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Abstract. The importance of dust heterogeneous chemistry in the removal of atmospheric SO2 and formation of sulfate 

aerosols is not adequately understood. In this study, the Fe, Ti, Al-bearing components, Na+, Cl-, K+, and Ca2+ of the dust 

surface were discovered to be closely associated with the heterogeneous formation of sulfate. Regression models were then 

developed to make a reliable prediction for the heterogeneous reactivity based on the particle chemical compositions. 

Regression models were then developed to accurately predict the heterogeneous reactivity by the particle chemical 15 

compositions. Further, the recognized gas-phase, aqueous-phase and heterogeneous oxidation routes were quantitatively 

assessed and kinetically compared by combining the laboratory work with modeling study. In the presence of 55 μg m-3 

airborne dust, heterogeneous chemistry accounts for approximately 28.6% of the secondary sulfate aerosols during nighttime, 

while the proportion decreases to 13.1% in the presence of solar irradiation. On the dust surface, heterogeneous drivers (e.g. 

transition metal constituents, water-soluble ions) are more efficient than surface adsorbed oxidants (e.g. H2O2, NO2, O3) in the 20 

conversion of SO2, particularly during nighttime. Dust heterogeneous chemistry offers an opportunity to explain the missing 

sulfate source during severe haze pollution events, and its contribution proportion in the complex atmospheric environments 

could be even higher than the current calculation results. Overall, the dust surface drivers are responsible for the significant 

formation of sulfate aerosols and have profound impacts on the atmospheric sulfur cycling.     
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1 Introduction 25 

Haze development in China is characterized by the rapid sulfate formation (Wang et al., 2016). As an important component of 

atmospheric particulate matters, sulfate exerts profound impacts on the Earth’s climate system, air quality, and public health 

(Seinfeld and Pandis, 2016; Wang et al., 2021a). The rapid formation of sulfate was proven as largely responsible for London 

Fog and Beijing Haze (Wang et al., 2016; Cheng et al., 2016). Secondary sulfate aerosols originate predominately from the 

oxidation of sulfur dioxide (SO2) obeying the laws of gas-phase chemistry in gaseous environments, aqueous-phase chemistry 30 

in aerosol liquid media, and heterogeneous chemistry on aerosol surfaces (Ravishankara, 1997; Mauldin III et al., 2012; Su et 

al., 2020; Liu et al., 2021a). In recent years, the newly discovered sulfate formation pathways were kinetically compared with 

the documented ones to evaluate the relative importance of them (Cheng et al., 2016; Gen et al., 2019; Liu et al., 2020; Wang 

et al., 2020a). Additionally, the oxidation channels in mainstream were compared by aerosol observation or modeling 

investigations (Berglen et al., 2004; Sarwar et al., 2013; He et al., 2018; Ye et al., 2018; Fan et al., 2020; Tao et al., 2020; 35 

Zheng et al., 2020; Song et al., 2021; Tilgner et al., 2021; Liu et al., 2021b; Wang et al., 2022a). These studies emphasized the 

importance of the aimed liquid reaction or compared the sulfate contributions of diverse gas- and aqueous-phase pathways. 

Nevertheless, heterogeneous reaction was scarcely involved in the relevant discussions, thereby hindering the deeper 

understanding of the atmospheric gas-solid interactions.  

Heterogeneous reaction alters the concentrations of gas-phase SO2 and particle-phase sulfate, and its atmospheric influences 40 

were considered by observation and modeling works (Fairlie et al., 2010; Alexander et al., 2012; Chen et al., 2017; Wang et 

al., 2021b). As summarized by Table S1, when simulating the sulfate burst events, researchers observed the positive feedbacks 

after implementing heterogeneous chemistry into the WRF-Chem (Li et al., 2017), GEOS-Chem (Shao et al., 2019), CAMx 

(Huang et al., 2019) and CMAQ (Zhang et al., 2019a) models. However, thesethe improved models highlighted the 

heterogeneous chemistry motivated by the surface adsorbed oxidants rather than the heterogeneous drivers of aerosol surface. 45 

To address the knowledge gap, tThe revised GEOS-Chem (Wang et al., 2014) and WRF-CMAQ (Zheng et al., 2015) models 

considered the heterogeneous oxidation driven by aerosol surfaces, and successfully reproduced the rapid sulfate formation. 

Xue et al. (2016) moved forward to develop an observation-based model and found that heterogeneous chemistry contributed 

up to one third of the secondary sulfate in a typical haze-fog event. However, the “aerosol surface” mentioned in the previous 

works was not distinguished by its physical or chemical properties (Wang et al., 2014; Zheng et al., 2015; Xue et al., 2016), 50 

thereby making it difficult to compare the atmospheric importance of the diverse airborne surfaces. However, the “aerosol 

surface” mentioned in the previous works was not distinguished by its property. As discussed above, it is of great importance 

to investigate the heterogeneous drivers of certainone selected aerosol surface, and further evaluate the atmospheric 

significance of the heterogeneous chemistry.   

The resurgence of sandstorms in North China makes the air pollution situation more complex than ever before. The 55 

concentration of PM10 (particulate matter with an aerodynamic diameter of less than ten micrometers) in Beijing reached up 
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to 3600 μg m-3, largely beyond the standards of World Health Organization and Chinese government (Li et al., 2021). As the 

most abundant primary aerosol in the troposphere (Textor et al., 2006; Tang et al., 2016), dust particles could transport more 

than one full circuit around the globe within ~ 2 weeks (Uno et al., 2009) and concurrently participate into an array of 

atmospheric reactions. Heterogeneous reactions over dust surface consume and produce various trace gases, thereby affecting 60 

the dust property and tropospheric oxidation capacity (Tang et al., 2016). One of the most extensive concerns is that the 

numerous surface sites of windblown dust provide opportunities for a variety of atmospheric reactions to occur, e.g. oxidation 

of SO2 and formation of sulfate (Usher et al., 2003). In the past decades, plenty of laboratory works have been performed to 

explore the heterogeneous behaviors of SO2 on dust surfaces.  

When discussing the heterogeneous chemistry on dust proxies, environmental factors including humidity, temperature, 65 

irradiance were frequently concerned. Adsorbed water accelerates the hydration of SO2 but also competes with SO2 for surface 

sites (Rubasinghege and Grassian, 2013). The exothermic adsorption of SO2 results in the negative temperature dependence 

(Clegg and Abbatt, 2001a), except for the positive effects observed below 250K (Wu et al., 2011) or during the initial reaction 

stage (Wang et al., 2018a). Light irradiation normally accelerates the transformation of (bi)sulfites to (bi)sulfates (Li et al., 

2010; Nanayakkara et al., 2012; Han et al., 2021), while iron oxides may undergo photoreactive dissolution and reflect negative 70 

light effect (Fu et al., 2009). The reactivity can be enhanced by H2O2 (Huang et al., 2016), or O3 (Li et al., 2006; Li et al., 2007; 

Zhang et al., 2018), or NOx (Ma et al., 2008; Liu et al., 2012; He et al., 2014; Yu et al., 2018; Zhao et al., 2018; Yang et al., 

2018a; Wang et al., 2020b), or NH3 (Yang et al., 2016; Yang et al., 2018b; Yang et al., 2019), or Cl2 (Huang et al., 2017). By 

contrast, organic compounds, like CH3CHO (Zhao et al., 2015), HCOOH (Wu et al., 2013), CH3COOH (Yang et al., 2020; 

Wang et al., 2022b) and C3H6 (Chu et al., 2019), were found to suppress the interactions due to the accumulation or production 75 

of particle-phase organic acids. In terms of particle property, size (Baltrusaitis et al., 2010; Zhang et al., 2016), morphology 

(Li et al., 2019) and crystal structure (Yang et al., 2017) exhibit varied impacts. Among the common mineral constituents, 

Fe2O3 is more efficient than Al2O3 and SiO2 (Chughtai et al., 1993; Zhang et al., 2006; He et al., 2014). Moreover, the addition 

of moderate nitrate (Kong et al., 2014; Du et al., 2019), or surfactant (Zhanzakova et al., 2019), or Al2O3 (Wang et al., 2018b) 

into the dust community could favor the heterogeneous uptake of SO2. Relative to the environmental factors, the heterogeneous 80 

effects relevant to particle property are still under debate.   

