± 2461	6834 ± 2921	7497 ± 3210	7862 ± 3352
(# cm ⁻³)						
AR	0.20 ± 0.09	0.34 ± 0.13	0.45 ± 0.16	0.52 ± 0.17	0.57 ± 0.17	0.60 ± 0.17
D_{50} (nm)	$145.55 \pm 11.$	92.83 ± 8.80	66.79 ± 6.33	52.56 ± 5.46	45.38 ± 4.82	42.26 ± 4.45
26						
κ_{CCN}	0.48 ± 0.13	0.47 ± 0.15	0.31 ± 0.10	0.22 ± 0.09	0.20 ± 0.08	0.20 ± 0.08

1080

1081 FIGURE CAPTIONS

1082 Figure 1. The temporal profile of the measured variables during the campaign. (a) particle number
1083 size distribution; (b) PM₁ chemical composition measured by the SP-AMS along with mass
1084 concentration of PM_{2.5}; (c) mass fraction of each species; (d) wind speed and direction. The color
1085 code in (d) represents the wind direction.

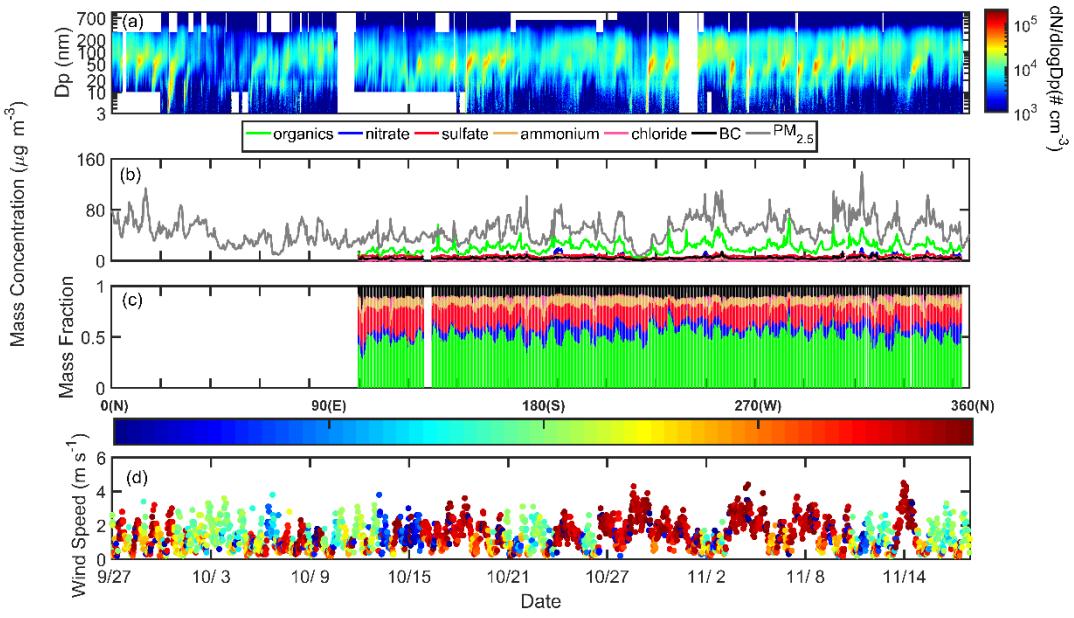
1086 Figure 2. The temporal profile of GF-PDF at the measured diameters (30, 50, 80, 100, 150 and 200
1087 nm). The color code denotes the probability density and the red solid line represents the mean GF
1088 (GF_{mean}).

1089 Figure 3. The average mass fraction distribution of SVOA, LVOA and ELVOA at the measured
1090 diameters (30, 50, 80, 100, 150 and 200 nm), and average size-resolved hygroscopicity of organic
1091 aerosol (κ_{OA}) with the upper and lower error bars (in red).

1092 Figure 4. The campaign average diurnal variation of mass fraction of organics and f44 in bulk
1093 PM₁ (a), the κ values at 200 nm obtained by HTDMA (κ_{HTDMA}) and AMS (κ_{AMS}) measurements
1094 (b), the PNSD (c) and mass distribution of organics (d). The shaded area represents standard
1095 deviation.

