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Abstract. Emissions of ammonia (NH3) to the atmosphere impact human health, climate, and ecosystems through their 14 

critical contributions to secondary aerosol formation. Estimation of NH3 emissions is associated with large uncertainties 15 

because of inadequate knowledge about agricultural sources. Here, we use satellite observations from the Infrared 16 

Atmospheric Sounding Interferometer (IASI) and simulations from the GEOS-Chem model to constrain global NH3 17 

emissions over the period of 2008-2018. We update the prior NH3 emission fluxes with the ratio between biases in simulated 18 

NH3 concentrations and effective NH3 lifetimes against the loss of the NHx family. In contrast to about a factor of two 19 

discrepancies between top-down and bottom-up emissions found in previous studies, our method results in a global land NH3 20 

emission of 78 (70-92) Tg a-1, ~30 % higher than the bottom-up estimates. Regionally, we find that the bottom-up inventory 21 

underestimates NH3 emissions over South America and tropical Africa by 60-70 %, indicating under-representation of 22 

agricultural sources in these regions. We find a good agreement within 10 % between bottom-up and top-down estimates 23 

over the U.S., Europe, and eastern China. Our results also show significant increases in NH3 emissions over India (13 % 24 

decade-1), tropical Africa (33 % decade-1), and South America (18 % decade-1) during our study period, consistent with the 25 

intensifying agricultural activities in these regions in the past decade. We find that inclusion of sulfur dioxide (SO2) column 26 

observed by satellite is crucial for more accurate inference of NH3 emission trends over important source regions such as 27 

India and China where SO2 emissions have changed rapidly in recent years. 28 

1 Introduction 29 

Emissions of ammonia (NH3) to the atmosphere have critical implications for human health, climate, and ecosystems. As the 30 

main alkaline gas, NH3 reacts with acidic products from precursors such as nitrogen oxides (NOx) and sulfur dioxide (SO2) 31 

to form fine particulate matter, which is a well-documented risk factor for human health, causing great welfare loss globally 32 
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(Erisman 2021; Gu et al., 2021). Particulate matter also affects the Earth’s radiative balance by directly scattering incoming 33 

radiation (Ma et al., 2012) and indirectly as cloud condensation nuclei (Höpfner et al., 2019). Additionally, both gas-phase 34 

ammonia (NH3) and aerosol-phase ammonium (NH4
+) can deposit onto the surface of land and water through dry and wet 35 

processes, and are associated with soil acidification (Zhao et al., 2009), ecosystem eutrophication (Dirnböck et al., 2013), 36 

biodiversity loss (Stevens et al., 2010), and cropland nitrogen uptake (Liu et al., 2013). 37 

NH3 is emitted from a variety of anthropogenic and natural sources, including agriculture, industry, fossil fuel combustion, 38 

biomass burning, natural soils, ocean, and wild animals (Behera et al., 2013). Among these, agricultural activities, mainly 39 

livestock manure management and mineral fertilizer application, are the most important NH3 sources, which account for ~70% 40 

of the total NH3 emissions globally (Bouwman et al., 1997; Sutton et al., 2013). NH3 emissions can be estimated with a 41 

bottom-up approach based on information of emission activities and emission factors (Hoesly et al., 2018; Crippa et al., 42 

2021). However, bottom-up estimates of NH3 emissions are generally thought to be uncertain, relative to other pollutants that 43 

are mainly from fossil fuel combustion sources (e.g., NOx, CO). One of the challenges is that the intensity of agricultural 44 

NH3 emissions, emission factors, either from livestock or fertilizer, depends strongly on management and farming practices, 45 

but this information is usually not widely available (Zhang et al., 2017). Furthermore, microbial activities that are 46 

responsible for agricultural NH3 emissions are highly variable and has a complex dependence on environmental conditions, 47 

which is often inadequately captured by bottom-up approaches (Behera et al., 2013; Vira et al., 2021). In many cases, 48 

emission factors used in bottom-up modelling are based on local studies that are not representative for the diversity of 49 

conditions and are not dependent on meteorological parameters. 50 

Top-down analyses of atmospheric observations (e.g., NH3 concentrations or NH4
+ depositional fluxes) provide an alternative 51 

constraint on NH3 emissions. For example, observations of NH3 concentrations and NH4
+ deposition fluxes from surface 52 

networks can be used to infer regional NH3 emission fluxes (e.g., Paulot et al., 2014). However, surface sites are often sparse, 53 

especially in developing continents such as Africa and South America, limiting our capability to constrain NH3 emissions 54 

globally. The advent of satellite observations makes it possible to investigate long-term spatially resolved NH3 emissions 55 

from national, continental, to global scales. Van Damme et al. (2018) reported large NH3 point sources across the globe that 56 

are detected by the Infrared Atmospheric Sounding Interferometer (IASI) instrument but missing in the bottom-up 57 

inventories. Studies have also applied satellite data (e.g., IASI and Cross-track Infrared Sounder (CrIS)) to study NH3 58 

emissions from important source regions, including the U.S. (Cao et al., 2020; Chen et al., 2021b), China (Zhang et al., 59 

2018), and Europe (Marais et al., 2021; van der Graaf et al., 2021). These regional studies show 20 % to 50 % differences 60 

between top-down and bottom-up estimates of NH3 emissions. 61 

Compared to regional analyses, long-term global analyses of NH3 emissions based on satellite observations are relatively 62 

scarce (e.g., Evangeliou et al., 2021). This is partly because of the computational challenges arising from a full-fledged 63 

inversion for a long period of time and over large spatial extents. In a recent study, Evangeliou et al. (2021) proposed a fast 64 

top-down method, in which NH3 emissions are computed as the ratio between NH3 column observations and NH3 lifetime. 65 

