Long-term Variability in immersion-mode Marine Ice Nucleating Particles from Climate Model Simulations and Observations

Aishwarya Raman¹, Thomas Hill², Paul J. DeMott², Balwinder Singh¹, Kai Zhang¹, Po-Lun Ma¹, Mingxuan Wu¹, Hailong Wang¹, and Susannah M. Burrows¹

¹Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354
²Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371, USA

Correspondence: Aishwarya Raman(aishwarya.raman@pnnl.gov)

Abstract. Ice nucleating particles (INPs) are present in extremely low concentrations in the Southern Ocean (SO) atmosphere, but their temporal variability can have significant impacts on cloud radiative and microphysical properties. Yet, INP prediction skill in climate models remains poorly understood, in part because of the lack of long-term measurements. Here we show, for the first time, how model-simulated INP concentrations compare against year-round INP measurements during the Macquarie Island Cloud Radiation Experiment (MICRE) campaign from 2017-2018. We simulate immersion-mode INP concentrations using the Energy Exascale Earth System Model version 1 (E3SMv1) by combining simulated aerosols with recently-developed deterministic INP parameterizations and the native classical nucleation theory (CNT) for mineral dust in E3SMv1. Because MICRE did not collect aerosol measurements of supermicron particles, which are more effective ice nucleators, we evaluate the model’s aerosol fields at other Southern high-latitude sites using long-term in situ observations of dust and sea spray aerosol. We find that the model underestimates dust and sea spray concentrations by one to two orders of magnitude at most of these sites. We next compare predicted INP concentrations with concentrations of INPs collected on filter samples (typically for 2 or 3 days), and processed offline using the Colorado State University ice spectrometer (IS) in immersion freezing mode. We find that when deterministic parameterizations for both dust and sea spray INPs are used, simulated INPs are within a factor of 10 of observed INPs more than 60% of the time during summer. Our results also indicate that the E3SM’s current treatment of mineral dust immersion freezing in the SO is impacted by compensating biases – an underprediction of dust amount is compensated by an overprediction of its effectiveness as INP. Therefore, it is important to correct the biases in E3SM’s simulated dust life cycle and update E3SM’s INP parameterizations. INP prediction errors of two to three orders of magnitude can have considerable impacts on the simulated cloud and radiative properties in global climate models. On comparing INP concentrations during MICRE against a relative ship-based campaign, Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS), we find that INPs from the latter are significantly higher only in regions closer to the Macquarie Island. This suggests that physical, chemical and biological processes affecting INP concentrations as stimulated by the island could be partly responsible for the high INP concentrations observed at the Macquarie Island during the MICRE campaign. Therefore, improvements to both aerosol simulation and INP parameterizations are required to adequately simulate INPs and their cloud impacts in E3SM. It will be helpful to include a parallel measurement of the size-resolved aerosol composition, and explore
opportunities for long-term at-sea measurement platforms in future field campaigns studying INP sources in remote marine regions.

Keywords: Immersion freezing, Ice nucleation, INP parameterizations, Climate model

1 Introduction

The Southern Ocean (SO) is a pristine remote marine environment with unique microphysical cloud properties (Gettelman et al., 2020; McCoy et al., 2015; Meskhidze and Nenes, 2006; Tan et al., 2016). Southern Ocean clouds contain supercooled liquid droplets in higher fractions than is observed almost anywhere across the globe (Hu et al., 2010). The co-existence of supercooled liquid droplets and ice (mixed-phase) in these clouds is inadequately simulated in global models (Komurcu et al., 2014), introducing uncertainty into simulations of shortwave radiative flux (Vergara-Temprado et al., 2018) and cloud-climate feedbacks (Tan and Storelvmo, 2016) in this region. The supercooled liquid state is metastable, but in the absence of a mechanism to initiate freezing, supercooled water can persist in clouds at temperatures between 0 °C and approximately −38 °C (Koop and Murray, 2016), the homogeneous freezing temperature of water.

In the presence of aerosol particles that can nucleate ice such as dust, bacteria, and fungal spores, supercooled cloud droplets can freeze into ice at warmer temperatures and lower supersaturations than required for homogeneous ice nucleation (Vali et al., 2015; Vergara-Temprado et al., 2018; Kanji et al., 2017). The aerosol particles responsible for this process of heterogeneous ice formation are called ice nucleating particles (INPs) (Vali, 1996). Following the initial (or primary) formation of ice, clouds contain a thermodynamically unstable mixture of ice and supercooled liquid water. In such clouds, a variety of secondary ice production (SIP) processes contribute to the rapid multiplication of cloud ice, resulting in rapid glaciation of regions of the cloud (Crawford et al., 2012; Field et al., 2017; Korolev and Leisner, 2020). Even in clouds where SIP is responsible for a large portion of ice production, however, the cloud evolution and state may be sensitive to INP concentrations (Crawford et al., 2012; Phillips et al., 2007; Hawker et al., 2021), although this sensitivity is reduced in certain cloud regimes (Sullivan et al., 2018; Mignani et al., 2019; Miltenberger et al., 2020; Sotiropoulou et al., 2020).

Studies indicate that the phase and reflectivity of SO clouds are sensitive to INP concentrations (Vergara-Temprado et al., 2018). Accurate representations of INPs are therefore critical for simulating ice formation in the mixed-phase clouds that strongly affect the aerosol-cloud interactions, radiation budget, and precipitation over the SO (McCluskey et al., 2017; McFarquhar et al., 2020; McCoy et al., 2015). Despite the importance of INPs in the representation of mixed-phase clouds, knowledge about their sources, transport, and seasonal variability over the SO are still uncertain. In this study, we investigate the simulated and observed variability of SO INPs active in the immersion mode, noting that of all the modes of ice nucleation, the immersion mode is the most critical for freezing in mixed-phase clouds (Hande and Hoose, 2017).

The concentration of INPs active at a specific temperature can vary over a range of up to four orders of magnitude across observations collected at different times and locations (Kanji et al., 2017; Welti et al., 2018). However, recent field experiment have shown that, given adequate parameterizations of INP effectiveness for the major relevant classes of INPs, the ambient
concentration of INPs in the atmosphere can be predicted from observed aerosol properties with reasonable accuracy (Cornwell et al., 2019; Knopf et al., 2021). In climate models, INPs can be similarly predicted on the basis of parameterizations that are dependent on temperature, humidity and simulated aerosol properties, i.e., the size-resolved concentration of the relevant aerosol species. Accurate representation of INPs in atmospheric models will depend on both the model’s fidelity in simulating relevant aerosol properties and the realism of the model’s INP parameterizations.

In the SO, INPs arise from a combination of local sea spray aerosol and dust from regional and long-range transport (Twohy et al., 2021). Laboratory measurements using realistic proxies for biologically-influenced sea spray particles have clearly shown that these particles can act as INPs (DeMott et al., 2016; McCluskey et al., 2018b) (although not as efficiently as dust particles) and INPs have been found in organic matter collected from the ocean surface (Wilson et al., 2015). Experiments that isolate specific organic molecules or ocean biota have provided hints to some of the potential sources of these INPs (e.g., Knopf et al., 2011). Despite its weak INP effectiveness, models and field experiments indicate that sea spray is the primary source of background INPs in boundary-layer air in remote marine regions such as the SO, where continental aerosols are scarce (Burrows et al., 2013; Wilson et al., 2015; Vergara-Temprado et al., 2017; McCluskey et al., 2018a, 2019).

In addition to sea spray produced from strong surface winds, natural windblown dusts are an important source of INPs to the SO. Dust particles, which are a major global source of INPs, are 3–4 orders of magnitude more efficient as immersion-freezing INPs than marine aerosols (DeMott et al., 2015; Niemand et al., 2012; Boose et al., 2016; McCluskey et al., 2018c; Cornwell et al., 2019). Therefore, transported dust, even in small quantities, likely also affects INP number concentrations in the SO. The source regions of dust transported to the SO include South America, Australia, New Zealand, and North Africa (Wagener et al., 2008). In addition to long-range transport, dust in the SO can originate from local sources such as open soil areas in Antarctica when the ice melts during the austral summer. Other minor sources include low-latitude dust sources in the Northern Hemisphere (NH). Dry deposition is a major sink for desert dust aerosols because they are mainly emitted in dry regions with weak precipitation and their mass distribution is dominated by larger sized particles (Bergametti et al., 2018). The ability of the numerical models to simulate aerosol burdens at high-latitudes depends on emissions and transport as well as wet and dry deposition (Sand et al., 2017). A study by Wu et al. (2020) found that Energy Exascale Earth System Model version 1 (E3SMv1) produces higher dry deposition than the Community Earth System Model (CESM1) for similar dust emission fluxes. Biases in dry deposition fluxes in E3SMv1 can affect predictive skill for aerosol and INP concentrations. Witek et al. (2016) evaluated sea spray emission functions using satellite observations and found large differences between various sea spray parameterizations. These discrepancies between the model aerosol concentrations and the observations in turn affect the predictability of INP concentrations.

