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Abstract. Ice nucleating particles (INPs) in the Southern Ocean (SO) atmosphere have significant impacts on cloud radiative

and microphysical properties. Yet, INP prediction skill in climate models remains poorly understood, in part because of the

lack of long-term measurements. Here we show, for the first time, how model-simulated INP concentrations compare with

year-round INP measurements during the Macquarie Island Cloud Radiation Experiment (MICRE) campaign from 2017-2018.

We simulate immersion-mode INP concentrations using the Energy Exascale Earth System Model version 1 (E3SMv1) by5

combining simulated aerosols with recently-developed deterministic INP parameterizations and the native classical nucleation

theory (CNT) for mineral dust in E3SMv1. Because MICRE did not collect aerosol measurements of super-micron particles,

which are more effective ice nucleators, we evaluate the model’s aerosol fields at other Southern high-latitude sites using long-

term in situ observations of dust and sea spray aerosol. We find that the model underestimates dust and overestimates sea spray

aerosol concentrations by one to two orders of magnitude for most of the high latitude sites in the Southern Hemisphere. We10

next compare predicted INP concentrations with concentrations of INPs collected on filter samples (typically for 2 or 3 days),

and processed offline using the Colorado State University ice spectrometer (IS) in immersion freezing mode. We find that when

deterministic parameterizations for both dust and sea spray INPs are used, simulated INPs are within a factor of 10 of observed

INPs more than 60% of the time during summer. Our results also indicate that the E3SM’s current treatment of mineral dust

immersion freezing in the SO is impacted by compensating biases – an underprediction of dust amount is compensated by an15

overprediction of its effectiveness as INP. We also perform idealized droplet freezing experiments to quantify the implications

of the time-dependent behavior assumed by the E3SM’s CNT-parameterization and compare with the ice spectrometer obser-

vations. We find that the E3SM CNT 10 s diagnostic used in this study is a reasonable approximation of the exact formulation

of CNT, when applied to ice spectrometer measurements in low INP conditions similar to Macquarie Island. However, the

linearized 10 s diagnostic underestimates the exact formula by an order of magnitude or more in places with high INP condi-20

tions like the Sahara desert. Overall, our findings suggest that it is important to correct the biases in E3SM’s simulated dust

life cycle and update E3SM’s INP parameterizations. INP prediction errors of two to three orders of magnitude can have con-

siderable impacts on the simulated cloud and radiative properties in global climate models. On comparing INP concentrations
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during MICRE against ship-based campaigns, Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean

(MARCUS) and Antarctic Circumnavigation Expedition (ACE), we find that INPs from the latter are significantly higher only25

in regions closer to Macquarie Island. This alludes to the fact that physical, chemical and biological processes affecting INP

concentrations as stimulated by the island could be partly responsible for the high INP concentrations observed at Macquarie

Island during the MICRE campaign. Therefore, improvements to both aerosol simulation and INP parameterizations are re-

quired to adequately simulate INPs and their cloud impacts in E3SM. It will be helpful to include a parallel measurement of the

size-resolved aerosol composition, and explore opportunities for long-term measurement platforms in future field campaigns30

studying INP sources in remote marine regions.

Keywords: Immersion freezing, Ice nucleation, INP parameterizations, Climate model

1 Introduction

The Southern Ocean (SO) is a pristine remote marine environment with unique microphysical cloud properties (Gettelman

et al., 2020; McCoy et al., 2015; Meskhidze and Nenes, 2006; Tan et al., 2016). Southern Ocean clouds contain supercooled35

liquid droplets in higher fractions than is observed almost anywhere across the globe (Hu et al., 2010). The co-existence

of supercooled liquid droplets and ice (mixed-phase) in these clouds is inadequately simulated in global models (Komurcu

et al., 2014), introducing uncertainty into simulations of shortwave radiative flux (Vergara-Temprado et al., 2018) and cloud-

climate feedbacks (Tan and Storelvmo, 2016) in this region. The supercooled liquid state is metastable, but in the absence

of a mechanism to initiate freezing, supercooled water can persist in clouds at temperatures between 0◦C and approximately40

−38◦C (Koop and Murray, 2016), the homogeneous freezing temperature of water.

