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Abstract. Living in an era of government allocated carbon dioxide (CO2) emissions, knowing the accurate amount of 

human-induced CO2 becomes very critical. To this end, an in-depth understanding of CO2 emissions in urban areas where 

human activities are concentrated will be of practical help. With this motivation, we quantify CO2 emission strengths of 10 

individual urban activities (i.e. vehicle, industry, heat generation, etc.) based on direct observations of vertical CO2 

exchanges at urban-atmosphere interface using Eddy-Covariance (EC) method at Gwangju, Korea (2017.11-2018.08). Day 

of week difference analysis, together with varying wind sector, grounded from carefully designed measurement set-up, 

enables us to assess CO2 emission factors (EFs) free from seasonal bias (i.e. heating and urban vegetation); evaluated EFs of 

traffic from day of week difference was 0.017(±0.011) μmol m-2 s-1 car-1 which is more than 10 times larger than that from 15 

simple relation (0.0012±0.0011 μmol m-2 s-1 car-1) between CO2 flux and traffic counts. The CO2 emissions due to the car 

manufacturing industry within the fetch and heating when air temperatures were lower than 18 °C were quantified as 

103.25(±42.18) μmol m-2 s-1 and 2.41(±1.71) μmol m-2 s-1 °C-1, respectively. Urban vegetation uptake was estimated as -1.72 

kg C m-2 yr-1 only with EFs traffic inferred from day of week difference indicating possible erroneous estimation in simple 

relation unless it properly reflects representative seasonal changes in a year. Even though our estimations are conservative 20 

EFs due to limitations in corrections of horizontal seepage and vertical storage, we found that both EFs for traffic and heat in 

latest emission inventory were more than 2.5 times lower than our estimations which indicate the urgency in bottom-up 

inventory validations. 

1 Introduction 

As a mitigation strategy to climate change, most countries in the world are living under the motto of reduction in greenhouse 25 

gas (GHG) emission based on global consensus on seriousness and urgency in climate change. In order to realize this, many 

great deals of efforts are being invested not only reducing carbon dioxide (CO2) emissions from individual to international 

levels but also re-recognizing CO2 emissions as an economic concept via trading, taxing and capping, since this molecule 

comprises up to 65 % of radiative forcing among human-driven emissions (NOAA, 2018). Thus precise and accurate 
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knowledge on anthropogenic CO2 sources and their emission strengths would be beneficial for establishing effective 30 

implementation strategies.  

As supportive efforts on this aspect, many different methods have been developed to evaluate CO2 emission rates, especially 

in urban settings, where strong signatures of human activities in a society are concentrated due to urbanization (Coutts et al., 

2007). Roughly, 30 to 40 % of anthropogenic CO2 are emitted in urban areas (Satterthwaite, 2008).  

One of the most common methods to compile CO2 emission inventory is bottom–up estimation. This method estimates CO2 35 

emission from various source sectors by adding up each element that emits CO2 with their emission strength weighted by the 

degree of vitality in activity; in most countries worldwide, CO2 emissions from the major factories, automobiles and heating 

are indirectly compiled via this method based on raw material consumption, traffic volumes, vehicle miles travelled, and 

energy consumption (Gately et al., 2013; Kennedy et al., 2009; Velasco et al., 2009). The bottom-up method has a strength 

to encompass most of CO2 emission-related activities, thus, local, regional, national, and global scale inventory constructions 40 

are possible. 

However, this approach often reports low bias in estimation, likely due to missing/unknown source components and/or 

inaccuracies and incompleteness in emission factors (EFs) (Kennedy et al., 2010; Leip et al., 2018) as well as uncertainties 

in the degree of activity estimations such as anthropogenic activity and land cover (Zhang et al., 2014). For example, 

unreported land use and/or activities can alter the strength of emission drastically than what is reflected in the bottom-up 45 

inventory (Velasco and Roth, 2010). In addition, fixed 𝐸𝐹s of vehicle have challenges to reveal true emission during real 

driving conditions with varying traffic situations as the air–fuel ratio changes as described by Lee et al. (2013). Thus, 

validations of existing bottom-up inventory to assess its legitimacy via independent methods such as inversion-analysis 

and/or direct CO2 flux measurements are required (Hirano et al., 2015). 

There are other indirect means to estimate CO2 emissions such as usage of household expenditure to examine its relationship 50 

with energy use and the associated carbon emissions (Druckman and Jackson, 2009; Isaksen and Narbel, 2017). Nighttime 

light data has also been proven to have advantages in calculating CO2 emissions at finer spatial resolutions (Doll et al., 2006; 

Ghosh et al., 2010; Lu and Liu, 2014; Shi et al., 2016). Both are beneficial approaches for estimating gross scale CO2 

emission. However, they are still limited for activity-specific emission strength estimation, in addition to the uncertainties in 

activity measures such as expenditure surveys (Kerkhof et al., 2009) and nightlight data due to sensor saturation in urban 55 

cores (Zhang et al., 2017).  