This method relies on NH3 lifetime diagnosed from a chemical transport model (CTM) and assumes a local mass balance. 66 
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Their analysis found a global NH3 emission of around 180 Tg a-1, which is roughly triple the widely used bottom-up 67 

estimates (e.g., 62 Tg a-1 by the Community Emission Data System, CEDS). This large upward adjustment, if true, would 68 

have huge implications for global reactive nitrogen cycles and indicate that our current understanding of global NH3 69 

emissions is seriously flawed. 70 

In this paper, we examine if the large discrepancy between the bottom-up and top-down estimates is due to the methodology. 71 

We refine the fast top-down approach by improving NH3 lifetime diagnosis and partially accounting for the transport 72 

contributions. We develop a series of data filtering procedures to exclude results that are not sufficiently constrained by 73 

observations or affected by large deviations from the assumption of the fast top-down method. We apply the updated method 74 

to IASI observations to derive the global distribution of NH3 emissions fluxes from 2008 to 2018, and examine the impact of 75 

the improved method on global NH3 emission inferences.  76 

2 Methods 77 

2.1 IASI observations 78 

We use 2008-2018 reanalyzed daily NH3 total column retrievals (ANNI-NH3-v3R) from the IASI on board Metop-A. The 79 

IASI instrument measures the infrared radiation (645–2760 cm-1) from Earth’s surface and the atmosphere with a circular 12 80 

km footprint at nadir (Clerbaux et al., 2009; Van Damme et al., 2017). The retrieval algorithm calculates the hyperspectral 81 

range index from IASI spectra measurements (Van Damme et al. 2014) and converts it to the NH3 total column density via 82 

an artificial neural network (Whitburn et al., 2016; Franco et al., 2018). The retrieval uses consistent meteorological data 83 

from the ERA5 reanalysis, so it is suitable for the analyses of inter-annual variability and long-term trends (Hersbach et al., 84 

2020). The ANNI-NH3-v3R product, has been validated against in situ measurements and is shown to have a good regional 85 

correlation (Guo et al., 2021; Van Damme et al., 2021). The dataset has been used in previous studies to estimate NH3 86 

emissions globally (e.g., Evangeliou et al., 2021) and regionally (e.g., Chen et al., 2021b; Marais et al., 2021).  87 

Here we only use morning NH3 data (around 9:30 local solar time) though IASI provides global coverage twice daily, 88 

because of the better precision of morning observations resulting from favourable thermal contrast conditions (Clarisse et al. 89 

2010). We filter out data with a cloud fraction greater than 10 % (Van Damme et al., 2018) and a skin temperature below 90 

263 K (Van Damme et al., 2014). The skin temperature dataset is from ERA5 (Hersbach et al., 2020). To compare with 91 

simulated NH3 columns (see Sect. 2.2), we regrid and average monthly IASI NH3 observations over land on the GEOS-92 

Chem 4∘ × 5∘ grid (Fig. 1a). To reduce uncertainty from sparse sampling, we further exclude grid cells with the number of 93 

successful retrievals less than 800 in a month. We also test the choices of the threshold for 400 and 1200 per month in the 94 

sensitivity calculations (Table 1, line 5-6). This criterion affects mainly high latitudes during wintertime, where snow 95 

surfaces make it unfavourable for infrared measurements (Fig. S1).  96 
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Figure 1. Spatial distribution of (a, c) IASI and (b, d) GEOS-Chem NH3 column concentrations. (a, b) Mean and (c, d) linear trends within 99 
the 𝟕𝟎∘N-𝟕𝟎∘S during 2008-2018. Dots in (c) and (d) indicate that linear trends are significant at the 95 % confidence levels. Linear trends 100 
are computed from the time series of annual averages. 101 

2.2 GEOS-Chem simulations 102 

We use the GEOS-Chem CTM v12.9.3 (10.5281/zenodo.3974569) to simulate global NH3 concentrations. The GEOS-Chem 103 

model, driven by the MERRA-2 reanalyzed meteorology (Gelaro et al., 2017), simulates the tropospheric ozone–NOx–104 

VOCs–aerosol chemistry at 4∘ × 5∘ resolution with 47 vertical layers (30 layers in the troposphere) (Bey et al., 2001; Park et 105 

al., 2004). The thermodynamic equilibrium between gas phase NH3 and aerosol phase NH4
+ is explicitly simulated by the 106 

ISORROPIA-II module in GEOS-Chem (Fountoukis & Nenes, 2007). The model also simulates the wet and dry deposition 107 

of NH3 and NH4
+, the terminal sinks of atmospheric NHx (≡ NH3 + NH4

+). Dry deposition is represented with a resistances-108 

in-series scheme (Wesely, 2007) and wet deposition includes scavenging in convective updrafts and in- and below-cloud 109 

scavenging from large-scale precipitation (Wang et al., 2011; Amos et al., 2012). Anthropogenic emissions of simulated 110 

chemicals including those of NH3 are taken from a global emission inventory CEDS (Hoesly et al., 2018), overridden by 111 

regional inventories in Canada (Air Pollutant Emission Inventory, APEI), the United States (2011 National Emissions 112 

Inventory, NEI-2011), Asia (MIX-Asia v1.1) (Li et al., 2017), and Africa (DICE-Africa) (Eloise Marais and Christine 113 

Wiedinmyer, 2016). Such compiled anthropogenic emissions only include incomplete information on inter-annual trends 114 

because inventories are not all available throughout the whole period. Anthropogenic emissions are essentially invariant after 115 

