Supplement of

Estimating global ammonia (NH₃) emissions based on IASI observations from 2008 to 2018

4

5 Zhenqi Luo et al.

6 *Correspondence to*: Y. Zhang (zhangyuzhong@westlake.edu.cn), Z. Luo (zl725@cornell.edu)

7 Supplementary

8 Table S1. Uncertainty and sensitivity analyses of top-down NH₃ emissions. Annual averaged NH₃ emissions are

9 summed over global land areas for 2008–2018.

	Parameter perturbed	Average emission (Tg a ⁻¹)
0	TDE ^a	79
1	Halved lifetime ^b	96
2	Doubled lifetime ^c	71
3	Upper IASI column error	84
4	Lower IASI column error	75
5	Number of retrievals > 400 ^d	84
6	Number of retrievals > 1200 ^e	76
7	Transport/Emission $< 0.2^{\rm f}$	74
8	Transport/Emission < 5 ^g	86

10 ^aExcluding a grid cell if retrieval number is less than 800 during a month, or transport dominates over

11 emissions or depositions in the simulated monthly NH₃ budget.

12 ^{b-c}The lifetime is 50 % and 200 % of values from Eq. (1), respectively.

¹³ ^{d-e}Monthly retrieval number threshold for including a grid cell is set to be 400 and 1200, respectively.

^{f-g}Local budget ratio the threshold for including a grid cell is set to be 0.2 and 5, respectively.

15 Table 2. Consistency evaluation of simulated NH₃ concentrations against IASI observations using full-chemistry

16 simulations driven by different emission datasets (BUE1 and TDE) in 2008, 2013 and 2018.

	number				
	of				
Year	grids	Emission	\mathbb{R}^2	RMSE ^a	FB

1

		TDE	0.32	12.44	0.18
2008	9971	BUE1	0.40	7.83	-
					0.30
		TDE	0.54	7.34	0.08
2013	8957	BUE1	0.37	8.02	-
					0.19
		TDE	0.62	8.54	0.08
2018	8599	BUE1	0.31	10.55	-
					0.32

 $17 a In 10^{-5} mol m^{-2}$.

18

22 Figure S2. Annual anthropogenic emissions of NH₃, NO₂ and SO₂ from BUE1 for seven selected regions between

23 2008-2018. Average annual emissions (Tg a⁻¹) for 2008-2013 and 2014-2018 are inset.

25 Figure S3. Spatial distribution of (a) positive transport to emission and (b) negative transport to deposition ratios

26 during 2008-2018.

24

27

Figure S4. Annual average of simulated (a) SO₂ and (b) SO_4^{2-} over IP and EC (two regions in Fig. 2) during 2008-

29 2018. The simulation is driven by BUE1 (Fig. S2). Relative linear trends and their p values for 2012-2018 are inset.

30 1 DU = 2.69×10^{16} molecules cm⁻².

31