1096 Figure 5. The diurnal variation (displayed in boxplot) mass concentration of the deconvolved OA
1097 factors from PMF analysis of AMS data, including more oxygenated OA (MOOA), less
1098 oxygenated OA (LOOA), aged biomass burning OA (aBBOA), hydrocarbon-like OA (HOA),
1099 biomass burning OA (BBOA), and nighttime OA (night-OA).

1100 Figure 6. The average (solid line) and standard deviation (shaded area) diurnal variation of κ_{OA} at
1101 different particle diameters.

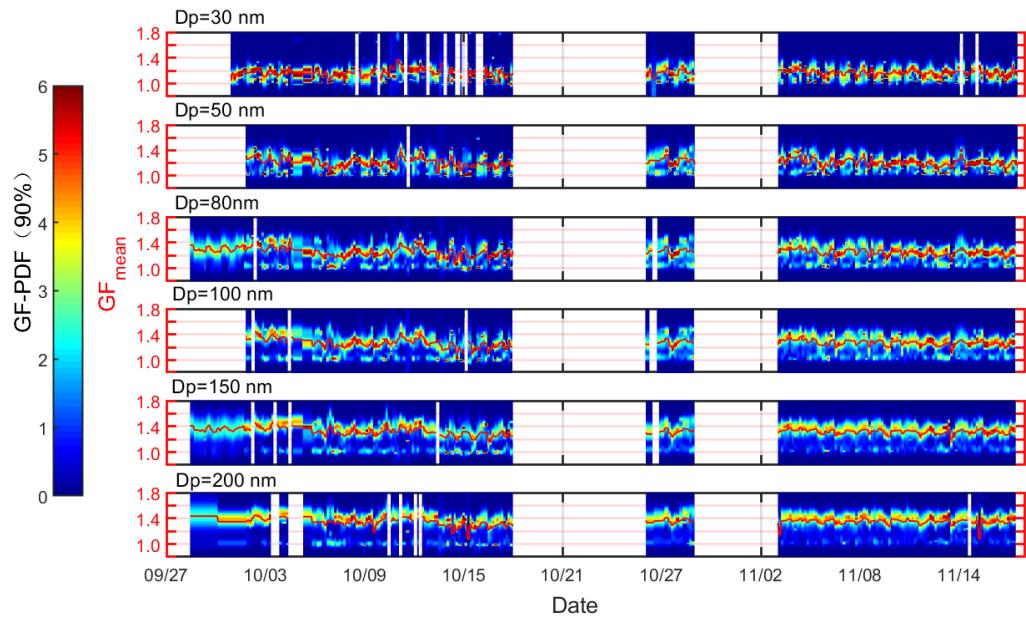

1102 Figure 7. The size-resolved volatility distribution during daytime (8:00-16:00 LT) and nighttime

1103 (20:00 to 4:00 LT) based on the median time of each cycle owing to the limited time resolution.

1104 Figure 8. The average diurnal variation of $\delta_{N_{CCN}}$ at 0.1%, 0.2%, 0.4% and 0.7% SS based on fixed

1105 κ_{OA} (a), SR κ_{OA} (b) and SR diurnal κ_{OA} (c).