Direct observation-based estimation methods are also used. Berkeley Environmental Air-quality & CO2 Network 

(BEACO2N) is a relatively new approach using dense networks of small observing nodes to measure urban CO2 mixing ratio 

and other atmospheric gases (Shusterman et al., 2018; Turner et al., 2016). Recently, Turner et al. (2020) estimates urban 

CO2 emission from observation changes before and during the COVID-19 (Coronavirus Disease 2019) mobility regulations 60 

with an aid of atmospheric transport model, since the observing nodes only provide information of mixing ratio rather than 

the flux of CO2.  
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Eddy Covariance (EC) flux measurement is a promising method to validate carbon emission inventories, since it directly 

provides observation-based CO2 exchanges in urban canopy scale. The CO2 flux measurements based on EC technique have 

been utilized to elucidate the degree of natural and anthropogenic carbon transfer across the atmosphere and adjacent surface 65 

system (Baldocchi et al., 2001; Sabbatini et al., 2018). EC uses covariance of vertical wind speed and targeted scalar 

concentration to evaluate the degree of exchanges based on high time resolution observations in precision to capture all 

signatures in full suite of eddy scales which ranges from sub-seconds to hours (Desjardins, 1974; Katul et al., 2001; Liang 

and Wang, 2020). This technique was originally developed to evaluate the plant productivity over homogeneous plano-

surface (Baldocchi et al., 2001 and references therein), however, its application has been expanded from traditional to the 70 

non–ideal environment i.e. urban area (Christen et al., 2011; Coutts et al., 2007; Crawford et al., 2011; Grimmond et al., 

2002; Lietzke et al., 2015; Moriwaki and Kanda, 2004; Nemitz et al., 2002), and the number of measurements has grown 

rapidly over the past two decades (Menzer and McFadden, 2017; Björkegren and Grimmond, 2018; Conte et al., 2018; Goret 

et al., 2019;  Stagakis et al., 2019; Rana et al., 2021; Matthews and Schume, 2022).   

Applications of EC technique in an urban setting have a strength in CO2 flux monitoring, since it is capable to capture the 75 

signature of exchanges in hours to years in time span (Wofsy et al., 1993) with spatial range which varies from few hundred 

meters to kilometers (Schmid, 1994) and thus easily covers a city scale. For this reason, several attempts have been made to 

estimate urban CO2 emission, as summarized in Table 1. The reported urban CO2 flux in Table 1 largely varies, but it is 

possibly due to various environmental settings (e.g. population, traffic, vegetation density as well as its maturity, etc.) where 

the measurements had been conducted. Generally, urban sites are characterized as net source of CO2, reported with positive 80 

sign in flux.  

 

Table 1. Summary of reported urban/suburban CO2 flux measurements by eddy covariance technique, together with site characteristics 

such as land use type and mean canopy and measuring heights (zh and zm). Emission factors (EFs) for heating and traffic are also listed, if 

available. 85 

City, Country 
Land 

Use Type 

𝒛𝒎(𝒛𝒎/𝒛𝒉) 

[m] 

Flux 

[μmol m-2 s-

1] 

𝑬𝑭s 

Reference 
Heating 

[μmol m-

2 s-1 °C-1] 

Car 

[μmol m-

2 s-1 car-1] 

Arnhem, Netherlands Urban 23 (2.1) 5.76 1.483* 0.075* Kleingeld et al., 2018 

Basel, Switzerland Urban 41 (2.5) 16.4 0.019* 0.011* Lietzke et al., 2015 

Beijing, China Urban 47 (2.8) 13.0 0.34*  Liu et al., 2012 

Cairo, Egypt Urban 35 (1.6) 6.18   Burri et al., 2009 

Chicago, USA Suburban 27 (4.29) 3.67   Grimmond et al., 2002 

Essen, Germany Urban 26 (1.7) 9.30   Kordowski and Kuttler, 2010 
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Firenze, Italy Urban 33 (1.32) 25.8   Matese et al., 2009 

Helsinki, Finland Urban 26 (3.7) 4.78  0.004 Vesala et al., 2008 

Heraklion, Greece Urban 27 (2.4) 6.77  

9.66 

μmol m-2 

s-1® 

Stagakis et al., 2019 

Houston, USA Urban 60 (10.5) 8.00  0.002* Park and Schade, 2016 

Lecce, Italy Urban 14 7.73   Conte et al., 2018 

Łódź, Poland Urban 37 (3.4) -5 to 15 
0.183-

3.499* 
 Pawlak et al., 2011 

London, UK Urban 190 (22) 38.0  

a: 4.05-

6.89 

b: 4.09-

5.47×10-

4**  

Helfter et al., 2011 

London, UK Urban 49 (2.2) 33.6 1.95* 

6.7, 5.2 

μmol m-2 

s-1† 

Ward et al., 2015 

London, UK Urban 46.4 (2.21) 
37.04 – 

38.56 
 

27.39 

μmol m-2 

s-1® 

Björkegren and Grimmond, 

2018 

Melbourne, Australia Suburban 40 (3.33) 6.12   Coutts et al., 2007 

Mexico City, Mexico Suburban 37 (3.8) 19.5  
1.53- 

3.87* 
Velasco et al., 2005 

Montreal, Canada Urban 25 (3.16) 10.17   Bergeron and Strachan, 2011 

Münster, Germany Urban 65 (4.33) 12   Schmidt et al., 2008 

Osaka, Japan Urban 127 (11.9) 1.29 -12.9 0.26*  Ueyama and Ando, 2016 

Tokyo, Japan Suburban 29 (4) 
5.68 Summer 

13.0 winter 
  Moriwaki and Kanda, 2004 

Vancouver, Canada Urban 24.8 (3.82) 17.0 1.45* 

11.71 

μmol m-2 

s-1¶¶ 

Crawford and Christen, 2015 

Vienna, Austria Urban 
144 (5.8 – 

9.6) 
13.97 0.72* 

0.0089, 

0.0043© 
Matthews and Schume, 2022 

Gwangju, Korea Urban 88 (7.1) 28.26 2.45 0.017§ This study 

*: simple linear regression; ®: rely on road fraction from land cover than number of cars; **: exponential regression 

expressed as Flux = a𝑒𝑏Cars; †: traffic counts are not considered but weekdays and weekend fluxes, ¶: unit conversion from 

daily emission; ©: winter and summer weekday; §: traffic counts difference in weekdays and weekend  
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Relatively, less attempts are made to infer CO2 𝐸𝐹s from EC flux measurements compared to its spatiotemporal analysis 90 

which limit the usage of EC flux measurements. Table 1 also lists few studies which evaluated 𝐸𝐹s for heating (𝐸𝐹sℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

and traffic (𝐸𝐹s𝑡𝑟𝑎𝑓𝑓𝑖𝑐 ) from their CO2 EC flux measurements. 𝐸𝐹sℎ𝑒𝑎𝑡𝑖𝑛𝑔 were inferred from the relationship between 

observed CO2 fluxes and temperatures over the heating degree days (HDD, Crawford and Christen, 2015; Kleingeld et al., 