The usage of simple mineral oxide as a substitution for natural dust may be problematic as such approach could undermine the 

atmospheric importance of more complex mineralogy. Authentic dusts were utilized in laboratory works (Table S2). Some 

studies concerned single samples like Saharan dust (Ullerstam et al., 2002; Ullerstam et al., 2003; Adams et al., 2005; Harris 

et al., 2012), Arizona test dust (Park and Jang, 2016; Zhang et al., 2019a; Zhang et al., 2019b), China loess (Usher et al., 2002) 85 

and Asian dust (Ma et al., 2012). The comparison of diverse samples has been attracting increasing attention. Zhou et al. (2014) 

observed the positive temperature effect on Xinjiang sierozem, in contrast to the negative temperature dependence for Inner 

Mongolia desert dust. Huang et al. (2015) discovered the accelerated oxidation of SO2 by H2O2, and attributed the different 

moisture effects to the dusts’ varying components. Maters et al. (2017) explored the heterogeneous uptake on volcanic ash and 

glass samples, and related the reactivity differences to the varying abundances of surface basic and reducing sites. Park et al. 90 
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(2017) compared the heterogeneous reactions on Gobi desert dust and Arizona test dust, and linked the sulfate formation to 

the quantity of semi-conductive metals. Wang et al. (2019) discovered the enhanced uptake of SO2 on clay minerals after the 

simulated cloud processing, and explained this evolution by the modification of iron speciation. Urupina et al. (2019) discussed 

the kinetics of diverse volcanic dusts, and further experimentally proved that neither one selected pristine oxide nor a mixture 

of them can adequately typify the behavior of natural dust (Urupina et al., 2021). Recently, based on the measurement method 95 

for sulfite and sulfate (Urupina et al., 2020), they determined the associations between sulfate production and dust chemical 

properties like (Fe+Al)/Si and Na abundance (Urupina et al., 2022). The aforementioned works broaden the horizons of the 

heterogeneous drivers on dust surface. Up to now, the dominate dust surface drivers remain controversial due to the limited 

statistical linkages between the chemical composition of dust and the production rate of sulfate. 

While the atmospheric relevance of the oxidation of SO2 on dust has been widely recognized (Wu et al., 2020; Xu et al., 2020), 100 

the contribution of dust heterogeneous chemistry to secondary sulfate aerosols has not been quantitatively determined. By 

means of the improved WRF-CMAQ model, Wang et al. (2012) attributed a 27% decrement of SO2 concentration and a 12% 

increment of sulfate concentration to the heterogeneous chemistry during an Asian dust storm. Moreover, Tian et al. (2021) 

recently simulated the heterogeneous formation of dust sulfate by the revised GEOS-Chem model and found that, during the 

dust episodes in North China, up to 30% of the secondary sulfate resulted from the heterogeneous chemistry on dust surface. 105 

However, the photocatalytic reactivity of dust was not considered by the advanced models. Yu et al. (2017) developed the 

atmospheric mineral aerosol reaction (AMAR) model based on the laboratory works, and suggested that the heterogeneous 

photocatalysis of mineral dust surface contributed more than half of the secondary sulfate. However, the heterogeneous 

reactivity was measured by quantifying all of the adsorbed SO2 rather than calculating the yield of particle-phase sulfate. 

Moreover, limited gas- and aqueous-phase pathways were included in these models, and the heterogeneous reactivities of 110 

surface adsorbed oxidants and dust surface drivers have not been distinguished yet. Therefore, it is highly derisible to 

comprehensively compare the dust heterogeneous chemistry with other documented sulfate formation pathways.  

Hereby, upon understanding the driving factors and driving force of the airborne dust surface, this work compared dust 

heterogeneous chemistry with gas- and aqueous-phase chemistries with respect to the formation rate of sulfate and atmospheric 

lifetime of SO2. In order to characterize the sensitivity of heterogeneous reaction to dust loading, the scenarios with different 115 

dust concentrations were also considered. The joint influences of ionic strength and aerosol liquid water content on the 

aqueous-phase oxidation of SO2 were further discussed to prove the significance of heterogeneous kinetics under diverse 

atmospheric conditions. The recently reported interfacial oxidations were additionally compared with the heterogeneous 

chemistry to emphasize the atmospheric relevance of dust surface drivers. This study attempted to verify the significant 

formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface.   120 
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2 Methods 

2.1 Technique route 

This study attempted to investigate whether the heterogeneous oxidation of SO2 on dust surface, particularly that induced by 

the dust surface drivers, makes great impacts on the loss of gaseous SO2 and formation of sulfate aerosols (Text S1, Fig. S1). 

The gas- and aqueous-phase pathways were assessed by the documented methodologies and parameterizations. The gas- and 125 

aqueous-phase pathways were assessed by the documented methodologies and parameterizations (Cheng et al., 2016; Seinfeld 

and Pandis, 2016; Shao et al., 2019; Song et al., 2021), as briefly introduced by Sect. 2.2 (more details in Supporting 

Information). The heterogeneous conversion of SO2 comprises dust-mediated and dust-driven modes, emphasizing the 

oxidants co-adsorbed with SO2 and the drivers of dust surface, respectively. In the dust-mediated mode, dust surface functions 

as a reaction medium supporting the interactions between adsorbed oxidants and SO2. In the dust-driven mode, the oxidation 130 

of adsorbed SO2 is initiated by the active components of dust surface. The former mode was assessed by the particle properties 

based on the reported methodology, while the later mode was quantitatively characterized by the laboratory works.  

2.2 Gas- and aqueous-phase chemistries 

The gas-phase oxidation of SO2 is initiated by hydroxyl radical (OH), stabilized Criegee intermediates (CIs) and nitrate radical 

(NO3). The former two oxidants promote the sulfate formation during daytime, while the latter one works mainly during 135 

nighttime. More details can be found in Text S2.   

The aqueous-phase sulfate formation is pH-dependent and can be quantified based on the published documents and the 

references cited therein (Cheng et al., 2016; Su et al., 2020; Liu et al., 2021a). Herein, aqueous-phase chemistry refers to the 

liquid SO2 conversion accelerated by the transition-metal ion-catalyzed oxygen (TMI-O2)oxygen (O2) [catalyzed by transition 

metal ions (TMIs)], ozone (O3), hydrogen peroxide (H2O2), nitrogen oxide (NO2), methyl hydroperoxide (CH3OOH), 140 

peroxyacetic acid (CH3COOOH), hypochlorous acid (HOCl), hypobromous acid (HOBr), dissolved nitrous acid (HONO), as 

well as the photosensitization and nitrate photolysis only considered for daytime. More details can be found in Text S3 and 

Tables S3-S4. 

The oxidant concentration data were derived from the atmospheric observation campaigns performed in Beijing, North China. 

The measurements in warm seasons were considered in priority to correspond the experimental temperature of this study. 145 

Considering the relatively high irradiance used in the laboratory experiments, the oxidant parameters for daytime discussion 

were selected from the observations performed at noon time. The influences of dust loading on the oxidant concentrations, 

nitrate photolysis kinetics and TMI abundances were considered to reflect the linkages between different reactions. More 

details can be found in Text S4 and Table S5.  

2.3 Heterogeneous chemistry-particle characterizations 150 
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Five airborne clay minerals, including Nontronite (NAu), Chlorite (CCa), Montmorillonite (SWy), Kaolin (KGa) and Illite 

(IMt), were obtained from the Source Clay Minerals Repository (Purdue University, West Lafayette, Indiana, USA). The 

purchased clays were sent for the following measurements.  

The clay minerals were analyzed by X-ray fluorescence spectrometer (Axios Advanced, PANalytical, Netherlands) for element 

distributions (Table S6). The Brunauer-Emmett-Teller (BET) specific surface areas (SBET) of NAu, CCa, SWy, KGa and IMt 155 

were measured by a Quantachrome Nova 1200 BET apparatus to be 19.76, 5.67, 22.64, 18.77 and 20.05 m2 g-1, respectively. 

Particles were suspended in Milli-Q water (18.2 MΩ.cm at 25 ℃) before the size measurement (ViewSizerTM 3000, MANTA 

Instruments, USA). The particle diameters range mostly from 50 to 1000 nm and are averaged to be 399 nm for NAu, 272 nm 

for CCa, 438 nm for SWy, 396 nm for KGa, and 366 nm for IMt (Fig. S2).  

Particles were ultrasonically extracted in Milli-Q water, followed by the filtration through a polytetrafluoroethylene membrane 160 

filter. The obtained solution was analyzed by an ion chromatography (883 Basic, Metrohm, Switzerland) for the concentrations 

of anions (HCOO-, Cl-, NO3
-, SO4

2-) and cations (Na+. NH4
+, K+, Mg2+, Ca2+) (Fig. S3) by the reported methods (Wang et al., 

2020c). The water-soluble ions account for 4.6‰, 0.1‰, 8.5‰, 0.3‰ and 0.8‰ of the mass contents of NAu, CCa, SWy, KGa 

and IMt, respectively.  

A mixture, denoted as natural dust hereafter, was prepared by mechanically mixing the studied clay minerals by their 165 

atmospheric abundances. Because the clays in Kaolinite group (NAu, KGa), Montmorillonite group (SWy), Illite group (IMt) 

and Chlorite group (CCa) occupy respectively 6.6%, 4.0%, 53.8% and 4.3% mass fractions of the airborne dust (Usher et al., 

2003), the prepared natural dust sample comprises 8.8 wt% of NAu, 8.8 wt% of KGa, 5.3 wt% of CCa, 71.4 wt% of IMt, and 

5.7 wt% of CCa. 

2.4 Heterogeneous chemistry-DRIFTS measurements 170 

The in-situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) spectra were collected using a FTIR 

spectrometer (Tracer-100, Shimadzu, Japan) equipped with a mercury-cadmium-telluride detector cooled by liquid nitrogen. 

