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Abstract 36 

Condensable particulate matter (CPM) emitted from stationary combustion and mobile sources 37 

exhibits high emissions and a large proportion of organic components. However, CPM is not generally 38 

measured when conducting emission surveys of PM in most countries, including China. Consequently, 39 

previous emission inventories have not included emission rates for CPM. Here we construct an emission 40 

inventory of CPM in China with a focus on organic aerosols (OA) based on collected CPM emission 41 

information. Results show that OA emissions are enhanced twofold after the inclusion of CPM in a new 42 

China inventory for the years 2014 and 2017. Considering organic CPM emissions and model 43 

representations of secondary OA (SOA) formation from CPM, here a series of sensitivity cases have been 44 

simulated using the three-dimensional Community Multiscale Air Quality (CMAQ) model to estimate the 45 

contributions of CPM emissions to atmospheric OA and fine PM (PM2.5) concentrations in China. 46 

Compared with observations during a haze episode from October 14 to November 14, 2014, at a Beijing 47 

site, estimates of temporal average primary OA (POA) and SOA concentrations are greatly improved after 48 

including the CPM effects. These scenarios demonstrated the significant contributions of CPM emissions 49 

from stationary combustion and mobile sources to POA (51 ~ 85%), SOA (42 ~ 58%), and total OA 50 

concentrations (45 ~ 75%). Furthermore, contributions of CPM emissions to total OA concentrations were 51 

demonstrated over the major 2+26 cities of Beijing-Tianjin-Hebei region (BTH2+26 cities) in December 52 

2018, with average contributions up to 49%, 53%, 54%, and 50% for Handan, Shijiazhuang, Xingtai, and 53 

Dezhou, respectively. Correspondingly, the inclusion of CPM emissions also narrowed the gap between 54 

simulated and observed PM2.5 concentrations over the BTH2+26 cities. These results improve the 55 

simulation performance of atmospheric OA and PM2.5, and may provide important implications for the 56 

sources of OA.   57 

 58 

 59 
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 67 

1 Introduction 68 

Atmospheric fine particulate matter (PM2.5, particulate matter with aerodynamic diameter not 69 

exceeding 2.5 μm) is a serious and recurring air quality problem. Although the annual average 70 

concentration of PM2.5 in China has declined in recent years, it still exceeds standards promulgated by the 71 

World Health Organization (WHO) Air Quality Guidelines (Lin et al., 2018). Heavy haze episodes occur 72 

frequently in winter, especially for the eastern regions in China (Li et al., 2015; Chen et al., 2019; Li et 73 

al., 2017a). Despite large reductions in primary emissions during the COVID-19 lockdown, several 74 

periods of heavy haze continued to occur in eastern China (Huang et al., 2021; Wang et al., 2020c, 2021). 75 

Organic aerosols (OA) contribute a large fraction to PM2.5 worldwide, ranging from 20% to 90% (Carlton 76 

et al., 2009; Kanakidou et al., 2005) with a negative radiative forcing and adverse impacts on air quality 77 

and human health (Gehring et al., 2013; Pope et al., 2002). POA comes from a variety of sources, 78 

including fossil fuels and biomass burning. SOA is generated through photochemical oxidation of volatile 79 

organic compounds (VOCs) followed by gas-particle partitioning of low-volatility organic compounds 80 

into the aerosol phase (Fuzzi et al., 2006; Kroll and Seinfeld, 2008) Currently, the significant contributions 81 

of OA to PM2.5 and SOA to OA have been demonstrated in many observational results (He et al., 2020; 82 

Veld et al., 2021; Zhang et al., 2017). For example, Huang et al. (2014) explored the role of OA in PM2.5 83 

during a severe haze episode in Beijing, Shanghai, Xi'an and Guangzhou, showing the substantial 84 

contribution of OA to PM2.5 (30~50%) and SOA accounted for 30~77% of OA. Sun et al. (2015) showed 85 

that OA constituted up to 65% of submicron aerosols during winter in Beijing, with 38% being SOA.  86 

With respect to chemical schemes of SOA formations, a two-product model (Odum et al., 1996) was 87 

first proposed based on absorptive partitioning theory (Pankow, 1994) and chamber data. To address the 88 

underestimation of the early two-product model, the volatility basis set (VBS) framework was developed 89 

(Donahue et al., 2006). In this VBS scheme, semi-volatile and intermediate volatility precursors (S/IVOCs) 90 

were classified by their volatilities based on the absorptive partitioning theory (Robinson et al., 2007). A 91 

large portion of SVOCs are emitted as POA and then evaporate at ambient conditions due to gas-particle 92 

partitioning, while the IVOCs species exist in the form of organic vapor under many atmospheric 93 

conditions in the absence of photochemical reactions (Shrivastava et al., 2011). Currently, the VBS 94 

mechanism has been incorporated into many global and regional scale models (Lane et al., 2008; Murphy 95 

and Pandis, 2009; Shrivastava et al., 2008; Han et al., 2016). The two-dimensional (2-D) VBS scheme 96 

was put forward to improve the accuracy of fragmentation processes and OA oxidations (Donahue et al., 97 
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2011; Zhao et al., 2016). Despite advances in SOA formation mechanisms, a gap exists between observed 98 

and modeled results due to uncertainties in parameterization of SOA yields, lack of localized parameters 99 

and incomplete information on emission rates and properties of SOA precursors. Recent studies have 100 

begun to focus on important effects of emissions, including traditional precursors (VOCs) and S/IVOCs. 101 

For example, Zhao et al. (2017) found that IVOCs of 1.5–30 times POA emissions contributed largely to 102 

OA concentrations over the BTH region. Wu et al. (2019) constructed an inventory of S/IVOCs for the 103 

Pearl River Delta (PRD) region in China and conducted a simulation using the WRF-Chem model leading 104 

to an increase of 161% in SOA predictions. Emissions of S/IVOCs from mobile sources and IVOCs from 105 

volatile chemical products were also parameterized in models to represent SOA formation (Jathar et al., 106 

2017; Lu et al., 2020; Pennington et al., 2021). Although the significant role of potential emission sources 107 

in OA formation has been demonstrated, underestimation of SOA by current air quality models has not 108 

been completely resolved. Stationary combustion sources are one of the major emission sources of PM2.5, 109 

including power plants and factories. Sampling temperatures and dilution rates are key factors for accurate 110 

measurements of organic matter (Morino et al., 2018). The total primary PM emitted from stationary 111 

sources is composed of filterable PM (FPM) and condensable PM (CPM). FPM exists in liquid or solid 112 

phases, while CPM is in gas phase in flue (Corio and Sherwell, 2000; Feng et al., 2018). CPM is defined 113 

by the U.S. Environmental Protection Agency (EPA, 2017) as particles which are gaseous at flue gas 114 

temperature but condense or react in the ambient air to form solid or liquid PM through dilution and 115 

cooling immediately after discharge. With ultralow emission standards implemented by coal-fired power 116 

plants (<10 mg Nm-3) since 2014, FPM emissions have been substantially reduced (even below 5 mg Nm-117 

3) (Tang et al., 2019), making the remaining emissions of CPM an important issue. The Ministry of 118 

Science and Technology of China issued a national key research and development project on the causes 119 

and controls of air pollution in 2016, which mentioned key technologies for controlling CPM emissions 120 

(http://www.acca21.org.cn/zdy_cms/siteResources/DisasterReduction/resources/otherfiles/ 121 

20160425/f15345793.pdf). The current measurement studies about emission characteristics and chemical 122 

composition of CPM exhibited non-negligible emissions. For example, Yang et al. (2014, 2018a, 2018b) 123 

conducted investigations for different types of industrial boilers and power plants, and concluded that 124 

CPM constituted 25.7~96.5% of PM2.5. For an ultralow-emission coal-fired power plant, Li et al. (2017b) 125 

reported that the emission concentrations of CPM accounted for 83% of the PM2.5. Wang et al. (2018) 126 

calculated the average emission factors of CPM from two stacks in a waste incineration power plant to 127 

be 0.201 and 0.178 g kg-1, which were 22.0 and 31.2 times higher than the corresponding those of FPM, 128 
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respectively. Wu et al. (2020) found that FPM emissions from four typical coal-fired power plants met 129 

