

1	
2	Long-term variation study of fine-mode particle size and regional
3	characteristics using AERONET data
4	
5	Juseon Shin ¹ , Juhyeon Sim ¹ , Naghmeh Dehkhoda ¹ , Sohee Joo ¹ , Taekyung Kim ¹ , Gahyung Kim ¹ ,
6	Detlef Müller ² , Matthias Tesche ³ , Sungkyun Shin ⁴ , Dongho Shin ⁵ , Youngmin Noh ^{6,*}
7	
8	¹ Division of Earth Environmental System Science, Pukyong National University, Busan, Republic of Korea
9	² University of Hertfordshire, United Kingdom
10	³ Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
11	⁴ Department of Atmospheric Particulate Matter Research, Seoul Institute of Technology, Seoul, Republic of Korea
12	⁵ Fine Dust Research Department, Korea Institute of Energy Research, Daejeon, Republic of Korea
13	⁶ Department of Environmental Engineer, Pukyong National University, Busan, Republic of Korea
14	
15	
16	
17	
18	Correspondence to: Youngmin Noh (nym@pknu.ac.kr)
19	Department of Environmental Engineering, Pukyong National University, Busan, Republic of Korea
20	Tel: +82-10-3222-3203
21	

22	Abstract. To identify the long-term trend of particle size variation, we analyzed aerosol optical depth (AOD, τ)
23	separated as dust (τ_D) and coarse- (τ_{PC}) and fine-pollution particles (τ_{PF}) depending on emission sources and size.
24	Ångström Exponent values are also identified separately as total and fine-mode particles (α_T and α_{PF}). We checked
25	these trends in various ways; 1) first-order linear regression analysis of the annual average values, 2) percent variation
26	using the slope of linear regression method, and 3) a reliability analysis using the Mann-Kendall (MK) test. We selected
27	17 AERONET sun/sky radiometer sites classified into six regions, i.e., Europe, North Africa, the Middle East, India,
28	Southeast Asia, and Northeast Asia. τ decreased in Europe and Asian regions and increased in the Middle East, India,
29	and North Africa. Values of τ_{PC} and τ_{PF} , show that aerosol loading caused by non-dust aerosols decreased in Europe
30	and Asia and increased in India. In particular, τ_{PF} considerably decreased in Europe and Northeast Asia (95 $\%$
31	confidential levels in MK-test), and τ_{PC} decreased in Northeast Asia (Z-values for Seoul and Osaka are -2.95 and -2.31,
32	respectively). The change in τ_{PC} reflects the reduction of primary emissions from plants and other anthropogenic
33	sources as the result of regulations by air policies. Values of α_T decreased by -3.3 to - 30.5 % in Europe, North Africa,
34	and the Middle East, which means the mean size of aerosol particles increased. Particle size on average became smaller
35	over India and Asian regions considered in our study. We find that α_T increased by 1.3 to 13.1 %. In particular, α_{PF}
36	increased in most areas., showing the probability that the average particle size of fine-mode aerosols became smaller in
37	recent years.
38	
39	Key words: aerosol optical depth, Ångström exponent, annual variation, fine-mode aerosol, AERONET

40

41

43 1. Introduction

44 Atmospheric aerosols are associated with air pollution and public health (Ramanathan et al., 2007; Ramanathan and 45 Carmichael, 2008; Ipcc, 2019). In particular, small aerosol particles are damaging human health (WHO, 2016; 46 Schraufnagel et al., 2019). The International Agency for Research on Cancer (IARC) classifies aerosol particles as a 47 class 1 carcinogen (Loomis et al., 2013). The World Health Organization (WHO) is focusing on the number 48 concentration of ultra-fine particles (WHO, 2021). Because of the hazard of particulate matter (PM), governments 49 worldwide are continuously monitoring and controlling the mass concentration of PM (Collaud Coen et al., 2013; Li et 50 al., 2014; Li et al., 2015; Mehta et al., 2018; Yang et al., 2018; Pozzer et al., 2019; Chirasophon and Pochanart, 2020; 51 Liu et al., 2020). Particle size distribution however cannot be inferred from mass concentration observations (Lee et al., 52 2010; Burton et al., 2014). To understand the change in air pollution caused by PM and its adverse health effects, we 53 need to identify the variations in size of small particles as well as mass concentration. 54 According to their sources, ambient atmospheric aerosols can be divided into natural and anthropogenic ones. 55 Anthropogenic aerosols are emitted from industry activities, population growth, and combustion activities. Aerosols are 56 also classified as fine- and coarse-mode particles depending on their size. Coarse-mode particles are related to primary 57 emissions like industrial activities and biomass burning. This type of particle is highly correlated with the change of 58 mass concentration (Han et al., 2015; Hatakeyama, 2017). Fine-mode particles are mainly considered as secondary 59 aerosols formed by gaseous precursors, oxidants, and/or changes of meteorological conditions (Kitamori et al., 2009; 60 Cheng and Li, 2010; Xue et al., 2014; Mesquita et al., 2016; Tan et al., 2017; Xu et al., 2017; Kong et al., 2018; Kudo 61 et al., 2018; Wang et al., 2019). This particle type is closely related to visibility and adverse effects on human health. 62 Liu et al., 2020 stated that secondary aerosols such as PM_{2.5} still cause haze as the result of high pollution levels, despite 63 the fact that aerosol mass concentration levels have decreased in Beijing in recent years. 64 Many studies show that aerosol mass concentration and aerosol optical depth (AOD, τ) have decreased globally in 65 recent years (Li et al., 2014; Li et al., 2015; Mehta et al., 2018; Pozzer et al., 2019; Cherian and Quaas, 2020; Liu et al., 66 2020; Dehkhoda et al., 2020). However, these changes vary by region. These parameters provide little information on 67 the optical properties and size distribution of the pollution particles. Plus, we have difficulty confirming the change of 68 fine-mode particles using changes of mass concentration. 69 This research developed a method to separate τ as dust and coarse-/fine-mode pollution particles using size distribution 70 and the linear depolarization ratio (δ_p) . This method was applied to the long-term observation data of the Aerosol Robotic 71 Network (AERONET) sun/sky radiometer (Dubovik et al., 2002; Omar et al., 2005; Levy et al., 2007; Mielonen et al., 72 2009; Lee et al., 2010; Russell et al., 2010) to determine aerosol types. We also analyzed the proportion of fine mode in 73 the total aerosols, particle size characteristics change, and regional characteristics (Dubovik et al., 2002; Noh et al., 2011; 74

75

Boselli et al., 2012).

76 2. Methodology

77 2.1. Study sites

78 We selected AERONET Sun/sky radiometer sites that meet the following criteria: First, the sites have acquired data

- continuously for more than nine years since 2001, making them suitable for studying the long-term trend of τ . Second,
- 80 the depolarization ratio is essential to calculate dust ratio, so we have limitations in using data in American and European
- 81 sites. Third, the selected observation sites need to be representative of regional characteristics.
- 82 Eventually, we chose 17 AERONET sites to identify the annual change of regional aerosol particle characteristics. These
- 83 sites are distributed across six regions, i.e., Europe, North Africa, Middle East, India, Southeast Asia, and Northeast Asia
- 84 (Figure 1). The stations Venice (Italy, 45.310° N, 12.51° E), Thessaloniki (Greece, 40.63° N, 22.96° E) are located in
- 85 Europe. We also add Erdemli (Turkey, Institute of Marin Science-Erdemli, 36.56° N, 34.26° E) to the European site as
- 86 Turkey is bordering the eastern Mediterranean Sea.
- 87 There are four sites in Africa. Tamanrasset (Algeria, 22.79 $^{\circ}$ N, 5.53 $^{\circ}$ E) and the Cape Verde (16.73 $^{\circ}$ N, 22.94 $^{\circ}$ W)
- 88 stations are located in the dust emission belt that stretches from North Africa westward out into the Atlantic Ocean.
- 89 Cinzana (Mali, 13.28° N, 5.93° W) is located in the northwest part of the Sahel zone and is mainly affected by Saharan
- 40 dust outbreaks. Ilorin (Nigeria, 8.48° N, 4.67° E) is located at the upper tip of the Guinea savannah zone in the sub-Sahel.
- 91 This station is mainly influenced by Saharan dust and biomass burning aerosol (Balarabe et al., 2016).
- 92 There are two measurement sites in the Middle East. i.e., Sede Boker (Israel, 30.86° N,34.78° E) and Mezaira (the United
- Arab Emirates, 23.10° N, 53.75° E). The regions in India, i.e., Kanpur (26.51° N, 80.23° E) and Ballia (Gandhi_College,
 25.87° N, 84.13° E) are in Uttar Pradesh which is a state in northern India. These sites are influenced mainly by large-
- 25.87° N, 84.13° E) are in Uttar Pradesh which is a state in northern India. These sites are influenced mainly by largescale anthropogenic emission sources (biomass burning, fossil-fuel combustion, and industrial activities) and mineral
 dust transported from western India (Ram et al., 2010).
- 97 Two Southeast Asia sites, Chiang Mai (18.77° N, 98.97° E) and Bangkok (Silpakorn University, 13.82° N, 100.04° E)
- 98 are located in northern and central Thailand and have the characteristics of an urban environment. Four sites, Beijing
- 99 (China, 39.98° N, 116.38° E), Seoul (Korea, 37.46° N, 126.95° E), Osaka (Japan, 34.65° N, 135.59° E), and Taipei
- 100 (Taiwan, 25.02° N, 121.54° E) are representative regions in Northeast Asia. Beijing is known as the region with the
- 101 highest concentration of pollution particles worldwide (Li et al., 2014). Seoul is downwind of westerly winds from
- 102 Beijing and thus often affected by long-range transport of pollution particles from China. Seoul also has a high
- 103 concentration of locally produced pollution particles. Osaka is a coastal city that produces less anthropogenic pollution
- than China and Korea. The effect of long-range transport of pollution on Taipei is relatively low.
- 105 Northeast Asia and Indian areas are the regions with high levels of aerosol emissions globally; so, we need to observe
- aerosol properties intensely. All 17 sites provide us with version 3 level 2.0 data for a minimum of 9 years. The total
- 107 number of observation days per year is shown in Supplementary Table S1.