2013 in our setup (Fig. S2). The general lack of trends in SO2 emissions in the simulation, if not accounted for, may cause 116 

biases in inferred trends over regions such as India and China where SO2 emissions have changed rapidly (Sun et al., 2018; 117 

Qu et al., 2019; Chen et al., 2021a). Fire emissions are from Global Fire Emissions Database (GFED4) (van der Werf et al., 118 

2017), and biogenic VOC emissions are from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 119 

(Guenther et al., 2012). Temporal (seasonal and inter-annual) variations in fire and biogenic emissions are resolved by the 120 

inventories. Hereafter, we refer to NH3 prior bottom-up emissions from this set of inventories as BUE1. For comparison, we 121 

https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1029/2003JD004473
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https://doi.org/10.1029/2018EF000822
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also use another set of bottom-up inventories which consist of EDGARv5.0 for anthropogenic emissions 122 

(https://data.jrc.ec.europa.eu/collection/edgar, last access: 8 March 2022, Crippa et al., 2020), GFAS for fire emissions 123 

(CAMS, https://apps.ecmwf.int/datasets/data/cams-gfas/, last access: 8 March 2022) (minor natural emissions are the same 124 

as BUE1), which we denote as BUE2.  125 

The GEOS-Chem simulation is conducted from 2008 to 2018 with an additional 1-month spin-up starting from December 126 

2007. We sample the simulated NH3 and NH4
+ concentration fields between 9:00 to 10:00 local solar time, approximately the 127 

IASI morning overpass time. To compare with the IASI NH3 columns, we integrate the vertical profiles of simulated NH3 128 

concentrations by layer thickness. We note that the ANNI-NH3-v3R retrieval does not provide averaging kernels (Whitburn 129 

et al., 2016; Van Damme et al., 2021). However, Van Damme et al. (2018) reported the uncertainty in different vertical 130 

profiles of individual NH3 measurements to be 2 % ± 24 % (global average). Besides, we also archive depositional and 131 

transport rates for NH3 and NH4
+, which are used in emission fluxes estimation. In addition, we perform GEOS-Chem 132 

simulations in selected years (2008, 2013, 2018) to examine the validation and consistency of our top-down NH3 emission 133 

estimates with the ground-based measurements and IASI observations.  134 

2.3 NH3 emission fluxes estimation 135 

We compute NH3 fluxes (�̂�NH3, in molecules m-2 s-1) in land grid cells for individual months from 2008 to 2018. We update 136 

the prior model emission fluxes (𝐸NH3,mod , in molecules m-2 s-1) with a correction term positively proportional to the 137 

difference of observed (𝐶NH3,obs, in molecules m-2) and simulated (𝐶NH3,mod, in molecules m-2) monthly averaged NH3 total 138 

column densities and inversely proportional to the lifetime of NH3 (𝜏NH3,mod, in s): 139 

�̂�NH3 = 𝐸NH3,mod +
𝐶NH3,obs − 𝐶NH3,mod

𝜏NH3,mod

,  (1) 140 

where 𝜏NH3 ,mod is computed as the ratio of the simulated NH3 column and the sum of simulated loss rate of the NHx family 141 

(NHx ≡ NH3 + NH4
+) through the dry and wet depositions of NH3 (𝐷NH3,mod, in molecules m-2 s-1) and NH4

+ (𝐷NH4
+,mod, in 142 

molecules m-2 s-1): 143 

𝜏NH3,mod =
𝐶NH3,mod

𝐷NH3,mod + 𝐷NH4
+,mod

.  (2) 144 

Here we calculate the lifetime of NH3 with the loss of the NHx family rather than that of NH3, because of the fast 145 

thermodynamic equilibrium between gas-phase NH3 and aerosol/aqueous-phase NH4
+, which implies that the conversion 146 

from NH3 to NH4
+ is not a terminal loss for NH3 from the atmosphere. The NH3 lifetime may be underestimated over source 147 

regions and overestimated over remote regions, if NH3 to NH4
+ conversions are treated as a terminal loss as in Evangeliou et 148 

al. (2021) rather than a partition within a chemical family (NHx) as in Eq. (2). 149 

In addition, our method linearizes the column-emission relationship at prior emissions as opposed to zero emissions in the 150 

previous method (e.g., Evangeliou et al., 2021). Here, the baseline NH3 column (𝐶NH3,mod) simulated by the GEOS-Chem 151 

https://data.jrc.ec.europa.eu/collection/edgar
http://apps.ecmwf.int/datasets/data/cams-gfas/
https://doi.org/10.5194/acp-21-4431-2021
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model explicitly accounts for the non-local contribution of transport, while the correction to prior emissions is done only 152 

locally, that is, the difference between 𝐶NH3,obs  and 𝐶NH3,mod  is attributed only to errors in local emissions without 153 

accounting for the sensitivity to emissions from other grid cells. This hybrid approach can partially include the non-local 154 

contribution from transport but still keeps the computation tractable for a long-term study such as this study, striking a trade-155 

off between the computational efficiency of a local mass balance method (e.g., Van Damme et al., 2018; Evangeliou et al., 156 

2021) and the accuracy of a full-fledged inversion, such as the 4D-Var method (e.g., Cao et al., 2020; Chen et al., 2021b). 157 

The errors arising from local correction of NH3 emissions are expected to be small in most cases, because the NH3 lifetime is 158 

short relative to a typical transport time across a 4∘ × 5∘ grid cell on which emissions are estimated. To identify cases when 159 

this error is not negligible, we apply a monthly NHx budget analysis based on the GEOS-Chem simulation and exclude grid 160 

cells from our analysis where transport dominates over local prior emissions or depositions in the monthly NHx budget 161 