A gas supply system was constructed by linking the experimental units through Teflon tubes. Mass flow controllers (D07-19, 

Severstar, China) adjusted the reactant gases to the expected reactant concentration and relative humidity (RH). Gas cylinders: 

high-pure air (79% N2 and 21% O2), SO2 (2.46 × 1015 molecules cm-3 diluted by N2).  175 

Before each experiment, a ceramic cup holding particles was placed into the reaction chamber. The particles were treated in a 

stream of dry air (300 ml min-1) for 30 min to minimize the surface water and impurities (Wang et al., 2018a, 2018c). After 

the pretreatment, the sample was exposed to humidified air (RH = 50%) to reach moisture saturation, followed by the collection 

of background spectrum and then the introduction of reactant gas for 240 min. The SO2 concentration was 3.69 × 1013 

molecules cm-3 in a total flow rate of 100 ml min-1.  180 

The simulated solar irradiation with an actinic flux of 6.51 × 1015 photons cm-2 s-1 was provided by an Xenon lamp (TCX-250, 

Ceaulight, China). The reaction temperature (296.8K) was controlled by a heater attached to a recirculating cooling water 

system and determined by a calibration curve introduced previously (Wang et al., 2018a). The gas- and aqueous-phase 
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parameters were correlated by the experimental temperature. All of the exposures were performed in triplicates. The 

experimental setups are displayed by Fig. S4, and the recorded spectra are shown in Fig. S5 and S6.  185 

2.5 Heterogeneous chemistry-acidity and kinetics 

The recorded spectra were analyzed by referring to the previous literatures and the references cited therein (Persson and Vgren, 

1996; Peak et al., 1999; Goodman et al., 2001; Zhang et al., 2006; Wu et al., 2011; Liu et al., 2012; Nanayakkara et al., 2012; 

Nanayakkara et al., 2014; Huang et al., 2016; Ma et al., 2017; Yang et al., 2017). Totally six sulfur-containing species can be 

identified: hydrated SO2 (SO2·H2O), bisulfite, sulfite, solvated sulfate, coordinated sulfate, bisulfate, and the assignments are 190 

summarized by Table S7. The overlapping bands were further analyzed by Gaussian/Lorentzian deconvolution to obtain the 

product distributions (Fig. S7). The consistent deconvolution procedure was performed for the infrared spectra derived from 

the repeated experiments. 

Because part of the measured ions exist in the surface coordinated forms or crystalline states, the particle acidity (pH) may not 

be accurately characterized by the proxy methods (Hennigan et al., 2015). Herein, the ionization equilibrium of dissolved SO2 195 

in the water layers of particle surface is considered to be associated with particle acidity. As reported, the dissolved SO2 would 

transform from SO2·H2O to HSO3
-, and then to SO3

2- as the medium evolves from the extremely acidic to the nearly alkaline 

(Haynes, 2014; Zhang et al., 2015). The relative abundance of SO2·H2O and SO3
2-, as assumed to be equivalent to the relative 

integral area of their characteristic peaks, is utilized to calculate the particle acidity (more details in Text S3-2 of Supporting 

Information). The relative abundance of HSO4
- and SO4

2-, which can be used to calculate the aerosol acidity (Rindelaub et al., 200 

2016; Ault, 2020), was not considered by the present study because the characteristic signals of bisulfate cannot be observed 

in some of the recorded infrared spectra.  

Heterogeneous kinetics can be assessed by the reactive uptake coefficient (γ) by assuming a first-order loss of SO2. The γ for 

dust-driven heterogeneous chemistry can be calculated by:   

γ =
d[SO4

2−]/dt

Z
                                                                                                                                                                                               (1) 205 

Z =
1

4
 × AS  ×  [SO2]  ×  vSO2

                                                                                                                                                                      (2) 

vSO2
= √

8RT

πMSO2

                                                                                                                                                                                              (3) 

Where d[SO4
2−]/dt is the rate of sulfate production on dust surface (ion s-1), As is the reactive surface area (m2), [SO2] is the 

experimental concentration of SO2 (molecules m-3), vSO2
 is the molecular velocity of SO2 (m s-1), R is gas constant (J mol-1 

K-1), T is the experimental temperature (K), MSO2
 is the molecular weight of SO2 (kg mol-1). Because the infrared intensity is 210 

proportional to the amount of surface product, [SO4
2−] can be translated by the integral area of the sulfate characteristic peaks:  

[SO4
2−] = f × (integral area)                                                                                                                                                                      (4) 

Where f is the conversion factor and represents the number of SO4
2- corresponding to per unit integral area. The sulfate 



8 
 

production rate of dust surface can be translated by the calibration curves by mixing weighed Na2SO4 with the target particle 

sample to a set of concentrations (Martin et al., 1987; Li et al., 2006; Wu et al., 2011; Wang et al., 2020d). The conversion 215 

factors are calculated to be 1.32 × 1018, 4.62 × 1017, 6.97 × 1017, 8.20 × 1017, 9.44 × 1017 , and 9.25 × 1017 for NAu, CCa, SWy, 

KGa, IMt, and natural dust, respectively. Because the sulfate standard item was thoroughly mixed with the particles, SBET was 

used to calculate the reactive uptake coefficient.  

All of the particle samples except SWy presented steady sulfate production potentials over the entire experiment, while the 

products on SWy increased by reaction time in the beginning and then gradually remained unchanged (Fig. S8). Accordingly, 220 

the process on SWy was assessed by the experimental data of the first 30 min of reaction, and the kinetics of other samples 

were calculated by the spectra recorded throughout the experiment.   

Besides the dust surface drivers, the heterogeneous conversion of SO2 can be additionally initiated by the gaseous oxidants 

(O3, H2O2, NO2, HOCl, HOBr, CH3OOH, CH3COOOH, HONO) co-adsorbed with SO2. Considering that the adsorption of 

oxidant onto dust surfaces would produce gas- and particle-phase species (Usher et al., 2003; Tang et al., 2017), the dust-225 

mediated heterogeneous oxidation can be assumed to primarily proceed in the surface water layers. Such assumption can be 

experimentally proved as the acceleration of SO2 oxidation induced by the co-oxidant (e.g. H2O2, NO2, O3) becomes more 

significant under higher humidity (Huang et al., 2015; Park et al., 2017; Zhang et al., 2018). Based on the previous studies 

(Hanson et al., 1994; Jacob, 2000; Shao et al., 2019), the γ for dust-mediated heterogeneous chemistry can be calculated by:  

γ = [
1

α
+

v

4H∗RT√Dakchem

 ×  
1

fr
]

−1

                                                                                                                                                          (5) 230 

kchem =
Ra

∑ S(IV)
                                                                                                                                                                                               (6) 

fr = coth
rp

l
−

l

rp
                                                                                                                                                                                             (7) 

l = √
Da

kchem
                                                                                                                                                                                                       (8) 

Where kchem is the first-order reaction rate constant of the studied S(IV) specie(s) (s-1) that produce in the rate of Ra (M s-1), fr is 

the diffusive correction term comparing the radius of natural dust rp (m) with the diffuse-reactive length l (m), α is the mass 235 

accommodation coefficient (dimensionless), Da is the aqueous-phase diffusion coefficient of SO2 (1.78 × 10-5 m2 s-1 at 296.8 

K) (Himmelblau, 1964; Haynes, 2014), H* is the effective Henry’s law constant for the studied S(IV) specie(s)of SO2 (M atm-

1), and R is gas constant (L atm mol-1 K-1).  

The sulfate formation rate in the atmosphere can be calculated by the following equations (Jacob, 2000; Li et al., 2020a).  

d[SO4
2−]

dt
= (

rp

Dg
+

4

vγ
)

−1

Sp[SO2]                                                                                                                                                                (9) 240 

SP = C ×  F ×  SBET                                                                                                                                                                                    (10) 
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Where d[SO4
2−]/dt is the atmospheric sulfate formation rate (μg m-3 h-1), rp is the particle radius (m), Dg is the gas-phase 

diffusion coefficient of SO2 (m2 h-1), v is the molecular velocity of SO2 (m s-1), γ is the reactive uptake coefficient 

(dimensionless), Sp is the particle surface area density (m2 m-3), [SO2] is the atmospheric SO2 concentration (μg m-3), C is the 

dust concentration of 55 μg m-3 in representative of the common atmospheric condition of China (Zhang et al., 2012), F is the 245 

mass fraction of clay mineral in the natural dust community (%), SBET is the BET specific surface area (m2 g-1).  

2.6 Atmospheric lifetime of SO2 

For the gas- and aqueous-phase pathways, the lifetime of SO2 (τ) can be calculated by Eq. (11) (Jacob, 2000).  

τ =
1

kchem
                                                                                                                                                                                                       (11) 

Where kchem is the assumed first-order reaction rate constant of the studied S(IV) specie(s) (s-1).  250 

For the heterogeneous pathways, the τ can be calculated by Eq. (12) (Clegg and Abbatt, 2001b).  

τ =
4

γvSp
                                                                                                                                                                                                         (12) 

Where γ is the reactive uptake coefficient (dimensionless), v is the molecular velocity of SO2 (m s-1), Sp is the particle surface 

area density (m2 m-3), as described by Eq. (10).  