2018; Lietzke et al., 2015), while 𝐸𝐹s𝑡𝑟𝑎𝑓𝑓𝑖𝑐 were mostly evaluated from simple linear relation (here after SLR; Järvi et al., 

2012; Kleingeld et al., 2018; Lietzke et al., 2015; Matthews and Schume, 2022; Nemitz et al., 2002; Park and Schade, 2016; 95 

Velasco et al., 2009) or power-correlation (Helfter et al., 2011) between traffic volumes and CO2 fluxes.  

Though the yearly averaged 𝐸𝐹𝑠𝑡𝑟𝑎𝑓𝑓𝑖𝑐  likely reduce complexities in modelling, this method is susceptible to the seasonal 

bias owing to variations in natural and anthropogenic CO2 emissions such as changes in photosynthesis and respiration by 

urban vegetation, space heating, degree of incomplete combustion of vehicles, etc. as Helfter et al. (2011) described with 

varying 𝐸𝐹s𝑡𝑟𝑎𝑓𝑓𝑖𝑐  among seasons. Thus, more than a year of measurement is required to properly integrate the seasonal 100 

changes in EFs with careful consideration in analysis for skewness in the number of observations in each season. In some 

regions of the world, measured number of data imbalance among seasons are unavoidable due to the inherent natural 

variabilities especially vulnerable with open path sensors during rainy seasons. 

As an alternative to this aspect, we suggest an analytical approach to extract CO2 𝐸𝐹s among the differences in day of week 

(DOW) pairs from EC flux observations not only to minimize the seasonal bias but also to enable 𝐸𝐹s evaluations with 105 

relatively short-term period than many years of measurements. From this practice, we were able to see the subtlety in 

inferring the magnitude of urban vegetation uptakes as well as the importance in the seasonal bias free CO2 𝐸𝐹s, in addition 

to the comparison with existing emission inventory. 

2 Methods 

2.1 Site description 110 

To directly assess the CO2 𝐸𝐹s from various sources in an urban area, EC system was set up and operated at Gwangju in 

Korea (35° 10' 0.0048'' N, 126° 54' 59.9904'' E) from November 2017 to August 2018 (Figure 1) just before the start of the 

typhoon season. This city is a legitimate test bed for anthropogenic CO2 𝐸𝐹s estimation, not only due to its high population 

density (2,920 people km-2) with various land use types (commercial, residential and recreational area with industrial 

facilities as well, information available from the website of the Environmental Geographic Information Service, EGIS, 115 

https://egis.me.go.kr/main.do) but also due to its flat terrain especially in the central area where the City Hall is located. In 

addition, this city setting is even more ideal for the aim of this study since the Gwangju Industrial Complex, which hosts an 

automobile production plant, is located 2 km away from the city hall in eastern direction (Figure 2a).  
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Figure 1. (a) Location of the study area in Gwangju, Korea, © Google Maps 2022 and (b) instrumental set-up position on top of the 120 
Gwangju city hall building visualized in 3-dimensional view provided by the geospatial information open platform, Vworld. 

 

The CO2 flux measuring system was installed on the helideck of the Gwangju city hall (90 m above the ground – building 

height: 85 m, helideck: 3 m and measuring system structure: 2 m, shown in Figure 1b) to fulfill the height requirements for 

EC flux measurements. Roth et al. (2017) suggested that the flux measuring height should be at least 2 to 4 times higher than 125 

the canopy height. The mean canopy height(𝑧ℎ, 12.33 m) of the study area is determined from the building height data 

available from the Electronic Architectural administration Information System (EAIS, https://cloud.eais.go.kr/). The required 

information for the footprint analysis were extracted as roughness length (𝑧0) of 1.6 m and displacement height (𝑧𝑑) of 9.1 m 

from the inferred relation of roughness elements density and 𝑧0/𝑧ℎ and 𝑧𝑑/𝑧ℎ by Grimmond and Oke (1999).  

Our EC system was installed outside of inertial sublayer (average of 25 m within footprint area and 80 m near the city hall, 130 

following Grimmond and Oke, 1999) and sufficiently lower than the planetary boundary layer (Bottema, 1997) which varies 

from 0.3 km to 1.2 km at this site, determined from the balloon-borne measurements of potential temperature profiles 

acquired by Republic of Korea Air Force at Gwangju airport (4 times in a day, 3:00, 9:00, 15:00, and 21:00, local time, from 

2001 to 2018). 

To minimize the wind distortion caused by the city hall building, the EC flux measuring system was installed on the helideck 135 

and outreached by 2.8 m outside of the building in a diagonal direction as shown in Figure 1b. Further interpretations of flux 

measurements are limited to the direction where the wind distortions were minimized, based on Computational Fluid 

Dynamics (CFD) calculation (Figure S1). 

2.2 Measurement method 

We used a 3-D sonic anemometer (CSAT3B, Campbell Scientific Inc., Utah, USA) and an open path CO2 and H2O analyser 140 

(LI-7500RS, LI-COR, Nebraska, USA) operated at 10 Hz for the flux measurements. From the data sets, half hour fluxes of 

CO2 and H2O, as well as latent and sensible heat, were calculated based on EC method as shown in equation (1), using the 

SmartFlux 2 (LI-COR) software, 

𝐹 = 𝑤′𝑐𝑥
′̅̅ ̅̅ ̅̅ ̅            (1) 
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where 𝐹 represents the vertical flux of individual scalar (𝑥) which can be evaluated from the averages (shown as an upper 145 

bar in equation 1) of the covariance (represented as ′ in equation 1) of vertical wind velocity (𝑤) and the abundance of 𝑥 

(𝑐𝑥), under the assumptions that mean vertical wind speed is zero and the changes in air density is negligible.  