124

109 2.2. AOD separation into dust, coarse- and fine-mode pollution using depolarization ratio

110 WHO recommended type classification of PM like black carbon or elemental carbon (BC/EC), ultrafine particles 111 (UFP), and particles originating from sand and dust storms (SDS) to manage control of emission of aerosols 112 effectively (WHO, 2021). Although not explicitly classified based on WHO guidelines, we divided aerosol types 113 as dust, fine- and coarse-mode particles depending on depolarization ratio and particle size data. 114 Dubovik et al., 2006 introduced kernel look-up tables that describe mixtures of spheroid particles. These kernel 115 look-up tables are used to infer the depolarization ratio (δ_v) of mineral dust observed with AERONET sun/sky 116 radiometer. Details of the AERONET inversion algorithm are given by Dubovik et al., 2006 and Noh et al., 2017. 117 The dust ratio $(R_{\rm D})$ was used to estimate the contributions of dust and anthropogenic pollution/biomass burning 118 particles to the total aerosol optical depth (τ_{T}) of mixed aerosol plumes under the assumption that both types of 119 aerosol particles are externally mixed (Shimizu et al., 2004; Tesche et al., 2009; Noh, 2014). R_D was retrieved 120 from the linear particle depolarization ratio (δ_p). Noh et al., 2017 have shown that the δ_p derived from Sun/sky 121 radiometer observations at 1020 nm and the lidar-derived δ_p at 532 nm show a comparably high correlation. For 122 that reason, we used the δ_p at 1020 nm to retrieve the dust ratio (R_D). Shimizu et al., 2004 and Tesche et al., 2009 123 suggested a $R_{\rm D}$ retrieval method on the basis of

$$R_D = \frac{(\delta_p - \delta_2)(1 + \delta_1)}{(\delta_1 - \delta_2)(1 + \delta_p)} \tag{1}$$

125 The parameters δ_1 and δ_2 denote the δ_p at 1020 nm of pure dust and non-dust particles, respectively, of an 126 external mixture of aerosol particles. The values δ_1 and δ_2 can be empirically determined. We use 0.31 for δ_1 127 in Europe, North Africa, the Middle East, and India. We use 0.30 for the Southeast and Northeast Asia regions, 128 respectively. Those values were determined by the linear depolarization ratios of Saharan and Asian dust presented 129 in previous research work (Freudenthaler et al., 2009; Burton et al., 2014; Shin et al., 2018). We used 0.02 as the 130 minimum value for δ_2 . When δ_p was higher than δ_1 or lower than δ_2 , R_D was set to 1 or 0, respectively.

131The coarse-mode fraction (CMF) of particles observed at 1020 nm is calculated from the ratio of the coarse-mode132AOD to the total (coarse- and fine- mode) AOD. Thus, R_D represents the proportion of AOD for pure dust particles133in a mixed aerosol plume, while CMF denotes the ratio of coarse-mode particles to the total particle AOD. Besides,134the fine-mode fraction (FMF) is calculated as (1-CMF).

The correlation coefficient (R^2) of the linear regression between CMF and RD varies from 0.21 to 0.84 for the different observation sites (Figure S1, supplementary material). Chiang Mai, Bangkok, and the Taipei sites show low R^2 values of 0.34, 0.21, and 0.33, respectively. Since those sites are not located in the main transport route of Asian dust, the influence of dust particles is comparably weak compared to the other sites. The tendency for R_D to increase as CMF increases appears in all sites despite the weak correlation we find in our study.

140 Most of the dust particles are coarse-mode particles, which means that the value of CMF increases with R_D . CMF

141 is higher than $R_{\rm D}$ in most cases, which implies that these coarse-mode particles include dust and pollution particles

142 generated by physical and chemical reactions, e.g., coagulation, condensation processes, and hygroscopic growth

143 (Noh et al., 2017). The ratio of coarse-mode particles (CMP) denotes the proportion (number concentration) of

144	coarse-mode pollution particles to total particles. In here, dust particles are not considered. This rat	io can be
145	calculated by subtracting R_D from CMF at 1020 nm.	
146	$CMP_{1020} = CMF_{1020} - R_D$	(2)
147	If R_D is higher than CMF, CMP is set to 0.	
148	AOD of dust particles (τ_D) at 1020 nm was calculated with equation (3) and the use of R_D and S_d .	
149	$\tau_{D, 1020} = \tau_{1020} \times R_D \times \frac{S_{d, 1020}}{S_{1020}}$	(3)
150	Here, 1020 denotes the wavelength at 1020 nm. The parameter S is the lidar ratio of the aerosol mixture	ure. S can
151	be calculated from the AERONET data products. The S_d is the lidar ratio of pure dust particles. It	varies in
152	dependence on the desert source. We take the value of 44 and 54 sr at 1020 nm for Asian dust and Sah	aran dust,
153	respectively (Shin et al., 2018).	
154	The AOD of coarse-mode particles (τ_{PC}) observed at 1020 nm was calculated by equation (4). τ_{PC} at	440, 675,
155	and 870 nm was retrieved by equation (5), i.e.,	
156	$\tau_{PC,1020} = \tau_{1020}(CMP)$	(4)
157	$\tau_{\rm PC,\lambda} = \tau_{\rm PC,1020} (\frac{1020}{\lambda})^{\alpha_{\rm PC}}$	(5)
158	The term α_{PC} is the Ångström exponent of coarse-mode pollution. We used the value of 0.16 and 0.14	for Asian
159	and Saharan dust, respectively (Shin et al., 2018).	
160	We used equation (5) to calculate the AOD of the fine-mode pollution (τ_{PF}) contribution	
161	$ au_{\mathrm{PF},\lambda} = au_{\lambda} - au_{\mathrm{D},\lambda} - au_{\mathrm{PC},\lambda}$	(6)
162		
163	2.3. Annual trend analysis via linear regression analysis and MK-test	
164	To identify annual variation trends and regional properties, we calculated the change of τ with three	methods.
165	First, we used linear regression analysis on the time series of annual average $\boldsymbol{\tau},$ and we checked the	slope and
166	percent variation from 2001 to 2018. Second, we used the linear regression equation y=a+bx, where x i	s the time
167	(year), and y is the annual average of $\tau.$ The slope b describes the change of $\tau;$ a is the intercept. The	ne percent
168	variation was calculated from the equation	
169	$V(\%) = \left(\frac{aN}{\bar{\tau}}\right) \times 100,$	(7)
170	where $\overline{\tau}$ is the average of τ , N is the number of available data, and a is the slope obtained from	the linear
171	regression analysis. The p-value (probability value) is a scalar that describes how likely it is that the data	a occurred
172	by random chance. The p-value should be small enough, depending on the level of confidence. We calc	culated all
173	data and found a statistically significant trend.	
174	We also applied the non-parametric Mann-Kendall (MK) statistical test (Mann, 1945; Kendall, 1975)	and Sen's
175	slope values to find annual trend and variation (Salmi et al., 2002; Srivastava and Saran, 2017). The	e MK-test
176	provides reliable information on the significance of monotonic trends of data in a time series. The mag	gnitude of
177	the trend can be explained by Sen's slope test, which is a powerful method for investigating linear tren	ids. There

178	are two hypotheses on the MK-test. Hypotheses are decided by the significance of the value of Z, which is related
179	to the p-value. The following relationships are used:
180	H_0 : null hypothesis (no trend),
181	H_1 : alternative hypothesis (clear trend),
182	Critical value : $ Z < 1.96 Accept H_0$ (95% Confidence level),
183	$ Z < 1.65 Accept H_0$ (90% Confidence level),
184	otherwise, $ Z > 1.96 Accept H_1$ (95% Confidence level),
185	$ Z > 1.65$ Accept H_1 (90% Confidence level).
186	
187	The sign of Z indicates an increase (+) or decrease (-). The Z value is generally accepted at a 95 % confidence
188	level, but the values and number of analysis elements are too small, so we used confidence levels up to 90%
189	instead.
190	
191	
100	
192	3. Results
193	3.1. Aerosol-type classification
194	In preparation for separating AOD according to dust-only and coarse- and fine-mode pollution AOD, we carried
195	out an aerosol-type classification to understand the main aerosol types of each selected site. Shin et al., 2019
196	suggested a new aerosol type classification method. The authors proposed considering a) the contribution of
197	mineral dust to the aerosol mixture based on a threshold value, denoted as $R_{\rm D}$, which could be obtained from the
198	depolarization ratio, in combination with b) the use of the single-scattering albedo (SSA). This latter parameter
199	allows for identifying absorption properties of pollution/biomass burning aerosols and thus separating this aerosol
200	type from mineral dust. In this study, we used seven aerosol types based on the values of δ_p , respectively.
201	Aerosols were classified as pure dust (PD, $R_D > 0.89$), dust-dominated mixture (DDM, $0.53 \le R_D \le 0.89$), pollution-
202	dominated mixture (PDM, $0.17 \le R_D < 0.53$), and pollution particles ($R_D < 0.17$). Particles are classified on the basis
203	of SSA as non-absorbing (NA, SSA>0.95), weakly-absorbing (WA, $0.90 \le SSA \le 0.95$), moderately absorbing (MA, SSA>0.95), weakly-absorbing (WA, $0.90 \le SSA \le 0.95$), moderately absorbing (MA, SSA>0.95), weakly-absorbing (WA, $0.90 \le SSA \le 0.95$), moderately absorbing (MA, SSA>0.95), weakly-absorbing (WA, $0.90 \le SSA \le 0.95$), moderately absorbing (MA, SSA>0.95), weakly-absorbing (WA, $0.90 \le SSA \le 0.95$), moderately absorbing (MA, SSA>0.95), moderatel
204	0.85 SSA (0.90), and strongly absorbing (SA, SSA (0.85) pollution; see Figure 3 of Shin et al., 2019.
205	Figure 2 shows the annual changes of major aerosol types at the 17 sites from 2001 to 2018. The results of our
206	aerosol classification reflect the characteristics of the six regions well. In Europe, Southeast Asia, and Northeast
207	Asia, pollution particles are the main type of aerosols. In the Middle East and North Africa, pure dust is dominant.
208	The ratio of NA and WA is high but decreases in the order of Venice, Thessaloniki, and Erdemli. These regions
209	have low values of PDM and DDM ratios, respectively. With regard to the North African region, the Sahara Desert
210	obviously is the predominant source region. Naturally, PD is the predominant aerosol type. Ilorin in the Savannah
211	region of Africa has a higher ratio of SA than other African regions as a result of biomass-burning aerosols. Sede
212	Boker and Mezaira, which are located on the Arabian Peninsula, also show PD and DDM as the major aerosol
213	types. The aerosol types of MA and WA can also be observed in Ilorin. The aerosol types MA and SA appear in