The atmospheric lifetime caused by the multiple pathways (τtotal) can be estimated by Eq. (13) (Seinfeld and Pandis, 2016).  255 

τtotal = (∑
1

τ
)

−1

                                                                                                                                                                                        (13) 
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3 Results and discussion         

3.1 Driving factors of dust surface 

Correlation analysis was performed at first to explore the dominant surface drivers that affect the heterogeneous sulfate 

production on different clay minerals (Fig. 1a). Under dark condition, the sulfate production rate corrects positively with Fe, 260 

while presents negative dependence against Al. By means of aerosol mass spectrometer, airborne sulfate was reported to be 

highly associated with the iron-rich dusts, and the heterogeneous reaction of SO2 was regarded as a plausible explanation 

(Sullivan et al., 2007). Conversely, Al2O3 presents weaker heterogeneous reactivity than Fe2O3 (Zhang et al., 2006; Yang et 

al., 2018b; Xu et al., 2021), and was proved to suppress the nocturnal heterogeneous reaction by blocking the reactive sites on 

other components (Wang et al., 2018b). Accordingly, Fe-bearing component plays a crucial role in the heterogeneous SO2 265 

oxidation, while the presence of Al-bearing component directly weakens the dust’s reactivity or indirectly decreases the 

proportion of other active mineral constituents. 

Recent studies proposed that transition metal oxides in dust act as photocatalyst that yields electron-hole pairs (Chen et al., 

2012; Abou-Ghanem et al., 2020; Wang et al., 2020c; Sakata et al., 2021), followed by the formation of reactive oxygen species 

(ROS) including hydroxyl radical (•OH), superoxide (O2
•−), hydroperoxyl radical (HO2

•) and dissociated active oxygen species 270 

(O*). Sulfate radical (SO4
•−) is generated by the presence of abundant •OH and participates into the oxidation events (Antoniou 

et al., 2018; Kim et al., 2019; Li et al., 2020b). Hence, there is positive correlation between the content of Ti and the sulfate 

production enhanced by solar irradiation. as reflected by the positive correlation between the content of Ti and the sulfate 

production enhanced by the simulated solar irradiation. The abundance of Al associates positively with the photoinduced 

sulfate enhancement as well. Physically, Al-bearing components disperse other efficient mineralogical constituents in case of 275 

agglomeration (Darif et al., 2016). Chemically, sunlight was found to alter the electronic configuration of α-Al2O3, which 

presented photoactivity in the reported heterogeneous process (Guan et al., 2014). Hence, the discrepancy between the 

nocturnal and diurnal sulfate formation rates is primarily related to the existence of Ti- and Al-bearing mineral constituents.   

No correlation can be observed between the element abundance of element and the sulfate production rate of photoreaction. 

The dust sample with higher proportion of elemental Ti was reported to exhibit greater reactivity toward SO2 (Park et al., 2017), 280 

or NO2 (Ndour et al., 2009), or O3 (Abou-Ghanem et al., 2020) in the photochemistry processes. However, these the previous 

results were derived from the by qualitative comparison rather than the quantitative analysis as performed in this work. 

Analogous to the Al2O3 discussed above, semi-conductive metal exhibits dual behaviors in dark and light reactions. For 

instance, the iron oxide under dark condition owns great reactivity toward SO2, whereas that under solar irradiation may present 

impaired heterogeneous kinetics due to its dissolution process (Fu et al., 2009). In addition, the heterogeneous reaction on the 285 

surface of TiO2 or Ti-bearing mineral is thermodynamically favored during nighttime but largely dependent on photocatalysis 

under solar irradiation (Chen et al., 2012). Iron oxide presents great reactivity toward SO2 under dark condition, while occurs 

photoinduced dissolution by light irradiation (Fu et al., 2009). Additionally, Ti-bearing mineral components may not kinetically 
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dominate the sulfate formation in dark reaction as it acts in light process (Chen et al., 2012). Due to the complexity of 

photoreaction that involves both of the dark and light reaction mechanisms, the sulfate formation rate of photoreaction may 290 

not be directly linked to particle chemical compositions.  

Some water-soluble ions (Na+, Cl-) are observed to present positive impacts on the production of surface sulfate under dark 

condition. The presence of halite (NaCl) has positive implications for the dust’s hydroscopic property and may facilitate its 

heterogeneous reactivity (Wang et al., 2014; Tang et al., 2019). Moreover, there are negative associations between the 

photoinduced sulfate enhancement and the abundances of Na+, K+, Ca2+. These cations can be hydrolyzed by adsorbed water 295 

to produce H+, thereby resulting in the elevation of elevating the particle acidity. The increased acidity retards the hydrolysis 

and dissociation of SO2 (Park et al., 2008; Huang et al., 2015), and inhibits the production of OH by the irradiated dust surfaces 

(Zheng et al., 1997; Yang et al., 2008; Liu et al., 2017a). Urupina et al. (2022) recently reported the positive correlations 

between secondary dust sulfate and the amount of elemental Na. The results here provide additional insights into the 

heterogeneous effects of the water-soluble constituents on dust surface.  300 

The correlation analysis helps to quantitatively identify the dust surface drivers and better understand the reaction mechanism 

of dust heterogeneous chemistry. Regression analysis can be further performed to predict the surface kinetics by the chemical 

compositions of dust. Referring to the publication of Zhang et al. (2020), we derived an exponential parameterization for the 

production rate of particle-phase sulfate:      

SFdark = M[A]a[B]b[C]c[D]d[E]e[F]f + N                                                                                                                                              (14) 305 

Where SFdark is the yield of SO4
2- on the particle sample of per unit mass within per unit time (ions g-1 s-1); [A], [B], [C], [D], 

[E] and [F] are the mass fractions of element and ion (%); M and N are the constant parameters (dimensionless). After the 

statistical procedures by SPSS (version 22.0), we obtained the regression equation for the nocturnal heterogeneous reaction:   

SFdark( × 1015) = 22.858  [AI]−0.001[Fe]0.111[Cl−]0.001[Na+]0.001 − 13.404                                                                             (15) 

Analogously, the discrepancy between the nocturnal and diurnal sulfate production rates, denoted as Rlight/dark, can be described 310 

by:    

Rlight dark⁄ = SFlight SFdark⁄ = 14.539  [AI]0.073[Ti]0.167[Cl−]−0.001[Na+]−0.001[K+]−0.001[Mg2+]−0.001 − 3.186             (16) 

Then,   

SFlight = SFdark  ×  Rlight dark⁄                                                                                                                                                                   (17) 

Because the abundance variation of water-soluble ion presents significantly less influence on the prediction result relative to 315 

the elemental transition metal, the complete regression models can be simplified by merely considering the mineral element 

abundances:   

SFdark( × 1015) = 30.880 [Fe]0.077 − 21.679                                                                                                                                     (18) 

Rlight/dark = 15.581[AI]0.062[Ti]0.141 − 4.277                                                                                                                                     (19) 

SFlight = SFdark  ×  Rlight dark⁄                                                                                                                                                                  (20)  320 

Both of the complete and simplified regression models accurately simulate the experimental data with all of the linear slopes 
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approaching 1.0 and all of the R2 values larger than 0.995 (Fig. 1b and c). The simplified regression model can be considered 

as the preferred recommendation due to the fewer parameters needed and its greater performance in the photoreaction 

prediction. Shang et al. (2010) found that the heterogeneous sulfate production on pristine TiO2 (Degussa P25) can be 

accelerated by 8.4 times by the presence of ultraviolet light (365 nm, 350 μW cm-2). Such photoinduced enhancement is 325 

comparable with the prediction result (10.2 times) derived from the simplified regression model developed by this study. 

Additionally, because the chemical composition of bulk sample may not fully explain the sulfate formation over dust surface, 

further study to discuss the model uncertainty is warranted.  
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Figure 1. Correlation and regression analysis on the sulfate production rate of dust surface.  

Correlation analysis bridging the rate of sulfate production and the abundance of (a-1) mineral element and (a-2) water-soluble 

ion. Linear relationships between the experimental SFdark, SFlight, Rlight/dark and those simulated by the (b) complete and (c) 

simplified regression models. The unit of SF (ions g-1 s-1) indicates the number of SO4
2- formed on the particle sample of per 

unit mass within per unit time, and Rlight/dark indicates the ratio of SF values in presence and absence of simulated solar 335 

irradiation. 
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3.2 Driving force of dust surface 

The driving force of dust surface can be characterized by reactive uptake coefficient and particle acidity (Fig. 2, Table S8). 

Under dark condition, the reactive uptake coefficients are highest for SWy and NAu, followed by IMt and CCa, with that of 

KGa being the lowest. The presence of simulated solar irradiation causes a different rank: IMt>SWy>CCa>NAu>KGa. The 340 

diurnal uptake coefficients of CCa, SWy, KGa, IMt are respectively 1.52, 1.01, 2.94, 2.30 times greater than the corresponding 

nocturnal ones, reflecting the distinct photocatalytic performances of the clay minerals. Conversely, NAu presents the 

decreased heterogeneous uptake capacity under light irradiation than dark condition due to its rich abundance of Fe, whose 

oxide species may occur photoreductive dissolution in acidic media (Fu et al., 2010; Shi et al., 2012). Comparing the studies 

performed by the same experimental approach and assessment procedures, the studied clay minerals are more efficient than 345 

the previously concerned mineral dust proxies, including CaCO3 (Li et al., 2006; Wu et al., 2011; Zhang et al., 2018), Al2O3 

(Liu et al., 2017b), TiO2 (He and Zhang, 2019) and manganese oxides (Wang et al., 2020d), in the heterogeneous production 

of sulfate under the parallel conditions.  