(Transport/Emission>1 or Transport/Deposition>1) (Fig. S3).  162 

Because rapid changes in SO2 emissions in eastern China and India, particularly after 2012, are not captured by our prior 163 

simulation (Fig. S2), the estimation of NH3 emission trends using Eq. (1) may be biased over these regions. To address this 164 

issue, we further modify Eq. (1) to include observed trends in SO2 column concentrations: 165 

�̂�NH3,SO2−correct = 𝐸NH3,mod +
𝐶NH3,obs − 𝐶NH3,mod + 2𝜔𝐶SO42−,mod

𝜏NH3,mod

,  (3) 166 

where 𝜔 (%) is the fractional changes of average SO2 columns relative to the baseline year (i.e., 2012) over China or India 167 

and 𝐶𝑆𝑂42−,𝑚𝑜𝑑  (molecules m-2 s-1) is the simulated column densities of aerosol sulfate. Here, we specify a linear trend of -5 % 168 

a-1 for eastern China and 5 % a-1 for India between 2012 and 2018, based on values derived from the ozone monitoring 169 

instrument (OMI) and Ozone Mapping and Profiler Suite (OMPS) observations (Wang and Wang, 2020; Liu et al., 2018). 170 

We also test the impact of the uncertainty in 𝜔 on trend inferences over China and India. The factor 2 accounts for the fact 171 

that two molecules of NH3 are required to neutralize one molecule of H2SO4. Eq. (3) only applies when NH3 is in excess, a 172 

condition usually met in eastern China and India but not necessarily elsewhere (Lachatre et al., 2019; Acharja et al., 2022). 173 

Therefore, we only apply Eq. (3) to eastern China and India to understand the impact of changing SO2 emissions on the 174 

inference of NH3 emission trends. To use SO2 observations systematically in NH3 emission estimations requires further 175 

investigations. 176 

2.4 Uncertainty and sensitivity analysis 177 

We perform a series of perturbation and sensitivity experiments to assess the uncertainty of our estimates (Table 1. We 178 

perturb 𝐶NH3,mod and 𝜏NH3,mod in Eq. (1). The perturbations to 𝜏NH3,mod are set to be 50 % and 200 % (Table 1, Line 1-2). 179 

The perturbation to 𝐶NH3,mod is set to be the standard deviation of monthly mean column concentrations (𝜎C,obs) (Table 1, 180 

Line 3-4), which is given by: 181 

https://doi.org/10.1038/s41586-018-0747-1
https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.1088/1748-9326/abb5cc
https://doi.org/10.5194/acp-21-2067-2021
https://doi.org/10.1016/j.atmosenv.2019.117214
https://doi.org/10.5194/acp-18-17933-2018
https://doi.org/10.5194/acp-19-6701-2019
https://doi.org/10.1016/j.chemosphere.2021.133155
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𝜎C,obs = √
∑ (𝑖=𝑛
𝑖=1 𝜎𝑖 × 𝛺𝑖)

2

𝑛 − 1
,  (4) 182 

where 𝛺𝑖 (in mol m-2) is the 𝑖th NH3 column measurement out of a total number of 𝑛 observations in a grid cell during a 183 

month and 𝜎𝑖 is the relative error. We then use 𝛺 ± 𝜎𝐶,𝑜𝑏𝑠 to evaluate the effect of measurement errors in emission estimates 184 

(Table 1, Line 3-4). We compute results with alternative data filtering parameters (Table 1, Line 5-8), including the 185 

thresholds to exclude grid cells when the number of observations is too small (Table 1, line 5-6) and the local mass balance 186 

assumption is potentially invalid (Table 1, Line 7-8). We also test if our trend inferences over China and India using Eq. (3) 187 

is sensitive to uncertainty in observed trends in SO2 concentrations (𝜔). 188 

Table 1. Uncertainty and sensitivity analyses of top-down NH3 emissions. Annual averaged NH3 emissions are summed over global land 189 
areas for 2008–2018. 190 

 

Parameter perturbed Average emission (Tg a-1) 

0 None a (TDE) 78 

1 Halved NH3 lifetimeb 92 

2 Doubled NH3 lifetimec 70 

3 Upper IASI column error 83 

4 Lower IASI column error 72 

5 Number of retrievals > 400d 81 

6 Number of retrievals > 1200e 74 

7 Transport/Emission < 0.2f 72 

8 Transport/Emission < 5g 84 

aExcluding a grid cell if retrieval number is less than 800 during a month, or transport dominates over emissions or 191 

depositions in the simulated monthly NH3 budget. 192 

b-cThe lifetime is 50 % and 200 % of values from Eq. (1), respectively. 193 

d-eMonthly retrieval number threshold for including a grid cell is set to be 400 and 1200, respectively. 194 

f-gLocal budget ratio the threshold for including a grid cell is set to be 0.2 and 5, respectively. 195 

3 Results and discussion 196 

3.1 Observed and simulated NH3 concentrations 197 

Fig. 1a and 1b plot observed and simulated NH3 total column concentrations averaged over 2008-2018. The GEOS-Chem 198 

simulation generally reproduces the global distribution of NH3 concentrations observed by the IASI instrument. Good 199 

agreements (i.e., difference < 10 %) are found in the U.S., Europe, and southern South America. Meanwhile, the GEOS-200 
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Chem model underestimates NH3 concentrations in eastern China, northern South America, and tropical Africa by 20-120 %, 201 

and overestimates in southern India by around 50 %, indicating biases in NH3 emissions over these regions. 202 

Fig. 1c and 1d show 2008-2018 linear trends in NH3 column concentrations derived from the IASI observations and the 203 