A handful of previous studies have evaluated INP predictability in global models, using data from short-term field campaigns (Wilson et al., 2015; McCluskey et al., 2018a). Due to the complex nature of field deployments on research vessels, most field campaigns have measured INPs only for periods of a few weeks; long-term or year-round observations of INPs are rare, especially in the high-latitude oceans. However, given the episodic nature of dust transport to the remote SO, as well as the existence of seasonal cycles in high-latitude sea spray and dust concentrations (e.g., Ito and Kok, 2017; Liu et al., 2018),
long-term observations are required for a better understanding of the variability of INP concentrations in the SO. Without such observations, it is challenging to evaluate the representativeness of field measurements. This, in turn, limits our ability to evaluate and constrain the simulation of INPs in climate models.

Large uncertainties in simulated INP concentrations can contribute to uncertainties in cloud radiative properties and related climate forcing, particularly in the SO (Vergara-Temprado et al., 2017; Yun and Penner, 2012; Tan and Storelvmo, 2016). Vergara-Temprado et al. (2018) simulated INP concentrations ranging over approximately four orders of magnitude in marine air between 40°S and 70°S, and examined the impacts of higher INP concentrations on low-level mixed-phase clouds in the cold sectors of extratropical cyclones, simulated at high resolution. Based on their simulations, they estimated that variations in INP concentration over the SO could modulate the radiative properties of similar clouds by as much as 24-60 W m\(^{-2}\). Few studies have systematically evaluated the INP concentrations simulated by models, and temporally representative long-term measurements of INPs are only recently becoming available.

Macquarie Island Cloud Radiation Experiment (MICRE) (2017-2018) provides a unique opportunity to advance modeling efforts regarding INP variability in the Southern Ocean, and understand the atmospheric processes controlling that variability, by providing year-round, near-daily INP observations at Macquarie Island (DeMott et al., 2018). Macquarie Island (54.49°S, 158.93°E), located between South of Tasmania and North of Antarctica, is ideal for marine aerosol sampling due to its remote location. In this study, we use aerosols simulated by the E3SMv1 in combination with INP parameterizations for dust and sea spray aerosol to simulate INP number concentrations. We compare these with MICRE near-surface INP measurements at different temperatures.

This study focuses on two primary objectives: (1) evaluate simulated INP predictions against measurements during MICRE; and (2) assess the potential causes of model-observation differences during MICRE due to missing particle sources of INPs, or other model processes.

2 Methods

2.1 Aerosol modeling

We use the aerosol fields simulated by the E3SMv1 Atmosphere Model (EAMv1) (Rasch et al., 2019) to simulate aerosol properties and the resulting INP concentrations. EAMv1 is the atmospheric component of the E3SMv1 model Golaz et al. (2019)). The land component in these simulations uses a prescribed vegetation seasonal cycle based on satellite phenology (Lawrence and Chase, 2007). The use of EAMv1 for simulating immersion-mode INP concentrations has been demonstrated in previous studies for high-latitude regions in the SO and the Arctic (McCluskey et al., 2019; Shi et al., 2021). We use EAMv1’s low-resolution configuration, which has a horizontal resolution of ca. 110 km with 72 vertical layers extending up to 0.1 hPa (approximately, 64 km). The atmosphere layer nearest to the surface is 20 m thick, with a total of 15 layers between the surface and 850 hPa, supporting an improved representation of gradients within the atmospheric boundary layer. EAMv1 uses a spectral element method to solve the atmosphere’s dynamic equations on a cubed-sphere grid (Dennis et al., 2012; Golaz et al., 2019).
Turbulence and clouds are parameterized using the Cloud Layers Unified by Binormals (CLUBB) parameterization (Larson et al., 2002; Larson and Golaz, 2005; Bogenschutz et al., 2013; Golaz et al., 2002). The deep convection parameterization is based on Zhang and McFarlane (1995) with improvements by Richter and Rasch (2008) and Neale et al. (2008). We nudge the horizontal winds towards the Modern Era Retrospective-Analysis for Research and Applications reanalysis (MERRA-2) (Gelaro et al., 2017) with a 6-h relaxation time scale following Ma et al. (2015) and Sun et al. (2019).

EAMv1 uses the four-mode version of the Modal Aerosol Module (MAM4) to represent aerosol life cycles and properties (Liu et al., 2016; Wang et al., 2020). Aerosol species represented in the baseline MAM4 version include sulfate, black carbon (BC), mineral dust, sea salt aerosol, primary organic aerosol (POA), secondary organic aerosol (SOA), and marine organic aerosol (MOA). In this study, we focus on two species relevant to INPs in the SO: (1) mineral dust and (2) sea spray, which includes both inorganic (sea salt) and organic constituents (MOA). MAM4 simulates aerosol mass mixing ratios and size distributions in four log-normal modes: the (1) Aitken, (2) accumulation, (3) coarse, and (4) primary carbon modes. Aerosols are internally mixed within each mode and externally mixed between modes. Individual aerosol species are included in some or all of the four modes, depending on their typical size distributions and hygroscopicity. Once emitted, aerosol species undergo horizontal transport and vertical mixing, chemical and microphysical transformation processes (e.g., condensation, coagulation), dry deposition, and wet scavenging.

Emission fluxes of natural dusts are calculated using the Dust Entrainment and Deposition (DEAD) model as a function of wind speed, friction velocity, and surface erodibility (Zender et al., 2003; Mahowald et al., 2006). Anthropogenic dust emissions associated with activities such as agriculture and off-road vehicle activity are not represented. The size distribution of emitted dust particles is prescribed, with a mass fraction of 3.2% in the accumulation mode [0.1 \(\mu\)m to 1 \(\mu\)m] and 96.8% in the coarse mode [1 \(\mu\)m to 10 \(\mu\)m]. A comparison of E3SMv1 dust concentrations with CESM1 and CESM2 has shown that the model underestimates the coarse mode dust lifetime, which may be mainly due to increased dry deposition in the thinner bottom layer of the model (Wu et al., 2020). However, E3SMv1 emits more dust than CESM1 and CESM2 in the accumulation mode. As a result, dust optical depth (DOD) in E3SMv1 is higher than in CESM, but lower than lidar satellite retrievals (Wu et al., 2020). As a consequence of the short dust lifetime, dust transport to the remote Arctic and SO is underestimated by the model.

Sea spray emission fluxes are simulated in the Aitken, accumulation, and coarse modes as a function of near-surface wind speed and prescribed sea surface temperature, with a prescribed emission size distribution (Mårtensson et al., 2003; Monahan, 1986). MOA emissions, and the variations in these emissions associated with ocean biological activity, are simulated using the OCEANFILMS parameterization (Burrows et al., 2018). In the EAMv1 implementation of OCEANFILMS, the main impact of the simulated MOA is to elevate the total emitted sea spray particle number and mass in specific regions and seasons where the parameterization predicts increased organic fractions in accumulation mode sea spray particles. In an early version of E3SM, the OCEANFILMS parameterization produced statistically-significant regional effects at high latitudes in both hemispheres, including 20–50% increases in cloud condensation nuclei concentrations (at a supersaturation of S=0.1%) across most of the SO (Burrows et al., 2018).
2.2 Calculating INP Concentrations

In this study, we compare INP concentrations calculated by E3SM’s default parameterizations with more recent parameterizations that have a stronger empirical basis, i.e., they are based on measurements of ambient (rather than laboratory-generated) particles, and on a larger number of measurements.