Sede Boker and Mezaira but are not as dominant as dust. Thus, anthropogenic pollutants at Ilorin are higher than in the other African regions investigated in our study. Logothetis et al., 2020 reported that coarse-mode absorbing aerosols are dominant in North Africa and the Arabian Peninsula because of dust transported from the Saharan and the Arabian deserts. However, fine-mode particles emitted from human activity in the Arabian Peninsula are also observed in autumn and winter.

219 The ratio of dust and pollution particles at Kanpur and Ballia in northern India are similar. Chiang Mai and 220 Bangkok, located in the Indochina Peninsular, are affected mainly by man-made pollution aerosols. The 221 contribution from dust is comparably low. We find 5 % for PDM at most. However, these two regions have 222 differences in that the predominant aerosol types over Chiang Mai and Bangkok are SA and WA, respectively. 223 The high value of SA at Chiang Mai is due to biomass burning aerosols emitted by agricultural burning and forest 224 clearing activities during the dry season which lasts from November to April (Janjai et al., 2012). Bangkok has a 225 low average SSA value of 0.90, but the SA ratio is lower than that of Chiang Mai because the impact of biomass 226 burning is lower (Bridhikitti and Overcamp, 2011).

The Northeast Asian region seems to be affected by both dust and pollution. Asian dust heavily affects the Northeast Asian region in spring, i.e., March, April, and May (Liu et al., 2019). The ratio of DDM and PDM is high in Beijing which is comparably close to the source regions of Asian dust. Seoul is located downwind of the emission regions. The impact of dust is relatively low in Osaka, which is relatively far from the source region. Besides, the Osaka site is not in the main transport pathway of dust. Shin et al., 2015 stated that dust might mix with pollution when the dust is transported near the surface for a long time. Taipei has the lowest dust effect because it is not located on the pathway of Asian dust.

234

235

236 3.2. Annual trend of dust, coarse- and fine-mode pollution AOD

237 One aim of our study is to learn more about how AOD may depend on aerosol particle size. Thus, we separated 238 AOD into the contribution by dust-only (τ_D), coarse-mode pollution (τ_{PC}), and fine-mode pollution (τ_{PF}). We 239 used R_D , CMF, and the relationships of equations (1) to (6). Then, we investigated the change of annual mean 240 values and the regional differences.

Before separating AODs according to aerosol types, we compared trends in the average values of τ_{T} for each region and site during 2001–2018 (supplementary Figure S2). The average value of τ_{T} at 440 nm was highest (1.22 ± 0.76) in Beijing and was lowest (0.48 ± 0.12) in Thessaloniki. Regionally, Northeast Asia (1.22–0.58), Southeast Asia (0.93–0.76), and India (0.82–0.80) show high τ_{T} values. Europe (0.54–0.48) and the Middle East (0.56–0.49) show low values. The average τ_{T} value of North Africa except Ilorin (1.04 ± 0.48) tends to be at the lower end of values (Table 1).

The remarkable thing is the change of the annual averages of $\tau_{\rm T}$. This change is summarized for each site in Table 248 2. Values of $\tau_{\rm T}$ decreased every year in Northeast Asia and Europe. Notably, Beijing showed the most prominent 249 decreasing trend of $\tau_{\rm T}$. We find an average value of -0.0138 $\tau_{\rm T} yr^{-1}$. The Chiang Mai and Bangkok sites in 250 Southeast Asia showed a decrease of $\tau_{\rm T}$, too. We find average values of -0.0039 $\tau_{\rm T} yr^{-1}$ and 0.0012 $\tau_{\rm T} yr^{-1}$

- at these two sites, respectively. However, this decrease of τ_T showed considerable change depending on the years considered in our study. We find, for example, that τ_T was slightly higher from 2008 to 2016 (0.00117 $\tau_T yr^{-1}$
- 253 for Chiang Mai and 0.0107 $\tau_T yr^{-1}$ for Bangkok) and then sharply decreased in 2017 (Figure S2(e)).
- The Middle East, India, and North Africa except Cinzana showed an increase of τ_T with time. As shown in Table 2, the rate of annual change of τ_T at Ballia and Kanpur showed a clear tendency to increase. We find 0.0048 $\tau_T yr^{-1}$ and 0.0069 $\tau_T yr^{-1}$, respectively. In most North Africa and the Middle East regions, the change rate of τ_T (-0.006 to 0.0020 $\tau_T yr^{-1}$) is lower than other regions; however, τ_T of Tamanrasset sites increased as 0.0108 $\tau_T yr^{-1}$ because of τ_D . It is supported by the results from El-Metwally et al., 2020. The authors conclude that Tamanrasset is the site most affected by dust from the downwind Saharan sources in the Saharan/Arabian region.
- 261 Other studies also confirmed this trend of regional τ_T change. Balarabe et al., 2016 reported that, based on 262 AERONET data, there were no remarkable AOD trends for the period from 1998 to 2013 over Ilorin, Nigeria. 263 Maghrabi and Alotaibi, 2018 reported a significant increase of approximately 0.119 of the annual mean AOD at 264 500 nm measured by AERONET sunphotometer in the central Arabian Peninsula from 1999 to 2015. Klingmüller 265 et al., 2016 also stated that AOD increased in Saudi Arabia between 2001 and 2012. (Pilahome et al., 2020) 266 reported an increase of AOD at 550 nm across Thailand based on analyzing MODIS (Moderate Resolution 267 Imaging Spectroradiometer) data for the years 2006 to 2016. In addition, the change in the concentration of 268 particulate matter, expressed by AOD, was attributed to different aerosol types. The authors identified the 269 following aerosol types in decreasing order of importance: biomass burning, anthropogenic pollution, and soil 270 emission. Meteorological conditions played a significant role, too (Bridhikitti and Overcamp, 2011; Wang et al., 271 2015; Yin et al., 2019; Chirasophon and Pochanart, 2020).
- The annual mean of dust-only AOD (τ_D) was high in North Africa, naturally, because dust is a major aerosol type in that part of the world. We find low values of τ_D in Southeast Asia, see Figure 2. In the India and Northeast Asia region except for Beijing, the annual change of τ_D tended to decrease from -0.004 to -0.002 $\tau_D yr^{-1}$ (Table 2). In case of Beijing, τ_D increased by 36.3% (0.0011 $\tau_D yr^{-1}$). In Europe, Middle East Asia, and North Africa, the annual rate of change increased from 0.002 to 0.0133 $\tau_D yr^{-1}$. The exception is Ilorin, where we find -0.3% (-0.0001 $\tau_D yr^{-1}$).
- 278 We assume that non-dust AOD values describe anthropogenic emissions and local biomass burning. 279 Anthropogenic emissions mainly belong to the fine-mode fraction of the particle size distribution; therefore, 280 denote their contribution to AOD as τ_{PF} . In contrast, locally emitted particles from biomass burning belong to 281 the coarse-mode fraction of pollution. We denote this part of AOD as τ_{PC} .
- 282 The annual average values of τ_{PC} slightly increased in Europe, North Africa, and India, and decreased in the
- 283 Middle East and Northeast Asia. We find values between -0.0015 and 0.0004 $\tau_{PC}yr^{-1}$. These numbers show that
- 284 we need to consider percent variations to compare the rate of change by region, because the rate of change depends
- 285 on the initial value. Especially, it is difficult to confirm the evident change of τ_{PC} in Europe and India. The
- 286 percent variation in Thessaloniki and Ballia was 11.9% and 10.5%, respectively.