GEOS-Chem simulations. The linear trends are computed based on the time series of annual averages. The IASI trends 204 

shown in Fig. 1c are in general consistent with a recent analysis by Van Damme et al. (2021). IASI observes a positive NH3 205 

concentration trend of 2.9 % a-1 over the U.S., and this trend is well captured by GEOS-Chem. Similarly, the observation and 206 

the simulation agree on a dipole pattern in South America (i.e., positive trend in Brazil and negative trend in Argentina). 207 

Because anthropogenic emissions over this region are set to be invariant in our simulation (Fig. S2), this agreement suggests 208 

that these trends are due to meteorological conditions and/or fire emissions, rather than changes in anthropogenic emissions. 209 

The satellite also observes significant positive trends in NH3 concentrations over China (5.2 % a-1) and tropical Africa (2.0 % 210 

a-1), but these trends are not reproduced in the simulation (0.3 % a-1 for China and 0.2 % a-1 for tropical Africa). These 211 

simulation-observation differences can not only reflect discrepancies in the trends of anthropogenic NH3 emissions, but also 212 

be attributed to uncaptured changes in SO2 and/or NOx emissions in these regions. We also find that a positive NH3 213 

concentration trend over Europe appears in the simulation (3.0 % a-1) but is much weaker (1.0 % a-1) in the observation, 214 

suggesting decreasing emissions after 2013. Satellite data shows positive NH3 concentration trends in north-western India 215 

but negative trends in in south-eastern India which are not reproduced by the simulation, though these trends over India are 216 

mostly insignificant (at the 95 % confidence level) except for a few grid cells in the Southeast. Strong GEOS-Chem trends in 217 

eastern Canada and Siberia result from large wildfires that occurred in the latter part of the study period. IASI trends in 218 

northern boreal regions are less robust because of noisy and sparse measurements over high latitudes (Fig. S1 and Fig. S3) 219 

3.2 NH3 emissions inferred from IASI observations 220 

Fig. 2 shows the spatial distributions of NH3 emission fluxes and their 2008–2018 linear trends inferred from IASI 221 

observations using the method described in Sect. 2.3. Fig. 3 plots annual time series aggregated for seven selected regions.  222 

The top-down emission (TDE) estimates suggest upward adjustments in NH3 emissions over South America (SA) by 62 %, 223 

tropical Africa (TA) by 69 %, and Central Asia (CA) by 327 %, relative to the prior inventory (BUE1), but downward 224 

adjustments in NH3 emissions by 14 % in India Peninsula (IP) and by 33 % in Canada. After accounting for the contributions 225 

from natural emissions including fires, we find that most of these biases in NH3 emissions can be attributed to anthropogenic 226 

sources, except for Canada where the underestimation appears to relate to fire emissions. This result reflects a general 227 

inadequate representation of agricultural and industrial emissions from developing continents in current global emission 228 

inventories. The TDE finds good agreements with the BUE1 (difference within 10 %) over the U.S., Europe (EU), eastern 229 

China (EC) and Australia. 230 
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231 

 232 

Figure 2. Spatial distribution of NH3 emission fluxes during 2008-2018. (a) Bottom-up emissions (BUE1), (b) top-down emissions (TDE) 233 
inferred from IASI observations, (c) difference between TDE and BUE1 estimates and (d) emission trends derived from TDE estimates. 234 
Green boxes denote seven regions analyzed in Sect. 3.2. Top-down emission fluxes are computed with Eq. (1) except for IP and EC where 235 
Eq. (3) is applied. Linear trends are computed from the time series of annual averages. Dots in (d) represent significant linear trends at the 236 
95 % confidence level. 237 

In addition to the adjustments in average emissions, the TDE also detects changes in NH3 emissions during the period of 238 

2008-2018, as expressed in linear trends computed from annual time series. We find significant positive emission trends in 239 

SA (1.7 Tg a-1 decade-1 or 18 % decade-1) and TA (2.8 Tg a-1 decade-1 or 33 % decade-1) (Fig. 3). The large positive trends in 240 

TA are found around Lake Natron, consistent with Clarisse et al. (2019) (Fig. 2d). These increases in NH3 emissions are 241 

concurrent with intensifying agricultural activities in these regions (Warner et al., 2017; E. Hickman et al., 2020), except for 242 

a 2010 peak over SA, which coincides with fires in savanna and evergreen forests there (Chen et al., 2013). Comparison with 243 

data from the Food and Agriculture Organization of the United Nations (FAO) (http://www.fao.org/faostat, last access: 7 244 

May 2022) suggests that the increase in SA is driven primarily by growing application of synthetic fertilizer (55 % decade-1), 245 

whereas the increase in TA is consistent with increasing manure amount (28 % decade-1) from a growing livestock 246 

population (E. Hickman et al., 2021) (Fig. 4). 247 

Our results infer large but variable trends over northern high latitudes (e.g., negative trends in Alaska, central Russia, and 248 

eastern Europe, but positive trends in Canada) (Fig. 2d). Because of large uncertainties associated with high-latitude 249 

observations and emission optimization, these trends are less robust but can be partly attributed to variations in fire activities. 250 

Decreases in Russia and eastern Europe are related to wildfire of boreal forests in early part of the study period (2008-2011) 251 

(Keywood et al., 2012; Warner et al., 2017), while emission increases in Canada is due to wildfire in the late part of the 252 

period (2013-2016 and 2017) (Pavlovic et al., 2016), as also shown in the prior fire inventory (GFED4) (Fig. S4). We also 253 

infer negative trends (-43 % decade-1) in Australia, which are statistically significant, but the absolute magnitude of these 254 

trends is small (-0.03 g m-2 a-1 decade-1 in Fig. 2d). The TDE estimation does not find significant trends in NH3 total 255 

emissions over the US and Central Asia. 256 

https://doi.org/10.1002/2016GL072305
https://doi.org/10.5194/acp-2020-945
https://doi.org/10.4155/cmt.13.61
https://doi.org/10.5194/acp-21-16277-2021
https://doi.org/10.1080/10643389.2011.604248
https://doi.org/10.1002/2016GL072305
https://doi.org/10.1080/10962247.2016.1158214
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 257 