As the first pre-processing step, raw data were de-spiked; acceptable ranges of 𝑐 and 𝑤 were defined as ±3σ and ±5σ from 

the mean, following Vickers and Mahrt (1997). The outranged observed 𝑐𝑐𝑜2 and 𝑤 were treated as spikes, thus replaced 

with mean for further analysis. Then, 2-D axis rotation was performed to make the average vertical wind speed become zero 150 

(𝑤 = 0) with double rotation method as Kaimal and Finnigan (1994). Calculated fluxes were averaged every 30 min with the 

use of 5 min block average to reflect the slow changes in CO2 concentration. Then, Webb–Pearman–Leuning (WPL) 

correction (Webb et al., 1980) was applied to compensate for the effect of air density fluctuation. 

As a quality control (QC) scheme, steady state and turbulence characteristic tests were performed by following Mauder and 

Foken (2004) to filter out the periods of drastic CO2 concentration changes and too stagnant condition where EC assumption 155 

breaks. Only the 30 min flux data points which fall in the interquartile range of 6 continuous 5 min fluxes were used, and this 

results in 18.3% data reduction. Furthermore, friction velocity threshold (𝑢∗>0.2) was applied only for accounting sufficient 

turbulent condition, which results in 9.4% data rejection. Due to the intrinsic nature of open-path nondispersive infrared 

(NDIR) sensor for high frequency CO2 measurement, data influenced by precipitation and high relative humidity (>90%) 

were removed (3.1%). Also, data points with sharp and/or large changes in rotation angles (more than 3° of rotation) were 160 

filtered out (7.8%) to exclude measurements under agitating condition owing to external physical factors. With all the 

filtering processes, 37% of data has been discarded. 

2.3 Footprint analysis 

To apportion the CO2 sources in flux measurement, footprint analysis was conducted using two different approaches- 

Kormann and Meixner (2001) and Kljun et al., (2004) models to process non-neutral condition and to evaluate broader 165 

ranges of boundary layer stratifications. Here, footprint boundaries were defined to confine 70% of average total flux during 

the measurement period. Detailed calculations and parameterizations are described in S2 of the Supporting Information. 

Fetches were drawn with 5° bins, starting from north as 0° with increase in clockwise direction, centred at the city hall as 

shown in Figure 2a. The atmospheric stability was also evaluated from the length scale (ζ) with Obukhov length (𝐿) 

calculation; unstable (stable) condition is determined as when ζ = (𝑧𝑚 − 𝑧𝑑)/𝐿 is lower (higher) than -0.05 (0.2). Other 170 

conditions are classified as near neutral condition. Site characteristics regarding atmospheric stability are described in S2.  

To assess the quantitative contributions of the individual sources, the wind directions were split into two sectors; (1) the 

Eastern Industrial Area (EIA, 45º-100º) and (2) the Southern Green Area (SGA, 100º-225º), based on whether or not the 

fetch includes the automobile production plant and urban vegetation (Figure 2).  
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2.4 Emission factor estimation 175 

2.4.1 Vehicular CO2 emission 

Flux of CO2 (FCO2) measurements over SGA were used to estimate 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 for minimizing the influence of industrial CO2 

emission by comparing inferred traffic counts and FCO2. SLR and DOW difference methods were used for 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 to gauge 

the influence of seasonal changes in anthropogenic and biogenic CO2 emissions. The distinct difference in DOW FCO2 

provides adequate information for 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 with minimum seasonal biases, since the photosynthetic activities and space 180 

heating hardly change between weekend and weekdays within a week frame. Hence, the ratio of the flux and traffic count 

difference (∆𝐹 and ∆𝑇) between weekday and weekend were used as 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (Eq. 2).  

𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 =
∆𝐹

∆𝑇
=

𝐹𝑤𝑒𝑒𝑘𝑑𝑎𝑦−𝐹𝑤𝑒𝑒𝑘𝑒𝑛𝑑

𝑇𝑤𝑒𝑒𝑘𝑑𝑎𝑦−𝑇𝑤𝑒𝑒𝑘𝑒𝑛𝑑
          (2) 

Since no in situ traffic counts were available near the city hall, it was inferred from the measurements of inbound and 

outbound of 6 highway tolls surrounding Gwangju (Gwangju, Donggwangju, Hakun, Songam, Seogwangsan and 185 

Donggwangsan), together with the occasional observations on the adjacent crossroads on the eastern and southern side of the 

city hall (Gyesu and Sangmu district), in hourly resolution. The locations of tolls and crossroads are shown in Figure S3. The 

highway toll data are available from Korea Expressway Corporation’s public data portal (http://data.ex.co.kr/) and 

occasional survey information are available upon request to Gwangju Metropolitan City Transportation Department 

(https://www.gwangju.go.kr/traffic/).  190 

For 30 minute traffic counts, under the assumption of even distribution of traffic within an hour, averages of ratios between 

adjacent crossroads and highway tolls were used not only over the study period but also for the years of 2019 and 2020 

(2017-2020 and 2019-2020 for weekdays and weekend) since weekend and Friday data were only available after 2019. Since 

weekday (weekend) traffic survey only happened from Tuesday to Thursday (Sunday), Monday and Friday (Saturday) ratios 

inferred from weekday averages (Sunday only) were not used for 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 but 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦. Detailed descriptions on diurnal 195 

traffic patterns with respect to days in a week are in supporting information S3. Briefly, distinct bimodal patterns which 

peaked in the morning and afternoon rush hours were observed (as also seen in Figure 5a) for the weekdays with slight 

difference in Monday and Friday (Figure S4). Meanwhile, weekend patterns showed delays in morning peaks with broader 

afternoon peaks (Figure 5a) and Sunday was used as weekend. To maximize the number of samples for DOW difference, 

two pairs of weekend-weekdays were made, one in the previous week and one after that which centered around a specific 200 

Sunday. 