The reactive uptake coefficients for the natural-dust-driven heterogeneous chemistry were calculated to be 6.08 × 10-6 during 

nighttime and 1.14 × 10-5 during daytime (Fig. 2a). Within the data set of authentic dust, the nocturnal value is lower than those 350 

of China loess (3.0 × 10-5), Inner Mongolia desert dust (2.41 × 10-5), Xinjiang sierozem (8.34 × 10-5), Saharan dust (6.6 × 10-

5), Asian mineral dust (2.54 × 10-5), Tengger desert dust (4.48 × 10-5) and ATD (1.92 × 10-5) under the similar experimental 

conditions (Usher et al., 2002; Adams et al., 2005; Zhou et al., 2014; Huang et al., 2015). It should be noted that, the previous 

studies measured net uptake coefficient that quantifies all of the heterogeneously adsorbed SO2, and some of them assessed 

the oxidation events accelerated by the surface adsorbed oxidants (e.g. NO2, O3, H2O2). In order to quantify the driving force 355 

of dust surface drivers in the contribution of particle-phase sulfate, S(IV) species were not considered for the kinetics 

calculation in this study. Quantitatively, the dust surface drivers are responsible for the atmospheric sulfate formation rates of 

0.195 and 0.365 μg m-3 h-1 during nighttime and daytime, respectively.  

Particle acidity is another important index reflecting the impacts of dust heterogeneous chemistry. After the exposure to SO2 

exposure, CCa is the most acidic, followed by IMt, KGa and NAu, leaving SWy being more neutral. Because no significant 360 

correlations can be found between γ and pH, the absolute acidity level is largely dependent on the basic nature of dust. The 

lowest pH assigned to CCa can be explained by its highest content of elemental Mg relative to the other clays (see Table S6). 

The Mg-bearing constituents dissolve to be Mg2+ that can be further hydrolyzed by water to produce H+, thus accelerating the 

acidification of particle (Park et al., 2008; Huang et al., 2015). For one clay mineral, its different acidities after dark and light 

reactions reflect the distinct heterogeneous kinetics. All of the studied clays, with the exception of NAu, become more acidic 365 

after the photoreaction than the dark reaction, which can be explained by the photoinduced SO2 adsorption and sulfate 

production on these samples. All of the clays with the exception of NAu become more acidic after light reaction than dark 

reaction, which can be explained by the photoinduced SO2 adsorption and sulfate production. The opposite situation of NAu 

coincides to the decreased heterogeneous kinetics over its surface by the presence of solar irradiationThe opposite acidity 
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evolution of NAu is associated with the photoinduced dissolution of the Fe-bearing components therein (Fu et al., 2010; Shi 370 

et al., 2012). Generally, the natural dust presents the particle acidity (pH) of 4.177 after dark reaction and 4.405 after 

photoreaction (Fig. 2b). Such results locate within the acidity ranges of dust seeds (3.0-7.0) (Ault, 2020; Pye et al., 2020) and 

haze aerosols (3.5-4.8) (Ding et al., 2019; Song et al., 2019), suggesting that the dust-driven heterogeneous process could 

affect aerosol acidity by a certain extent.  

Figure 3 presents the pH-dependent reactive uptake coefficients for the natural-dust-mediated heterogeneous chemistry, 375 

accompanied with the experimental data of dust-driven heterogeneous chemistry. The sulfate formation mediated by dust 

surface is primarily affected by the surface adsorbed H2O2 below the nocturnal pH of 5.5 or the diurnal pH of 5.3. When the 

dust acidity exceeds the thresholds, dust-mediated chemistry would be kinetically dominated by NO2 and O3 during nighttime, 

or HOBr and HOCl during daytime. The γ of NO2, O3, HOCl, HOBr and CH3COOOH presents positive dependence toward 

pH, in accordance with the evolution of the effective Henry’s law constant for the studied sulfur species, as theoretically 380 

illustrated by Eq. (5). Generally, the dust-driven chemistry appears to be more efficient than the dust-mediated chemistry over 

the estimated pH range, and thus could account for more secondary sulfate aerosols. In the following sections, the oxidation 

of SO2 mediated or driven by the surfaces of natural dust would be set as the typical examples of dust-mediated and dust-

driven heterogeneous chemistries to compare with the widely reported gas- and aqueous-phase processes.  
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Figure 2. Analysis results of the in-situ infrared spectra recorded for the heterogeneous reaction of SO2 on the clay minerals 

and natural dust.  

(a) Reactive uptake coefficients (γ) for the heterogeneous production of sulfate. (b) Particle acidity (pH) after the heterogeneous 

reaction. Both of the dark (grey square) and light (yellow circle) conditions were considered. Dots represent the results of clay 

minerals, and those of natural dust are showed by the lines. All error bars represent 1 SD.  390 
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Figure 3. Particle-acidity-dependent reactive uptake coefficients for the dust-mediated and dust-driven heterogeneous sulfate 

formation during (a) nighttime and (b) daytime.  

The dust-mediated chemistry is induced by the surface oxidants co-adsorbed with SO2, including hydrogen peroxide (H2O2), 

nitrogen oxide (NO2), ozone (O3), hypochlorous acid (HOCl), hypobromous acid (HOBr), methyl hydroperoxide (CH3OOH), 395 

peroxyacetic acid (CH3COOOH) and dissolved nitrous acid (HONO). The dust-driven chemistry is induced by the 

heterogeneous drivers (transition-metal-bearing components and water-soluble ions) on the surfaces of natural dust and clay 

minerals [Nontronite (NAu), Chlorite (CCa), Montmorillonite (SWy), Kaolin (KGa), Illite (IMt)].  
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3.3 Comparison of atmospheric oxidation pathways 

Figure 4 compares dust heterogeneous chemistry with the gas- and aqueous-phase pathways in terms of the atmospheric sulfate 400 

formation rate. The clay minerals are kinetically comparable with other reactive species (Fig. 4a and e), indicating that the 

dust-driven chemistry makes considerable contributions to secondary sulfate aerosols. For instance, during nighttime, the 

heterogeneous reactivity of IMt is only next to those of OH and TMI-catalyzed O2. The sulfate formation rates are summed to 

be 0.795 μg m-3 h-1 during nighttime and 5.179 μg m-3 h-1 during daytime by the parameterization scheme of this study. The 

elevated sulfate formation rate during daytime can be explained by the photo-increased oxidation channels, oxidant 405 

concentrations, heterogeneous reactivity, and the elevated particle acidity that facilitates the TMI catalysis. It is worthwhile to 

mention that, in the real atmosphere, the observed sulfate concentration during nighttime may be comparable to or exceed that 

during daytime, which can be explained by the higher nocturnal humidity facilitating the liquid oxidations or the lower 

boundary layer causing the adverse diffusion conditions (Liu et al., 2017c; Tutsak and Koçak, 2019; Li et al., 2020c). The 

relevant meteorological factors were not considered by this comparison model, and the current results emphasized the different 410 

sulfate formation potentials through kinetic regime. Such The sulfate fluxes here are generally lower than some published data 

calculated by the same concentration of SO2 (40 ppb) under the same SO2 concentration because the gas- and aqueous-phase 

parameters here in this work were corrected by the experimental temperature (296.8K) rather than the standard temperature 

(271 K) used previously (Cheng et al., 2016; Gen et al., 2019; Liu et al., 2020; Su et al., 2020; Wang et al., 2020a; Liu et al., 

2021a). Considering that part of the relevant parameters were experimentally determined under room temperature with the 415 

lack of temperature dependence, uncertainties may exist in the discussions on cold environments. The sulfate formation in this 

work was assessed near room temperature that is pertinent to the nature of sandstorm occurring during late spring and early 

summer in East Asia (Wu et al., 2020; Ren et al., 2021). 

During nighttime, the gas-phase, aqueous-phase and heterogeneous chemistries explain 31.6, 39.8 and 28.6% of the secondary 

sulfate aerosols, respectively (Fig. 4b). The diurnal contribution proportions of gas-phase chemistry (45.5%) and aqueous-420 

phase chemistry (41.4%) exceed their nocturnal levels, thus lowering the heterogeneous proportion to 13.1% during daytime 

(Fig. 4f). In other words, although the heterogeneous sulfate production during nighttime is quantitatively lower than that 

during daytime (see Sect. 3.2), the nocturnal heterogeneous chemistry accounts for the higher proportion of secondary sulfate. 

In the regime of gas-phase chemistry, OH is the predominant oxidant, followed by CIs, while NO3 contributes little. In liquid 

phase, TMI-catalyzed O2 and H2O2 play crucial roles in the oxidation of SO2, coinciding to the reported results (Fan et al., 425 

2020; Song et al., 2021). Besides, there are lower contributions attributed to the NO2 during nighttime, as well as the HOBr, 

photosensitization, nitrate photolysis during daytime. The heterogeneously formed sulfate is mostly ascribed to the dust-driven 

chemistry rather than the dust-mediated chemistry. Relative to the nocturnal scenarios, the presence of solar irradiation 

kinetically promotes the gas-phase, aqueous-phase and heterogeneous chemistries by 9.4, 6.8 and 3.0 times, respectively. Such 

enhancements indicate that the oxidations in gaseous and liquid media could be more susceptible to the occurrence of sunlight 430 

than those relevant to the gas-solid interactions. The sulfate contribution proportions of dust heterogeneous chemistry are 
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comparable with those obtained by the OBM model (30.6% for nighttime and 19.4% for daytime) (Xue et al., 2016), as well 

as the revised GEOS-Chem model (20-30%) (Tian et al., 2021) and WRF-CMAQ model (up to 12%) (Wang et al., 2012). 