Figure 3. Annual NH3 emissions for seven selected regions during 2008-2018. Shadings represent the upper and lower bounds derived 258 
from uncertainty analyses (see Sect. 2.4). Average annual emissions (Tg a-1), absolute linear trends (Tg a-1 decade-1) and relative trends (% 259 
decade-1) for 2008-2018 are inset. The asterisk symbols ’*’ and ’**’ represent that linear trends are significant at the 95 % and 99 % 260 
confidence level, respectively. Red dashed lines represent top-down NH3 emission estimates over IP and EC during 2013-2018, based on 261 
Eq. (3) that accounts for observed trends of SO2 (denoted as “SO2-corrected”). Statistics for this estimate are also inset. The prior 262 
inventory (BUE1) implemented in our simulation only partially account for inter-annual changes from bottom-up information (i.e., Fig. 4). 263 

 264 

Figure 4. Synthetic fertilizer and livestock manure amount based on FAO reports (http://www.fao.org/faostat) during 2008-2018. To 265 
roughly compare the contribution from the two sectors, we convert FAO reported statistics to NH3 emissions (Tg a-1) by applying fixed 266 
emission factors of 13 % for manure N contents (Ma et al., 2020) and 17 % for synthetic fertilizer N contents (Riddick et al., 2016). Values 267 
of means (Tg a-1) and linear trends (Tg a-1 decade-1) are inset. Scales differ between panels. 268 

3.3 Impact of changing SO2 emissions on NH3 emission trends over eastern China and India 269 

Based on NH3 column measurements (Eq. (1)), we also find a decadal increase of 61 % decade-1 (6.6 Tg a-1 decade-1) in NH3 270 

emissions over eastern China (Fig. 3). This increase is especially large after 2013 and is driven mainly by increases of IASI 271 

NH3 column concentration in eastern China (Fig. 1c). This large post-2013 increase is inconsistent with flat or even 272 

declining fertilizer input and manure amount (Fig. 4). On the other hand, we find no appreciable emission trend in IP (Fig. 3), 273 

https://doi.org/10.1111/gcb.15437
https://doi.org/10.5194/bg-13-3397-2016
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which appears to agree with relatively stable IASI NH3 concentrations over the period (Fig. 1c) but is not supported by 274 

increases in fertilizer applications and manure amount shown in the FAO report (Fig. 4). 275 

An assumption underlying Eq. (1) is that the model simulation captures the partition between gas-phase NH3 and aerosol-276 

phase NH4
+. In addition to alkaline NH3, the partition is also determined by the abundance of acids (e.g., H2SO4 and HNO3). 277 

Inaccurate emissions of their precursors (e.g., SO2 and NO2) in the model simulation, in particular over regions with 278 

excessive NH3, can lead to biases in simulating the NH3-NH4
+ partition. It is well known that SO2 emissions in China have 279 

decreased rapidly after 2013 because of stringent air pollution control measures (Sun et al., 2018; Zhai et al., 2021), while 280 

SO2 emissions from India have been increasing (Qu et al., 2019). But these regional trends are not captured in our prior 281 

simulation because our simulation does not have annual-varying emission inventories for these regions (Fig. S2). 282 

We find that the discrepancies between top-down (Eq. 1) and bottom-up estimates of emission trends over EC and IP can be 283 

largely reconciled by including observed SO2 column concentrations in the top-down calculation (Eq. (3)). By accounting 284 

for OMI and OMPS observed SO2 trends (Wang and Wang, 2020), we derive an overall decreasing trend in NH3 emissions 285 

in EC between 2013 and 2018 (-2.2 Tg a-1 decade-1, -28 % decade-1). This result suggests that observed increases in NH3 286 

columns over China are largely explained by decreases in SO2 emissions (Fig. 1 and Fig. 3), consistent with previous studies 287 

(Fu et al., 2017; Liu et al., 2018; Lachatre et al., 2019; Chen et al., 2021a). Bottom-up inventories (e.g., MEIC v1.3, EDGAR 288 

v5.0) also report stable or declining NH3 emissions from China during the period (Li et al., 2017; Crippa et al., 2020). 289 

Meanwhile, the revised method (Eq. (3)) finds a positive post-2013 trend (3.3 Tg a-1 decade-1, 30 % yr-1) in NH3 emissions 290 

over India. Compared with our original estimate using Eq. (1), NH3 emission trends derived with Eq. (3) (i.e., decrease in 291 

China and increase in India after 2013) is more consistent with the bottom-up information of fertilizer input and manure 292 

management (Fig. 4). This result demonstrates the potential of assimilating both NH3 and SO2 satellite observations in 293 

constraining NH3 emissions, which should be further explored in the future. 294 

3.4 Global total NH3 emissions 295 

Integrating over land areas globally, our IASI-based TDE estimates of NH3 is 78 (70-92) Tg a-1 (range of estimates from 296 

uncertainty analysis, see Table 1) (Fig. 5). This result is about 20-40 % higher than bottom-up inventories (BUE1, 62 Tg a-1 297 

and BUE2, 56 Tg a-1). In contrast, a previous study by Evangeliou et al. (2021) also based on the IASI data estimated a much 298 

higher global NH3 emission of 180 Tg a-1 (Fig. 5). One cause of the difference between the two IASI-based estimates is in 299 

diagnosis of NH3 lifetime from CTM. Evangeliou et al. (2021) treats conversion from NH3 to NH4
+ as a terminal loss and 300 

diagnoses NH3 lifetime averaged 11.6 ± 0.6 h globally from a CTM, which is close to a constant NH3 lifetime (12 h) 301 

assumed in Van Damme et al. (2018). In this study, we account for the fact that fast thermodynamic equilibrium can 302 

establish between NH3 and NH4
+ so that NH3 can only be terminally lost through the deposition of the NHx family (Eq. (2)), 303 

which yields a global averaged NH3 lifetime of 21.2 ± 3.8 h (Fig. 6). This longer NH3 lifetime implies a higher sensitivity of 304 