Chinese ultra-low emission standards, while CPM showed high levels (even above 10 mg Nm-3). CPM 130 

includes organic and inorganic components, known as organic CPM and inorganic CPM, respectively. 131 

The contributions of organic fractions varied from 13.6% to 80.5%, depending on different fuel types, 132 

test methods and operating conditions (Lu et al., 2019; Song et al., 2020; Yang et al., 2021, 2018b). Many 133 

studies confirmed that CPM contained more than 50% organic components (Li et al., 2017c, 2017d; Song 134 

et al., 2020; Wu et al., 2020), revealing that organic matter comprising a large proportion in CPM needed 135 

to be taken into account. These above studies provided valuable basic information of CPM emission 136 

characteristics for data references in this study, as summarized in Table S3. It is likely that the inorganic 137 

fractions of CPM make a contribution to the water-soluble ions in PM2.5, and organic components 138 

contribute to the organic matter in PM2.5. In addition, large amounts of low volatile organic compounds 139 

in CPM can be important precursors for SOA formation.  140 

Current measurement methods for PM in stationary exhaust sources in China (GB/T 16157-1996) 141 

have not involved the collection of CPM; and the chemical composition of collected PM was quite 142 

different from that actually released into the atmosphere (Hu et al., 2016). The emission inventory 143 

constructed based on emission surveys did not include the CPM emissions. So it is important to introduce 144 

CPM emissions to the current emission inventory. For example, a European study improved OA 145 

simulations by including the CPM emissions from residential wood combustion sources (Van Der Gon et 146 

al., 2015). Morino et al. (2018) revised the emission inventory by the consideration of CPM in Japan and 147 

showed that the OA emission rates were up to seven times the previous ones and CPM contributed greatly  148 

to atmospheric OA concentrations. A shortcoming of that study was that it did not separate the effects of 149 

CPM emissions on POA and SOA concentrations. Moreover, studies still lack quantification of emissions 150 

of CPM released by stationary combustion sources in China. 151 

In this study, we use the available CPM emission information to construct an emission inventory of 152 

CPM from stationary combustion and mobile sources in China (with a focus on OA) and conducted 15 153 

sensitivity simulations to explore the contributions of CPM emissions to atmospheric OA and PM2.5 154 

concentrations during the winter haze episodes over China. This quantitative study about organic CPM 155 

emissions and the roles of CPM in the OA formation emphasizes the importance of constraining CPM 156 

emissions from stationary combustion and mobile sources. 157 

 158 

2 Materials and methods 159 
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2.1 Estimations of CPM emissions 160 

Table 1 explicitly states the definitions of some acronyms for better understanding. We collected 161 

available emission measurement data of CPM based on published literatures. Totally, CPM emission data 162 

from 52 stationary combustion sources were acquired (Table S3). The emission sectors for these data 163 

included coal-fired power plants, waste incineration power plants, industrial coal boilers, heavy oil boilers, 164 

wood boilers, natural gas boilers, diesel boilers, iron and steel plants, and incinerators. Emissions of CPM 165 

depend on many factors including source categories, fuel types, sampling flue gas temperature, and air 166 

pollution control devices (Feng et al., 2021). Also, different measurement methods produced different 167 

results of CPM emissions (Wang et al., 2020a). Recently, cooling and dilution methods have been applied 168 

to monitor CPM concentrations. CPM contained organic and inorganic fractions, but this study only 169 

concentrated on organic CPM emissions. The emission rate of organic CPM was estimated as follows in 170 

Eq. (1) and (2) (Morino et al., 2018):  171 
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Where EOM (CPM) is the emission rate of organic matter in CPM; EFOM (CPM) is the emission factor of 175 

organic matter in CPM; EPM2.5 (FPM) is the emission rate of FPM2.5; EFPM2.5 (FPM) is the emission factor 176 

of FPM2.5; A denotes the activity level; COM (CPM) is the concentration of organic matter detected in 177 

CPM; and CPM2.5 (FPM) is the detected concentration of FPM2.5. A and EFPM2.5 (FPM) in Eq. (1) were 178 

combined to calculate EPM2.5(FPM) in Eq. (2), acquired from PM2.5 emission rates in the emission 179 

inventory of baseline year. Among these parameters, COM (CPM) and CPM2.5 (FPM) were derived from the 180 

collected emission survey data at the above stationary combustion sources. The ratios of COM (CPM) to 181 

COM (FPM) should be used to estimate EOM (CPM), but due to the limited data and very low values of 182 

COM (FPM) at these stationary sources, CPM2.5 (FPM) was used instead of COM (FPM). The ratios of EOM 183 

(CPM) to EPM2.5 (FPM) and EFOM (CPM) to EFPM2.5 (FPM) should be equal to the ratios of COM (CPM) to 184 

CPM2.5 (FPM) at the same dilution ratio in the emission surveys. Table 2 summarizes the emission ratios 185 

of EOM (CPM) to EPM2.5 (FPM) for these stationary combustion sources. In this estimate, these emission 186 

ratios collected from the best available data were applied to represent the stationary combustion sources 187 

in the current emission inventory.  188 
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In addition, the component information of organic CPM is important to model the participation of 189 

organic CPM in atmospheric chemical reactions. The organic CPM mainly contains alkanes (with C10-190 

C30 being the major n-alkanes), esters, and polycyclic aromatic hydrocarbons (PAHs) (Li et al., 2017c, d; 191 

Song et al., 2020; Zheng et al., 2018). Based on the relationship between carbon number of n-alkanes and 192 

saturation concentrations (C*) following Lu et al. (2018), it is reasonable to speculate that organic CPM 193 

is composed of organic matter which is semi-volatile (SVOCs, 100≤C*≤103 µg m−3) or has intermediate 194 

volatility (IVOCs, 103<C*≤106 µg m−3), combined as OMsi (CPM). It denotes a collective term for a 195 

range of organic matter with different volatilities in CPM. Since the volatility characteristics of organic 196 

CPM from these stationary combustion sources have not been accurately determined in relevant 197 

measurement studies, the emissions of OMsi (CPM) were scaled to emissions of OM (CPM) in this 198 

estimate as shown in Eq. (3), that is, the total emissions of OM (CPM) were distributed in different 199 

volatility bins. EOMsi (CPM) denotes the emission rate of OMsi in CPM; COMsi (CPM) denotes the 200 

concentration of OMsi in CPM. The specific partition coefficients for different volatility bins in the model 201 

will be discussed in the following Sect. 2.3. In addition to stationary sources, mobile sources also generate 202 

certain emissions of CPM. Due to the lack of CPM emission data from on-road and off-road vehicles, we 203 

increased OM emission rates of the transportation sector (TR) by 30% to consider the contributions of 204 

CPM from these mobile sources, following Morino et al. (2018) and Lu et al. (2020). 205 

 206 

2.2 The model configuration 207 

The three-dimensional Community Multiscale Air Quality (CMAQ, v5.3.2) model developed by the 208 

U.S. Environmental Protection Agency was used to simulate spatiotemporal distributions of chemical 209 

species. The detailed model configuration can refer to Appel et al. (2021) and Yu et al. (2014). The gas-210 

phase chemical mechanism was based on the Carbon Bond Mechanism 6 (CB6) scheme. The aerosol 211 

module was based on the seventh-generation aerosol module of CMAQ (AERO7). The CMAQv5.0.2-212 

VBS version with AERO6 coupled with a VBS module (AERO6VBS) was used for comparison. 213 