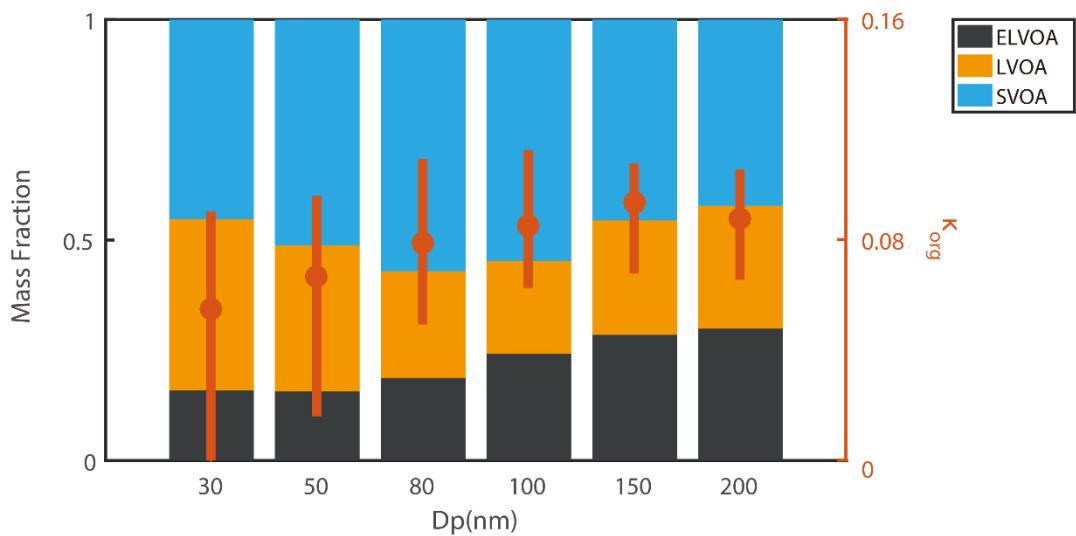
1106


1107

1108

1109

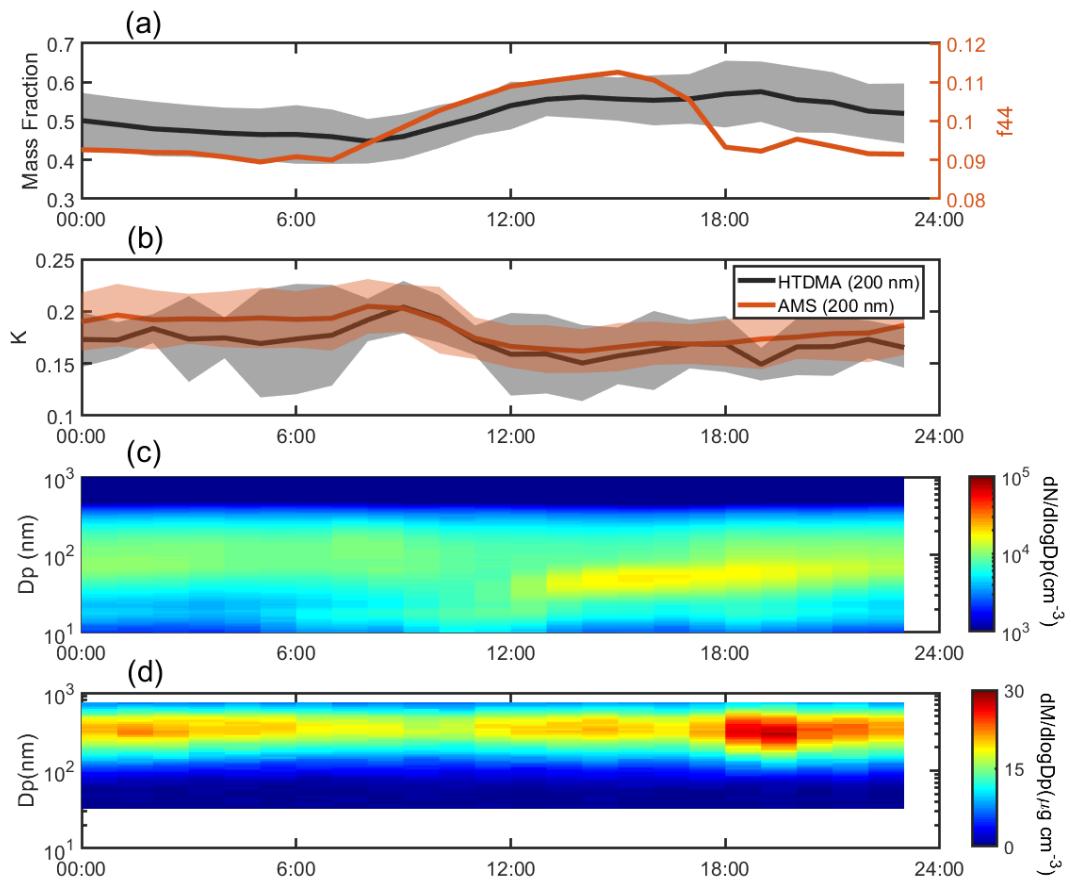
1110 Fig. 1.