287 The annual average value of τ_{PF} also varied by region. The mean changes of τ_{PF} (at 440 nm) for the observation 288 site in India show a clear tendency towards increasing values. We find 0.0055 $\tau_{PF} \gamma r^{-1}$ for Ballia and 0.0019 289 $\tau_{\rm PF} yr^{-1}$ for Kanpur. In the other regions, except for Erdemli (Europe), Ilorin, Tamanrasset (North Africa), and 290 Sede Boker (Middle East), the changes of mean τ_{PF} tended to decrease significantly compared to τ_D and τ_{PC} . 291 We find values between -0.0011 to -0.0142 $\tau_{PF}yr^{-1}$. The stations at Erdemli, Ilorin, Tamanrasset, and Sede 292 Boker showed a slight increase of τ_{PF} , i.e., 0.0005, 0.0024, 0.0001, and 0.0008 $\tau_{PF}yr^{-1}$, respectively. 293 In the next step, we analyzed changes of τ (increase and decrease) in terms of aerosol types. We used in our 294 analysis the percent variation of τ_T , τ_D , τ_{PC} , and τ_{PF} (see Equation 7), respectively. We find a decline of τ_T 295 and τ_{PF} in Europe. We find comparably high confidence levels of 95% (based on MK-test) for the stations in 296 Thessaloniki and Venice, see Table 3. In addition, the slope of τ_D in Thessaloniki and Venice (using the linear-297 regression method) was 0.0037 $\tau_D yr^{-1}$ and 0.0012 $\tau_D yr^{-1}$, but the percent variation was as high as 112.29% 298 (Thessaloniki) and 125.22% (Venice). 299 τ_T decreased for the Asian stations, in a similar fashion to the sites in Europe. However, this change of τ_T was 300 different for the Southeast and Northeast Asian stations if we take account of the aerosol types. 301 With respect to Southeast Asia, the decrease of τ_T seems to be mainly caused by a decrease in emissions of fine-302 mode particles. In Northeast Asia, changes in τ showed different characteristics according to region. The MK-303 test shows 95% confidence level for the trends observed for τ_T (Beijing and Osaka), τ_D (Osaka), τ_{PC} (Seoul 304 and Osaka), and τ_{PF} (Beijing and Osaka). 305 Non-dust coarse-mode particles are mainly emitted from sources related to anthropogenic activities, e.g., traffic 306 and plants. Regulations on emissions of air pollution thus may be responsible for the lower concentrations of this 307 type of coarse-mode particles (Bridhikitti and Overcamp, 2011; Mehta et al., 2018). 308 In the case of Beijing, which is affected by high levels of air pollution, $\tau_{\rm D}$ increased by 36.2% (0.0011 $\tau_{\rm D} yr^{-1}$). 309 The non-dust part of AOD, and particularly the AOD related to fine-mode particles (τ_{PF}), seemed to decrease by 310 -38.1% (-0.0142 $\tau_{\rm PF} vr^{-1}$). Thus, taking account of all three components, we find that the decrease of fine-mode 311 pollution mainly causes a decrease in total AOD. This result is similar to results reported in previous research (Li 312 et al., 2015). The authors show that black carbon in China decreased due to the strict policy of reduction of 313 pollution emissions. Li et al. (2015) furthermore stated that dust aerosol concentrations had increased between 314 2002 and 2006 but then remained constant between 2008 and 2013. 315 The annual change of τ_T for the stations in North Africa increased during (0.0006–0.0108 $\tau_D yr^{-1}$) over ten 316 more years. The exception is the station at Cinzana. The properties of the variations seem to be different for the 317 different regions. The percent variation of the τ_{T} increase at Tamanrasset is quite obviously related to a change of 318 τ_D . The Cape Verde and Ilorin stations showed a slightly increasing trend, most likely caused by a change of 319 coarse- and fine-mode particles. Cinzana is the only site of all North African stations where we find a decrease of 320 $\tau_T.$ This decrease seems to be driven by a decrease in $\,\tau_{PF}.$ 321 The $\tau_{\rm D}$ in the Middle East increased, which resulted in an increase of total optical depth. In the case of India, the 322 change of τ_T is related to a decrease in τ_D and an increase in τ_{PC} and τ_{PF} . The increase in τ_{PC} and τ_{PF} may

- be associated with new policies related to aerosol emissions in the Indian regions considered in this study (Khan
 et al., 2019; Yin et al., 2019).
 A comprehensive graph of the annual average, the overall increase, and the percent variation associated with total,
- 326 dust-only, and coarse- and fine-mode pollution AOD is presented in Figure 3.
- 327
- 328

329 3.2. Ångström Exponent and FMF: Annual Trends

330 Our analysis shows regional differences in aerosol type and size changes which can be inferred from annual mean 331 values of AOD, see Table 2. In addition to this result, we examined the change of particle size distribution, 332 especially that of fine-mode particles, more closely by using the Ångström exponent of total (α_T) and fine-mode 333 particles (α_{PF}) and the FMF (fine-mode fraction). The changes of α_T and α_{PF} also can be seen in supplementary 334 Figures S6 and S7. The value of $\alpha_{\rm PF}$ indicates the presence of anthropogenic pollution particles. FMF describes 335 the fraction of fine-mode particles compared to all particles in the atmospheric column observed by the sun 336 photometer (Table 2). Figure 4 shows the comprehensive results of the average value, the increasing rate, and the 337 percent variation of α_T and α_{PF} .

338 The α_T in Europe, North Africa, and the Middle East regions except Ilorin decreased during the research period 339 we analyzed. We find negative values ranging from -3.3% to -30.5%. FMF decreased by -3.7% to -21.1%. These 340 trends show that the particles on average became larger. This result is similar to the main findings discussed in 341 the previous section, where we showed that τ_D and τ_{PC} increased and τ_{PF} decreased. These changes are 342 associated with increased levels of dust particle concentration and reduced levels of fine-mode particles due to 343 climate change (Bridhikitti and Overcamp, 2011; Krasnov et al., 2014; Klingmüller et al., 2016) and 344 environmental regulations (Li et al., 2015; Mehta et al., 2018; Pozzer et al., 2019; Chirasophon and Pochanart, 345 2020). The Ilorin site in Nigeria is different from the other North African regions. Ilorin is located in the transition 346 zone between the humid tropical area (South Africa) and the semi-arid area (North Africa) (Ogunjobi et al., 2008; 347 Falaiye et al., 2015). This site also exhibits an increase in anthropogenic emissions caused by the rapid increase 348 of population and economic growth (Balarabe et al., 2016).

Additionally, we checked if changes of α_{PF} corroborate our assumption that characteristics of the size distribution of the fine-mode particles also changed. The values of α_{PF} in Europe, North Africa, and the Middle East except Erdemli (Turkey) and Mezaira (UAE) show positive trends, i.e., 0.0015 yr^{-1} to 0.0101 yr^{-1} . These increases indicate that the size of the fine-mode particles became smaller.

The annual mean of $\alpha_{\rm T}$ at Ballia and Kanpur increased in 0.0050 yr^{-1} (4.9%) and 0.0024 yr^{-1} (4.1%), respectively. These increases indicate that particle size became smaller. The increase of the FMF value corroborates this result. The values of $\alpha_{\rm PF}$ showed a positive trend at the Kanpur site, which means that finemode particles became smaller over the course of several years. The negative values of $\alpha_{\rm PF}$ in Ballia might be caused by the comparably few data points available for the first few years of observations (Supplementary Table S1). Kanpur is a highly polluted city in the Indo-Gangetic region (Chakraborty et al., 2015; Chen et al., 2016)

359 which may explain in large part the high concentration of small particles in this region.

360 In Southeast Asia, the values of $\alpha_{\rm T}$ increased. We find 0.0105 yr^{-1} (6.7%) at Chiang Mai and 0.0119 yr^{-1} 361 (8.0%) in Bangkok. $\alpha_{\rm PF}$ showed a more increasing trend compared to $\alpha_{\rm T}$ as 0.0163 yr⁻¹ (9.0%) and 0.0175 362 yr^{-1} (10.0%) at Chiang Mai and Bangkok, respectively. On the contrary, FMF showed a negative trend as -363 0.0022 (-0.9%) at Ching Mai and -0.0002 (-0.1%) at Bangkok. Considering that the major aerosols in Southeast 364 Asia are biomass burning aerosol and anthropogenic aerosol composed of fine-mode aerosol, it is estimated that 365 the particle size of these two types is continuously decreasing (Chirasophon et al., 2020; Bridhikitti et al., 2011; 366 Khan et al., 2019; Yin et al., 2019). 367 The values of α_T in Northeast Asia have a bit of difference to 1.3–13.3% depending on stations. For example, 368 Seoul and Taipei had highly positive increases of α_T . That positive increases could be related to reducing the dust 369 concentration, which would lead to a significant decrease of τ_{PC} compared to that of τ_{PF} . For Beijing, the α_T 370 slightly increased compared to the other sites. Our data show that τ_{D} increased. In addition, the decrease of τ_{PC} 371 was more significant than the decrease of τ_{PF} . Thus, we come to the conclusion that the increase of α_T most 372 likely was caused by a change in the atmosphere's dust load. 373 The $\alpha_{\rm PF}$ values in the Asian region increased by 2.3% to 13.1% (0.0024 to 0.0175 yr^{-1}) over the observation 374 periods considered in our study. The data indicate that fine-mode particle size became smaller over the years and 375 that this change might also be related to changes in the chemical composition of the pollution particles. Joo et al., 376 2021 reported that extinction efficiencies in Korea increased although the PM2.5 mass concentration decreased. 377 This result suggests that even though the $PM_{2.5}$ concentration decreased compared to the past, either particle size

378 of PM_{2.5} became smaller or the number of particles with high scattering efficiency increased. Uno et al., 2020 379 stated that the chemical composition of aerosols in East Asia changed significantly. With regard to regions 380 downwind of China, sulfate (accumulation mode) concentrations decreased significantly, and nitrate 381 (accumulation–coarse mode) concentrations increased (Plaza et al., 2011). These results show that there clearly 382 is a need to conduct more long-term studies on the relationship between aerosol mass and optical density, size 383 distribution, and chemical composition.