While the kinetic uptake coefficients used in the previous studies are generally greater than the present experimental results, 

more pathways were implemented in the current comparison model, thereby causing the parallel comparison results. By 435 

contrast, the AMAR model highlighted the dust’s photocatalytic surface that contributes remarkable secondary sulfate (>50%) 

under the constraint simulation conditions (Yu et al., 2017).  

In the regime of dust-mediated heterogeneous chemistry, H2O2 is the most efficient oxidant, followed by the nocturnal NO2 

and diurnal hypohalous acids (HOBr, HOCl) responsible for less secondary sulfate (Fig. 4c, g). The dust-driven heterogeneous 

sulfate formation is mainly attributed to IMt that owns the largest proportion in dust community, followed by NAu and SWy 440 

with relatively great heterogeneous performances (Fig. 4d and h). The nocturnal and diurnal secondary sulfate fluxes of the 

dust-driven chemistry are respectively 5.8 and 1.2 times greater than those of the dust-mediated chemistry. In other words, the 

heterogeneous sulfate formation is primarily ascribed to the dust surface drivers rather than the surface adsorbed oxidants, as 

experimentally proved by the laboratory studies concerning the heterogeneous SO2 oxidation on authentic dusts accelerated 

by the presence of NO2 (Park et al., 2017), or O3 (Park et al., 2017), or H2O2 (Huang et al., 2015). The kinetic discrepancy 445 

between the dust-mediated and dust-driven chemistries is more significant during nighttime than daytime. In the estimation, 

H2O2 is the predominant dust-mediated oxidant and its concentration becomes lower under weaker solar irradiation. During 

nighttime, the dust-mediated contribution is thus relatively small by the presence of the relatively low H2O2 concentration. 

When investigating the heterogeneous chemistry on dust particles, particle variables are thus more important than gas variables 

in elucidating the reaction characteristics and atmospheric implications.  450 

The sulfate formation rates of diverse chemistry modes are summarized as a function of particle acidity as presented in Fig. 5. 

Relative to the pH-independent gas-phase chemistry, the aqueous-phase oxidation of SO2 becomes relatively productive under 

the extremely acidic and near-neutral situations, while fails to support the rapid sulfate formation within the pH range of 4-5 

(minimums at 4.85 for nighttime and 4.55 for daytime) (Su et al., 2020), which overlaps the acidity range of the weak dust-

mediated heterogeneous chemistry. Noticeably, such selected range includes the acidity of the aged natural dust and overlaps 455 

that of the common haze aerosols, suggesting that the heterogeneous drivers of dust surface have profound impacts on the 

secondary sulfate burst in highly polluted environment (Ding et al., 2019; Song et al., 2019). As proved by the atmospheric 

observation research, secondary sulfate was discovered to accumulate on the dust-dominant super-micron particles collected 

in the North China Plain, and this pollution on coarse particles dramatically got worse during the evolutionary stages of haze 

episodes (Xu et al., 2020). In more detail, the significant sulfate formation in the acidic environment is primarily contributed 460 

by the TMI-O2 pathway where the concentrations of TMIs and H+ keep increasing as the aerosol water becomes more acidic. 

When pH>5.0, the formation rate of sulfate increases with the elevated pH, in step with the evolution of the concentration of 

dissolved sulfur species. Within the entire pH range, the aqueous-phase chemistry is more efficient than the dust-mediated 

heterogeneous chemistry in contributing to secondary sulfate. 

Apart from sulfate formation rate, SO2 lifetime is another index evaluating the atmospheric significance of certain oxidation 465 
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pathway. Calculations of lifetimes can be useful in estimating how long the SO2 is likely to remain airborne before it is removed 

from the atmosphere (Seinfeld and Pandis, 2016). Under dark condition, IMt causes the shortest SO2 lifetime, followed by 

NAu and SWy, with those ascribed to KGa and CCa being much longer. IMt owns the largest mass proportion in dust 

community and thus causes the shortest lifetime. The relatively great reactivities of NAu and SWy link to the second and third 

shortest SO2 lifetimes. On the other hand, the weakest reactivity of KGa leads to the second longest lifetime, and the longest 470 

result caused by CCa can be partly interpreted by its lowest Sp. The occurrence of solar irradiation alters the lifetime ranking 

(IMt<SWy<NAu<KGa<CCa), as influenced by the different photoactivities of the clay minerals. The heterogeneous drivers 

of natural dust surface are comparable with the TMI-catalyzed O2 in the loss of SO2, and both of them function as the most 

important lifespan influencers in the absence of sunlight (Fig. S9a). During daytime, the natural-dust-driven process is only 

next to the oxidations induced by OH, TMI-catalyzed O2 and H2O2 (Fig. S9b). The results of SO2 lifetime agree well with 475 

those of sulfate formation rate (Fig. 4), illustrating that the heterogeneous drivers of dust surface are responsible for altering 

the concentrations of gas-phase and particulate sulfur species.  

In summary, gas- and aqueous-phase chemistries function as the most significant influencers of the diurnal lifespan of SO2, 

followed by dust-driven heterogeneous chemistry, while during nighttime these three chemistries present closer impacts (Fig. 

S10). The atmospheric lifetimes of SO2 induced by all of the studied oxidation pathways are calculated to be 6.17 days during 480 

nighttime and 0.99 days during daytime as presented in Fig. 6. Neglecting the dust heterogeneous chemistry may lengthen the 

SO2 lifespans to 10.27 and 1.12 days in the absence and presence of solar irradiation, respectively. Analogously, scientists 

obtained the shorter lifetime of SO2 from climate model after considering the heterogeneous reaction occurring on volcanic 

ash particles (Zhu et al., 2020). Clay minerals are more concentrated in the troposphere than volcanic ash and thus have more 

significant impacts on the removal of atmospheric SO2.   485 
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Figure 4. Contributions of diverse oxidation pathways to secondary sulfate aerosols.  

Gas-phase chemistry is induced by hydroxyl radical (OH), stabilized Criegee intermediates (CIs), as well as the nitrate radical 

(NO3) only for nighttime. Aqueous-phase chemistry is induced by hydrogen peroxide (H2O2), nitrogen oxide (NO2), ozone 

(O3), hypochlorous acid (HOCl), hypobromous acid (HOBr), methyl hydroperoxide (CH3OOH), peroxyacetic acid 490 

(CH3COOOH), dissolved nitrous acid (HONO), transition-metal ion-catalyzed oxygen (TMI-O2)oxygen (O2) [catalyzed by 

transition metal ions (TMIs)], as well asand the photosensitization (T*) and nitrate photolysis (PNO3
−) only for daytime. Dust-

mediated heterogeneous chemistry is initiated by the surface oxidants co-adsorbed with SO2 (H2O2, NO2, O3, HOCl, HOBr, 

CH3OOH, CH3COOOH, HONO). Dust-driven heterogeneous chemistry is ascribed to the heterogeneous drivers (transition-

metal-bearing components and water-soluble ions) on the surfaces of natural dust and clay minerals [Nontronite (NAu), 495 

Chlorite (CCa), Montmorillonite (SWy), Kaolin (KGa), Illite (IMt)]. The (a-d) nighttime and (e-h) daytime conditions were 

distinguished by the different parameterizations. (a, e) Particle-acidity-dependent sulfate formation rate of the studied SO2 

oxidation pathways. (b, f) Quantified sulfate contribution proportions of the studied oxidation pathways. Sulfate formation 

rates of the dust-mediated and dust-driven pathways during (c-d) nighttime and (g-h) daytime. The effects of ionic strength on 

the aqueous-phase SO2 oxidation were not taken into account. The dust concentration was set to be 55 μg m-3 to reflect the 500 

common atmospheric condition of China (Zhang et al., 2012). The panels right to the legends illustrate the primary physical-

chemical processes of atmospheric sulfate formation. More parameterization and methodology details can be found in the 

Texts S2-S4 of Supporting Information and Sect. 2.1-2.5 of the main content.  
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Figure 5. Formation rate of sulfate in the kinetic regimes of gas-phase chemistry, aqueous-phase chemistry and dust 505 

heterogeneous chemistry as a function of particle acidity (pH).  