Compared to the SOA formation in AERO6 in the CMAQv5.2, the AERO7 module includes some 214 

improvements: enhanced consistency of the SOA formation pathways between chemical mechanisms 215 

based on CB and SAPRC, updated photooxidized monoterpene SOA yields (Xu et al., 2018), added 216 

uptake of water by hydrophilic organics (Pye et al., 2017), consumption of inorganic sulfate when forming 217 

isoprene epoxydiol organic sulfate (Pye et al., 2013), and replacement of the Odum two-product model 218 

with a VBS framework to parameterize SOA formation (Appel et al., 2021; Qin et al., 2021). Both 219 
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AERO6VBS and AERO7 contained five classes of organic matter with one class being nonvolatile and 220 

the other four classes being semi-volatile with effective saturation concentrations of 1, 10, 100, and 1000 221 

μg m-3. Each of these volatility bins was assigned to the CMAQ species of LVPO1, SVPO1, SVPO2, 222 

SVPO3 and IVPO1, respectively. The emissions of unspeciated IVOCs were set equal to 1.5 times the 223 

POA emissions in AERO6VBS and 6.579 times in AERO7 by default. The high scale factor of 6.579 in 224 

AERO7 was set to consider missing pathways for the SOA formation from combustion sources including 225 

the IVOCs oxidation (Murphy et al., 2017; Murphy et al., 2021), and it was primarily parameterized in 226 

Los Angeles where vehicle emissions are a principal source (Hayes et al., 2015). This parameter setting 227 

may not be suitable for fire and wood-burning sources, thus the scale factor was zeroed out for these 228 

sources in this study, as stated in the release of CMAQv5.3.2. Meteorological fields were predicted by the 229 

Weather Research and Forecasting (WRF) model version 3.7. The physical schemes of WRF were the 230 

same as those in Wu et al. (2018) and Zhang et al. (2021). Meteorological initial and boundary conditions 231 

were provided by the National Center for Environmental Prediction (NCEP) final analysis dataset with 232 

the spatial resolution of 1°×1° and temporal resolution of 6 h. The first several days were used for model 233 

spin-up, varied for different pollution periods as described in Sect. 2.4. The gridded anthropogenic 234 

emission data for 2014 and 2017 were derived from Emission Inventory of Air Benefit and Cost and 235 

Attainment Assessment System (EI-ABaCAS) developed by Tsinghua University (Dong et al., 2020; 236 

Zheng et al., 2019). It contained primary species such as PM2.5, SO2, NOx, CO, NMVOCs, NH3, BC, and 237 

OC from nine anthropogenic sectors (i.e., agriculture, power plant, industry process, industry combustion, 238 

steel, cement, residential, transport, and open burning). Biogenic source emissions were calculated by on-239 

line Biogenic Emission Inventory System version 3.14 (BEISv3.14) model (Carlton and Baker, 2011). 240 

Dust emissions were calculated by an on-line windblown dust scheme (Choi and Fernando, 2008). Our 241 

study period in 2014 occurred before and during the Asia-Pacific Economic Cooperation (APEC) summit 242 

held in Beijing (November 5–11, 2014). During the period of pre-APEC (October 28–November 2) and 243 

full-APEC (November 3–11), some pollution control measures were gradually implemented in Beijing 244 

and its surrounding areas. Based on the observed reductions in the concentrations of PM2.5, SO2, NO2, 245 

NO, and CO during APEC in Beijing and its surrounding cities (Li et al., 2017e, 2019; Wen et al., 2016), 246 

and 28% contribution of the emission control measures to the reduction of PM2.5 concentrations (Liang et 247 

al., 2017), thus the approximate emission reduction of 30% was conducted during the above time period 248 

for the region of two municipalities (Beijing and Tianjin), four provinces (Hebei, Shanxi, Henan, and 249 

Shandong) and Inner Mongolia Autonomous Region. The simulation domain covered mainland China by 250 
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a 395 × 345 grid with the horizontal grid resolution of 12 km (Fig. 1). There were 29 vertical layers in σz 251 

coordinate system reaching the upper pressure (100 hPa) with 20 layers located in the lowest 3 km to 252 

resolve the planetary boundary layer.   253 

 254 

2.3 Design of sensitivity simulation cases  255 

According to the emission parameters summarized in Table 2, we carried out bootstrapping and 256 

Monte Carlo simulations to obtain the mean and uncertainty ranges of EOM (CPM)/EPM2.5 (FPM) for 257 

stationary combustion sources including power plant (PP), industry combustion (IN), and steel (IR) (see 258 

Table 3). First, the optimal probabilistic distributions and uncertainty ranges were determined for each 259 

source category. Then the statistical bootstrap simulation was applied to calculate the mean and 95% 260 

confidence interval of emission ratios for each source category. Finally, the uncertainties of these 261 

parameters were propagated to calculate the total uncertainty of emission by running Monte Carlo 262 

simulations for 10,000 times. Notably, the estimated uncertainties were only related to variabilities in the 263 

ratio of EOM(CPM) to EPM2.5(FPM), but did not necessarily represent the overall uncertainties of organic 264 

CPM emissions. On this basis, a series of sensitivity cases including low, medium, and high emission 265 

ratios were designed to explore the contributions of organic CPM emissions to OA concentrations and 266 

quantify uncertainty ranges of CPM effects on OA (see Table 4).  267 

Here, to explore the contributions of organic CPM emissions to atmospheric OA and PM2.5 268 

concentrations, the estimated emissions of organic CPM were added into the CMAQ model as an 269 

individual source, separated from other emission sources. For the base scenarios, the simulations were 270 

performed with the inputs of the previous emission inventory without the newly constructed organic CPM 271 

emissions. Considering that organic FPM from stationary combustion and mobile sources mainly 272 

contained low volatile matter, so all of these emissions should be assigned to the CMAQ species of 273 

LVPO1 and other volatility bins should be assigned a scale factor of 0, and the rests were kept at the 274 

default settings in the model. In addition, different volatility distributions could be chosen for different 275 

emission sources, but this was not our study focus and did not interfere with the results of CPM 276 

contributions. For the cases including CPM emissions from stationary combustion and mobile sources, 277 

the emissions of organic CPM were mapped to surrogate species for different volatility bins (LVPO1, 278 

SVPO1, SVPO2, SVPO3, and IVPO1) in the CMAQ model for representing the SOA formation from 279 

CPM. These mixed species underwent gas-particle partitioning and multi-generational gas-phase 280 

photochemical oxidation of organic vapors by OH radicals to generate successively lower volatility and 281 
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more-oxygenated species, and then produced SOA. Due to the unavailable volatility distribution 282 

information of OMsi (CPM), different scaling factors of volatility bins were employed under each 283 

emission scenario to discuss the uncertainties of CPM effects. In this study, we tested two kinds of scaling 284 

factors for the five volatility bins: fac1 (0.09, 0.09, 0.14, 0.18, 0.5) (Grieshop et al., 2009) and fac2 (0.40, 285 

0.26, 0.40, 0.51, 1.43) (Shrivastava et al., 2011). As mentioned in Sect. 2.1, organic CPM was composed 286 

of organic matter which was semi-volatile or had intermediate volatility, thus the first bin which represents 287 

nonvolatile organic matter should be set to zero. Here, the original partition coefficient of the first bin was 288 

added to the following bin, so the fac1 (0, 0.18, 0.14, 0.18, 0.5) and fac2 (0, 0.66, 0.40, 0.51, 1.43) were 289 

applied in the sensitivity simulation cases. The fac2 estimated total SVOCs emissions as 3 times POA 290 

emissions to consider missing OMsi (CPM) emissions. Then the fac3 (0, 0.42, 0.27, 0.345, 0.965) which 291 

was the average of fac1 and fac2, was also tested for the five volatility bins. The fac1, fac2 and fac3 were 292 

applied to the OMsi (CPM) emissions for cases S1.1, S1.2 and S1.3, respectively (see Table 4). For an 293 

evaluation of the sensitivity of OA outputs to organic CPM emissions, we conducted simulations with 294 

different magnitudes of CPM emissions at the 95% and 50% confidence interval. Thus the S2-S3 cases 295 

were designed with the uncertainty ranges of EOM (CPM)/EPM2.5 (FPM) at 95% confidence interval (73% 296 

and 128% of the amounts in S1), and the S4-S5 cases with the uncertainty ranges at 50% confidence 297 

interval (90% and 109% of the amounts in S1). Moreover, the contributions of individual emission 298 

categories including PP, IN, IR, and TR were quantified by excluding perturbation of other sources in the 299 