384

385 4. Summary and Conclusion

386 We analyzed trends in regional AOD based on separating aerosols into dust and coarse- and fine-mode pollution 387 particles for 17 AERONET observation sites. Mainly, we focused on the change in AOD and Ångström exponents 388 of fine-mode pollution particles (τ_{PF} and α_{PF}). The following key results were obtained:

- The change characteristics of τ_D , τ_{PC} , and τ_{PF} are different for each region. In Europe and Asia, the decrease in τ_T was remarkable due to effects caused by new air policies. The τ_D increased near the Sahara region.
- 392 The τ_{PF} mainly decreased in Europe and Southeast Asia, whereas τ_{PC} decreased in the Middle East and
- 393 Northeast Asia. τ_{PC} and τ_{PF} are related to non-dust AOD. Thus, we assume that changes related to the practical
- 394 policymaking have on air pollution emissions.

395 - The mean size of particle size distribution became larger in Europe, the Middle East, and North Africa because 396 of emissions of dust particles. On the other hand, the mean particle size became smaller in India and Southeast 397 Asia. We assume that this reduction of particle size is primarily related to the change in the concentration of fine-398 mode particles. 399 - The changes of α_{PF} show that the size of fine-mode particles emitted from anthropogenic pollution most likely 400 became smaller compared to particle size in past times in the regions we investigated here. We believed that the 401 size change of fine-mode particles might be related to secondary aerosols, and it can cause adverse effects on 402 visibility and human health. 403 404 Particle size and characteristics are essential to understanding air pollution and visibility and have changed over 405 the past decade or more, but few studies about those properties. Therefore, we need more studies paying attention 406 to changes in the size and quantity of fine-mode pollution particles to reflect air pollution policy. 407 408

409 Author contributions

JS1(J.Shin) and JS2(J.sim) analyzed data; ND, SJ, TK, GK collected resources; SS and DS advised the
methodology and curated data; YN supervised all the research; JS1 wrote the manuscript draft; DM, MT, and YN
wrote review and editing;

413

414

415 Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF). Funding was provided by the
Ministry of Science and ICT (MSIT) and the Ministry of Education (MOE), Republic of Korea (grant No.
2019M3E7A1113103).
We thank the PIs of the AERONET group for providing their data to the community. We would also like to thank
AERONET for their efforts in offering high-quality data and derivative products. All data used in this are in the
AERONET homepage at https://aeronet.gsfc.nasa.gov/

424 References

- 426 Balarabe, M., Abdullah, K., and Nawawi, M.: Seasonal Variations of Aerosol Optical Properties and
- 427 Identification of Different Aerosol Types Based on AERONET Data over Sub-Sahara West-Africa,
- 428 Atmospheric and Climate Sciences, 06, 13-28, 10.4236/acs.2016.61002, 2016.
- 429 Boselli, A., Caggiano, R., Cornacchia, C., Madonna, F., Mona, L., Macchiato, M., Pappalardo, G., and
- 430 Trippetta, S.: Multi year sun-photometer measurements for aerosol characterization in a Central
- 431 Mediterranean site, Atmospheric Research, 104, 98-110, 2012.
- 432 Bridhikitti, A. and Overcamp, T. J.: Optical characteristics of southeast Asia's regional aerosols and
- 433 their sources, Journal of the Air & Waste Management Association, 61, 747-754, 2011.
- 434 Burton, S., Vaughan, M., Ferrare, R., and Hostetler, C.: Separating mixtures of aerosol types in
- 435 airborne High Spectral Resolution Lidar data, Atmospheric Measurement Techniques, 7, 419-436, 436 2014
- 437 Chakraborty, A., Bhattu, D., Gupta, T., Tripathi, S. N., and Canagaratna, M. R.: Real-time
- 438 measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing
- 439 of organic aerosols during foggy and nonfoggy periods, Journal of Geophysical Research:
- 440 Atmospheres, 120, 9006-9019, 10.1002/2015jd023419, 2015.
- 441 Chen, H., Cheng, T., Gu, X., Li, Z., and Wu, Y.: Characteristics of aerosols over Beijing and Kanpur
- 442 derived from the AERONET dataset, Atmospheric Pollution Research, 7, 162-169,
- 443 10.1016/j.apr.2015.08.008, 2016.
- 444 Cheng, Y.-H. and Li, Y.-S.: Influences of Traffic Emissions and Meteorological Conditions on Ambient
- 445 PM10 and PM2.5 Levels at a Highway Toll Station, Aerosol and Air Quality Research, 10, 456-462, 446
- 10.4209/aagr.2010.04.0025, 2010.
- 447 Cherian, R. and Quaas, J.: Trends in AOD, Clouds, and Cloud Radiative Effects in Satellite Data and
- 448 CMIP5 and CMIP6 Model Simulations Over Aerosol Source Regions, Geophysical Research Letters, 449 47, 10.1029/2020gl087132, 2020.
- 450 Chirasophon, S. and Pochanart, P.: The Long-term Characteristics of PM10 and PM2.5 in Bangkok,
- 451 Thailand, Asian Journal of Atmospheric Environment, 14, 73-83, 10.5572/ajae.2020.14.1.073, 2020.
- 452 Collaud Coen, M., Andrews, E., Asmi, A., Baltensperger, U., Bukowiecki, N., Day, D., Fiebig, M.,
- 453 Fjaeraa, A. M., Flentje, H., Hyvärinen, A., Jefferson, A., Jennings, S. G., Kouvarakis, G., Lihavainen,
- 454 H., Lund Myhre, C., Malm, W. C., Mihapopoulos, N., Molenar, J. V., O'Dowd, C., Ogren, J. A.,
- 455 Schichtel, B. A., Sheridan, P., Virkkula, A., Weingartner, E., Weller, R., and Laj, P.: Aerosol decadal
- 456 trends - Part 1: In-situ optical measurements at GAW and IMPROVE stations, Atmospheric
- 457 Chemistry and Physics, 13, 869-894, 10.5194/acp-13-869-2013, 2013.
- 458 Dehkhoda, N., Noh, Y., and Joo, S.: Long-Term Variation of Black Carbon Absorption Aerosol Optical 459 Depth from AERONET Data over East Asia, Remote Sensing, 12, 3551, 2020.
- 460
- Dubovik, O., Holben, B., Lapyonok, T., Sinyuk, A., Mishchenko, M., Yang, P., and Slutsker, I.: Non-461
- spherical aerosol retrieval method employing light scattering by spheroids, Geophysical Research 462 Letters, 29, 54-51-54-54, 2002.
- 463 Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H.,
- 464 Munoz, O., and Veihelmann, B.: Application of spheroid models to account for aerosol particle
- 465 nonsphericity in remote sensing of desert dust, Journal of Geophysical Research: Atmospheres, 111, 466 2006.
- 467 El-Metwally, M., Korany, M., Boraiy, M., Ebada, E., Wahab, M. A., Hungershoefer, K., and Alfaro, S.:
- 468 Evidence of anthropization of aerosols in the Saharan and peri-Saharan regions: Implications for the
- 469 atmospheric transfer of solar radiation, Journal of Atmospheric and Solar-Terrestrial Physics, 199, 470
- 105199, 2020.
- 471 Falaiye, A., Babatunde, E., and Willoughby, A.: Atmospheric aerosol loading at llorin, a tropical
- 472 station, The African Review of Physics, 9, 2015.
- 473 Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D.,
- 474 Althausen, D., Wirth, M., and Fix, A.: Depolarization ratio profiling at several wavelengths in pure

- 475 Saharan dust during SAMUM 2006, Tellus B: Chemical and Physical Meteorology, 61, 165-179, 2009.
- 476 Han, T., Xu, W., Chen, C., Liu, X., Wang, Q., Li, J., Zhao, X., Du, W., Wang, Z., and Sun, Y.: Chemical
- 477 apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in
- 478 Beijing, China, Journal of Geophysical Research: Atmospheres, 120, 12,281-212,295, 2015.
- 479 Hatakeyama, S.: Aerosols, in: Air Pollution Impacts on Plants in East Asia, Springer, 21-42, 2017. 480
- IPCC: Climate Change and Land: an IPCC special report on climate change, desertification, land 481
- degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial 482 ecosystems, 2019.
- 483 Janjai, S., Nunez, M., Masiri, I., Wattan, R., Buntoung, S., Jantarach, T., and Promsen, W.: Aerosol
- 484 optical properties at four sites in Thailand, Atmospheric and Climate Sciences, 2, 441, 2012.
- 485 Joo, S., Naghmeh, D., and Noh, Y.: A Study on the Characteristic Variations of Fine Particle in Busan
- 486 and Ulsan through Particle Extinction Efficiency Analysis, Journal of Korean Society for Atmospheric
- 487 Environment, 37, 80-90, 10.5572/kosae.2021.37.1.080, 2021.
- 488 Kendall, M.: Rank Correlation Methods, Charles Griffin, London (1975), Google Sch, 1975.
- 489 Khan, R., Kumar, K. R., and Zhao, T.: The climatology of aerosol optical thickness and radiative
- 490 effects in Southeast Asia from 18-years of ground-based observations, Environmental Pollution, 254, 491 113025, 2019.
- 492 Kitamori, Y., Mochida, M., and Kawamura, K.: Assessment of the aerosol water content in urban
- 493 atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan, Atmospheric
- 494 Environment, 43, 3416-3423, 10.1016/j.atmosenv.2009.03.037, 2009.
- 495 Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L., and Lelieveld, J.: Aerosol optical depth
- 496 trend over the Middle East, Atmospheric Chemistry and Physics, 16, 5063-5073, 10.5194/acp-16-5063-497 2016, 2016.
- 498 Kong, L., Du, C., Zhanzakova, A., Cheng, T., Yang, X., Wang, L., Fu, H., Chen, J., and Zhang, S.:
- 499 Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-500 depth case study, Sci Total Environ, 634, 1192-1204, 10.1016/j.scitotenv.2018.04.086, 2018.
- 501 Krasnov, H., Katra, I., Koutrakis, P., and Friger, M. D.: Contribution of dust storms to PM10 levels in
- 502 an urban arid environment, Journal of the Air & Waste Management Association, 64, 89-94, 2014.
- 503 Kudo, S., Iijima, A., Kumagai, K., Tago, H., and Ichijo, M.: An exhaustive classification for the
- 504 seasonal variation of organic peaks in the atmospheric fine particles obtained by a gas
- 505 chromatography/mass spectrometry, Environmental Technology & Innovation, 12, 14-26, 2018.
- 506 Lee, K.-H., Muller, D., Noh, Y.-M., Shin, S.-K., and Shin, D.-H.: Depolarization ratio retrievals using
- 507 AERONET sun photometer data, Journal of the Optical Society of Korea, 14, 178-184, 2010.
- 508 Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to
- 509 Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, Journal of Geophysical 510
- Research: Atmospheres, 112, 2007.
- 511 Li, J., Carlson, B. E., Dubovik, O., and Lacis, A. A.: Recent trends in aerosol optical properties derived
- 512 from AERONET measurements, Atmospheric Chemistry and Physics, 14, 12271-12289, 10.5194/acp-513 14-12271-2014, 2014.
- 514 Li, Z., Li, L., Zhang, F., Li, D., Xie, Y., and Xu, H.: Comparison of aerosol properties over Beijing and
- 515 Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years
- 516 ground-based Sun-sky radiometer remote sensing data, Journal of Geophysical Research:
- 517 Atmospheres, 120, 1520-1535, 10.1002/2014jd022593, 2015.
- 518 Liu, D., Zhao, T., Boiyo, R., Chen, S., Lu, Z., Wu, Y., and Zhao, Y.: Vertical Structures of Dust Aerosols 519 over East Asia Based on CALIPSO Retrievals, Remote Sensing, 11, 10.3390/rs11060701, 2019.
- 520 Liu, J., Ren, C., Huang, X., Nie, W., Wang, J., Sun, P., Chi, X., and Ding, A.: Increased Aerosol
- 521 Extinction Efficiency Hinders Visibility Improvement in Eastern China, Geophysical Research Letters,
- 522 47, 10.1029/2020gl090167, 2020.
- 523 Logothetis, S.-A., Salamalikis, V., and Kazantzidis, A.: Aerosol classification in Europe, Middle East,
- 524 North Africa and Arabian Peninsula based on AERONET Version 3, Atmospheric Research, 239,
- 525 10.1016/j.atmosres.2020.104893, 2020.
- 526 Loomis, D., Grosse, Y., Lauby-Secretan, B., Ghissassi, F. E., Bouvard, V., Benbrahim-Tallaa, L., Guha,