NH3 column density to NH3 emissions, leading to a lower estimate for global NH3 emissions. In addition, instead of locally 305 

scaling observed NH3 column by lifetime (Van Damme et al., 2018; Evangeliou et al, 2021; Marais et al., 2021), our method 306 

https://doi.org/10.1029/2018EF000822
https://doi.org/10.1038/s41561-021-00726-z
https://doi.org/10.1029/2019JD030243
https://doi.org/10.1016/j.atmosenv.2019.117214
https://doi.org/10.1021/acs.estlett.7b00143
https://doi.org/10.5194/acp-18-17933-2018
https://doi.org/10.5194/acp-19-6701-2019
https://doi.org/10.1088/1748-9326/ac3695
https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.1038/s41586-018-0747-1
https://doi.org/10.1038/s41586-018-0747-1
https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.1029/2021JD035237
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(Eq. (1)) partially accounts for the non-local contribution from transport by including prior NH3 columns from a full 3-D 307 

simulation and using their difference from observed NH3 columns to correct prior emissions, which prevents derivation of 308 

large NH3 emissions in remote regions where observed NH3 concentrations are driven mainly by transport. Our data filtering 309 

strategy (Sect 2.1 and 2.2) is also crucial to avoid spurious top-down results when satellite coverage is poor and the local 310 

mass balance assumption does not hold. 311 

 312 

Figure 5. Comparison of our top-down NH3 emission estimates (TDE) with other top-down (Fixed 12h and Evangeliou et al. (2021)) and 313 
bottom-up (BUE1 and BUE2) results during 2008-2018. The red line and red bar represent central estimates of the TDE, and the blue 314 
shaded area and the blue error bar indicate the uncertainty evaluated by our study (Sect. 2.4). 315 

 316 

Figure 6. Spatial distribution of NH3 lifetime (h) diagnosed from GEOS-Chem (Eq. (2)) within the 𝟕𝟎∘𝑵-𝟕𝟎∘𝑺 during 2008-2018. 317 

Fig. 6 shows the spatial variation in NH3 lifetime diagnosed from the GEOS-Chem simulation. Short NH3 lifetimes (< 10 h) 318 

are found mainly in northern high latitudes. Short lifetime in eastern China is due to high wet NH4
+ deposition velocity, 319 

although some regional studies suggested an overestimation of deposition fluxes by the model especially in forest areas (e.g., 320 

Yangtze River basin) (Zhao et al., 2017; Xu et al., 2018). Very long NH3 lifetime (> 100 h) occurs over Sahara and Australia, 321 

where dry conditions result in slow wet deposition. 322 

https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.1016/j.atmosenv.2017.01.018
https://doi.org/10.1016/j.envpol.2017.09.086
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3.5 Uncertainty evaluation 323 

We derive the uncertainty of top-down estimates from the perturbation tests in Table 1. Fig. 7 shows the global spatial 324 

distribution of annual average relative uncertainties of NH3 emissions (ranges of perturbation tests divided by their averages). 325 

The relative uncertainties are large (up to >100%) over northern latitudes, Central Asia, northern Africa, and South America, 326 

where observations are often sparse. In comparison, the relative uncertainties are small (<40 %) in well-observed regions 327 

including eastern China, northern India, Europe, and the U.S. 328 

 329 

Figure 7. Spatial distribution of TDE relative uncertainty as the discrepancy of emission estimations in parameters perturbation (Table 1) 330 
divided by the TDE average during 2008-2018. 331 

Our fast top-down method (Eq. (1) and Eq. (3)) relies on simplification of NH3 chemical and physical processes. Therefore, 332 

it is not guaranteed that a simulation driven by TDE will generate results in improved agreement with IASI observations. We 333 

evaluate the consistency of our results using full GEOS-Chem simulations in the selected years of 2008, 2013, and 2018. 334 

Results are shown in Fig. S5 (fractional bias, FB) and Table S1 (number of valid grid cells, R2, and root mean square error). 335 

The GEOS-Chem simulations driven by the prior emissions (BUE1) tends to underestimate NH3 column density (mean FB 336 

~-30%), while that driven by our TDE estimates achieves lower biases (mean FB ~10%), demonstrating the consistency of 337 

our TDE results with IASI observations. 338 

We also compare simulated surface NH3 concentrations with independent ground-based measurements from North America 339 

(AMoN, https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/, last access: 3 June 2022), Europe (EMEP, 340 

http://ebas-data.nilu.no/, last access: 3 June 2022), and South-eastern Asia (EANET, http://ebas-data.nilu.no/, last access: 3 341 