Heterogeneous ice nucleation occurring in mixed-phase clouds is currently represented in EAMv1 for dust and BC aerosols using classical nucleation theory (CNT) (Hoose et al., 2010; Wang et al., 2014). EAMv1 does not include marine aerosols as INP sources in CNT. In this study, we calculate INP concentrations at measurement temperatures and using the aerosols simulated by E3SM at the model’s surface layer.

Because smaller dust particles may not be effective INPs, we adopt DeMott et al. (2015) (hereafter, D15) to simulate the immersion-mode dust INPs for particles larger than 0.5 μm. For predicting sea spray INPs, we use a parameterization based on surface active-site density of SSA that was developed using observations under clean conditions at a coastal site in Ireland (McCluskey et al., 2018c) (hereafter, M18). For INP contributions from MOAs, we use the Wilson et al. (2015) parameterization (hereafter, W15), which assumes the INP number concentrations are directly proportional to the amount of organic carbon in the SSA. W15 was originally developed using droplet samples from the sea surface microlayer and the subsurface water in the Arctic and Atlantic Oceans. We apply these parameterizations to the relevant aerosol fields simulated by the E3SMv1 model (see Section 2.1). The different empirical INP parameterizations used in this study and their limitations are summarized in Table S1 in the Supplementary Information.

To aid in the comparison with measured INPs, we modified the heterogeneous ice nucleation module in E3SMv1 to output additional diagnostic variables that use measurement temperatures instead of ambient temperatures to calculate the INP concentrations [m⁻³] at the surface (see Equation 1). While the default immersion freezing parameterizations in E3SMv1 treat both dust and BC, we focus only on dust INPs here since the contribution of BC to immersion mode ice nucleation in the SO atmosphere is negligible (Kanji et al., 2020).

In the E3SMv1 implementation of CNT, the change in cloud ice crystal number concentration due to immersion freezing on dust, \(N_{\text{imm,dust}} [\text{m}^{-3} \text{s}^{-1}] \), during the model time step \(\Delta t \), is calculated as:

\[
\Delta N_{\text{imm,dust}} = N_{\text{aer,dust}} [1 - e^{(-J_{\text{imm,dust}}(T_{\text{ambient}}) \Delta t_{\text{model}})}]
\]

(1)

where \(N_{\text{aer,dust}} [\text{m}^{-3}] \) is the total (cloud-borne and interstitial) dust number concentration across all aerosol modes (ice-borne aerosol is not tracked in the model), and \(J_{\text{imm,dust}} [\text{m}^{-3} \text{s}^{-1}] \) is the heterogeneous nucleation rate per particle for dust, calculated at the model’s ambient temperature, \(T_{\text{ambient}} \). Analogous relationships are implemented for each ice-nucleating species and freezing mode handled by the CNT scheme.
To compare with INP concentrations measured by an instrument, we calculate a diagnostic that uses the measurement temperature, and an assumed measurement time scale:

\[N_{\text{INP,imm,dust}} = N_{\text{aer,dust}} [1 - e^{-J_{\text{imm,dust}}(T_{\text{measurement}}) \Delta t_{\text{measurement}}}] \]

(2)

A notable feature of Equation 1 is that the freezing rate is non-linearly dependent on time. As a consequence of this, the number of freezing events that occur during a particular time interval is sensitive to the model’s discretization of time, i.e., to the length of the time step. All else being equal, a reduction in model time step would be expected to produce an increase in heterogeneous freezing. By implementing CNT in Community Atmospheric Model version 5 (CAM5) mode, Wang et al. (2014) showed that this time step dependence is small at time scales close to the E3SMv1 model time step (1800 s), for typical conditions. However, such a timestep dependence of CNT in E3SMv1 is still unclear and requires future investigation.

However, since observational time scales are much shorter – on the order of a few seconds – the values of \(N_{\text{INP,imm,dust}} \) calculated following Equation 2 have a significant sensitivity to the assumed time scale. In this study, we use \(t_{\text{measurement}} = 10s \), following the approach used in other similar model evaluation exercises (for example, Wang et al. (2014)). We also assume that all dust particles are equally likely to participate in ice nucleation, which is also an assumption used in Hoose et al. (2010) and Wang et al. (2014). Under these assumptions, we calculate and output \(N_{\text{INP,imm,dust}} \) at several measurement temperatures. The addition of these diagnostic outputs does not modify the simulation results.

2.3 Observations

We use year-round measurements of immersion-mode INP number concentrations from the Department of Energy Atmospheric Radiation Measurement (DOE-ARM) campaign, MICRE (2017 March - 2018 March) to evaluate the performance of modeled INPs. Measurement samples were collected and averaged for a period of 2–3 days at the Macquarie Island location [54.4997°S, 158.9345°E] in the remote SO. All measurements were made at an altitude of ca. 4m above mean sea level (MSL) and the sampler was located inside the ARM+, the Commonwealth Scientific and Industrial Research Organization (CSIRO) and the Australian Bureau of Meteorology (BOM) enclosure (DeMott et al., 2018). Filters were processed using the Colorado State University ice spectrometer (McCluskey et al., 2018a) to obtain temperature spectra of INP concentrations from -28°C to -5.1°C. Particle samples collected on filters were immersed in purified water and shaken to create suspensions for immersion freezing measurements. In this standard technique, the tray was inserted into an aluminum block and cooled until the samples are frozen. Concentrations of INPs were calculated at different temperatures using the fraction of unfrozen wells per given temperature (Beall et al., 2017). Uncertainty ranges in measured INP concentrations were calculated using Poisson counting statistics (McCluskey et al., 2017). MICRE, a joint effort between the DOE-ARM user facility, the Australian Antarctic Division, and the Australian Bureau of Meteorology produced the first dataset over the SO that provides year-round measurements of ground-based INP number concentrations (DeMott et al., 2018). Long-term INP datasets like MICRE are a valuable resource for evaluating model estimates of seasonal and day-to-day variability in INP number concentrations over large, pristine marine
environments (McFarquhar et al., 2020). Aerosol measurements from MICRE were limited. Number concentrations of sub-micron aerosols using condensation particle counter (CPC) and cloud condensation nuclei (CCN) were directly measured by CSIRO. However, since CPC and CCN counts are dominated by smaller, soluble particles that do not contribute significantly to INPs, we do not expect these instruments to provide an informative measure of the particles that drive INP concentrations.

2.4 Model Experiments Design

We ran E3SMv1 model simulations from October 2015 to October 2018 with horizontal winds nudged using the Modern-Era Retrospective Analysis-2 (MERRA-2) (Gelaro et al., 2017). Nudging was applied to the entire vertical domain. The model simulation period was chosen to correspond to the time period of the MICRE campaign and other aerosol evaluation datasets used in this study. The first two months of the simulation were treated as spin-up and excluded from our analysis. Control simulations (hereafter, CTL) use default dry deposition in MAM4 as described in Zhang et al. (2001). Model fields in a cubed-sphere grid are remapped to latitude and longitude domain and co-located spatially and temporally with measurements. The aerosol number and speciated mass concentrations are prognostically simulated at 30-minute intervals, and the model fields are written as 6-hour instantaneous outputs at a horizontal resolution of approximately 1° x 1°. The cloud microphysics (Gettelman et al., 2015) in E3SMv1 uses freezing tendencies that are calculated for each model grid box on the basis of the simulated aerosol population and ambient state variables (temperature, pressure, and specific humidity). However, measurements of INP are typically performed across multiple temperature, and are reported as a function of the instrument temperature rather than the ambient temperature. In order to compare the model simulations of INPs from CNT against the in situ measurements, we added diagnostic variables in the model to simulate immersion-mode freezing rates and INP concentrations at measurement temperatures. These diagnostic variables are not passed to the cloud microphysics module and do not change the simulation.

2.5 Sensitivity Experiments

An additional sensitivity simulation is performed where we revise the coefficients in the model’s particle dry deposition parameterization following Emerson et al. (2020) (hereafter, EXP). The revised coefficients were shown by Emerson et al. (2020) to produce dry deposition fluxes that are in better agreement with observed fluxes over several land use categories, with some of the largest changes occurring over the ocean. Emerson et al. (2020) showed that GEOS-Chem simulations of coarse mode particles between 2µm and 10µm increased over the oceans on using the new coefficients for dry deposition. While many processes contribute to the model bias in INP concentrations, we focus on the role of dry deposition in this study because it is the dominant removal mechanism for coarse mode particles.