Time window of 7:00 to 10:00 was used as a default morning hours and ranges from 6:00 to 10:00 with varying averaging 

window size of 1 to 4 hours were applied as robustness tests in 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 estimations. The linear correlations between traffic 

counts and CO2 fluxes were extracted considering uncertainties in both scalars defined as 1 standard deviation in binning 

window, and the errors in parameters were computed using Monte Carlo simulation assuming Gaussian distribution. For 205 
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convenience, 𝐸𝐹𝑠𝑡𝑟𝑎𝑓𝑓𝑖𝑐  obtained through the day of week difference are named as 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 , in order to distinguish 

with that from the SLR method (𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅).  

One should note that the inferred traffic counts should be treated as an activity index which represents the relative amount of 

car fleet than the actual integrated number of cars within the fetch. Thus special treatments are required to compare the 

𝐸𝐹𝑠𝑡𝑟𝑎𝑓𝑓𝑖𝑐  with other studies, since the degree of closeness in traffic volume with respect to the total traffic counts in a 210 

footprint likely varies among studies. 

2.4.2 Industry and heat related CO2 emission 

The data from EIA were used to evaluate the emission factor from industrial area (𝐸𝐹industry). The CO2 emissions from on-

road vehicles, inferred from the previous section, were subtracted from the EC flux measurements to extract the industrial 

emission. Even with the difference in contribution of other CO2 emission/uptake sources than traffic and industry in EIA and 215 

SGA, DOW CO2 fluxes difference owing to them is expected to be negligible, since their emissions/uptakes hardly change 

within a week. The traffic density difference between SGA and EIA was corrected based on the ratio of the traffic survey of 

two representative crossroads. 

In reality, the CO2 emission from the car manufacturing company only happens over the factory site (0.298 km2), therefore, 

extracted 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 was calculated by normalizing the areal coverage of the facility against the whole area in EIA (4.32 220 

km2).  

As a conservative estimation in 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 , the time window of 11:00 to 14:00 was chosen not only because the normal 

operation hours are 6:00 to 22:00 during weekdays but also because the traffic volume changes with respect to time are 

relatively low, and this minimizes error accumulation. As a sensitivity test, different time windows from 10:00 to 14:00 with 

varying averaging ranges of 2 to 4 hours were used.  225 

To gauge the amount of CO2 emission related to space heating during the low temperature season, analysis via HDD 

estimation as by Kleingeld et al. (2018) was performed. Briefly, HDD was calculated by multiplying the heating temperature 

and the number of days when the temperature was below 18 ℃, assuming that the heating tendency stops once the 

temperature reached 18 ℃. For September and October in 2018, inferred HDD with second order regression were used 

(purple line in Figure S5). Both EIA and SGA data were considered for 𝐸𝐹sℎ𝑒𝑎𝑡𝑖𝑛𝑔 with time window of 10:00 to 14:00, 230 

when the CO2 fluxes showed clear difference above and below 18 ℃ with light traffic condition. The 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔  was 

estimated from the slope of CO2 fluxes and temperatures under the temperature limit and the sensitivity tests were conducted 

by varying the threshold from 10 to 22 ℃ with 2 ℃ bins. 

2.4.3 Year round CO2 emission and vegetation contribution 

In this section, we describe how we scale up to evaluate the yearly emission of CO2 among activities in city scale to compare 235 

it with Gwangju greenhouse gas emission inventory of 2018 (available from International Climate & Environment Center, 
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2018). This inventory provides the emissions of CO2 by the lowest administrative district of urban, named as “Dong” in 

Korea; a total of 10 dongs were overlapped within the footprint. Since the district boarders mismatched with the footprint 

boundary, the normalized emissions by area were compared.  

To calculate the annual CO2 emission in city scale, areal coverage of individual activities was considered. Since the on-road 240 

vehicle emission happens all over the fetch due to the densely populated traffic pathways, half hour varying median traffic 

volume (4,023 cars) inferred from crossroad surveys was used with areal coverage of road (impervious, 5.32 km2). For the 

total CO2 emission from heat, 𝐸𝐹sℎ𝑒𝑎𝑡𝑖𝑛𝑔 were considered within total area of residential, commercial and other buildings in 

the fetch (3.10 km2) with HDD of 2,330 ℃ in a year.  

3 Results and discussion 245 

3.1 Footprint and land use type analysis 

Analysed footprints by following Kormann and Meixner 2001 (in blue) and Kljun 2004 (in red) are shown in Figure 2a 

which stretched to roughly 3.5 km radius in radial direction. Large differences are observed in southwest to northeast region 

in clockwise direction (shaded with red and blue), which likely originated from wind distortion owing to the structure of the 

building and helideck. Meanwhile, the fetches from northeast to southwest side agree well; based on the CFD models, less 250 

than 20% of wind speed distortions were observed for the wind blowing from 45° to 225° (shown in Figure S1). Thus, for 

the rest of the analysis, the averaged footprint between two methods with wind sector within the range of 45°-225° was used. 

