01 Apr 2022
01 Apr 2022
Status: this preprint is currently under review for the journal ACP.

Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies

Robert J. Yokelson1, Bambang H. Saharjo2, Chelsea E. Stockwell1,a,b, Erianto I. Putra2, Thilina Jayarathne3,c, Acep Akbar4, Israr Albar5, Donald R. Blake6, Laura L. B. Graham7, Agus Kurniawan8,d, Simone Meinardi6, Diah Ningrum9, Ati D. Nurhayati2, Asmadi Saad10, Niken Sakuntaladewi8, Eko Setianto11, Isobel J. Simpson6, Elizabeth A. Stone3, Sigit Sutikno9, Andri Thomas7, Kevin C. Ryan12, and Mark A. Cochrane13 Robert J. Yokelson et al.
  • 1University of Montana, Department of Chemistry, Missoula, 59812, USA
  • 2IPB University, Faculty of Forestry and Environment, Bogor, 16680, ID
  • 3University of Iowa, Department of Chemistry, Iowa City, 52242, USA
  • 4Ministry of Environment and Forestry, Banjarbaru Environment and Forestry Research Institute, Banjarbaru,70721, ID
  • 5Ministry of Environment and Forestry, Directorate General of Climate Change, Jakarta 10270, ID
  • 6University of California, Irvine, Department of Chemistry, Irvine, 92697, USA
  • 7Borneo Orangutan Survival Foundation, Mawas Program, Bogor 16128, ID
  • 8Ministry of Environment and Forestry, ID
  • 9Riau University, Center for Disaster Research, Pekanbaru, ID
  • 10Jambi University, Faculty of Agriculture, Jambi, ID
  • 11KKI-WARSI, Jambi, 36361, ID
  • 12FireTree Wildland Fire Sciences, L.L.C., Missoula, 59801, USA
  • 13University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, 21532, USA
  • anow at: University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, 80309, USA
  • bnow at: NOAA, Chemical Sciences Laboratory, Boulder, 80305, USA
  • cnow at: Bristol Myers Squibb, New Brunswick, 08902, USA
  • dnow at: National Research and Innovation Agency, Center for Research and Development of Biotechnology and Forest Plant Breeding, Yogyakarta, 55582, ID

Abstract. Peat fires in Southeast Asia are a major source of trace gases and particles to the regional-global atmosphere that influence atmospheric chemistry, climate, and air quality. During the 2015 November record-high Ocean Niño Index (ONI, 2.6) our mobile smoke sampling team made the first, or rare, field measurements of numerous trace gases, aerosol optical properties, and aerosol chemistry and mass emissions for fires burning only peat in the Indonesian province of Central Kalimantan (on the island of Borneo). The measurements used Fourier transform infrared spectroscopy (FTIR), whole air sampling (WAS), photoacoustic extinctiometers (PAX, 401 and 870 nm), and detailed off-line analyses of particulate matter (PM) collected on filters. In September–November 2019 we measured peat fire trace gas emissions again, using WAS only, under ENSO-neutral conditions (ONI, 0.3) in more remote areas of Central Kalimantan and also the Indonesian provinces of Riau, Jambi, and South Sumatra, all on the island of Sumatra. The 2019 measurements significantly expanded the geographic range and climate conditions sampled. This paper presents the 2019 results and synthesizes them with the previous field work to converge on more robust regional average emission factors (EFs, g compound per kg biomass burned) for authentic peat fires. In addition, samples of peat imported from Indonesia were burned in U.S. laboratories and the EFs and optical properties were characterized in more detail than in the field by a larger suite of instrumentation. We use the improved knowledge of regional emissions based on the expanded field measurements to select the most representative lab data and compute a synthesized, more “chemically-complete” set of EFs and aerosol optical properties for tropical peat fires.

The modified combustion efficiency (MCE) values for the peat smoke sampled in 2019 were within the range of MCEs sampled in 2015, but with a lower average in 2019 (0.718 ± 0.021, range 0.687–0.736) than 2015 (0.772 ± 0.035, range 0.693–0.835). Averaging the new and older data together suggests an updated MCE for tropical peat fires of ~0.76. Despite the difference in MCE, the study-average methane emission factors (EF CH4) were remarkably similar across the two years probing different regions: 9.42 ± 2.51 g kg-1 in 2019 and 9.51 ± 4.74 g kg-1 in 2015. When parsing the 2019 samples by province, the EFs for non-methane organic gases (NMOG) were about 3 times higher in South Sumatra and Central Kalimantan than in Jambi and Riau, but the overall 2019 study average was only ~15 % higher than the 2015 study average. South Sumatra peat fires emitted higher amounts of carbonyl and dimethyl sulfide, suggesting a volcanic or marine influence or effects of agricultural chemicals. The lab and field work taken together provide EFs for 230 trace gases including CO2 (1538 g kg-1), CO (305 g kg-1), and CH4 (10.3 g kg-1). These are significant adjustments to IPCC-recommended EFs, -10 %, +45 %, and -49 %, respectively. We also report EFs for numerous NMOG, 46 N-containing compounds, and 14 sulfur or halogen-containing species. The use of high-resolution mass spectrometry in the lab allowed measurement of 82 % more NMOG mass than in the field. Gravimetrically measured EF PM2.5 in the field in 2015 (17.3 ± 5.8 g kg-1) was ~20 % lower than the average from lab studies (22.4 ± 10.4 g kg-1) perhaps due to higher field temperatures. Taken together the lab and field data show that the single scattering albedo (SSA) was largely independent of wavelength and MCE in the visible (~0.998), but lower at low MCE at 401 and 405 nm with a value of 0.958 at the study-average MCE. The absorption Ångstrӧm exponent (AAE) at the average MCE was 5.7. By far the largest PM component was weakly-absorbing insoluble organic carbon.

Robert J. Yokelson et al.

Status: open (until 24 Jun 2022)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-211', Anonymous Referee #1, 22 Apr 2022 reply

Robert J. Yokelson et al.

Robert J. Yokelson et al.


Total article views: 334 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
256 72 6 334 28 5 7
  • HTML: 256
  • PDF: 72
  • XML: 6
  • Total: 334
  • Supplement: 28
  • BibTeX: 5
  • EndNote: 7
Views and downloads (calculated since 01 Apr 2022)
Cumulative views and downloads (calculated since 01 Apr 2022)

Viewed (geographical distribution)

Total article views: 470 (including HTML, PDF, and XML) Thereof 470 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 26 May 2022
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize the average and variability for tropical peat fire emissions, highly-mobile smoke sampling teams were deployed across 4 Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.