- 527 N., Baan, R., Mattock, H., and Straif, K.: The carcinogenicity of outdoor air pollution, The Lancet
- 528 Oncology, 14, 1262-1263, 10.1016/s1470-2045(13)70487-x, 2013.
- 529 Maghrabi, A. and Alotaibi, R.: Long-term variations of AOD from an AERONET station in the central
- 530 Arabian Peninsula, Theoretical and Applied Climatology, 134, 1015-1026, 2018.
- 531 Mann, H. B.: Nonparametric tests against trend, Econometrica: Journal of the econometric society, 532 245-259, 1945.
- 533 Mehta, M., Singh, N., and Anshumali: Global trends of columnar and vertically distributed properties
- 534 of aerosols with emphasis on dust, polluted dust and smoke - inferences from 10-year long CALIOP
- 535 observations, Remote Sensing of Environment, 208, 120-132, 10.1016/j.rse.2018.02.017, 2018.
- 536 Mesquita, S. R., Dachs, J., van Drooge, B. L., Castro-Jimenez, J., Navarro-Martin, L., Barata, C., Vieira,
- 537 N., Guimaraes, L., and Pina, B.: Toxicity assessment of atmospheric particulate matter in the
- 538 Mediterranean and Black Seas open waters, Sci Total Environ, 545-546, 163-170,
- 539 10.1016/j.scitotenv.2015.12.055, 2016.
- 540 Mielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., De Leeuw, G., and Lehtinen, K.:
- 541 Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion 542 data, Geophysical Research Letters, 36, 2009.
- 543 Noh, Y., Müller, D., Lee, K., Kim, K., Lee, K., Shimizu, A., Sano, I., and Park, C. B.: Depolarization
- 544 ratios retrieved by AERONET sun-sky radiometer data and comparison to depolarization ratios 545 measured with lidar, Atmospheric Chemistry and Physics, 17, 6271-6290, 2017.
- 546 Noh, Y. M.: Single-scattering albedo profiling of mixed Asian dust plumes with multiwavelength 547 Raman lidar, Atmospheric Environment, 95, 305-317, 2014.
- 548 Noh, Y. M., Müller, D., Mattis, I., Lee, H., and Kim, Y. J.: Vertically resolved light-absorption
- 549 characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman
- 550 lidar observations of East Asian aerosol types over Korea, Journal of Geophysical Research: 551 Atmospheres, 116, 2011.
- 552 Ogunjobi, K. O., He, Z., and Simmer, C.: Spectral aerosol optical properties from AERONET Sun-
- 553 photometric measurements over West Africa, Atmospheric Research, 88, 89-107,
- 554 10.1016/j.atmosres.2007.10.004, 2008.
- 555 Omar, A. H., Won, J. G., Winker, D. M., Yoon, S. C., Dubovik, O., and McCormick, M. P.:
- 556 Development of global aerosol models using cluster analysis of Aerosol Robotic Network
- 557 (AERONET) measurements, Journal of Geophysical Research: Atmospheres, 110, 2005.
- 558 Pilahome, O., Homchampa, C., and Kumharn, W.: Trends of Climate Variables and Aerosol optical
- 559 Depth in Thailand, IOP Conference Series: Earth and Environmental Science, 012029,
- 560 Plaza, J., Pujadas, M., Gómez-Moreno, F., Sánchez, M., and Artíñano, B.: Mass size distributions of
- 561 soluble sulfate, nitrate and ammonium in the Madrid urban aerosol, Atmospheric environment, 45, 562 4966-4976, 2011.
- 563 Pozzer, A., Bacer, S., Sappadina, S. D. Z., Predicatori, F., and Caleffi, A.: Long-term concentrations of
- 564 fine particulate matter and impact on human health in Verona, Italy, Atmospheric Pollution Research, 565 10, 731-738, 10.1016/j.apr.2018.11.012, 2019.
- 566 Ram, K., Sarin, M., and Tripathi, S.: A 1 year record of carbonaceous aerosols from an urban site in the
- 567 Indo-Gangetic Plain: Characterization, sources, and temporal variability, Journal of Geophysical 568 Research: Atmospheres, 115, 2010.
- 569 Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nature 570 Geoscience, 1, 221-227, 2008.
- 571 Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., and Winker, D.:
- 572 Warming trends in Asia amplified by brown cloud solar absorption, Nature, 448, 575-578,
- 573 10.1038/nature06019, 2007.
- 574 Russell, P., Bergstrom, R., Shinozuka, Y., Clarke, A., DeCarlo, P., Jimenez, J., Livingston, J.,
- 575 Redemann, J., Dubovik, O., and Strawa, A.: Absorption Angstrom Exponent in AERONET and
- 576 related data as an indicator of aerosol composition, Atmospheric Chemistry and Physics, 10, 1155-577 1169, 2010.
- 578 Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., and Amnell, T.: Detecting trends of annual values

- 579 of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates MAKESENS-The excel
- 580 template application, Finish Meteorological Institute, Helsinki, 2002.
- 581 Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., De Matteis, S., Jung, S. H., Mortimer, K., Perez-Padilla,
- 582 R., Rice, M. B., Riojas-Rodriguez, H., Sood, A., Thurston, G. D., To, T., Vanker, A., and Wuebbles, D.
- 583 J.: Air Pollution and Noncommunicable Diseases: A Review by the Forum of International
- 584 Respiratory Societies' Environmental Committee, Part 1: The Damaging Effects of Air Pollution,
- 585 Chest, 155, 409-416, 10.1016/j.chest.2018.10.042, 2019.
- 586 Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K.,
- 587 Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust and other aerosols by
- 588 polarization lidars in China and Japan during ACE-Asia, Journal of Geophysical Research:
- 589 Atmospheres, 109, 2004.
- 590 Shin, S.-K., Tesche, M., Noh, Y., and Müller, D.: Aerosol-type classification based on AERONET
 591 version 3 inversion products, Atmospheric Measurement Techniques, 12, 3789-3803, 2019.
- Shin, S.-K., Müller, D., Lee, C., Lee, K., Shin, D., Kim, Y., and Noh, Y.: Vertical variation of optical
- 592 properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over
- East Asia, Atmospheric Chemistry and Physics, 15, 6707-6720, 2015.
- Shin, S.-K., Tesche, M., Kim, K., Kezoudi, M., Tatarov, B., Müller, D., and Noh, Y.: On the spectral
 depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product,
- 597 Atmospheric Chemistry and Physics, 18, 12735-12746, 2018.
- 598 Srivastava, A. and Saran, S.: Comprehensive study on AOD trends over the Indian subcontinent: a
- 599 statistical approach, International Journal of Remote Sensing, 38, 5127-5149,
- 600 10.1080/01431161.2017.1323284, 2017.
- Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P. W., Deng, X., and Wu, D.: An analysis of aerosol
- liquid water content and related impact factors in Pearl River Delta, Sci Total Environ, 579, 1822-1830,
 10.1016/j.scitotenv.2016.11.167, 2017.
- 604 Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Freudenthaler, V., and Groß, S.:
- 605Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman606and polarization lidars during Saharan Mineral Dust Experiment 2008, Journal of Geophysical
- 607 Research: Atmospheres, 114, 2009.
- Uno, I., Wang, Z., Itahashi, S., Yumimoto, K., Yamamura, Y., Yoshino, A., Takami, A., Hayasaki, M.,
 and Kim, B.-G.: Paradigm shift in aerosol chemical composition over regions downwind of China,
 Scientific reports, 10, 1-11, 2020.
- 611 Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C. E., Wang, Y., Nenes, A.,
- 612 Zhao, Q., and Russell, A. G.: Aerosols in an arid environment: The role of aerosol water content,
- 613 particulate acidity, precursors, and relative humidity on secondary inorganic aerosols, Sci Total
- 614 Environ, 646, 564-572, 10.1016/j.scitotenv.2018.07.321, 2019.
- 615 Wang, S.-H., Welton, E. J., Holben, B. N., Tsay, S.-C., Lin, N.-H., Giles, D., Buntoung, S., Chantara, S.,
- 616 Wiriya, W., Stewart, S. A., Janjai, S., Nguyen, X. A., Hsiao, T.-C., Chen, W.-N., and Lin, T.-H.: Vertical
- 617 Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over
- Northern Indochina during 2014 7-SEAS Campaign, Aerosol and Air Quality Research, 15, 2037-2050,
 10.4209/aaqr.2015.05.0310, 2015.
- 620 WHO: WHO expert consultation: available evidence for the future update of the WHO Global Air
- 621 Quality Guidelines (AQGs): meeting report Bonn, Germany 29 September-1 October 2015, World
- 622 Health Organization. Regional Office for Europe, 2016.
- 623 WHO: WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen
- 624 dioxide, sulfur dioxide and carbon monoxide: executive summary, 2021.
- Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang,
 S., Sun, Z., and Xu, B.: Characteristics of the secondary water-soluble ions in a typical autumn haze in
- S., Sun, Z., and Xu, B.: Characteristics of the secondary water-soluble ions in a typical autumn haze in
 Beijing, Environ Pollut, 227, 296-305, 10.1016/j.envpol.2017.04.076, 2017.
- 628 Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Effect of nitrate and sulfate relative
- 629 abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic
- 630 soluble aerosols at a polluted receptor site, Atmospheric Environment, 99, 24-31,