2.6 Comparison to In-situ Aerosol Observations

Very limited long-term measurements are available for evaluation of simulated aerosol concentrations in the SO. Because MICRE does not provide aerosol information, we compare modeled dust and sea salt concentrations with climatological measurements from University of Miami coastal stations. Overall, the measurements cover the time period 1983-2000, however,
the sampling time period varies between the stations. We compare observed values with simulated values from the model grid cell closest to the measurement location. The geographic locations of stations used in this study are shown in Figure 1, and their coordinates and measurement time periods are listed in Table 1. These measurements are not constrained by an upper cut-off radius (Spada et al., 2015).

In addition to the long-term climatological dataset from the University of Miami, we also evaluate the model results using year-long measurements of aerosol elemental composition from the DOE-ARM West Antarctic Radiation Experiment (AWARE). AWARE collected samples at the McMurdo station, Antarctica (located at the southern tip of Ross Island), from November 2015 to December 2016. X-ray fluorescence was used to derive elemental composition of minerals, including Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ag, Pb, and Ba (Liu et al., 2018). We derive concentrations of \(\text{MgCO}_3 \), \(\text{Al}_2\text{O}_3 \), \(\text{SiO}_2 \), \(\text{K}_2\text{O} \), \(\text{CaCO}_3 \), \(\text{TiO}_2 \), \(\text{Fe}_2\text{O}_3 \), \(\text{MnO} \), and \(\text{BaO} \) from these elemental compositions to calculate dust mass concentrations following (Usher et al., 2003). To assess the predictive skill of simulated INP concentrations in near-surface air, we utilize a set of standard skill scores outlined by the Monitoring Atmospheric Composition and Climate (MACC-II) project model evaluation methods (Cuevas et al., 2015; Eskes et al., 2015; Huijnen and Eskes, 2012). The modified normalized mean bias (MNMB), Pearson’s correlation coefficient, fractional gross error (FGE), and percentage of data points within a factor of 2 (2x) and 10 (10x) from the observations are used to assess E3SMv1 INP concentrations.

To evaluate the vertical distribution of dust and sea salt aerosols, we use aerosol mass concentrations from aircraft measurements made during the Atmospheric Tomography Mission (ATom) mission using the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. The PALMS measures aerosol particles in the size range from ca. 100 – 5000 nm, and particles are classified into several composition types, including mineral dust and sea salt. While the entire time period for the ATom campaign does not overlap with MICRE, we use some flight tracks from ATom for February and October of 2017 that overlap with the MICRE campaign.

3 Results and Discussion
3.1 Evaluation of E3SMv1 aerosol concentrations

Figure 2 compares measured and simulated dust concentrations at Cape Grim, Cape Point, Ruckomechi, Palmer station, Mawson station, and McMurdo Station in Ross Island. All in situ locations in Figure 2 except the McMurdo Station compare the model with long-term climatological means from the U. Miami measurement network. At the McMurdo Station, we evaluate monthly means for 2015-2016 using the AWARE field campaign measurements. In the SH, E3SM CTL simulations underestimate dust concentrations by one to two orders of magnitude, especially at high latitude stations such as McMurdo Station; Palmer and Mawson, Antarctica. Substantial underestimation of dust in remote regions is a common problem across many climate models (Adebiyi and Kok, 2020; Huneeus et al., 2011; Wu et al., 2020), and may be caused by problems with model source terms, simulated transport, loss processes, dust size distribution, or numerical issues (Schutgens et al., 2020). For additional context, we also show evaluation results from stations in the NH in Figure S1 and Figure S2. The model overestimates
Table 1. Location and data collection period of the ground stations used in this study for dust and sea salt concentrations.

<table>
<thead>
<tr>
<th>Station name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Data sampling period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatham Island</td>
<td>43.92°S</td>
<td>176.50°W</td>
<td>16-Sept-83 ; 11-Oct-1996</td>
</tr>
<tr>
<td>Cape Point</td>
<td>34.35°S</td>
<td>18.48°E</td>
<td>27-Feb-92 ; 21-Nov-96</td>
</tr>
<tr>
<td>Cape Grim Tasmania</td>
<td>40.68°S</td>
<td>144.68°E</td>
<td>11-Jan-83 ; 08-Nov-96</td>
</tr>
<tr>
<td>Marsh King George Island</td>
<td>62.18°S</td>
<td>58.30°W</td>
<td>27-Mar-1990 ; 25-Sept-96</td>
</tr>
<tr>
<td>Marion Island</td>
<td>46.92°S</td>
<td>37.75°E</td>
<td>25-Mar-1992 ; 01-May-1996</td>
</tr>
<tr>
<td>Mawson, Antarctica</td>
<td>67.60°S</td>
<td>62.50°E</td>
<td>18-Feb-87 ; 01-Jan-96</td>
</tr>
<tr>
<td>Palmer Station, Antarctica</td>
<td>64.77°S</td>
<td>64.05°W</td>
<td>03-Apr-90 ; 18-Oct-1996</td>
</tr>
<tr>
<td>Yate, New Caledonia</td>
<td>22.15°S</td>
<td>167.00°E</td>
<td>23-Aug-83 ; 23-Oct-1985</td>
</tr>
<tr>
<td>FunafutiTuvalu</td>
<td>8.500°S</td>
<td>179.20°W</td>
<td>08-Apr-83 ; 31-Jul-87</td>
</tr>
<tr>
<td>Nauru</td>
<td>0.530°S</td>
<td>166.95°E</td>
<td>16-Mar-1983 ; 02-Oct-1987</td>
</tr>
<tr>
<td>Norfolk Island</td>
<td>29.08°S</td>
<td>167.98°E</td>
<td>27-May-1983 ; 21-Feb-97</td>
</tr>
<tr>
<td>American Samoa</td>
<td>14.25°S</td>
<td>170.58°W</td>
<td>19-Mar-1983 ; 03-Jan-96</td>
</tr>
<tr>
<td>Midway Island, NPacific</td>
<td>28.22°N</td>
<td>177.35°W</td>
<td>18-Jan-81 ; 02-Jan-97</td>
</tr>
<tr>
<td>Oahu, Hawaii, NPacific</td>
<td>21.33°N</td>
<td>157.70°W</td>
<td>21-Jan-81 ; 13-Jul-95</td>
</tr>
<tr>
<td>Cheju, KoreaWest</td>
<td>33.52°N</td>
<td>126.48°E</td>
<td>10-Sept-91 ; 27-Oct-1995</td>
</tr>
<tr>
<td>Fanning Island, SEAREX</td>
<td>3.920°N</td>
<td>159.33°W</td>
<td>02-Apr-81 14-Aug-86</td>
</tr>
<tr>
<td>Ennewetak Atoll, SEAREX</td>
<td>11.33°N</td>
<td>162.33°E</td>
<td>27-Feb-81 ; 10-Jun-87</td>
</tr>
<tr>
<td>Ragged Point,Barbados</td>
<td>13.17°N</td>
<td>59.43°W</td>
<td>05-May-1984 ; 01-Jul-98</td>
</tr>
<tr>
<td>Izana Tenerife</td>
<td>28.30°N</td>
<td>16.50°W</td>
<td>25-Jul-87 ; 01-Jul-98</td>
</tr>
<tr>
<td>Bermuda, West And East</td>
<td>32.27°N</td>
<td>64.87°W</td>
<td>29-Mar-1989 ; 01-Jan-98</td>
</tr>
<tr>
<td>MaceHead</td>
<td>53.32°N</td>
<td>9.850°W</td>
<td>11-Aug-88 ; 15-Aug-94</td>
</tr>
<tr>
<td>Rsmsas,University of Miami</td>
<td>25.75°N</td>
<td>80.25°W</td>
<td>02-Jan-89 ; 07-Aug-98</td>
</tr>
<tr>
<td>Rukomechi, Zimbabwe</td>
<td>16.00°S</td>
<td>29.50°E</td>
<td>Not-Known</td>
</tr>
<tr>
<td>Jabirun, NorthernAustralia</td>
<td>12.70°S</td>
<td>132.90°E</td>
<td>Not-Known</td>
</tr>
<tr>
<td>Ross Island, McMurdo Station</td>
<td>77.85°S</td>
<td>166.66°E</td>
<td>29-Nov-2015 ; 03-Aug-2017</td>
</tr>
</tbody>
</table>
dust in the NH stations such as the University of Miami; Ragged Point, Barbados; Oahu; Izana, Tenerife; Fanning Island; Bermuda East; Cheju (except August and September); and Midway Island.