 

Figure 2. (a) Footprint analyses on the land use map (red and blue lines by Kljun (2004) and Korman and Meixner, (2001), respectively) 

with the fraction of land use types in percentage for (b) all radial direction, (c) EIA (Eastern Industrial Area) and (d) SGA (Southern Green 255 
Area) sector. The red and blue shaded regions in (a) were not used. Black patched area and red stars in the center area of (a) represent the 

invisible region owing to the sensor height and location of city hall. © Google Maps 2022 

 

The land use type within the fetch is shown in Figure 2. The complex land use character in the central area of Gwangju 

within the footprint (Figure 2b) ranges from impervious road and parking lot (34.2%), greens (39% including forests, 260 

agricultural areas of rice paddy, farm field and orchards as well as other greens of yards and graves), residential (7.80%), 
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commercial (6.22%) to industrial (2.64%). Figure 2c and d further categorize land use components for EIA and SGA; the 

major differences are whether the area includes industrial area or not (EIA: 7.87% vs SGA: 0.21%) as well as the fraction of 

forest and agricultural area (EIA: 1% vs SGA: 26%) except the fraction of yards and graves marked as other greens. 

3.2 CO2 measurement descriptions 265 

 

Figure 3. Time series of (a) temperature (T, oC) and relative humidity (RH, %), (b) wind direction (o) and speed (m s-1), (c) mixing ratios 

of H2O and CO2 (ppth, part per thousand, and ppm, part per million), and (e) fluxes of H2O and CO2 (FH2O and FCO2, 𝐦𝐦𝐨𝐥 𝐦−𝟐 𝐬−𝟏 and 

𝛍𝐦𝐨𝐥 𝐦−𝟐 𝐬−𝟏, respectively). 

 270 

Time series of wind sector filtered temperature (T), relative humidity (RH), wind direction (WD), wind speed (WS), mixing 

ratios and fluxes of H2O and CO2, (H2O, CO2, FH2O and FCO2, respectively) are shown in Figure 3. The averages (interquartile 

range) of T, RH and WS were 17.17(±10.57) °C, 56.32(±15.70) % and 2.36(±1.28) m s-1, respectively. The observed mixing 

ratios of H2O and CO2 were 14.57(±7.45) ppth (part per thousand) and 425.58(±13.00) ppm (part per million) and their 

fluxes were 1.12(±0.68) mmol m−2 s−1 and 28.26(±14.14) μmol m−2 s−1, respectively. 275 

T, RH and H2O mixing ratio clearly showed seasonal changes in March and June from winter to spring and spring to 

summer. After July, monsoon starts as indicated by H2O abundance and RH. Measured FH2O showed larger variations after 

March than wintertime, likely due to active evaporation processes as temperature increases. As opposed to FH2O, observed 
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FCO2 had more variation in cold than warm season, mainly due to the strong vertical concentration gradients reflecting the 

active changes in CO2 emission/uptake processes (i.e. space heating, respirations, etc.). The FCO2 with positive sign indicates 280 

that Gwangju is a net CO2 source like other cities in the world as listed in Table 1, and comparable to Firenze and London 

(Matese et al., 2009; Ward et al., 2015). The observed FCO2 range agrees well with previously reported CO2 emission 

estimation (yearly average of 26.6±11.2 μmol m-2 s-1) by expenditure pattern (Moran et al., 2018).  

However, our direct measurements of FCO2 showed clear seasonal variabilities (Figure 3 and Figure S6). Monthly changes in 

FCO2 showed distinct patterns in cold (November–February: 26.59±18.13 μmol m-2 s-1) and warm (April–August: 285 

17.32±11.26 μmol m-2 s-1) seasons. Meanwhile, mixing ratio of CO2 gradually decreased from January (441.28±12.85 ppm) 

to August (421.03±10.55 ppm) and recovered in winter period (November to December: 443.97±14.88 ppm) even though it 

is hard to determine when it exactly happened due to the missing data in September and October 2018. 

 

Figure 4. Polar plots of (a) CO2 mixing ratio and (b)FCO2 centered at where the measurements were conducted. 290 

 

The polar plots of CO2 mixing ratio and flux are shown in Figure 4, where the color represents wind speed weighted CO2 

mixing ratio and FCO2. Enhanced CO2 mixing ratio was observed under low wind speed condition indicating strong influence 

of main city roads near the city hall where intensive activities take place. Meanwhile, the polar plot of FCO2 contrasted with 

that of concentration. Strong FCO2 signals were observed when wind blew from East-northeast (ENE) to southeast mainly 295 

where the car manufacturing factory exists. On the other hand, the relatively low FCO2 signature was observed from South–

southeast (SSE) to south area where the forests are situated. The averaged highest FCO2 was observed with wind speed 

around 4.7 m s-1 from ENE direction in EIA. We would like to clarify that the FCO2 data from Southwest (SW) to Northeast 

(NW) were not considered to be interpreted due to possible wind distortion by the city hall building.  
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 300 

Figure 5. Weekly diurnal patterns of (a) traffic volumes, (b) CO2 mixing ratio and (c) FCO2. Dotted marker with lines and area represent 

mean and interquartile range of each factor. 

 

The weekly diurnal patterns of CO2 and FCO2 along with traffic counts are shown in Figure 5. CO2 mixing ratio (Figure 5b) 

increased until 6:00-7:00 and then decreased until around 18:00 and recovered the next morning, regardless of day of the 305 

week, mainly due to changes in vertical mixing as PBL develops after the sun rises and variations in urban vegetation 

activity on top of daily anthropogenic emissions as explained by (Sargent et al., 2018). On the other hand, apparent FCO2 

difference between weekday and weekend was observed (Figure 5c); weekday flux was higher than that of the weekend. It is 

mainly attributed to changes in human activities over a week such as traffic volume related with commuting fleet (shown in 

Figure 5a) and operations of the car manufacturing facilities. Apparent consistency in diurnal variations of FCO2 and traffic 310 

volume during weekday (Monday to Friday) was observed with two local maxima around 6:00-9:00 and 17:00-19:00 (Figure 

S7). Meanwhile, broader enhancement traffic counts with relatively weak or no apparent peaks in FCO2 patterns existed over 

Saturday and Sunday (also shown in Figure S7). From this relation, 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 was extracted as follows. 