1111

1112

Fig. 2.

1113

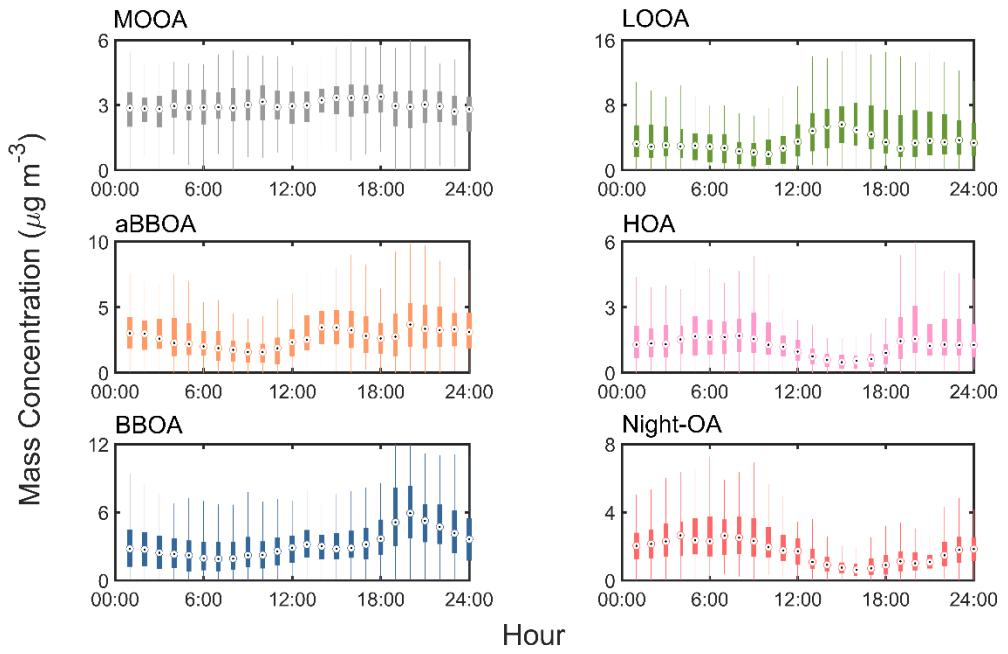

1115

1116

1117

Fig. 3.