- 631 10.1016/j.atmosenv.2014.09.049, 2014.
- Yang, X., Jiang, L., Zhao, W., Xiong, Q., Zhao, W., and Yan, X.: Comparison of Ground-Based PM2.5
- and PM10 Concentrations in China, India, and the U.S, Int J Environ Res Public Health, 15,
- 634 10.3390/ijerph15071382, 2018.
- 635 Yin, S., Wang, X., Zhang, X., Guo, M., Miura, M., and Xiao, Y.: Influence of biomass burning on local
- 636 air pollution in mainland Southeast Asia from 2001 to 2016, Environ Pollut, 254, 112949,
- 636 air pollution in mainland Southeast A
 637 10.1016/j.envpol.2019.07.117, 2019.

638

640 Figure and Table

- 641 Figure 1. Location of the AERONET Sun/sky radiometer stations considered in our research work. Different
- 642 colors indicate the regional locations, i.e., purple (Europe), pink (North Africa), blue (the Middle East), yellow
- 643 (India), red (Southeast Asia), and green (Northeast Asia).

- ---

- 647 Figure 2. Aerosol type classification expressed in terms of PD (pure dust), DDM (dust dominant mixture), PDM
- 648 (pollution dominant mixture), and pollution aerosols, and classified in terms of NA (non-absorbing), WA (weakly
- 649 absorbing), MA (moderately absorbing), and SA (strongly absorbing).

- 651 Figure 3. (a) Average AOD in terms of dust and coarse- and fine-mode pollution AOD, and the change of annual
- 652 values of (b) total AOD (τ_T), (c) dust-only AOD (τ_D), (d) coarse-mode pollution AOD (τ_{PC}), and (e) fine-mode
- 653 pollution AOD (τ_{PF}). The values inside the brackets present the percent variation for each of the 17 sites.

- 656 Figure 4. Average Ångström exponent (α) of (a) total and (b) fine-mode pollution particles, and the change of the
- $657 \qquad \text{annual values of the (c) total Ångström exponent } (\alpha_T) \text{ and } (d) \text{ fine-mode pollution Ångström exponent } (\alpha_{PF}). The$

values inside the brackets present the percent variation for each of the 17 sites.

659

- $661 \qquad \text{Table 1. Average and standard deviation of aerosol optical depth of total } (\tau_T), \, \text{dust } (\tau_D), \, \text{coarse-mode}$
- $662 \qquad \text{particles} \ (\tau_{PC}) \ \text{and fine-mode particles} \ (\tau_{PF}) \ \text{at 440 nm, and} \ \mathring{A} ngström \ exponent \ (440-870 \ nm) \ of \ total \ (\alpha_T)$

and fine-mode particles (α_{PF}), and fine-mode fraction (FMF) for the period 2001–2018.

Site	τ _T (440 nm)	τ _D (440 nm)	τ _{PC} (440 nm)	τ _{PF} (440 nm)	α _T	α_{PF}	FMF
					(440-870 nm)	(440-870 nm)	
Thessaloniki	0.48±0.12	0.04±0.08	0.04±0.02	0.42±0.14	1.49±0.42	1.99±0.23	0.91±0.19
Venice	0.54 ± 0.22	0.02±0.05	0.02±0.02	0.51±0.22	1.51 ±0.28	1.77±0.27	0.96±0.14
Erdemli	0.51±0.13	0.06±0.10	0.06±0.04	0.40±0.12	1.23±0.37	1.90±0.19	0.87 ± 0.18
Cape Verde	0.62±0.25	0.41±0.21	0.12±0.05	0.19±0.08	0.19±0.16	1.56±0.25	0.35±0.15
Cinzana	0.69±0.34	0.46±0.30	0.10±0.07	0.23±0.11	0.27±0.21	1.63±0.24	0.36±0.18
Ilorin	1.04 ± 0.48	0.40±0.30	0.20±0.14	0.51±0.23	0.60±0.31	1.90±0.22	0.61±0.20
Tamanrasset	0.69±0.36	0.53±0.35	0.11±0.06	0.17±0.07	0.13±0.09	1.59±0.20	0.27±0.15
Sede Boker	0.49±0.20	0.23±0.22	0.08±0.05	0.22±0.09	0.57±0.43	1.78±0.27	0.56±0.28
Mezaira	0.56±0.21	0.28±0.23	0.09±0.05	0.26±0.10	0.54±0.35	1.85±0.19	0.53±0.25
Ballia	0.82±0.31	0.13±0.14	0.11±0.07	0.61±0.31	1.01±0.34	1.83±0.23	0.82±0.19
Kanpur	0.80±0.34	0.13±0.19	0.100.06	0.60±0.37	0.99±0.39	1.76±0.27	0.82±0.23
Chiang Mai	0.93±0.54	0.01±0.02	0.05±0.04	0.88±0.53	1.57±0.19	1.81±0.20	0.98±0.11
Bangkok	0.76±0.33	0.01±0.02	0.04±0.02	0.71±0.32	1.49±0.19	1.74±0.21	0.98±0.10
Beijing	1.22±0.76	0.08±0.16	0.10±0.07	1.06±0.76	1.14±0.31	1.63±0.31	0.90±0.18
Seoul	0.73±0.37	0.05 ± 0.08	0.04±0.04	0.65±0.37	1.26±0.29	1.68±0.28	0.92±0.15
Osaka	0.58±0.21	0.04±0.08	0.04±0.02	0.51±0.21	1.36±0.31	1.81±0.22	0.92±0.14
Taipei	0.69±0.30	0.01±0.03	0.04±0.02	0.64±0.30	1.34±0.20	1.59±0.24	0.98±0.09

- 665 Table 2. Change of the annual value $(\tau y r^{-1} \text{ or } y r^{-1})$ and the percent variation (%) of τ_T , τ_D , τ_{PC} , τ_{PF} ,
- 666 FMF, α_T and α_{PF} based on the slope obtained from linear regression method. The wavelength of τ_T , τ_D ,
- $667~\tau_{PC},$ and $\tau_{PF}~$ is 440 nm and that of $\,\alpha_{T}\,$ and $\,\alpha_{PF}\,$ ranges from 440 nm to 870 nm.