3.4 Emission factors (𝑬𝑭𝒔) estimations 

With varying wind sectors, observed FCO2 can be further analysed to apportion EFs of each of the sources under the 315 

assumption of well mixing up to the measurement height. One should note that even with the careful design of instrumental 

setup (i.e. located at constant flux layer on flat fetch) and filtration scheme for only considering active turbulent condition, 
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we cannot rule out the potential CO2 loss by advection as well as accumulation near the surface which could not be detected 

by our sensor. With limited information in CO2 gradient measurements, horizontal seepage and vertical storage corrections 

were not performed. Thus, we only provide 𝐸𝐹𝑠 of lower limit in emission than actual strengths. 320 

3.4.1 𝑬𝑭𝒕𝒓𝒂𝒇𝒇𝒊𝒄 emission 

𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐, from the observations with windblown from SGA using SLR, was quantified as 0.0012(±0.0011, 92% error) μmol 

m-2 s-1 car-1 (RMSE=3.01) as shown in Figure 6a, which falls in the range of other previous findings; this value is lower than 

Arnhem (0.075, Kleingeld et al., 2018), Basel (0.011, Lietzke et al., 2015), and Mexico City (1.53-3.87, Velasco et al., 2005) 

but in similar range with Houston (0.002, Park and Schade,2016), Helsinki (0.006, Järvi et al., 2012), and Edinburgh 325 

(0.0017, Nemitz et al., 2002). However, as mentioned in Sect. 2.5.1, 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅  is inherently vulnerable to seasonal 

variations especially for the case when the measurement cannot represent whole year round seasonality. The intercept of 

fitted line (shown in Figure 6a) indicating CO2 emission under 0 traffic condition was 4.79 μmol m-2 s-1 with large variability 

range of ±12.53 μmol m-2 s-1 likely referring the various degree of CO2 emission/uptake among seasons and the large 

uncertainty in regression slope (±0.0011 μmol m-2 s-1 car-1) has likely arisen due to this reason as well.  330 

Meanwhile, 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 was extracted as 0.017 (±0.011, 65% error) μmol m-2 s-1 car-1 (RMSE=3.66) which is more than 

an order of magnitude higher than 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅 (Figure 6b) but falls in those of Basel and Mexico City conditions. Even 

though our number agrees with other works, however, as mentioned in section 2.4.1, simple comparison with 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐 

previous works is  not recommended, since the inferred traffic counts only describe the degree of busyness of on-road 

vehicles in the fetch rather than the actual number of total cars; crossroad surveys are inherently lower than the total amount 335 

of traffic in fetch area. Thus the differences in  𝐸𝐹𝑠𝑡𝑟𝑎𝑓𝑓𝑖𝑐  among studies likely arise from the variations in degree of 

consistency in their traffic volume with total number of cars as well as actual difference in 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐.  

One should note that the intercept and its range of fitted line with DOW method drastically reduced to 2.09 ± 4.34 μmol m-2 

s-1, which is a sign of effective removal in seasonality. However, the cause of non-zero intercept of FCO2 indirectly indicates 

the existence of CO2 emission with weekend and weekday changes in SGA other than traffic. Unaccounted CO2 emissions 340 

from industrial, commercial and other activities may explain it, and thus an interesting topic for future investigations. We do 

not believe that human respiration influences on it due to the implementation of DOW difference in FCO2. The sensitivity 

tests of 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅  and 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝐷𝑂𝑊
 showed 13.9 and 27.06% (1 standard deviations) changes, respectively. The 

uncertainties in 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅  and 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊  were estimated as 92% and 65%, correspondingly from their linear 

regression fitting uncertainties. 345 
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Figure 6. Estimation of traffic emission factor (𝑬𝑭𝒕𝒓𝒂𝒇𝒇𝒊𝒄) from the relation of FCO2 with respect to the number of cars, estimated by (a) 

simple linear regression (SLR) and (b) day of week difference (DOW). 

 

3.4.2 𝑬𝑭𝒊𝒏𝒅𝒖𝒔𝒕𝒓𝒚 and 𝑬𝑭𝒉𝒆𝒂𝒕 estimation 350 

Data from EIA were used for 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 estimation where the measured FCO2 contains CO2 emission features of residential, 

commercial, industrial, traffic as well as urban vegetation. As similar to 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊, by taking the day of week difference 

in FCO2, we intended to ease out the contributions from residential and commercial area as well as vegetation under the 

assumption that their CO2 emission/uptake patterns are held relatively constant in a week. Figure S8 shows the diurnal 

pattern differences in DOW for traffic and FCO2 in EIA. From the 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 and traffic counts in eastern direction, the 355 

lower limit of 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦was estimated as 103.25 (±42.18, 41% error) μmol m-2 s-1 normalized to the areal coverage (0.341 

km2) of car manufacturing company and varied by 54.25 % (1 standard deviation) as the result of sensitivity tests. 

Considering normal operation hours of 6:00-22:00, from Monday to Friday, yearly emission was assessed as 66 (±34) kt CO2 

km-2 under the assumption of constant emission over the operation hours except during holidays. 
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 360 

Figure 7. FCO2 changes with respect to the ambient temperature. Blue solid and dashed lines represent linear regression and confidence 

band, respectively, for cold period and red lines for warm period. 

 

In regard to heat related CO2 emission, calculated HDD of each month (shown in Figure S5) was used. From the relation 

between temperature and CO2 flux shown in Figure 7, where CO2 fluxes tended to decrease as the temperature increased up 365 

to 18 ℃, the 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔 was estimated as 2.41(±1.71, 71% error) μmol m-2 s-1 °C-1 similar magnitude with those in Arnhem, 

Łódź and London (Kleingeled et al., 2018; Pawlak et al., 2011 and Ward et al., 2015) and thus year round emission of 

21(±15.1) kt CO2 km-2 was evaluated.  