1118

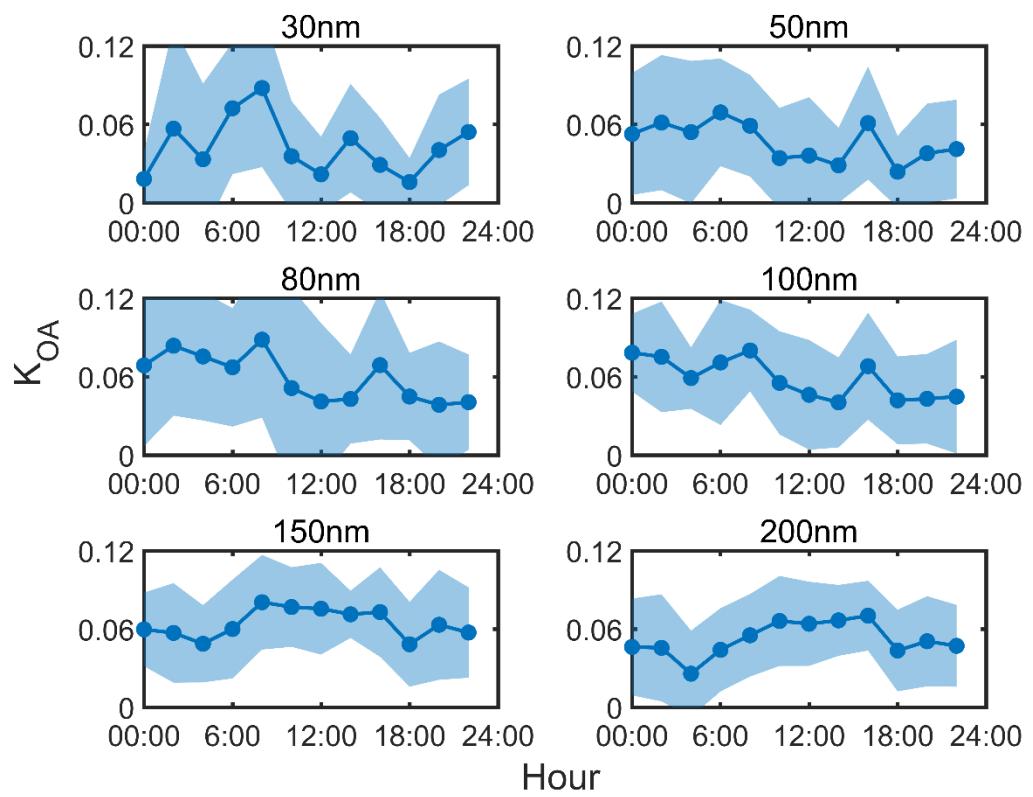


1119

1120

1121 Fig. 4.

1122

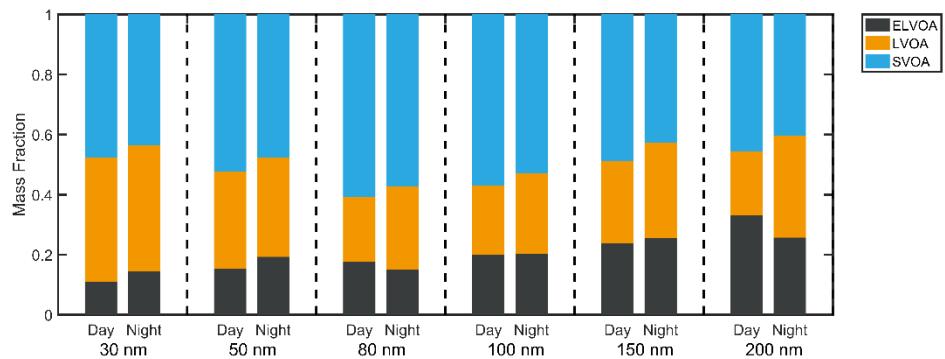


1123

1124

1125

Fig. 5.

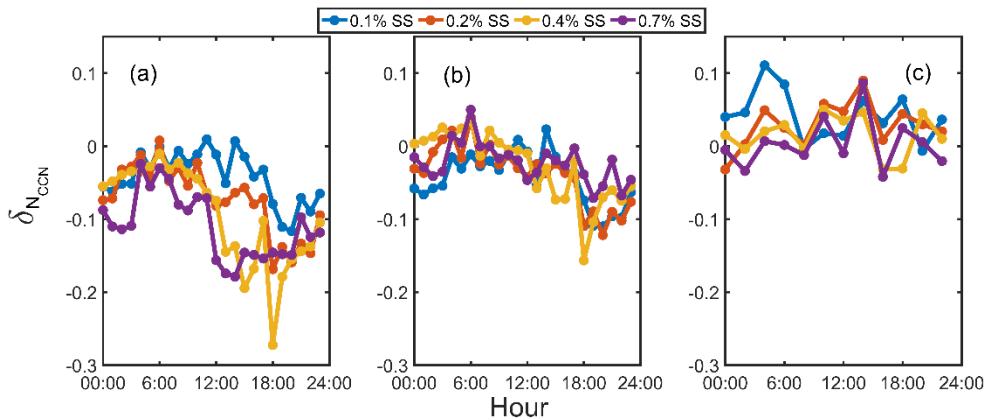


1126

1127

1128

Fig. 6.


1129

1130

1131 Fig. 7.

1132

1133

1134

1135

1136

Fig. 8.