Turning to sea salt, Figure 3 shows a model underestimation by at least an order of magnitude at Mawson and McMurdo Station in Antarctica whereas overestimates sea salt in Cape Grim and Palmer Station. Among the NH climatological stations, model overestimates sea salt climatology by 1–2 orders of magnitudes in the NH stations (Figure ??).

We considered whether these biases in dust and sea salt simulation might be caused by model biases in simulation of dry deposition, by examining the model’s response to adjusted dry deposition coefficients in the EXP sensitivity case. Dry deposition is a major loss process for supermicron aerosol, and the parameterization of dry deposition used in E3SM was recently shown to overestimate deposition to the ocean Emerson et al. (2020). This adjustment does not yield significant improvements to dust and sea salt concentrations in SH high latitude sites. Dust and sea salt budget from CTL and EXP simulations are provided in Table 2. Using revised dry deposition coefficients does not significantly improve the dry deposition flux for dust or sea salt.

While this adjustment affects the dust life cycle, quantifying the causes of biases in dust and sea salt aerosols in E3SMv1 requires further investigation of other sources such as missing emission hotspots (recently shown to be important for high-latitudes Neff and Bertler, 2015; Bullard, 2017), loss processes (wet scavenging by precipitation and dry deposition to surfaces), uncertainties in wind-driven dust emissions (Gliß et al., 2021), and numerical diffusion (Ginoux et al., 2004).
Figure 2. Climatology of dust concentrations from ground stations in the Southern Hemisphere (SH) compared against E3SMv1 aerosol climatology. Ground stations and their locations are listed in Table 1. Model aerosol concentrations were derived from monthly average dust and sea salt concentrations for the period 2016-2018. Error bars in the model represent standard deviation of aerosol mass concentrations for 2016-2018. Error bars in the observations for each ground station represent standard deviation of measurements for the period shown in Table 1. Both CTL and sensitivity simulations (EXP) are shown for comparison with observations. Also shown are the E3SM simulated sea salt climatology at the Macquarie Island and time series of dust concentrations from AWARE field campaign with co-located E3SM model simulations.
Figure 3. Climatology of sea salt concentrations from ground stations in the Southern Hemisphere (SH) compared against E3SMv1 aerosol climatology. Ground stations and their locations are listed in Table 1. Model aerosol concentrations were derived from monthly average dust and sea salt concentrations for the period 2016-2018. Error bars in the model represent standard deviation of aerosol mass concentrations for 2016-2018. Error bars in the observations for each ground station represent standard deviation of measurements for the period shown in Table 1. Both CTL and sensitivity simulations (EXP) are shown for comparison with observations. Also shown are the E3SM simulated sea salt climatology at the Macquarie Island.
While the MICRE observations were conducted in near-surface air, the impacts of INPs on clouds occur at higher altitudes. Therefore, adequate simulation of dust and sea spray vertical profiles in the Southern Ocean is also required to correctly simulate the cloud impacts of these INPs. To evaluate the model simulated vertical distributions of aerosols in the SO, we compare simulated vertical profiles of dust and sea salt aerosols with aircraft measurements of ATom in the size range 0.1 - 4.8 µm diameter averaged over 30S-60S and 160E-160W (Thompson et al., 2021). Figure 4 shows that E3SMv1 adequately simulates the dust and sea salt concentrations to within the range of observed values at all pressure levels up to 400 hPa, with the exception of 800 hPa where the number of observations are too small to provide a meaningful sample ($N = 2$). Dust concentrations do not vary much below 400 hPa in E3SM simulations and ATom measurements, which is consistent with the lack of local emissions from the underlying ocean surface. In contrast, sea spray concentrations decline monotonically with altitude, consistent with the presence of local surface emissions from the strong winds. It is important to note that the ATom measurements used in Figure 4 includes only eight days of flights (dates are provided in Figure 4 caption) and might only be representative of zonal average aerosol concentrations for the flight days. ATom measurements are converted to concentrations under standard temperature and pressure. Although the ATom flights did not directly pass over Macquarie Island, these comparisons are useful to understand the model’s general behaviour in simulating the vertical profiles of dust and sea salt concentrations in this region. Good agreement in model vertical gradient in dust and sea salt aerosols indicates that vertical mixing is likely a smaller concern, compared to other sources of biases in simulated INP concentrations in this region. The model evaluation of vertical aerosol profiles has implications for the role of INPs in cloud optical and microphysical properties in the MBL and free troposphere.
3.2 Simulated global mean INP distributions

Atmospheric concentrations of INPs vary significantly between different regions of the globe due to geographic variations in the concentrations of various INP-active aerosols. For example, Atkinson et al. (2013) showed that ice nucleation active site densities for different types of feldspar dust mineral spans seven orders of magnitude at $-15^\circ C$. We illustrate the global distributions of simulated INPs in Figure 5, which shows maps of surface annual mean immersion-mode INP concentrations calculated using various INP parameterizations, at $-28^\circ C$ (left panels) and $-20^\circ C$ (right panels).

Figure 4. Vertical profiles of dust and sea salt concentrations from ATom aircraft observations using the PALMS instrument and E3SMv1 simulations averaged over 30S-60S and 160E-160W (grey, ATom observations and red, E3SMv1 simulations). Vertical profiles of dust are shown for the size range 0.1-4.8 μm diameter. Total number of observations at each pressure are given here: 1000 hPa: 24, 900 hPa: 0, 800 hPa: 2, 700 hPa: 0, 600 hPa: 15, 500 hPa: 29, 400 hPa: 11, 300 hPa: 25, 200 hPa: 16. Profiles include flight tracks from 2016-08-08, 2016-08-12, 2017-02-05, 2017-02-10, 2017-10-08, 2017-10-11, 2018-05-03, 2018-05-06.
Figure 5. Global annual mean INP concentrations for 2017 at activation temperatures -28°C (left panels) and -20°C (right panels). Rows represent different INP parameterizations used in this study: CNT (dust) 10s, D15 (dust), M18 (sea spray), and W15 (marine organic sea spray). Details on INP parameterizations can be found in Table S1.
Different INP parameterizations produce substantially different concentrations of INPs. For example, CNT at 10s produces annual mean dust INP concentrations that are 1-3 orders of magnitude higher than the D15 parameterization globally. The ratio of CNT/D15 is highest near the SH polar regions, indicating that high SH latitudes may be the region that is most sensitive to the choice of dust INP parameterization during the dust episodes. Figure S3 shows that the ratio of CNT/D15 over the SO is larger at -20°C, compared to -28°C. This is explained by differences in the dependence of INP concentrations on temperature, i.e., the slope of \(\text{INP} [L^{-1}] / T_{\text{measurement}} \) for the two parameterizations, which is shown in Figure S4.

In Table 3 and Table 4, we show statistics for the annual and seasonal INP concentrations in the SH and across the globe, at two activation temperatures, -28°C and -20°C. Dust INPs dominate the global mean INP concentration as well as its variability at both -28°C and -20°C. CNT shows the highest variability in INP concentrations as seen from the standard deviation values in Table 3 and Table 4.

As a point of comparison, we also evaluate the W15 parameterization. W15 was developed on the basis of samples of organic matter collected from the ocean surface in the North Atlantic and Arctic Oceans; the concentration of ice-nucleating entities in these samples was shown to be correlated with their total organic carbon mass. W15 parameterizes marine INPs as a function of simulated MOA, on the assumption that the relationship between organic mass and INPs found in sea surface microlayer material can be extrapolated to sea spray aerosol. This assumption may have important limitations; e.g., more recent findings indicate that the sea-air transfer of INPs is highly selective, an effect that is not captured by the W15 parameterization and that could have important implications for the contributions of biogenic sea spray INPs (Mitts et al., 2021; Steinke et al., 2021). Nevertheless, since W15 has been used in past modelling studies of marine INP impacts (Vergara-Temprado et al., 2018), it is useful to compare it with more recent parameterizations. As shown in Table 3, global annual mean INP concentrations simulated by W15 are approximately an order of magnitude higher than those simulated by M18 for background sea spray INPs. Such order-of-magnitude differences in INPs can have important impacts on simulated cloud processes, including precipitation and cloud phase feedbacks on climate (Shi and Liu, 2019; Kawai et al., 2021; Fan et al., 2017). Given this large discrepancy between the INP concentrations from various parameterizations, additional efforts are needed to evaluate and improve upon the existing parameterizations of marine INPs, particularly in understanding the emissions and INP effectiveness of marine biogenic INPs that are emitted episodically from the ocean surface (Steinke et al., 2021).