Grey areas indicate the pH ranges of the polluted particulate matters, with darker ones being more common (Ding et al., 2019).  
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Figure 6. Atmospheric lifetimes of SO2 induced by the diverse sulfate formation pathways.  510 

Both of the nighttime (grey square) and daytime (yellow circle) conditions were considered. The lifetimes of SO2 caused by 

gas-phase, aqueous-phase and dust heterogeneous chemistries are displayed by the dash lines. The atmospheric lifetimes of 

SO2 induced by all of the studied oxidation pathways are presented by the solid lines. The effects of ionic strength on the 

aqueous-phase SO2 oxidation were not taken into account. The dust concentration was set to be 55 μg m-3 to reflect the common 

atmospheric condition of China. More methodology details can be found in Sect. 2.6 of the main content. 515 



23 
 

3.4 Sensitivity analysis 

The aforementioned calculations set the concentration of natural dust to be 55 μg m-3. In contrast to the common atmospheric 

loading, the burst of sandstorm was normally accompanied by the quickly elevated dust concentration up to thousands of μg 

m-3 (Li et al., 2021; Yin et al., 2021; Filonchyk, 2022). It would be meaningful to estimate the heterogeneous contributions in 

the dust-rich environments. Theoretically, dust concentration within the ranges of 72-770 μg m-3 during nighttime and 24-260 520 

μg m-3 during daytime could cause the extra sulfate formation of 0.3-3.0 μg m-3 h-1 (Fig. 7a), in line with the acknowledged 

range of missing sulfate formation rate (Cheng et al., 2016; Liu et al., 2020), which was found to be positively correlated with 

PM concentration as well (Cheng et al., 2016). Therefore, the heterogeneous reaction of SO2 on dust surface is a considerable 

sulfate formation pathway and may evolve into the missing sulfate source.  

On the other hand, the The occurrence of sandstorm, particularly during nighttime, aggravates the sulfate pollution in coarse 525 

aerosol mode (Fig. 7b). For instance, the dust concentration of 200 μg m-3, which approaches the PM10 level in North China 

on March 2021 (Yin et al., 2021), could heterogeneously explain 44.9% of the secondary sulfate during nighttime, as well as 

29.6% during daytime. It is worthwhile to note that, the heterogeneous contribution proportion is susceptible to the evolution 

of relatively low dust concentration, further increase of dust loading will not significantly elevate the heterogeneous proportion, 

resulting in a plateau (nighttime) or decrease (daytime) under severe dust pollution. The increased dust concentration facilitates 530 

the aqueous-phase TMI-O2 pathway and the dust-mediated and dust-driven heterogeneous reactions, whereas presents negative 

impacts on the others by the removal of gaseous oxidants over dust surface. The unsusceptible response to dust concentration, 

as shown by Fig. 7b, can be related to the increased sulfate contributions from the TMI-O2 pathway. Unlike the TMI-O2 

pathway and dust-driven chemistry receiving constant positive feedbacks from the increased dust concentration, the dust-

mediated chemistry is somewhat affected by the decreased oxidants adsorbed on dust surface. Since the importance of dust-535 

mediated chemistry is more significant during daytime than nighttime, there is a negative correlation between the high dust 

concentration and heterogeneous contribution proportion under solar irradiation. resulting in a plateau under severe dust 

pollution.  

The increased dust concentration, in fact, not merely facilitates the heterogeneous chemistry by providing more reactive 

surfaces, but also affects the gas- and aqueous-phase chemistries by altering the atmospheric abundances of the reactive species 540 

therein, as explained below. The evolution of dust pollution from slight to heavy conditions would cause the loss of various 

gaseous oxidants by heterogeneous uptake, and therefore the gas- and aqueous-phase sulfate fluxes, except that induced by the 

TMI-catalyzed O2, decrease against dust concentration (Bian and Zender, 2003; Tang et al., 2017). Moreover, the dissolution 

of mineral constituents produces TMIs in aerosol liquid media (Alexander et al., 2009; Shao et al., 2019), and the irradiated 

mineral dust was reported to emit gaseous reactive oxygen speciesROS by surface photocatalysis (Dupart et al., 2012; Chen 545 

et al., 2021). Herein, the studied oxidation pathways are distinguished by their contribution proportions (Fig. 7c and d). The 

contribution proportions of OH and H2O2 decrease against dust loading, while the relative importance of TMI-derived 

oxidation and dust-driven chemistry become more significant as the dust concentrates. The contribution proportion assigned 
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to dust-mediated chemistry increases with dust concentration at first and then decreases. While the increased dust loading 

provides more physical space for the occurrence of dust-mediated reactions, the simultaneously decreased gas-phase oxidants 550 

restrain the accumulation of particle-phase oxidants.  

Atmospheric lifetime of SO2 is also affected by the concentration of dust. As shown by Fig. 8a, the lifespan of airborne SO2 

during nighttime is higher than that during daytime, and both of them decrease against dust concentration. Analogous to the 

heterogeneous contribution proportion (Fig. 7b), the atmospheric lifetime of SO2 is more susceptible to the variation of dust 

concentration in clean and slightly polluted environments than heavily polluted conditions. The mild dust pollution, especially 555 

its level variations, should be paid more attention. The heterogeneous loss of SO2 by dust surface was normally evaluated 

against the gas-phase loss by OH (Ullerstam et al., 2003; Adams et al., 2005; Li et al., 2006; Huang et al., 2015; Ma et al., 

2018). Current estimation indicates that the airborne dust with the concentration of 45 μg m-3 during nighttime, or 91 μg m-3 

during daytime, can be regarded as comparable with OH in controlling the removal of SO2 (Fig. 8b). Such dust concentrations 

could be common in the troposphere (Zhang et al., 2012), suggesting that under most atmospheric conditions, the 560 

heterogeneous loss of SO2 by airborne dust surface has a similar magnitude as the main gas-phase loss process and can be 

taken as an important sink for SO2.  
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Figure 7. Sensitivity tests of sulfate formation rate on dust concentration.  565 

(a) Sulfate formation rate of diverse dust-related heterogeneous chemistries as a function of dust concentration. The grey area 

suggests the missing sulfate formation rate ranging from 0.3 to 3 μg m-3 h-1 as a reference (Cheng et al., 2016; Liu et al., 2021a). 

(b) Heterogeneous sulfate proportion varying with dust concentration. Secondary sulfate contributions attributed to the studied 

oxidation pathways during (c) nighttime and (d) daytime.  
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Figure 8. Sensitivity tests of SO2 lifetime to dust concentration.  

(a) Atmospheric lifetime of SO2 induced by all of the studied pathways varying with dust concentration. (b) Comparison 

between the SO2 lifetimes induced by dust heterogeneous chemistry and OH-initiated gas-phase chemistry.
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3.5 Uncertainty analysis  575 

The contribution proportion of dust heterogeneous chemistry could be over- or underestimated if considering the uncertainty 

factors. Herein, the joint impacts of ionic strength (I) and aerosol liquid water content (ALWC) on the aqueous-phase oxidation 

of SO2, as well as the comparison between microdroplet interfacial oxidation and dust-driven heterogeneous chemistry, are 

additionally discussed to further understand the atmospheric significance of the dust surface drivers under the complex 

atmospheric conditions.  580 

The aqueous-phase oxidation of SO2 by H2O2, O3, NO2 and TMI-catalyzed O2 was quantified under different I-ALWC 

parameterizations. At first, the sulfate formation rate was calculated as a function of ionic strength under the studied ALWC of 

300 μg m-3 (Fig. S11). The TMI-catalyzed O2 and H2O2 dominate the liquid oxidation, while the impacts of NO2 and O3 only 

slightly peak at ~ 1.0 M in the absence of solar irradiation. Specifically, during nighttime, the TMI-catalyzed O2 dominates the 

sulfate formation under the relatively low ionic strength, while the contribution of H2O2 exceeds that of TMI-O2s under over 585 

the ionic strength higher than of 0.028 M. During daytime, H2O2 becomes the dominant oxidant within the studied ionic 

strength range. Relative to the ionic -strength-free calculations, the aqueous oxidation could be weakened by the ionic strength 

lower than 17.8 M during nighttime or 14.3 M during daytime. Such values can be taken as criteria to distinguish the over- or 

underestimation of the liquid kinetics under the ALWC of 300 μg cm-3, which was widely used to characterize the haze events 

in North China (Cheng et al., 2016).  590 

The joint influences of I and ALWC were further considered (Fig. 8). At each ionic strength, sulfate formation rate associates 

positively with ALWC. At each ALWC, the increase of ionic strength hinders the aqueous oxidation at first and then facilitates 

this process, as a consequence resulting in a threshold line distinguishing the negative or positive effects of ionic strength, as 

presented by Fig. 9a and b. Furthermore, the I-ALWC relationships of California, USA (Stelson and Seinfeld, 1981); Beijing, 

China (Song et al., 2021); Mexico City, Mexico (Volkamer et al., 2007; Hennigan et al., 2015); and the nine cities of Germany 595 

(Scheinhardt et al., 2013) were found to locate left to the thresholds, implying the negative effect of ionic strength under the 

investigated scenarios (Fig. 9c). Calculated by the reported I-ALWC relationships, the dust-mediated chemistry contributes 

4.3%-20.1% of the secondary sulfate during nighttime and 6.8%-22.0% during daytime, and the dust-driven chemistry 

accounts for respectively 29.1%-41.6% and 9.9%-12.4% of the sulfate formation in the absence and presence of sunlight (Fig. 

9d). Therefore, the heterogeneous contribution proportions in the complex atmospheric environments can be even higher than 600 

those estimated by the present study.   