We presumed that the large range in 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔  estimations was mainly due to the larger variabilities in 𝐹𝐶𝑂2  in lower 

temperature, not only owing to the missing data in September and October especially when heating tendency started but also 370 

owing to relatively stratified condition, thus, larger vertical gradients in cold periods. Sensitivity test of 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔  was 

conducted by changing the threshold temperature, and 28.2% changes were drawn for 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔. 

4 Conclusions 

Direct CO2 exchange quantified by EC method from urban center in Gwangju and estimated 𝐸𝐹𝑠 with land use characters 

are summarized in Table 2. Even though 𝐹𝐶𝑂2 measurements for September and October were missing, year round emissions 375 

of individual activities were able to be estimated from seasonal bias free 𝐸𝐹𝑠 extraction strategies; since the 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 

and 𝐸𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦  were inferred from DOW and 𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔  were extracted from the relation of 𝐹𝐶𝑂2  with temperature, no 

specific monthly dependency was expected.  

 

 380 
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Table 2. Summary of emission factors (𝑬𝑭) and annual emissions for individual activities, only for the parameters inferred from day of 

week difference due to the limitations in data coverage for September and October. 

 Measured Flux Traffic Industry Heat Vegetation 

𝑬𝑭s 

(error) 

28.3 μmol m-2 s-1 

(23%) 

0.017 μmol m-2 s-1 car-1 

(65%) 

103.3 μmol m-2 s-1 

(42%) 

2.41 μmol m-2 s-1 

℃-1 

(71%) 

- 

(109%) 

Area 14.1 km2 5.23 km2 0.33 km2 3.1 km2 4.63 km2 

Activity - 4023 car 3,856 hr 2,330 ℃ - 

Yearly 

emission 

554 kt CO2 yr-1 

39 kt CO2 km-2 yr-1 

10.7 kg C m-2 yr-1 

497 kt CO2 yr-1 

95 kt CO2 km-2 yr-1 

25.9 kg C m-2 yr-1 

21 kt CO2 yr-1 

63 kt CO2 km-2 yr-1 

17.21 kg C m-2 yr-1 

66 kt CO2 yr-1 

21 kt CO2 km-2 yr-1 

5.83 kg C m-2 yr-1 

-29 kt CO2 yr-1 

-6.28 kt CO2 km-2 yr-1 

-1.7 kg C m-2 yr-1 

 

The year round total CO2 emissions for individual activities were estimated from the information of hourly median of traffic 

counts, operations hours for normal days within the industrial area and areal coverage of heat related land use (details are in 385 

Table S1), and quantified as 497, 21, and 66 kt CO2 yr-1, respectively, thus the major source of CO2 in a year in Gwangju is 

on-road vehicle and heat generation (85 and 11 %, correspondingly). 

From these quantities with observed flux of CO2, the plants influence on CO2 exchange including photosynthesis and 

respiration can be estimated as the net balance of total emissions among all activities with observation; -29 (-27) kt CO2 yr-1 

(only considering industry emission in EIA region), which is 5 % in total exchange in a year, was evaluated from 390 

𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊. Under the consideration of vegetation coverage in the fetch (4.63 km2) as net CO2 uptake area, the total 

carbon intake by vegetation was evaluated as 1.7 (1.6) kg C m-2 yr-1 which falls in the range of previous researches (0.28-

2.45 kg C m-2 yr-1, (Febriani et al., 2018; Jo, 2002; Leu, 1990; Liu and Li, 2012; Rowntree and Nowak, 1991).  

 One should note that even though our evaluated CO2 uptake strength agrees with literature, the uncertainty ranges are large 

(109%), since it was quantified from the subtle balance among individual emissions with large variabilities. In addition, we 395 

did not account for the CO2 emission from human respiration, thus we only provide lower limit of plant roles than actual.  

Interestingly, with 𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝐿𝑅 , additional 432 kt CO2 yr-1 of CO2 emission source(s) is(are) required to reconcile the 

observed FCO2 which is unlikely the case for Gwangju. We conclude that this is a direct evidence in the importance of 

integrating all seasonal features in EFs estimation; missing data of specific month likely induced incorrect estimation due to 

the failure in assimilating all seasonal features (fall characteristics in our case), thus seasonal bias free method i.e. 400 

𝐸𝐹𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝐷𝑂𝑊 is a more proper strategy in annual CO2 emission estimation. 
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Figure 8. Comparison of CO2 emissions between this study (dark yellow) and Gwangju emission inventory in 2017(dark blue). The 

whiskers represent uncertainties evaluated by Monte-Carlo bootstrap sensitivity test. Industrial emission and plant uptake are not available 

(N/A) from the inventory. 405 

 

Based on our EFs estimations, both the annual CO2 emissions of traffic and space heating (95 and 21 kt CO2 km-2 yr-1) were 

more than 2.5 times higher than those of the emission inventory for Gwangju in 2017 (21.4 and 8.37 kt CO2 km-2 yr-1, 

respectively; Figure 8). We presume that even with the systematic traffic counts with energy and fuel consumption 

monitoring, either the existence of fugitive CO2 emissions or imperfection in 𝐸𝐹s parameterization can be the reason for the 410 

underestimation. Thus, more efforts on the existing emission inventory validations are required. Unfortunately, we were not 

able to compare the annual CO2 emission/uptake owing to the car manufacturing facility in EIA and urban vegetation, since 

the inventory was not compiled for it. Thus, site-specific emission inventories for individual facilities and validations are 

also needed in near future. In addition, more researches to understand the limited role of urban vegetation in CO2 

sequestrations are required as well as efforts to make this fact be known to the general public. 415 

Even though we only provide lower limit estimations, our research results urge the necessity of emission inventory 

validation for establishing strategies that are more realistic to mitigate climate change. In this aspect, EC flux technique with 

careful analysis method is a useful tool even with relatively short-term period of measurements. 

Data availability 
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