S6-9 cases. The simulated contributions of CPM emissions to POA, SOA, OA, and PM2.5 concentrations 300 

under these scenarios were calculated as the improved simulation concentrations after including CPM 301 

emissions relative to the base case, divided by the simulations under these scenarios. 302 

 303 

2.4 Observational data 304 

For the year 2014, the simulation period was from October 6 to November 14, 2014, with the first 8 305 

days being the model spin-up time. Field observation data during the episode from October 14 to 306 

November 14, 2014, at the Institute of Atmospheric Physics (IAP) (39°58′ N, 116°22′ E) in Beijing were 307 

from Li et al. (2017a) and Xu et al. (2015). Concentrations of aerosol components were measured in PM1. 308 

In order to make a comparison between simulated and observed results, the PM1/PM2.5 ratio of 0.77 was 309 

used to calculate the observed component concentrations in PM2.5 based on the observations from Xu et 310 

al. (2015). To distinguish between SOA and POA, Aerosol Mass Spectrometer (AMS) measurements and 311 

the method of Positive Matrix Factorization (PMF) were used by Xu et al. (2015), identifying three POA 312 
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factors from coal combustion, biomass burning and cooking, and two SOA factors of semi-volatile and 313 

low-volatility oxygenated OA. Observation data of organic carbon (OC) on November 3, 2014, at 314 

Qianyanzhou (located in Jian city) and Changsha were provided by CERN Atmospheric Science Branch 315 

of the Institute of Atmospheric Physics, Chinese Academy of Sciences (Liu et al., 2018). For the year 316 

2018, the simulation period was from December 1 to 31, 2018, with the first 5 days for model spin-up. 317 

The observation values of OC in the BTH2+26 cities were provided by China Environmental Monitoring 318 

Station. These cities include Beijing, Tianjin, Anyang, Baoding, Binzhou, Cangzhou, Changzhi, Dezhou, 319 

Hebi, Handan, Hengshui, Heze, Jincheng, Jinan, Jining, Jiaozuo, Kaifeng, Liaocheng, Langfang, Puyang, 320 

Shijiazhuang, Tangshan, Taiyuan, Xingtai, Xinxiang, Yangquan, Zibo, and Zhengzhou. The OA/OC ratio 321 

of 1.4 (Simon et al., 2011) was used to calculate OA concentrations for the comparison with the simulation 322 

results. The observed concentrations of PM2.5 were collected from the Chinese National Environmental 323 

Monitoring Center (CNEMC). Since the PM2.5 observation data from December 22 to 26 were missing, 324 

the following analysis of PM2.5 did not include these five days. The hourly observation data of 325 

meteorological factors, including temperature (T), relative humidity (RH), wind speed (WS), and wind 326 

direction (WD), were provided by the China Meteorological Administration 327 

(http://data.cma.cn/site/index.html). 328 

 329 

3 Results and discussion 330 

3.1 Emissions of condensable particulate matter 331 

Emissions of OM in CPM (EOM(CPM)) were comparable to or even exceeded the emissions of 332 

filterable PM2.5 (EPM2.5(FPM)) for most stationary combustion sources, regardless of the differences 333 

among these values (Table 2). Therefore, we constructed a new emission inventory by including CPM. 334 

The annual emissions of OA in previous and modified emission inventory over China for the year 2014 335 

and 2017 are presented in Fig. 2. The OM represents the organic matter in the emission input before the 336 

further volatility distributions, while OM (C*≤100 µg m−3) represents the organic matter allocated in the 337 

bin of C* equal to 100 and below after application of the volatility distributions for the fac1, fac2 and 338 

fac3 cases. Based on the simulation case settings, OM (FPM) from all the sectors was multiplied by fac1 339 

(0.5), while OM (CPM) from stationary combustion and mobile sources was multiplied by fac1 (0.5), 340 

fac2 (1.57) or fac3 (1.035). In the previous inventory for 2014 without CPM, the emissions of OM over 341 

mainland China were 3664.6 Gg, approximately equal to 40% of PM2.5 emissions. After the inclusion of 342 

CPM released by stationary combustion sources in the new inventory, the emissions of OM were 343 

http://data.cma.cn/site/index.html
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enhanced by a factor of 2 and even exceeded emissions of FPM2.5. The dominant contributors of OM 344 

(FCPM) are combustion sources in power plant and industrial sectors, estimated to be 66% (7006.2 Gg) 345 

of the total OA emissions (10531.1Gg). The emissions of OM (C*≤100 µg m−3) remained unchangeable 346 

for the open burning, domestic, and industry process sources since they were mostly FPM, while OM 347 

(C*≤100 µg m−3) for the power plant, industry combustion, and steel sources were variable based on 348 

whether fac1, fac2 or fac3 were applied to the CPM. Similarly, the emissions of OM (FCPM) were 3 349 

times those of OM (FPM) for the year 2017. The emissions of OM from power plant, industry 350 

combustion, and steel sources increased by 33 times after considering CPM emissions. These results 351 

indicate that the inclusion of organic CPM from stationary combustion sources has a major impact on 352 

OM emissions and improves contributions of industrial and power sectors to OM emissions. 353 

Notably, the emission estimates of OM in CPM contained uncertainties, mainly attributed to the 354 

representativeness and limitations of chosen emission sources. For power plant, industry combustion, and 355 

steel sectors, the average ratios of EOM (CPM) to EPM2.5 (FPM) were 4.12, 1.38 and 2.80, respectively 356 

(Table 3). The estimation of uncertainties related to variabilities in the ratio of EOM (CPM) to EPM2.5 (FPM) 357 

was described in section 2.3. Overall, the uncertainty range of EOM (CPM) related to variabilities in the 358 

ratio was -27% ~ +28% at the 95% confidence interval. On this basis, a series of sensitivity cases with 359 

different emission ratios were set to determine the uncertainty ranges of CPM contributions (Table 4). In 360 

the future, actual measurements of organic CPM emissions from various sources and source-specific 361 

identification of volatility distributions are needed to reduce uncertainties in emission estimates. 362 

 363 

3.2 Effects of CPM emissions on POA and SOA concentrations  364 

For the hourly observed and simulated SOA and POA concentrations at the Beijing site, Figs. 3 and 365 

4 show obvious improvements of SOA and POA levels after the consideration of CPM contributions. The 366 

specific model species for POA and SOA are shown in Table S4. In all the simulation scenarios, five 367 

complete ascending and descending SOA episodes in Fig. 3 were well captured, with much lower mean 368 

bias between observations and simulations than previous results of Li et al. (2017a). Three pollution 369 

episodes before the APEC were clearly captured by the model. The third episode (October 27–November 370 

1) had lower observed SOA levels relative to the first (October 16–21) and second episodes (October 22–371 

26), attributed to lower precursor emission concentrations, lower temperature, and regional transports by 372 

strong northerly winds on October 26. During the APEC, there were two pollution episodes with lower 373 

SOA concentrations due to the effects of emission controls and meteorological conditions (Ansari et al., 374 
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2019; Liang et al., 2017). Compared to the observed values, cases without CPM exhibited varying degrees 375 

of underestimation for SOA and POA. For example, in the base case, the maximum SOA values were 376 

underestimated by 50% in the first episode and up to 65% in the second episode, while the simulated 377 

hourly POA values varied in the range of 0.12~19.06 μg m-3, much lower than POA observations during 378 

the whole time period. In comparison, the AERO6VBS case underpredicted SOA by up to 65%, and 379 

simulated low levels of POA during the first three periods and high levels in the last two episodes. Overall, 380 

the base case underestimated the average POA, SOA and OA levels by 74%, 56% and 65% (Table 5), 381 

respectively, emphasizing the potential contributions of missing CPM sources.   382 