Region	Site	τ _T	τ _D	τ _{PC}	τ _{PF}	FMF	α _T	α_{PF}
_		(%	(%	(%	(%	(%	(%	(%
		variation)	variation)	variation)	variation)	variation)	variation)	variation)
Europe	Thessaloniki	-0.0055	0.0037	0.0003	-0.0084	-0.0111	-0.0155	0.0073
		(-17.6)	(112.3)	(11.9)	(-28.9)	(-18.2)	(-14.9)	(5.1)
	Venice	-0.0087	0.0012	0.0000	-0.0096	-0.0032	-0.0040	0.0015
		(-29.5)	(125.2)	(0.0)	(-35.0)	(-6.2)	(-4.8)	(1.5)
	Erdemli	0.0010	0.0010	-0.0002	0.0005	-0.0029	-0.0055	-0.0060
		(2.2)	(17.2)	(-3.5)	(1.2)	(-15.6)	(-4.4)	(-3.2)
North	Cape Verde	0.0011	0.0002	0.0021	-0.0018	-0.0025	-0.0004	0.0101
Africa		(2.8)	(0.8)	(28.7)	(-15.3)	(-11.4)	(-3.5)	(9.5)
	Cinzana	-0.0006	0.0008	0.0004	-0.0019	-0.0018	-0.0030	0.0052
		(-1.3)	(2.6)	(2.8)	(-12.6)	(-4.1)	(-16.8)	(4.7)
	Ilorin	0.0006	-0.0001	-0.0015	0.0024	0.0025	0.0046	0.0093
		(0.6)	(-0.3)	(-8.4)	(5.2)	(9.4)	(8.7)	(5.4)
	Tamanrasset	0.0108	0.0133	0.0001	0.0001	-0.0030	-0.0035	0.0015
		(14.0)	(22.5)	(0.8)	(0.5)	(-3.7)	(-24.1)	(0.8)
Middle	Sede Boker	0.0020	0.0020	-0.0004	0.0008	-0.0017	-0.0012	0.0052
East		(6.1)	(12.3)	(-7.1)	(5.4)	(-5.4)	(-3.3)	(4.4)
	Mezaira	0.0049	0.0085	-0.0001	-0.0014	-0.0093	-0.0157	-0.0119
		(9.6)	(34.1)	(-1.3)	(-5.8)	(-21.1)	(-30.5)	(-7.1)
India	Ballia	0.0048	-0.0022	0.0011	0.0055	0.0046	0.0050	-0.0047
		(5.8)	(-19.7)	(10.5)	(9.2)	(6.4)	(4.9)	(-2.6)
	Kanpur	0.0069	-0.0018	0.0002	0.0019	0.0032	0.0024	0.0031
		(14.7)	(-23.5)	(3.5)	(5.4)	(7.3)	(4.1)	(3.0)
Southeast	Chiang Mai	-0.0039	0.0000	-0.0000	-0.0039	-0.0022	0.0105	0.0163
Asia		(-4.1)	(0.0)	(-0.0)	(-4.4)	(-0.9)	(6.7)	(9.0)
	Bangkok	-0.0012	0.0000	-0.0000	-0.0018	-0.0002	0.0119	0.0175
		(-1.6)	(0.0)	(-0.0)	(-2.5)	(-0.1)	(8.0)	(10.0)
Northeast	Beijing	-0.0138	0.0011	-0.0005	-0.0142	-0.0023	0.0014	0.0122
Asia		(-33.0)	(36.3)	(-18.9)	(-38.1)	(-4.6)	(2.1)	(13.1)
	Seoul	-0.0034	-0.0017	-0.0010	-0.0011	0.0032	0.0095	0.0024
		(-4.5)	(-34.8)	(-16.4)	(-1.7)	(5.9)	(13.3)	(2.3)
	Osaka	-0.0096	-0.0008	-0.0008	-0.0090	-0.0020	0.0020	0.0065
		(-14.9)	(-17.6)	(-18.4)	(-16.0)	(-2.1)	(1.3)	(3.2)
	Taipei	-0.0049	-0.0004	-0.0008	-0.0037	0.0009	0.0104	0.0069
	_	(-9.5)	(-53.0)	(-29.4)	(-7.7)	(1.3)	(10.0)	(5.6)

668

669

670

- 672 Table 3. MK-test results in terms of number of data points (n), Z-value, p-value, and Sen's slope (S) of τ
- 673 (440 nm) according to aerosol type. The Z-value follows the standard normal distribution and explains the
- 674 significance of the trend. The p-value decides on the significance of the hypothesis (from highly likely to
- 675 highly unlikely) depending on the significance level. S is Sen's slope estimator and means the degree of

676 increase or d	lecrease in trend.	(* denotes clear t	rend with 95%	confidence 1	evel,	z > 1.	96)
-------------------	--------------------	--------------------	---------------	--------------	-------	---------	-----

Region	Site	n	τ _T		τ _D			τ _{PC}			$\tau_{\rm PF}$			
			Z	Р	S	Z	р	S	Z	р	S	Z	р	S
Europe	Thessaloniki	14	-	0.0118	-	13139	0.1889	0.0034	02190	0.8267	0.0001	-	0.0031	-
			25183*		0.0050							29562*		0.0080
	Venice	18		0.0024	-	2.3484°	0.0189	0.0013	-0.0758	0.9396	-0.0001		0.0009	-
			3.0302°		0.0084							33332"		0.0109
	Erdemli	10	0.1789	0.8580	0.0009	0.3578	0.7205	0.0006	-0.3578	0.7205	-0.0009	0.0000	1.0000	- 0.0003
North Africa	Cape Verde	16	0.0000	1.0000	- 0.0000	0.0450	0.9641	0.0002	2.1161*	0.0343	00019	- 1.2156	0.2241	- 0.0012
	Cinzana	15	- 0.0990	09212	- 0.0011	-0.0990	09212	- 0.0004	0.0000	1.0000	00002	- 1.1396	02545	- 0.0021
	Ilorin	11	- 03114	0.7555	- 0.0011	00000	1.0000	- 0.0011	-0.4671	0.6404	-0.0035	0.0000	1.0000	0.0029
	Tamanrasset	9	15639	0.1179	0.0134	13553	0.1753	0.0135	0.7298	0.4655	00013	05213	0.6022	0.0023
Middle East	Sede Boker	15	0.7918	0.4285	0.0023	0.3959	0.6922	0.0026	0.0000	1.0000	-0.0000	0.4949	0.6207	0.0013
	Mezaira	11	1.0899	0.2758	0.0081	09342	0.3502	0.0084	-03114	0.7555	- 0.00031	0.0000	1.0000	- 0.0000
India	Ballia	10	0.8944	03711	0.0130	-0.3578	0.7205	- 0.0024	0.0000	1.0000	0.00048	1.0733	0.2831	0.0188
	Kanpur	17	27599°	0.0058	0.0094	-1.0298	0.3031	- 0.0026	0.0000	1.0000	0.00000	2.0184°	0.0436	0.0103
Southeast Asia	Chiang Mai	9	0.7298	0.4655	0.0074	-0.1789	0.8580	00001	0.3578	0.7205	0.00052	0.1789	0.8580	0.0026
	Bangkok	9	1,9809*	0.0476	0.0099	-0.5367	0.5915	- 0.0002	0.0000	1.0000	- 0.00001	1.0733	0.2831	0.0065
Northeast Asia	Beijing	16	21161*	0.0343	0.0148	0.4953	0.6204	0.0015	-0.4953	0.6204	- 0.00047	2.1161*	0.0343	- 0.0144
	Seoul	18	- 0.6818	0.4954	0.0042	-1.3636	0.1727	0.0012	29545°	0.0031	- 0.00117	0.6060	0.5445	0.0029
	Osaka	9	- 3.0235°	0.0025	- 0.0209	2.3062*	0.0211	- 0.0019	- 23062*	0.0211	- 0.00193	- 32320*	0.0012	- 0.0206
	Taipei	13	- 1.4032	0.1606	- 0.0091	- 0.79312	0.4277	- 0.0004	-1.2812	02001	- 0.00114	- 1.1592	02464	- 0.0076

678 Table 4. MK-test results in terms of number of data points (m), Z value, p-value, and Sen's slope (S) of

679 FMF, α_T and α_{PF} . Meaning of parameters same as in Table 4. (* denotes that clear trend with 95%

12 > 1.90 and $12 > 1.90$ and $12 > 1.90$ and $12 > 1.90$ and $12 > 1.90$	680	confidence level, $ z > 1.96$ and **	means clear trend with 90%	confidence level, $ z >$	1.65)
---	-----	---------------------------------------	----------------------------	---------------------------	-------

Region	Site	n		FMF			α_{T}			α_{PF}	
			Z	р	S	Z	р	S	Z	р	S
Europe	Thessaloniki	14	-2.1898*	0.0285	-0.0108	-1.4234	0.1546	-0.0168	1.0949	0.2736	0.0075
	Venice	18	-2.1969*	0.0280	-0.0031	-0.9848	0.3247	-0.0058	-0.3030	0.7619	-0.0020
	Erdemli	10	-0.3578	0.7205	-0.0019	-0.3578	0.7205	-0.0087	-0.5367	0.5915	-0.0083
North Africa	Cape Verde	16	-1.8459**	0.0649	-0.0028	-0.1351	0.8926	-0.0008	2.5733*	0.0101	0.0141
	Cinzana	15	-0.5939	0.5526	-0.0013	-1.1877	0.2350	-0.0031	1.4846	0.1376	0.0073
	Ilorin	11	0.1557	0.8763	0.0027	0.1557	0.8763	0.0053	1.8684**	0.0617	0.0115
	Tamanrasset	9	-0.7298	0.4655	-0.0033	-0.9383	0.3481	-0.0050	0.0000	1.0000	-0.0006
Middle East	Sede Boker	15	-0.0990	0.9212	-0.0020	0.0990	0.9212	0.0006	1.2867	0.6207	0.0075
	Mezaira	11	-0.4671	0.6404	-0.0097	-0.7785	0.4363	-0.0121	-1.5570	0.1195	-0.0203
India	Ballia	10	0.1789	0.8580	0.0050	0.1789	0.8580	0.0068	-0.5367	0.5915	-0.0026
	Kanpur	17	1.3594	0.1740	0.0048	0.6179	0.5366	0.0048	-0.2060	0.8368	-0.0008
Southeast Asia	Chiang Mai	10	0.0000	1.0000	0.0006	0.6179	0.5366	0.0128	1.9677*	0.0491	0.0157
	Bangkok	10	0.3578	0.7205	0.0005	1.6100	0.1074	0.0120	2,3255*	0.0200	0.0199
Northeast Asia	Beijing	16	-0.5939	0.5526	-0.0026	0.7654	0.4440	0.0019	2,9265*	0.0034	0.0119
	Seoul	18	1.6666**	0.0956	0.0021	2.2727*	0.0231	0.0095	0.9848	0.3247	0.0022
	Osaka	9	-0.7298	0.4655	-0.0011	0.1043	0.9170	0.0006	1.1468	0.2515	0.0109
	Taipei	13	0.7931	0.4277	0.0016	3.5995*	0.0003	0.0113	1.4032	0.1606	0.0089

681

682