June 2022). Fig. 8 shows the comparison by season. Only small adjustments are inferred by our satellite-based estimations in 342 

these regions (i.e., North America, Europe, and South-eastern Asia). Thus, TDE and BUE1 show similar performance 343 

against these ground measurements. Although the simulation can capture the site-to-site variations reasonably well, 344 

simulated surface values are in general biased low compared to observations. This low bias is also reported in the evaluation 345 

of previous IASI-based estimates (e.g., Evangeliou et al, 2021; Chen et al., 2021b), which may be due to several reasons, for 346 

instance, systematic differences between satellite and surface measurements. 347 

https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/
http://ebas-data.nilu.no/
http://ebas-data.nilu.no/
https://doi.org/10.5194/acp-21-4431-2021
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 348 

Figure 8. Validation of simulated NH3 concentrations driven by BUE1 and TDE against ground-based measurements from AMoN, EMEP, 349 
EANET for selected years (2008, 2013 and 2018) in four seasons (January-March, JFM; April-June, AMJ; July-September, JAS; October-350 
December, OND). Scatterplots are plotted in log scale and average RMSE (ppb) and FB (%) for each season are inset. 351 

4 Conclusions 352 

This study quantifies global ammonia (NH3) fluxes monthly from 2008 to 2018 at 4∘ × 5∘ resolution, through a fast top-353 

down method that incorporates IASI satellite observations and GEOS-Chem model simulations. The top-down method 354 

updates the prior NH3 emissions with a correction term positively proportional to the difference of the observed and 355 

simulated NH3 concentrations, and inversely proportional to the lifetime diagnosed from a CTM. This method revises 356 

previously proposed fast top-down methods in two aspects. First, we account for thermodynamic equilibrium within the NHx 357 

family in diagnosing NH3 lifetime, while previous studies either assume a globally constant lifetime or treat conversion from 358 

NH3 to NH4
+ as a terminal sink. Second, our formulation linearizes the column-emission relationship at prior emissions as 359 
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opposed to zero emissions in the previous method, which in general reduces errors from the local mass balance 360 

approximation. Another improvement is that we apply several data filtering procedures to exclude unreliable top-down 361 

results that are not sufficiently constrained by observations or affected by large deviations from the local mass balance 362 

assumption. The top-down method developed in this study is particularly useful for long-term global analysis of emission 363 

trends, because it largely accounts for the impact of meteorology through the CTM simulation and requires only small 364 

amount of computation relative to a full-fledged inversion. 365 

We apply this improved fast top-down method to IASI NH3 column observations from 2008 to 2018. We find that the BUE1 366 

underestimates NH3 emission over South America (62 %) and tropical Africa (69 %), but overestimates over India (14 %) 367 

and Canada (33 %). The bottom-up inventory agrees with the top-down estimate over the U.S., Europe, and eastern China 368 

(i.e., within 10 %). Our analysis also shows significant increases in India (13 % decade-1), tropical Africa (33 % decade-1), 369 

and South America (18 % decade-1) during the study period, consistent with intensifying agricultural activities over these 370 

regions. An analysis of agricultural statistics suggests that the increase in tropical Africa is likely driven by growing 371 

livestock population and that in South America by increasing fertilizer usage. 372 

We show that large increases in NH3 concentrations in eastern China is mainly driven by rapid decreases in SO2 emissions in 373 

recent years. By accounting for observed SO2 columns, we find that NH3 emissions from eastern China are significantly 374 

decreasing during 2008-2018 (-19 % decade-1), with a larger negative trend after 2013 (-28 % decade-1), as compared to a 375 

significant positive trend (61 % decade-1) derived from assimilating only NH3 data. Similarly, a lack of trend in observed 376 

NH3 concentrations over India is due to concurrent increases in SO2 and NH3 emissions. After including observed SO2 377 

columns in the calculation, we estimate a 13 % increase in NH3 emissions over India, with a significant post-2013 positive 378 

trend (30 % decade-1). These results from assimilating both NH3 and SO2 data is more consistent with the agricultural 379 

statistics in China and India. The multi-satellite (SO2 and NH3) method is only applied in India and China in this study. To 380 

extend this idea globally requires development of formulations for varied sulfate-nitrate-ammonium aerosol regimes and 381 

needs to be addressed in a future study. 382 

Our estimate for global total NH3 emission is 78 (70-92) Tg a-1, about 30 % higher than the BUE1 estimate. This contrasts 383 

with a much higher estimate (180 Tg a-1) derived from Evangeliou et al. (2021) also using IASI data. The discrepancy can be 384 

primarily attributed to a longer NH3 lifetime (i.e., global average 21 h) diagnosed in our method, which represents a greater 385 

sensitivity of NH3 column to emissions, and a more conservative data filtering strategy, which removes potentially unreliable 386 

top-down results. Our diagnosis of NH3 lifetime is an improvement over Evangeliou et al. (2021), by accounting for the 387 

thermodynamic equilibrium between gas phase NH3 and aerosol phase NH4
+  in our formula. We show with model 388 

simulations, our top-down estimate achieves better consistency with IASI observations, compared to the bottom-up emission 389 

inventory. 390 

 391 

Data availability. 392 

https://doi.org/10.5194/acp-21-4431-2021
https://doi.org/10.5194/acp-21-4431-2021
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The IASI L2 ammonia satellite observations are available at the AERIS data infrastructure (https://iasi.aeris-data.fr/). The 393 

ERA5 skin temperature and GFAS fire emission can be request through Copernicus Climate Data Store 394 

(https://cds.climate.copernicus.eu/cdsapp#!/home). Agricultural data are available through Food and Agriculture 395 

Organization of the United Nations (FAO) (http://www.fao.org/faostat). The GEOS-Chem model can be retrieved from 396 

10.5281/zenodo.3974569. All the other data and scripts used for the present publication are available under MIT license on 397 

GitHub: https://github.com/bnulzq/NH3-emission.git and can be obtained from corresponding author upon request. 398 
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