Table 3. Mean and standard deviations for E3SM surface INP concentrations for -28°C. For context, both global and SH statistics are shown for 2017.

<table>
<thead>
<tr>
<th>Parameterization</th>
<th>Global Annual Mean</th>
<th>Global Annual σ</th>
<th>SH Mean</th>
<th>SH σ</th>
<th>SH Summer Mean</th>
<th>SH Summer σ</th>
<th>SH Winter Mean</th>
<th>SH Winter σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15 ([L^{-1}])</td>
<td>13</td>
<td>72</td>
<td>1.5</td>
<td>10</td>
<td>1.9</td>
<td>12</td>
<td>1.1</td>
<td>6.6</td>
</tr>
<tr>
<td>M17 ([L^{-1}])</td>
<td>0.21</td>
<td>0.27</td>
<td>0.24</td>
<td>0.27</td>
<td>0.28</td>
<td>0.32</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>W15 ([L^{-1}])</td>
<td>2.4</td>
<td>4.4</td>
<td>2.8</td>
<td>4.9</td>
<td>3.7</td>
<td>6.2</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>CNT ([L^{-1}])</td>
<td>1.6e02</td>
<td>8e02</td>
<td>24</td>
<td>1.4e02</td>
<td>28</td>
<td>1.6e02</td>
<td>20</td>
<td>1.1e02</td>
</tr>
</tbody>
</table>

σ represents standard deviation of the season or year.
Table 4. Mean and standard deviations for E3SM surface INP concentrations for -20° C. For context, both global and SH statistics are shown for 2017.

<table>
<thead>
<tr>
<th>Parameterization</th>
<th>Global Annual Mean</th>
<th>Global Annual σ</th>
<th>SH Mean</th>
<th>SH σ</th>
<th>SH Summer Mean</th>
<th>SH Summer σ</th>
<th>SH Winter Mean</th>
<th>SH Winter σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15 [L⁻¹]</td>
<td>0.33</td>
<td>1.8</td>
<td>0.041</td>
<td>0.25</td>
<td>0.052</td>
<td>0.031</td>
<td>0.028</td>
<td>0.17</td>
</tr>
<tr>
<td>M17 [L⁻¹]</td>
<td>2.7e-03</td>
<td>3.4e-03</td>
<td>3.2e-03</td>
<td>3.4e-03</td>
<td>3.6e-03</td>
<td>4.2e-03</td>
<td>2.7e-03</td>
<td>2.4e-03</td>
</tr>
<tr>
<td>W15 [L⁻¹]</td>
<td>0.071</td>
<td>0.12</td>
<td>0.080</td>
<td>0.14</td>
<td>0.10</td>
<td>0.17</td>
<td>0.051</td>
<td>0.073</td>
</tr>
<tr>
<td>CNT [L⁻¹]</td>
<td>5.2</td>
<td>28</td>
<td>0.72</td>
<td>4.9</td>
<td>0.84</td>
<td>5.7</td>
<td>0.60</td>
<td>4.0</td>
</tr>
</tbody>
</table>

σ represents standard deviation of the season or year.

3.3 Comparisons of simulated INPs with MICRE measurements

In the previous section, we compared global distributions of INPs from different parameterizations. In this section, we compare the model-simulated INPs against MICRE observations at the Macquarie Island, which will help in understanding the day-to-day and long-term INP predictive skill of the model for remote marine regions in high-latitudes. In Figure 6, we show scatterplots of simulated INPs from several INP parameterizations compared against MICRE INP measurements (for collections made over 2–3 days) and corresponding performance metrics.

We show results separately for austral summer (Figure 6, left) and austral winter (Figure 6, right). In both seasons, INPs are significantly underpredicted using dust alone (D15; NMB of -1.68 during the summer and -1.88 during the winter) or sea spray alone (M18; NMB of -1.13 during the summer and -1.58 during the winter). Across all measurement temperatures, D15 is biased low by up to four orders of magnitude compared to the measurements.

This low bias is consistent with the findings of McCluskey et al. (2019), who showed that using a combination of M18 and D15 INPs from dust and sea spray aerosols simulated by the CESM model produced better agreement with immersion freezing INP measurements at the Mace Head research station and in the SO for the CAPRICORN campaign. Similarly, we find that better agreement is achieved at MICRE when using the combination of M18 sea spray and D15 dust INPs (Figure 6g and Figure 6h) than by either sea spray or dust alone. Potential reasons for the remaining model-observation disagreement will be discussed further in Section 3.6.

Interestingly, the W15 parameterization also produces better agreement with observed INPs. While W15 overpredicts summertime INPs by 1-2 orders of magnitude for temperatures warmer than -20°C, summertime INPs at colder temperatures, and wintertime INPs at warmer temperatures, agree better with observations than INPs predicted by the other parameterizations. Given the large uncertainties currently associated with prediction of sea spray organic matter (Burrows et al., 2018) and its INP efficiency (Steinke et al., 2021; Mitts et al., 2021), and the lack of aerosol chemistry measurements at MICRE, it is difficult to discern at this time whether this improved agreement reflects a better representation of the underlying physical and chemical processes. Clearly, more study is needed to understand the regional and seasonal impacts of marine biology on sea spray INPs (Wolf et al., 2020; Trueblood et al., 2021).
Figure 6. Observed INP concentrations (L$^{-1}$) at the Macquarie Island from MICRE and simulated INPs from E3SMv1 and INP parameterizations. (a) and (b) : D15, (c) and (d) : M18, (e) and (f) : M18+D15, (g) and (h) : W15. INP concentrations are colored by activation temperatures used for measurements. Solid line in each panel represents 1:1 comparison, while dashed lines represent a factor of 2 and 10 from the observations. Error metrics in each panel include normalized mean bias (NMB), spearman correlation (R), percentage of model INPs within a factor of two from observations (2x), and percentage of model INPs within a factor of 10 from observations (10x). Scatter plots for austral summer (October-February) are shown in the left column and those for austral winter (March - September) are shown in the right column.
Figure 7. Time series of near-daily INP concentrations at the Macquarie Island for specific activation temperature intervals: (a) -28.5°C to -28°C, (b) -20.5°C to -20°C, and -16.5°C to -16°C. INP observations from MICRE are shown in black circles. Error bars on the observations represent 95% confidence interval width for number of INPs per liter of air at ambient temperature and pressure. Simulated INP concentrations are interpolated using the nearest grid box for the Macquarie Island and co-located for the time period of observation. Simulated INPs are shown in dotted lines and color coded as follows: D15 (red), CNT (orange), W15 (green), M18 (blue), M18+D15 (magenta).
3.4 Variability in INPs

The time series of near-daily observed and simulated INP concentrations from 2017-2018 at the Macquarie Island show that at a given temperature, variability in INP measurements ranges over 2–3 orders of magnitude (Figure 7). We choose an interval of 0.5°C for the time series analysis because this interval matches with the MICRE reported measurement increments for temperature. Panels a, b, and c in Figure 7 correspond to temperature intervals, $-28.5^\circ C$ to $-28^\circ C$, $-20.5^\circ C$ to $-20^\circ C$, and $-16.5^\circ C$ to $-16^\circ C$ respectively. From observed INP concentrations, we do not see a clear seasonal cycle. INP highs in the observations are episodic and are not restricted to specific seasons. However, some of the peak observed INP concentrations occurring in Figure 7b during the austral summer months coincide with the time period for major dust emission events in southern Australia and favorable ocean conditions for phytoplankton growth (Gabric et al., 2010). At $-20.5^\circ C$ to $-20^\circ C$ range, CNT agrees well with INP measurements. However, for temperatures warmer than $-20^\circ C$, CNT significantly underestimates INP concentrations by 2-3 orders of magnitude. The lack of aerosol measurements from MICRE makes it challenging to correlate peak INP concentrations with changes in aerosol composition and size distribution.