After considering organic CPM emissions, the underestimation of average POA and SOA was 383 

reduced to 37% and 15% under the S1.1 scenario, respectively (Table 5). From the simulated hourly 384 

variations in the S1.1 case (Fig. 3), SOA concentrations were enhanced by factors of 0.01~1.86 relative 385 

to base case, more consistent with the observations. The gap between average simulations and 386 

observations decreased from -9.84 to -2.61 μg m-3 (73% decrease). For the peak values in the first, second, 387 

fourth, and fifth pollution episodes, the improvements in the peak SOA concentrations were 388 

approximately 30, 30, 10, and 15 μg m-3. Nevertheless, the overestimation of SOA occurred in the third 389 

process, mainly due to meteorological conditions considering the fact that the observed and modeled wind 390 

directions were inconsistent during this period as shown in Fig. S1. The prevailing southerly and northeast 391 

wind directions in the model during the third process did not bring clean air from the northwest boundary 392 

to dilute the local generated SOA (Li et al., 2016, 2019). Also, higher simulated wind speeds transported 393 

more precursors with the southerly and northeast winds and caused the overestimation of SOA (see Fig. 394 

S1). Correspondingly, the hourly POA simulation concentrations in the S1.1 case increased by 0.07~3.70 395 

times compared to the base case, narrowing the average gap between simulations and observations from 396 

-11.97 to -6.01 μg m-3 (50% decrease), but the high observed levels of POA were still not attained under 397 

this scenario. Comparatively, the S1.2 case presented similar hourly simulation results of SOA to the S1.1 398 

case with the enhancement by factors of 0.02~2.21 versus the base case, while the simulated POA values 399 

were nearly 1.3 times higher than the S1.1 case, capturing most of the high observations throughout the 400 

whole study period. Under the S1.3 scenario using different SVOCs parameters from the S1.1 case, the 401 

simulation concentrations of SOA were 4% higher and POA were 61% higher than those under the S1.1 402 

scenario as shown in Table 5. Based on the evaluation results, the S1.3 scenario showed the optimal 403 

improvement effects, with the mean biases of 1.23% for POA and -11.68% for SOA (see Table 5). In 404 

consideration of the uncertainty ranges of CPM emissions, a series of sensitivity cases with different 405 



14 

 

emission ratios were conducted. Under the minimum emission scenario in the S2.1 case, the average SOA 406 

and POA concentrations were 12%, and 15% lower than those in the S1.1 case, respectively. Under the 407 

maximum emission scenario in the S3.1 case, the average SOA and POA concentrations were 14% and 408 

19% higher than those in the S1.1 case, respectively. Thus the model can resolve 63% (54%~75%) of the 409 

observed POA concentrations and 85% (75%~97%) of the observed SOA concentrations in the cases S1.1 410 

(S2.1, S3.1). Then the S2.2 and S3.2 cases applied the same S/IVOCs parameters as S1.2, and also 411 

displayed similar results of SOA to those in the S2.1 and S3.1 cases, respectively. Under this setting, the 412 

uncertainty ranges were -13% to +13% for SOA, and -22% to +24% for POA in the S1.2 case as shown 413 

in Table 5. For the S4.2 and S5.2 cases with the CPM emissions at 50% confidence interval, their SOA 414 

concentrations showed small changes with 5% lower in the S4.2 case and 4% higher in the S5.2 case than 415 

the S1.2 case; similar minor sensitivity of 8% decrease (S4.2) and 7% increase (S5.2) were found for 416 

POA. To explore the contribution of each source category to SOA and POA and identify the key 417 

anthropogenic sources of CPM, we conducted simulations with the different separate inputs (S6~S9) (see 418 

Table 4). Results show that the CPM emissions from the IR sector made the largest contribution to the 419 

POA and SOA increases, accounting for 59% of POA and 55% of SOA, followed by PP (26% for POA 420 

and 30% for SOA) and IN sources (13% for POA and 14% for SOA). This was consistent with the 421 

differences in the CPM emissions from the above three source sectors (Fig. 2). The sensitivities of SOA 422 

and POA to the emission ratio of organic CPM from the TR sector were very small, indicating a weak 423 

impact on OA due to small contributions of transportation sources to the OA emissions in FCPM. The 424 

above results demonstrate that CPM from stationary sources was an important source for both POA and 425 

SOA formations. In summary, when considering the uncertainties of organic CPM emissions, CPM can 426 

be a significant contributor to OA concentrations, with the contributions of 58% (51%, 65%) to POA, 49% 427 

(42%, 55%) to SOA, 53% (45%, 59%) to OA under the S1.1 (S2.1, S3.1) scenario, and 82% (76%, 85%) 428 

to POA, 53% (45%, 58%) to SOA, 70% (63%, 75%) to OA under the S1.2 (S2.2, S3.2) scenario. The 429 

S1.3 scenario had the best improvement performance with CPM contributing 74% to POA, 51% to SOA, 430 

and 63% to OA. 431 

Because of the better representations of temporal variations of SOA and POA after including CPM 432 

emissions, OA simulations were correspondingly improved. To separate the effects of CPM on OA into 433 

different process contributions, we compared simulation results of these sensitivity cases as shown in Fig. 434 

5. The OA composition contains POA, ASOA (SOA from anthropogenic VOCs), BSOA (SOA from 435 

biogenic VOCs), and SISOA (SOA from S/IVOCs). The difference between simulations and observations 436 
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decreased from 21.81 µg m−3 in the base case to 8.63 µg m−3 in the S1.1 case (60% decrease), with the 437 

uncertainty of 11.92 µg m−3 (45% decrease in S2.1) to 4.66 µg m−3 (79% decrease in S3.1) relative to the 438 

base case. However, these cases still underestimated the observed OA levels. The S1.2, S2.2 and S3.2 439 

cases increased the contributions of CPM to OA by 14.01, 10.24, 17.92 µg m−3 compared to S1.1, S2.1 440 

and S3.1, respectively. Notably, the average OA simulations in S1.3 were relatively close to the 441 

observations, with the average CPM contributions of 19.98 µg m−3 and a minor underestimation of 5.43% 442 

(see Table 5). Taking OA composition into account, POA and SISOA accounted for the largest part in all 443 

these scenarios. The effects of CPM were only reflected in the enhancements of POA and SISOA. These 444 

results suggest that OA was sensitive to the emissions of organic CPM, so it is required to reduce emission 445 

uncertainties for better simulations. To sum up, the revised simulations after the inclusion of CPM from 446 

stationary combustion and mobile sources led to improved modeling performances of OA during the 447 

winter haze episodes, revealing a significant contribution of CPM to atmospheric OA. 448 

 449 

3.3 Effects of CPM on OA and PM2.5 concentrations 450 

To ensure the accuracy and reliability of our modeling results, further studies in other cities were 451 

presented. Fig. 6 shows large contributions of CPM to OA on November 3, 2014, at Changsha and 452 

Qianyanzhou. After the inclusion of CPM effects in the S1.1, S1.2 and S1.3 cases versus the base case, 453 

the simulated OA concentrations were improved by 6.28, 15.80 and 9.60 µg m−3 for Changsha, 454 

respectively. The simulated OA concentrations increased by 7.06, 15.28 and 10.14 µg m−3 in the S1.1, 455 

S1.2 and S1.3 cases versus the base case for Qianyanzhou, respectively. Comparatively, the S1.2 case 456 

contributed to greater increases of OA concentrations, narrowing the simulation-observation bias from 457 

79% to less than 40% for Changsha and more than 70% to less than 25% for Qianyanzhou. The remaining 458 

bias was probably attributed to the underestimation of our estimated CPM emissions, effects of 459 

meteorological factors and other missing SOA formation pathways. 460 

The impacts of CPM on OA were studied during December 6–30, 2018, in the BTH 2+26 cities. 461 