Besides the gas-solid interface, gas-liquid interface is another type of medium that supports the rapid formation of sulfate. The 

oxidation of SO2 was found to proceed at the interfacial layer of a droplet with higher kinetics than the bulk process (Jayne 

and Davidovits, 1990). Recently, the interfacial roles of O2 (Hung and Hoffmann, 2015; Hung et al., 2018; Chen et al., 2022), 

NO2 (Liu and Abbatt, 2021; Yu, 2021) and Mn2+ (Zhang et al., 2021; Wang et al., 2021b2021a; Wang et al., 2022c) have been 605 

quantitatively investigated. Figure 10 compares dust-driven heterogeneous chemistry with the droplet documented gas-liquid 

interfacial oxidations. As reported by Hung et al. (2015, 2018), acidic droplet interface favors the noncatalyzed oxidation by 



28 
 

the presence of sufficient SO3
•− and SO4

•− when pH<4.0, which can be further explained by the structure differences of water 

at the interface versus the characteristic water structure in bulk-phase water. Recently, Chen et al. (2022) reevaluated the sulfate 

formation by interfacial O2 within the pH range of 3.5-4.5 and discovered the positive dependence toward ionic strength. 610 

Influenced by the presence of O2 at the acidic interface, the sulfate formation remains fast over pH<3.0, while dramatically 

declines as the pH increases from 3.5. The oxidation of SO2 by interfacial NO2 was documented to display the similar pH 

dependence as that occurs in bulk solution. The sulfate contribution of interfacial Mn2+ is associated positively with particle 

acidity. Overall, the O2 at acidic interface dominates the SO2 oxidation over pH<4.0, whereas over pH>4.0 the interfacial 

oxidation is primarily controlled by Mn2+. Comparing the sulfate formation rates under the same particle acidity, the dust 615 

surface drivers generally present greater reactivity than the interfacial NO2 and O2., Under the ionic strength of 40 M, the 

reactivity of interfacial O2 can be regarded as equivalent to that of the dust surface drivers during nighttime. whereas merely 

supports faster sulfate formation than the O2 at acidic interface under dark condition. Moreover, iInterfacial Mn2+ kinetically 

exceeds the dust surface drivers in chemistrythrough kinetic regime. For instance, the Mn2+-catalyzed oxidation characterized 

by Wang et al. (2021a) is respectively 6.5 and 1.7 times more efficient than the dust-driven chemistry in forming sulfate 620 

aerosols during nighttime and daytime.  

It is worthwhile to note that, the dust-driven heterogeneous chemistry was investigated by the infrared technique focusing on 

the bulk particle sample rather than air-suspended particles. Up to now, the micro-scale effects of dust particle have not been 

systematically studied. Suspended ATD was concerned in a smog chamber research and its reactivity toward SO2 was 

characterized by the net uptake coefficient of 1.71 × 10-6 under dark condition (Park and Jang, 2016). Such kinetic constant is 625 

approximately one order of magnitude higher than those obtained from the film-based flow tube experiments (~ 1.75 × 10-7) 

under the parallel experimental conditions (Zhang et al., 2019b). Therefore, the dust-driven heterogeneous chemistry in 

ambient atmosphere may approach the microdroplet interfacial reactivity in the removal of SO2 and formation of sulfate.  
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Figure 9. Joint influences of ionic strength (I) and aerosol liquid water content (ALWC) on the aqueous-phase oxidation of 630 

SO2.  

Aqueous-phase sulfate formation rate varying with I and ALWC during (a) nighttime and (b) daytime. The dash-dot lines 

indicate the thresholds distinguishing the negative or positive effects of ionic strength. (c) Reported I-ALWC relationships 

versus the nocturnal and diurnal thresholds. The field-observed date were derived from the measurements in California, USA 

(Stelson and Seinfeld, 1981); Beijing, China (Song et al., 2021); Mexico City, Mexico (Volkamer et al., 2007; Hennigan et al., 635 

2015); and the nine cities of Germany (Scheinhardt et al., 2013). (d) Heterogeneous contribution proportions calculated by the 

reported I-ALWC relationships and the parameterization of this study (ionic -strength-free settings and an ALWC of 300 μg 

m-3 for aqueous-phase chemistry; dust concentration of 55 μg m-3 for heterogeneous chemistry).  
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Figure 10. Kinetics comparison between microdroplet interfacial oxidation and dust-driven heterogeneous chemistry.  640 

The interfacial oxidation of SO2 can be induced by the O2, or NO2, or Mn2+ at aerosol particle interfaces. The O2-dominated 

oxidation can be assessed by the method concluded by Hung et al. (2018). Chen et al. (2022) refreshed the assessment method 

relevant to the interfacial O2, and the result here was obtained under the ionic strength of 40 M. For the O2-dominated oxidation, 

two droplet diameters (rp) were considered: 0.15 and 8.0 μm, following the parameters set by Chen et al. (2016) and Hung et 

al. (2018), respectively. The NO2-dominated oxidation was assessed based on the work of Liu and Abbatt (2021). The Mn2+-645 

dominated oxidation can be assessed by the methods from Wang et al. (2021a) and Zhang et al. (2021). More parameterization 

and methodology details can be found in the Text S5 of Supporting Information.  
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4 Conclusions and implications 

This study attempted to deeply understand the importance of heterogeneous chemistry, particularly that induced by the dust 

surface drivers, in the loss of airborne SO2 and formation of sulfate aerosols. Based on the correlation and regression analysis, 650 

transition metal elements, particularly Fe for dark condition, and Al and Ti for photoreaction, were determined to dominate the 

heterogeneous oxidation, while water-soluble ions present minor influences. A series of empirical equations were developed 

to kinetically predict the dust-driven process. The Al, Fe, Ti-bearing mineralogical components, as well as their mixtures, are 

thus recommended as appropriate proxies for the laboratory research. The reactive uptake coefficients for the dust-driven 

sulfate formation were calculated to be 6.08 × 10-6 during nighttime and 1.14 × 10-5 during daytime, corresponding respectively 655 

to the atmospheric sulfate formation rates of 0.195 and 0.365 μg m-3 h-1 in the presence of 55 μg m-3 natural dust. 

Dust heterogeneous chemistry is suggested to explain 28.6% of the secondary sulfate aerosols during nighttime and 13.1% 

during daytime, and the dust surface drivers act as the dominate contributors. Moreover, dust heterogeneous chemistry 

significantly influencesaffects the atmospheric lifetime of SO2. The increased dust concentration may aggravate the secondary 

sulfate pollution and has the potential to explain the acknowledged missing sulfate formation rate (0.3-3 μg m-3 h-1). Ionic 660 

strength and aerosol liquid water content not merely influence the liquid kinetics, but further affect the assessment of 

heterogeneous contributions. The heterogeneous contribution proportions estimated by the reported I-ALWC relationships 

could be even greater than those calculated by this study. Additionally, dust heterogeneous chemistry in the atmosphere is 

believed to be kinetically comparable with the microdroplet interfacial SO2 oxidation.  

Overall, this study suggests that the implementation of heterogeneous processes into atmospheric models shall vastly improve 665 

the agreement between the modeled and observed sulfate concentrations. Dust heterogeneous chemistry should be treated as a 

significant contributor of secondary aerosols rather than a plausible influencer. More necessarily, the heterogeneous drivers of 

dust surface are needed to be viewed as an important research focus. Zheng et al. (2015) revised the CMAQ model by adding 

heterogeneous chemistry mechanism and observed the accurate simulation run upon determining the uptake coefficient to be 

2.0 × 10-5, which is higher than the reactive uptake coefficients of the dust heterogeneous chemistry discussed in this work 670 

(7.04 × 10-6 for nighttime and 1.55 × 10-5 for daytime). As a consequence, other solid aerosol surfaces, such as those of sea 

salts (Laskin et al., 2003; Rossi, 2003) and carbonaceous particles (He and He, 2020; Zhang et al., 2020), would better be taken 

into the following heterogeneous discussions together with the dust chemistry. In addition, the influence of meteorological 

factors, like temperature, humidity and irradiance, on the atmospheric relevance of heterogeneous chemistry warrants further 

research. 675 

Heterogeneous laboratory results were scarcely discussed together with other SO2 conversion routes. This study attempted to 

set an example for kinetically comparing the heterogeneous process characterized by laboratory work with the widely 

documented gas- and aqueous-phase data. Relative to the three-dimensional numerical models, the developed comparison 

model involves more oxidation pathways. Moreover, the aqueous-phase chemistry here is relevant to aerosol particle rather 
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than cloud/fog droplet, and the parameterization here could be more appropriate for simulating the fine particulate matters that 680 

were frequently collected by atmospheric observation campaigns and compared with modeling data. Further, the heterogeneous 

chemistry was classified into the dust-mediated and dust-driven modes to better distinguish the key surface impactors. 

Therefore, the dynamic comparison in this study has advantages over the traditional atmospheric chemistry models, and is thus 

recommended for the following heterogeneous laboratory research to systematically compare the experimental data with the 

acknowledged gas-phase/aqueous-phase/heterogeneous oxidation pathways.  685 

This work also broadens the application of infrared technique in the atmospheric laboratory research. Apart from measuring 

the reactive uptake coefficient normally concerned, this study moved forward to bridge the relationship between particle acidity 

and sulfate formation rate by analyzing the shape and intensity of infrared spectrum, and further compared the dust 

heterogeneous chemistry with other sulfate formation pathways. This research not merely provides a promising methodology 

for the future heterogeneous research utilizing the classic in-situ DRIFTS approach, but also helps to take good advantages of 690 

the infrared technique in the laboratory studies in relation to atmospheric heterogeneous chemistry. 
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