Episodic dust from long-range transport may contribute to INP concentrations in the SO. For example, Neff and Bertler (2015) found that dust emissions of 30 Tg a$^{-1}$ in New Zealand could contribute as much as 21.9% to dust deposition in the SO. In particular, previous studies using backtrajectories and observed radon concentrations have shown that airmasses arriving at the Macquarie Island can be influenced by aerosol emissions in Australia and Antarctica (Brechtel et al., 1998). To gain some insight into potential dust sources, we performed 15-day backtrajectory analyses using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) Draxler and Rolph (2010). We found that air transported to Macquarie Island at times had passed over potential regional dust sources, including the coasts of Antarctica and South America (not shown).

3.5 INP statistics in models and measurements

We evaluate the shape of the INP probability distribution functions (PDFs) to understand how the frequency distribution of simulated INP concentrations compare against those from the observations. Such an analysis can provide qualitative insights into the sources likely to be relevant to peak INP concentrations (Hartmann et al., 2019). For example, previous studies have shown that the log-normal shape of the INP PDF distributions can be associated with air-quality events that involve more mixing and dilution whereas skewed distributions can be associated with local emission sources (Gong et al., 2019). Figure 8 shows the simulated and observed frequency distributions of INP concentrations, in several freezing temperature ranges. The shape of the M18 frequency distribution somewhat resembles the observed MICRE distribution, but is shifted towards lower concentrations. We observe that the E3SM’s default CNT parameterization predicts significantly more freezing than D15, and that this difference is most pronounced at the coldest measurement temperatures. The W15 parameterization in isolation would produce a slight overprediction of median INPs at MICRE, especially at warmer temperatures.
Figure 8. Violin plots of the distributions of \(\log_{10} \text{INP}(T) \) from E3SM CTL simulations and MICRE observations for 2017-2018: (a) \(-28.5^\circ C\) to \(-28^\circ C\), (b) \(-20.5^\circ C\) to \(-20^\circ C\), (c) \(-16.5^\circ C\) to \(-16^\circ C\). Data distribution depicted by violin plots with median (black white dot at the center), interquartile range (upper and lower ends of the black box), 95% confidence interval (thick black lines).
3.6 Potential reasons for model INP bias

By taking into account additional observational evidence and recent studies documenting limitations in the E3SMv1 aerosol representation, we discuss three likely sources of model-observation discrepancies in MICRE INPs: (1) Potential local or regional INP sources that are not represented in the model, such as land sources, sea spray arising from coastal wave action, coastal shelf-induced changes in ocean biology, ocean chemistry, and sea spray composition, or re-suspension of dust from surface waters (Cornwell et al., 2020); (2) E3SMv1’s underprediction of dust aerosol, especially over remote regions away from emission sources, including high latitudes; (3) a likely high bias in dust freezing rates in the E3SMv1 CNT parameterization that partially compensates for the underprediction of dust concentrations; and (4) regionally elevated marine organic emissions that are not necessarily accurately represented at local scale in the OCEANFILMS MOA emission model, or in their ice nucleation efficiency by W15.

We discuss the evidence that the island may affect observed INP concentrations and contribute to model-observation differences during MICRE. To understand whether MICRE is representative for the region, we compare with a related ship-based campaign, Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS). Figure S5 shows an aerial shot of Macquarie Island along with the Aurora Australis ship used for MARCUS field campaign. While the MARCUS campaign covered a shorter time period (November 2017 - April 2018), its observations were largely collected over open ocean, and so should be less impacted by local island effects.

Observed INP concentrations during MICRE were significantly higher than during MARCUS (Figure 9a). Further, a subset of MARCUS observations that were collected in close proximity to Macquarie Island are highlighted in (Figure 9a); these are among the highest INP concentrations observed during MARCUS, and are more similar to MICRE than are other MARCUS observations. Taken together, this suggests that processes local to Macquarie Island may be producing local INP concentrations that are significantly higher than over open ocean. One of the known reasons for underestimation of high latitude dust concentrations in E3SMv1 is the lack of high-latitude dust emission sources. Shi et al. (2021) found that adding high latitude dust sources led to improvements in model simulations of INP concentrations in the Arctic. However, it is difficult to evaluate whether the underprediction of dust in E3SMv1 can fully explain INP biases during MICRE, due to the lack of the aerosol size and composition observations that would be required in order to quantify the contributions of simulated dust concentrations to these biases. Other island processes potentially affecting MICRE INPs include dynamic effects on boundary-layer dynamics due to surface drag and orographic lifting caused by the island, which has potential to influence surface sources, losses and boundary-layer mixing; the presence of a surf zone at the coast; the presence of stronger ocean biological activity near the coast (on the continental shelf); and the potential existence of local terrestrial or anthropogenic sources from the island. It would be interesting to employ a regional model to test these localized island processes. If local sources indeed dominate the INPs observed at MICRE, it may therefore be expected to be less directly comparable to global models than the open ocean measurements from ship-based campaigns such as MARCUS.

For comparison, we also plot simulated INP concentrations versus temperature using different parameterizations (Figure 9b–9e). We find that INPs simulated using M18+D15 are more similar to the MARCUS measurements than to MICRE. Therefore,
Figure 9. Relationships between temperature and INP concentrations. (a) All MICRE and MARCUS INP measurements along with MARCUS ship measurements at Macquarie Island (MARCUS at MICRE), all MARCUS INPs in Western Longitudes (MARCUS longitudes W), and MICRE INPs closer to the date when the MARCUS ship was at Macquarie Island (MICRE 3/2/18) (b) M18+D15, (c) M18, (d) D15, (e) W15. Measurements sampled when MARCUS cruise was near the Macquarie Island are shown in violet. Model INP concentrations are shown only at Macquarie Island.
we tentatively conclude that some combination of potential nearby terrestrial and coastal effects, along with model bias in aerosol concentrations from regional sea spray and long-range dust transport, may be some of the primary causes of model-observation differences at MICRE.

Biases in E3SM-simulated aerosol could contribute to model-observation differences in INP concentrations. Aerosol bias in climate models can be due to inaccurate representations of one or more important processes in the aerosol lifecycle. For example, (Rosenberg et al., 2014) compared global climate model simulations with Saharan desert dust measurements and concluded that most models underestimated coarse mode Saharan dust emissions. As previously discussed, E3SM underpredicts dust concentrations at high latitudes, due in part to a low bias in the dust lifetime Wu et al. (2020). Adebiyi and Kok (2020) found that the systematic underestimation of coarse dust in climate models is primarily determined by the dust size distribution. In this study, we have shown that in E3SMv1, biases in dust are ameliorated, but do not appear to be fully resolved by revising the dry deposition coefficients. Many other processes could cause biases in simulated dust, such as structural errors in E3SM’s dry deposition, errors in parameterized wet deposition, and errors associated with the model’s numerics.

4 Summary, Conclusions, and Outlook

As global models increasingly introduce aerosol-aware treatments of cloud freezing, they improve their process realism and their ability to dynamically simulate climate and Earth system responses to future change, e.g., increases in dust and sea spray emissions associated with higher wind speeds in a warmer climate, increases in Arctic sea spray emissions as the sea ice retreats, and changes in dust emissions associated with desertification, permafrost melt, and changes in land management practices. However, with this increased complexity of process representations, model simulations of cloud processes also become increasingly susceptible to biases in simulated aerosol.

In this study, we use the first long-term observations of INPs from the SO to evaluate the potential of a state-of-the art Earth System model, E3SMv1, to accurately simulate SO INPs on the basis of simulated aerosol.

First, we evaluate and identify biases in E3SMv1 simulation of the major aerosol sources of INPs in the SO, sea spray and dust aerosol, by using regional in situ observations from across the SO. Consistent with previous studies, we find that E3SMv1 underpredicts near-surface dust aerosol mass concentrations as compared with ground-based in-situ measurements at several SO coastal sites in the University of Miami measurement network, and the AWARE field campaign. However, vertical dust concentration profiles are consistent with limited aircraft-based measurements in the SO from the ATom campaign. Both the model and observations show little change in dust concentration with height, which is consistent with dust arising from remote sources. We also find that E3SMv1 underpredicts sea spray aerosol mass concentrations at the few locations where long-term observations are available. However, the decline in sea spray aerosol amount with increasing height above sea level is also consistent with ATom observations, suggesting that E3SMv1 adequately represents the mixing of aerosol tracers between boundary-layer and free tropospheric air in this region.
These model evaluations enable us to clearly articulate both the key limitations of the MICRE INP observations as a model evaluation dataset, and certain key limitations of E3SMv1 aerosol process representations for simulating INPs that are adequate for use in cloud microphysics parameterizations. Here we summarize the main limitations of this study and make recommendations for future field experiments and model developments to overcome these limitations.