Likewise, the improvements in daily OA simulation concentrations can be found at the four studied cities 462 

after the consideration of CPM, especially for high pollution days (Fig. 7). The modeled underestimations 463 

of OA were improved from -60.88% to -22.55%, -56.47% to -7.91%, -68.38% to -30.51%, and -62.84% 464 

to -24.99% with the inclusion of CPM emissions in the S1.1 case relative to the base case for Handan, 465 

Shijiazhuang, Xingtai and Dezhou, respectively (Table 5). The contributions of CPM emissions to total 466 

OA concentrations reached up to 49%, 53%, 54%, and 50% for Handan, Shijiazhuang, Xingtai, and 467 
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Dezhou, respectively. Under the S1.3 scenario, the OA simulations showed greater increases, and slightly 468 

exceeded observation values with the mean biases of 8.00%, 37.42%, 0.81%, and 2.21% for the above 469 

four cities, respectively. For example, daily OA levels in Handan increased by 5.60~57.89 µg m−3 after 470 

including CPM effects (S1.1 versus base case). On average, the inclusion of CPM doubled the OA 471 

concentrations. However, some observations were not captured, while the observed value on December 472 

20 was overestimated, indicating uncertainties of the estimated organic CPM emissions. Under the S1.3 473 

scenario, the average simulated OA concentrations were enhanced by 1.8 times relative to the base case, 474 

with a good capture of some underestimated values in the S1.1 case. For Shijiazhuang with daily OA 475 

concentrations below 80 µg m−3, the base case underestimated OA levels by 12~78%. After incorporating 476 

the CPM emissions in the S1.1 case, the daily OA concentrations were significantly improved by factors 477 

of 0.7~1.7. Some observed high values of OA were well captured in the S1.1 case on December 10 with 478 

the simulation of 67.75 µg m−3 versus observation of 58.65 µg m−3, and on December 14 and 30. Under 479 

the S1.3 scenario, the daily OA levels increased by factors of 1.3~3.6 relative to the base case. Although 480 

the average OA concentrations were somewhat overestimated in the S1.3 case, good agreements between 481 

observations and simulations existed on some days, including December 9, 12, 13, 16-19, and 24. For 482 

Xingtai, the simulated OA concentrations were enhanced by factors of 1.0~1.8 in the S1.1 case relative 483 

to the base case. The model can resolve 69% of average OA observations in the S1.1 case when the 484 

emissions of CPM were included. The average OA simulation value was improved by 29.21 µg m−3 in the 485 

S1.3 case compared to the base case. Then Dezhou showed similar results with the enhancement of 486 

0.7~1.6 times for daily OA contributed by CPM in S1.1. Although the observed high OA concentrations 487 

exceeding 80 µg m−3 on December 11 and 16 were not captured in the S1.1 case, the bias between 488 

simulation and observation was reduced to -21.92 and -25.63 µg m−3 versus -59.17 and -52.64 µg m−3 in 489 

the base case, respectively. The underestimations of high OA levels on December 11 and 16 were resolved 490 

in the S1.3 case, and the average concentration over the whole period was very close to the observation. 491 

Table S2 shows the model evaluation results for PM2.5 concentrations under different sensitivity 492 

simulation cases. Dezhou was not included due to the missing data. After including the CPM emissions 493 

in the S1.1 case, the model can resolve 86%, 86%, and 72% of average PM2.5 observations with increases 494 

in PM2.5 concentrations by 32%, 37%, and 38% relative to the base case for Handan, Shijiazhuang, and 495 

Xingtai, respectively. PM2.5 simulations were further enhanced for these four cities in the S1.3 case with 496 

the NMB values of 2.04%, 7.21%, and -12.08%, respectively. It was notable that the emissions of 497 

inorganic components in CPM were not investigated in this study, which can cause modeling deviation. 498 
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Other factors including boundary layer height and wind can also affect the simulations. In summary, our 499 

estimated CPM emissions showed a reasonable range, which can make a significant contribution to 500 

atmospheric OA and PM2.5. 501 

 502 

3.4 Regional contributions of CPM to OA and PM2.5 503 

The regional effects of CPM emissions on atmospheric OA and PM2.5 from a nationwide perspective 504 

were investigated. The concentrations of POA, SOA and OA averaged over the whole study period from 505 

October 14 to November 14, 2014, showed varying degrees of regional increases after incorporating CPM 506 

emissions, mainly in central and eastern regions in China (Fig. 8). In the base case, the simulation values 507 

of POA and SOA were both lower than 14 µg m−3 over China. Correspondingly, OA concentrations did 508 

not exceed 22 µg m−3 with the maximum values distributed in the BTH region and Central China. After 509 

the consideration of CPM effects in the S1.1 case relative to the base case, the concentrations of POA, 510 

SOA and OA substantially increased over North China, East China, and Central China including Beijing, 511 

Tianjin, Shanghai, and provinces of Liaoning, Shandong, Shanxi, Henan, Hubei, Anhui, Jiangsu, Zhejiang, 512 

Hunan, Jiangxi. The most remarkable enhancement values were up to 10, 12, and 20 µg m−3 for POA, 513 

SOA and OA, respectively. Then under the S1.2 scenario with the same emissions as the S1.1 case but 514 

different SIVOCs parameterization, substantial increases in the POA simulations by more than 16 µg m−3 515 

were found for most cities in North China, East China, and Central China, with the maximum distributed 516 

in the BTH region (up to 24 µg m−3), attributable to large amounts of emissions from industrial plants and 517 

power plants in this region. The OA concentrations for many cities located in North China and East China 518 

increased by more than 24 µg m−3 after including CPM emissions in the S1.2 case. Since the contributions 519 

of CPM to SOA in the S1.2 case were only slightly larger than those in the S1.1 case, the greater 520 

improvements of OA in S1.2 mainly result from the POA increases. The regional increases in the POA, 521 

SOA and OA simulations in the S1.3 case were not lower than 10, 8, and 18 µg m−3 for most cities in 522 

North China, East China, and Central China, respectively. 523 

The regional contributions of organic CPM emissions to PM2.5 concentrations were explored in the 524 

BTH2+26 cities averaged over the period from December 6 to 30, 2018 (Fig. 9). In the base case without 525 

the CPM effects, the model comparisons against observations suggest that PM2.5 levels were greatly 526 

underestimated in almost all cities except Tangshan (Fig. 9a). Several cities with observed PM2.5 527 

concentrations higher than 80 µg m−3 showed the greatest underestimations with simulation values under 528 

50 µg m−3. Under the S1.1 scenario including CPM emissions, the simulated PM2.5 concentrations were 529 
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substantially enhanced in almost all the studied cities, closer to the observations (Fig. 9b). The 530 

contributions of CPM to PM2.5 were not lower than 14 µg m−3 for the most cities (Fig. 9c). Under the S1.3 531 

scenario, CPM made a significant contribution to PM2.5 concentrations, more than 24 µg m−3 for most 532 

cities (Fig. 9f). High observations for Baoding, Shijiazhuang, Xingtai, Hengshui, Dezhou and Handan 533 

were well captured (Fig. 9e). The scatter plots of observed and simulated daily PM2.5 concentrations for 534 

all BTH2+26 cities in Fig. 9d show obvious improvement in PM2.5 simulations after including CPM 535 

emissions, with the NMB values from -32.4% in the base case to -10.6% in the S1.1 case, and then to 5.5% 536 

in the S1.3 case. Nevertheless, there were still model-measurement biases for PM2.5 concentrations in 537 

some cities with high observations exceeding 90 µg m−3, including Baoding, Anyang, Puyang, Heze, 538 

Zhengzhou and Kaifeng. The insufficient improvement of PM2.5 can be attributed to incomplete emission 539 

information of inorganic components, which need further research. In addition, some heavy pollution 540 

hours were chosen to investigate the regional impacts of CPM on PM2.5 concentrations, including 8:00, 541 

9:00, 10:00, 11:00, and 21:00 on December 15 (Fig. 10a). Besides the BTH2+26 cities, some surrounding 542 

cities (Chaoyang, Chengde, Datong, Dongying, Huludao, Jinzhou, Linxi, Luoyang, Luohe, Qinhuangdao, 543 

Qindao, Rizhao, Sanmenxia, Shangqiu, Shuozhou, Taian, Weihai, Weifang, Xinzhou, Xinyang, Yantai, 544 

Zaozhuang, Zhangjiakou, Zhoukou, Zhunmadian) were also included. Results show that the 545 

underestimated PM2.5 concentrations in the base case were substantially improved after considering CPM 546 

emissions in S1.1 and S1.3, especially for some high observations over 170 µg m−3. Better agreement 547 

between simulated and observed PM2.5 concentrations for all these cities was achieved, with the NMB 548 

values from -32.6% in the base case to -12.3% in S1.1, and to 0.6% in S1.3 (Fig. 10b). To sum up, the 549 

consideration of CPM effects can improve the underestimation of regional OA and PM2.5 simulations to 550 

a certain extent, especially during the heavy pollution periods.     551 

 552 

4 Conclusions    553 

In this study, we focused on emissions of condensable PM from stationary combustion and mobile 554 

sources and developed an emission inventory of organic CPM in China. Using emission inputs with and 555 

without CPM contributions, the CMAQ model was applied to simulate the impacts of CPM on 556 

atmospheric OA and PM2.5 in China. The results show that the inclusion of CPM emissions increased 557 

annual OA emissions by a factor of 2 for both the years 2014 and 2017. The power plant, industry 558 

combustion, and steel sectors in the stationary combustion sources dominated OA emissions in the new 559 

inventory. A series of sensitivity scenarios with different emission ratios and volatility distributions show 560 
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that CPM contributed significantly to the improvement of hourly SOA and POA concentrations during 561 

the period from October 14 to November 14, 2014, at Beijing. The contributions of CPM were 51 ~ 85% 562 

to POA and 42 ~ 58% to SOA under these scenarios. The model comparison against observations suggests 563 

that the consideration of CPM effects improved the underestimations of simulation results and achieved 564 

a good capture of peak SOA and POA values. In addition, the enhancements of daily OA levels by CPM 565 

were demonstrated during December 6-30, 2018 at Handan, Shijiazhuang, Xingtai and Dezhou. 566 

Compared to daily observations, the NMB values in these four cities were improved from -60.88%, -567 

56.47%, -68.38%, -62.84% (the base case) to -22.55%, -7.91%, -30.51%, -24.99% (the S1.1 case) for 568 

POA, SOA and OA, respectively. The regional contributions of CPM also narrowed the gap between 569 

simulated and observed concentrations of PM2.5 in the BTH2+26 cities. In conclusion, our estimated CPM 570 

emissions contributed significantly to the improvements of simulation performances for both atmospheric 571 

OA and PM2.5, especially during the high pollution episodes. Therefore, the CPM emissions can be 572 

incorporated into chemical transport models together with FPM to improve the simulation accuracies of 573 

OA and PM2.5. 574 

Our estimates of organic CPM emissions and SOA formation from CPM contained the following 575 

uncertainties: (1) The construction of the organic CPM emission inventory in the present study was based 576 

on the ratios of EPOA(CPM) to EPM2.5(FPM) derived from limited sources, instead of the actual 577 

measurement data of CPM emissions from the different sources and regions over China. (2) Since there 578 

was no explicit volatility characterization of primary organic CPM species available for incorporation 579 

into the emission inventories, the S/IVOCs emissions were scaled to the POA emissions. (3) Due to the 580 

lack of relevant data, the original surrogate species of S/IVOCs and their properties in the CMAQ model 581 

remained unchanged for representing the SOA formation from CPM, rather than introducing new model 582 

species with identified parameters related to OH reaction rates, effective saturation concentration, and 583 

multigenerational aging products. Based on these limitations, it is strongly recommended that future 584 

studies conduct extensive surveys of CPM emissions from various stationary combustion sources and 585 

measure the actual emissions of source-specific and region-specific S/IVOCs to better constrain OA 586 

simulations by chemical transport models. 587 
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 Table 1 Definitions of some acronyms used in this study. 910 

 911 

Acronyms Definitions 

FPM Primary-emitted filterable particulate matter which is in liquid or solid phases in flue 

CPM Primary-emitted condensable particulate matter which is in gas phase at flue gas 

temperature but condenses or reacts in the ambient air to form solid or liquid PM 

OM (CPM) Organic matter measured in CPM 

OMsi (CPM) Organic matter in CPM which is semi-volatile (SVOCs, 100≤C*≤103 µg m−3), or has 

intermediate volatility (IVOCs, 103<C*≤106 µg m−3) are combined as OMsi (CPM) 

OM (C*≤100) Organic matter with the saturation concentrations (C*) below 100 µg m−3  

SVOCs Primary-emitted semi-volatile organic compounds 

IVOCs Primary-emitted intermediate-volatility organic compounds 

S/IVOCs SVOCs + IVOCs 

POA Atmospheric organic aerosol from primary-emitted organic matter or formed by 

condensation of organic vapors before photochemical reactions 

SOA Atmospheric secondary organic aerosol generated by photochemical reactions and 

condensation of organic vapors after photochemical reactions 

ASOA SOA generated by photochemical oxidations of anthropogenic volatile organic compounds 

BSOA SOA generated by photochemical oxidations of biogenic volatile organic compounds  

SISOA SOA generated by photochemical oxidations of primary S/IVOCs 

OA POA + SOA 
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Table 2 List of the ratios of the emission rates of OM in condensable particulate matter (CPM) 936 

(EOM(CPM)) to those of PM2.5 in filterable particulate matter (FPM) (EPM2.5(FPM)) from stationary 937 

combustion sources based on the collected references. 938 

 939 

method emission sources number 
EOM(CPM)/ EPM2.5(FPM) 

references 
[Min, Max] Mean ± SD median 

cooling method  

(EPA 202) 

coal-fired power plant 30 [0.01, 25.4] 6.87 ± 7.25 3.99 

 Li et al. (2017c, 

2017d); Li (2018); Li 

et al. (2019); Lu et al. 

(2019); Pei (2015); Qi 

et al. (2017); Song et 

al. (2020); Wang et al. 

(2020b); Wu et al. 

(2020); Yang et al. 

(2014, 2018b); Yang et 

al.(2021); Zhou (2019) 

waste incineration 

power plant 
2 [1.64, 4.95] 3.29 ± 1.65 3.29 Wang et al. (2018) 

industrial coal-fired 

boiler  
6 [0.14, 1.03] 0.58 ± 0.34 0.50 

Lu et al. (2019) 

Yang et al. (2014, 

2018a, 2018b) 

heavy oil-fired boiler 4 [0.28, 2.49] 1.62 ± 0.88 1.85 
Yang et al. (2018a, 

2018b) 

wood-fired boiler 1 0.03 

Yang et al. (2018a) 
natural gas-fired 

boiler 
1 6.67 

diesel-fired boiler 1 15.84 

iron and steel plants 5 [0.32, 7.22] 3.35 ± 2.21 3.00 
Yang et al. (2014, 

2015) 

incinerator 1 0.12 Yang et al. (2014) 

dilution method 

(ISO 25597) 

iron and steel coking 

plant 
1 0.416 Zhang et al. (2020) 
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Table 3 Probabilistic distributions with uncertainty ranges in the ratio of EOM(CPM) to EPM2.5(FPM) (95% 954 

confidence interval). Para1 represents the mean for normal, and the mean of ln(x) for lognormal. Para2 955 

represents the standard deviation for normal, and the standard deviation of ln(x) for lognormal. Mean 956 

represents the mean for emission ratios of each source category derived from the statistical bootstrap 957 

simulation. 958 

 959 

Input 

parameters 
Emission sources 

Distribution 

type 
Para1 Para2 Mean 

Uncertainty ranges 

(95% confidence level) 

EOM(CPM) 

/EPM2.5(FPM) 