The first major limitation of this work is the lack of observed aerosol properties (size, concentration, and composition) at Macquarie Island during the MICRE campaign. This missing information made it difficult to conclusively determine the causes of model-observation disagreement in INP number concentrations. For future field campaigns measuring INP concentrations, it will be valuable to include a strategy for parallel measurement of size-resolved aerosol concentration and composition, ideally including supermicron particles.

A second major limitation of this study was the unexplained discrepancy between observed INP concentrations at a coastal site (MICRE) and over the open ocean (MARCUS). Due to the lack of in-situ aerosol measurements during MICRE, we could not conclusively attribute the causes of this difference in measured INPs, although a closer investigation of this issue is the topic of a separate, ongoing study. Overcoming this limitation in future studies will require careful planning at the design stage of field experiments, and will require researchers to overcome logistical challenges and limitations associated with deployments at remote sites.

One approach to utilize island sites yet limit the island impacts is to tie auxiliary observations such as wind speed, direction, and aerosol properties to filter days that are significantly impacted by local sources. A second approach is to collect observations directly over the open ocean. Such measurements have been conducted during ship campaigns in recent years. However, with a few notable exceptions, most of these campaigns have lasted only a few weeks. In light of the ca. three order-of-magnitude day-to-day variability in INP concentrations during MICRE, it seems unlikely that short-term ship-based field sampling can provide an adequately representative picture of INP concentrations and variability in the SO. Despite their inherent challenges, it would be interesting to explore longer-term at-sea measurement platforms (e.g., ship-based experiments covering multiple months or a full seasonal cycle, oil platforms or unmanned floating platforms) that collect representative samples of INPs in open and remote ocean regions.

While the impacts on the conclusions of this study are likely small, we note that for all of the INP parameterizations we have used, it was necessary to extend them beyond the conditions for which they were originally developed, in order to apply them to model simulation of INPs.

For example, D15 was originally developed for activation temperatures below -19 °C, but we have extrapolated it to warmer temperatures in this study. Similarly, the M18 and W15 parameterizations were developed on the basis of sampled aerosol and sea surface microlayer material from limited geographic regions and seasons. However, recent studies have shown that the efficiency of ice nucleating entities in seawater changes in response to ocean biological processes and is not uniformly high in all marine regions with high primary productivity Wolf et al. (2020). Future experimental efforts should continue to extend the temperature range of available INP parameterizations, and also to evaluate and improve their representativeness for different environmental conditions.
Additionally, INPs can interact with other aerosol particles and trace gases, which can affect their IN ability and lifetime in the atmosphere. For example, (Creamean et al., 2019) showed that biological INPs from summertime phytoplankton blooms and bacterial respiration were likely transported hundreds of kilometers from the Bering Strait to the Arctic atmosphere, with the result that these INPs experienced a significant duration of exposure to the atmospheric environment. The impacts of atmospheric and cloud processing on INP effectiveness are currently not fully understood and require more study.

The simulation of INPs in this study is subject to biases in E3SMv1 simulation of dust and sea spray aerosol. However, we find that E3SMv1 underpredicts dust in the SO, consistent with previous studies, while E3SMv1’s native CNT parameterization of dust INPs likely overpredicts their freezing efficiency compared to recent measurements and parameterizations of natural and ambient dusts (Cornwell et al., 2021). Therefore, it is important to improve both the simulated dust lifecycle and dust INP parameterizations to correct INP biases in high latitudes.

We examined one model process potentially contributing to biases in aerosol simulation: the choice of coefficients in the model’s dry deposition parameterization. Dry deposition has important impacts on long-range transport of coarse mode aerosol, and the parameterization used in E3SMv1 was recently shown by (Emerson et al., 2020) to be inconsistent with a meta-analysis of experimental results. However, our sensitivity experiment shows that E3SMv1’s biases in sea spray and dust deposition were not alleviated by adopting the dry deposition coefficient values recommended by (Emerson et al., 2020). A more comprehensive analysis of biases in E3SM-simulated aerosol, and the causes of those biases, is an important topic that will be examined in separate ongoing and future research activities. As a result, INP concentrations do not improve on using the revised dry deposition coefficients (Figure S6).

In addition to the above limitations, additional model development would be helpful to improve the simulation of processes affecting INPs in global models, such as the addition of parameterizations for the emissions of agricultural dusts (Tobo et al., 2014; O’Sullivan et al., 2014; Steinke et al., 2016; Suski et al., 2018), minerology of dust particles (Atkinson et al., 2013; Harrison, 2019; Vergara-Temprado et al., 2017) and biological particles that act as efficient INPs at warmer temperatures such as fungal spores and bacteria (Prenni et al., 2009; Huffman et al., 2013; Tobo et al., 2013; Mason et al., 2015).

We have shown that E3SMv1’s current immersion freezing parameterizations do not consider sea spray aerosol, which is an important source of INPs in the SO. Further, E3SMv1’s treatment of dust immersion freezing is impacted by compensating biases – an underprediction of dust amount compensated by an overprediction of its effectiveness as INP. Overall, we find that using recent INP parameterizations for both sea spray and dust (M18 and D15), E3SMv1 would underpredict INPs by 2–3 orders of magnitude at Macquarie Island, although biases over the open ocean are likely smaller. Previous studies have shown that INP simulation errors of one order of magnitude (or less) can contribute to significant biases in modeled cloud radiative effects and cloud-climate feedbacks. For example, Zhao et al. (2021) showed that strong seasonal changes in cloud properties and radiative forcing occurred in global model simulations as a result of inclusion of MOA INPs. As a result, global net cloud forcing changed by 0.016 Wm$^{-2}$ per year due to INP variations. Our findings therefore have important implications for climate model simulations of the cloud-phase climate feedback (Murray et al., 2021), tropical convective cloud systems (Hawker et al.,...
2020), and seasonal climate in high latitudes (Prenni et al., 2007), particularly for future climate projections where aerosol INP sources will change in a changing Earth System.

Code availability. The EAMv1/E3SMv1 source code can also be found at https://github.com/E3SM-Project/E3SM/tree/v1.0.0

Data availability. MICRE INP measurements used in this study can be found in the DOE ARM archive https://adc.arm.gov/discovery/#/results/s::micre. Aerosol measurements from the AWARE campaign can be accessed from the DOE-ARM Data discovery https://www.arm.gov/research/campaigns/amf2015aware. Dust and sea salt climatology are available from the AEROCOM data archive https://aerocom-classic.met.no/DATA/. ATom measurements can be accessed in the NASA data archive https://espo.nasa.gov/atom/archive/.

Author contributions. A.Raman and S.Burrows designed the model experiments and analyses. A.Raman prepared the figures and wrote the manuscript with help from S.M.Burrows and other co-authors. B.Singh helped with the model simulations, K.Zhang and P.L.Ma helped with the nudged E3SM simulations and input files for nudging. P.DeMott and T.Hill helped in the interpretation of MICRE observations.

Competing interests. The authors do not have any competing interests.

5 Supplement

https://doi.org/10.5194/acp-0-1-2022-supplement

Acknowledgements. This research was funded by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research through the Early Career Research Program (KP1701010/72149). Observations were obtained from the DOE Atmospheric Radiation Measurement (ARM) data discovery archive funded by the Atmospheric System Research (ASR) program. Modeling tools were obtained from the Energy Exascale Earth System Model project. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-1713 AC05-76RL01830. This research used high-performance computing resources from the PNNL Research Computing, and the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank the PNNL communication team members for their efforts in proof reading the manuscript.
References

Fan, J., Leung, L. R., Rosenfeld, D., and DeMott, P. J.: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds, Atmospheric Chemistry and Physics, 17, 1017–1035, 2017.