Power plant lognormal 1.07 0.93 4.12 (3.10, 5.29) 

Industry combustion lognormal -0.47 1.43 1.38 (0.62, 2.44) 

Steel normal 2.80 1.98 2.80 (0.92, 4.50) 

Total  (-27%, 28%) 
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Table 4 Simulation case design. PP, IN, IR, and TR denote source sectors of power plant, industry 993 

combustion, steel, and transportation, respectively. Three kinds of scaling factors for the five volatility 994 

bins of organic CPM are tested: fac1 (0, 0.18, 0.14, 0.18, 0.5), fac2 (0, 0.66, 0.40, 0.51, 1.43), and fac3 995 

(0, 0.42, 0.27, 0.345, 0.965) which is the average of fac1 and fac2. 996 

 997 

Simulation 

Cases 

Aerosol 

module 

EPP_OM(CPM) 

/EPM2.5(FPM) 

EIN_OM(CPM) 

/EPM2.5(FPM) 

EIR_OM(CPM) 

/EPM2.5(FPM) 

Volatility 

bins 

Only 

FPM 

AERO6VBS 0 0 0  

AERO7 0 0 0  

S1.1 AERO7 4.12 1.38 2.80 fac1 

S1.2 AERO7 4.12 1.38 2.80 fac2 

S1.3 AERO7 4.12 1.38 2.80 fac3 

S2.1 AERO7 3.01 1.01 2.04 fac1 

S2.2 AERO7 3.01 1.01 2.04 fac2 

S3.1 AERO7 5.27 1.77 3.58 fac1 

S3.2 AERO7 5.27 1.77 3.58 fac2 

S4.2 AERO7 3.71 1.24 2.52 fac2 

S5.2 AERO7 4.49 1.50 3.05 fac2 

S6_TR AERO7 0 0 0 fac1 

S7_IN AERO7 0 1.38 0 fac1 

S8_IR AERO7 0 0 2.80 fac1 

S9_PP AERO7 4.12 0 0 fac1 
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Table 5 Model evaluation statistics for hourly OA, POA and SOA concentrations during October 14–1022 

November 14, 2014, and daily OA concentrations during December 6–30, 2018, under different 1023 

sensitivity simulation cases. 1024 

 1025 

Period City Species Cases N OBS SIM MB NMB NME R 

October 

14–

November 

14, 2014 

Beijing 

OA 

base 

723 

33.71 11.90 -21.81 -64.70% 64.84% 0.71 

S1.1 33.71 25.08 -8.63 -25.60% 47.00% 0.70 

S1.2 33.71 39.38 5.67 16.82% 58.62% 0.69 

S1.3 33.71 31.88 -1.83 -5.43% 49.63% 0.70 

POA 

base 

723 

16.25 4.28 -11.97 -73.66% 73.75% 0.54 

S1.1 16.25 10.24 -6.01 -36.98% 54.01% 0.54 

S1.2 16.25 23.32 7.07 43.51% 87.16% 0.53 

S1.3 16.25 16.45 0.20 1.23% 61.57% 0.53 

SOA 

base 

723 

17.46 7.62 -9.84 -56.36% 57.22% 0.74 

S1.1 17.46 14.85 -2.61 -14.95% 47.42% 0.73 

S1.2 17.46 16.05 -1.41 -8.08% 48.24% 0.73 

S1.3 17.46 15.42 -2.04 -11.68% 47.75% 0.73 

December 

6–30, 

2018 

Handan OA 

base 

25 

45.24 17.70 -27.54 -60.88% 60.89% 0.62 

S1.1 45.24 35.04 -10.20 -22.55% 38.00% 0.61 

S1.3 45.24 48.86 3.62 8.00% 38.95% 0.59 

Shijiazhuang OA 

base 

25 

42.22 18.38 -23.84 -56.47% 57.45% 0.61 

S1.1 42.22 38.88 -3.34 -7.91% 35.69% 0.61 

S1.3 42.22 58.02 15.80 37.42% 47.27% 0.61 

Xingtai OA 

base 

25 

42.22 13.35 -28.87 -68.38% 68.37% 0.58 

S1.1 42.22 29.34 -12.88 -30.51% 40.59% 0.58 

S1.3 42.22 42.56 0.34 0.81% 34.52% 0.56 

Dezhou OA 

base 

23 

41.66 15.48 -26.18 -62.84% 63.49% 0.47 

S1.1 41.66 31.25 -10.41 -24.99% 42.76% 0.54 

S1.3 41.66 42.58 0.92 2.21% 43.06% 0.56 

 1026 

Note: OBS and SIM denote mean concentrations (μg m-3) of observations and simulations, respectively; MB: mean bias; 1027 

NMB: normalized mean bias; NME: normalized mean error; R: correlation coefficient.  1028 
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 1030 
Figure 1. (a) Map of the modeling domain and location of each target city in model evaluation. (b) The 1031 

locations of BTH2+26 cities, denoted as the red frame in (a). The color shading represents the regional 1032 

altitude. 1033 
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 1041 

Figure 2. Annual emissions of PM2.5 and OM in filterable particulate matter (FPM), OM in filterable 1042 

plus condensable particulate matter (FCPM) before the volatility distributions, and OM (C*≤100 µg 1043 

m−3) in FCPM after application of the volatility distributions for the fac1, fac2 and fac3 cases over 1044 

China in 2014 and 2017.    1045 
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 1054 

Figure 3. The observed and simulated hourly SOA concentrations during the episode from October 14 to 1055 

November 14, 2014 at the Beijing site in the sensitivity cases as summarized in Table 3. 1056 
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 1078 

Figure 4. The observed and simulated hourly POA concentrations during the episode from October 14 to 1079 

November 14, 2014 at the Beijing site in the sensitivity cases as summarized in Table 3. 1080 
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 1089 
Figure 5. The simulation concentrations of different OA components averaged over the whole study 1090 

period from October 14 to November 14, 2014 at the Beijing site in the sensitivity cases. AERO7_def is 1091 

abbreviated as def and AERO7_adj as adj. ASOA, BSOA and SISOA denote SOA generated by 1092 

anthropogenic VOCs, biogenic VOCs and low volatile S/IVOCs, respectively. The red and blue horizontal 1093 

line denote the average observation concentrations of OA and POA, respectively. 1094 
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 1101 

Figure 6. The observed and simulated OA concentrations in the sensitivity cases on November 3, 2014 1102 

at Changsha and Qianyanzhou. 1103 
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 1118 

Figure 7. The observed and simulated daily OA concentrations during December 6-30 in 2018 at (a) 1119 

Handan, (b) Shijiazhuang, (c) Xingtai and (d) Dezhou. 1120 
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 1131 
Figure 8. Spatial distributions of the concentrations of POA, SOA and OA averaged over the whole period 1132 

of October 14-November 14 in 2014 generated by the simulations with FPM sources (base) and CPM 1133 

sources (S1.1-base, S1.2-base, S1.3-base). 1134 
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 1142 

Figure 9. Spatial distributions of the average PM2.5 concentrations during December 6-30, 2018, over the 1143 

BTH2+26 cities in (a) base, (b) S1.1, (e) S1.3, (c) absolute difference between S1.1 and base, and (f) 1144 

absolute difference between S1.3 and base. Among them, the PM2.5 concentrations from December 22 to 1145 

26 are not included due to the missing observation data. (d) Scatter plots and linear regressions of 1146 

observed (OBS) and simulated (SIM) daily PM2.5 concentrations for all of the BTH2+26 cities during the 1147 

above time period under the base, S1.1, and S1.3 scenarios.  1148 
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 1167 

Figure 10. (a) Spatial distributions of hourly PM2.5 concentrations at some peak hours over the BTH2+26 1168 

cities under the base, S1.1, and S1.3 scenarios. The colored dots denote observation values for each city. 1169 

(b) Scatter plots and linear regressions of observed (OBS) and simulated (SIM) hourly PM2.5 1170 

concentrations for all cities under the base, S1.1, and S1.3 scenarios.  1171 
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