In the presence of aerosol particles that can nucleate ice such as dust, bacteria, and fungal spores, supercooled cloud droplets

can freeze into ice at warmer temperatures than required for homogeneous ice nucleation (Vali et al., 2015; Vergara-Temprado

et al., 2018; Kanji et al., 2017). The aerosol particles responsible for this process of heterogeneous ice formation are called

ice nucleating particles (INPs) (Vali et al., 2015). Following the initial (or primary) formation of ice, clouds contain a thermo-45

dynamically unstable mixture of ice and supercooled liquid water. In such clouds, secondary ice production (SIP) processes

contribute to the rapid multiplication of cloud ice, resulting in rapid glaciation of regions of the cloud (Crawford et al., 2012;

Field et al., 2017; Korolev and Leisner, 2020). Even in clouds where SIP is responsible for a large portion of ice production,

however, the cloud evolution and state may be sensitive to INP concentrations (Crawford et al., 2012; Phillips et al., 2007;

Hawker et al., 2021), although this sensitivity is reduced in certain cloud regimes (Sullivan et al., 2018; Mignani et al., 2019;50

Miltenberger et al., 2020; Sotiropoulou et al., 2020).

The cloud phase, lifetime, and radiative properties of SO mixed-phase clouds are sensitive to INP concentrations (Vergara-

Temprado et al., 2018; Vignon et al., 2021). Accurate representations of INPs are therefore critical for simulating ice formation

in the mixed-phase clouds that affect the aerosol-cloud interactions, radiation budget, and precipitation over the SO (McCluskey

et al., 2017; McFarquhar et al., 2021; McCoy et al., 2015). Despite the importance of INPs in the representation of mixed-phase55

clouds, knowledge about their sources, transport, and seasonal variability over the SO are still uncertain. In this study, we
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investigate the simulated and observed variability of SO INPs active in the immersion mode, noting that of all the modes of ice

nucleation, the immersion mode is the most critical for freezing in mixed-phase clouds (Hande and Hoose, 2017).

The concentration of INPs active at a specific temperature can vary over a range of up to four orders of magnitude across

observations collected at different times and locations (Kanji et al., 2017; Welti et al., 2018). However, recent field experiments60

have shown that, given adequate parameterizations of INP effectiveness for the major relevant classes of INPs, the ambient

concentration of INPs in the atmosphere can be predicted from observed aerosol properties with reasonable accuracy (Cornwell

et al., 2019; Knopf et al., 2021). In climate models, INPs can be similarly predicted on the basis of parameterizations that are

dependent on temperature, humidity and simulated aerosol properties, i.e., the size-resolved concentration of the relevant

aerosol species. Accurate representation of INPs in atmospheric models will depend on both the model’s fidelity in simulating65

relevant aerosol properties and the realism of the model’s INP parameterizations.

In the SO, INPs arise from a combination of local sea spray aerosol and dust from regional and long-range transport (Twohy

et al., 2021). Laboratory experiments using realistic proxies for biologically-influenced sea spray particles have clearly shown

that these particles can act as INPs, although IN efficiency of dust (expressed in terms of ice active-site density ns) is ca.

2 orders of magnitudes more than sea spray particles for a given aerosol surface area and for temperatures colder than 26370

K (DeMott et al., 2016; McCluskey et al., 2018b). Experiments that isolate specific organic molecules or ocean biota have

provided hints to potential sources of these INPs (e.g., Knopf et al., 2011). Despite its weak INP effectiveness, models and

field experiments indicate that sea spray is the primary source of background INPs in boundary-layer air in remote marine

regions such as the SO, where continental aerosols are scarce (Burrows et al., 2013; Wilson et al., 2015; Vergara-Temprado

et al., 2017; McCluskey et al., 2018a, 2019).75

In addition to sea spray produced from strong surface winds, natural windblown dusts are an important source of INPs to the

SO. Dust particles, which are a major global source of INPs, are 3–4 orders of magnitude more efficient as immersion-freezing

INPs than marine aerosols (DeMott et al., 2015; Niemand et al., 2012; Boose et al., 2016; McCluskey et al., 2018c; Cornwell

et al., 2019). Therefore, transported dust, even in small quantities, likely also affects INP number concentrations in the SO.

The source regions of dust transported to the SO include South America, Australia, New Zealand, and South Africa (Wagener80

et al., 2008; Struve et al., 2020; Neff and Bertler, 2015). In addition to long-range transport, local Antarctic dust is another

source in the SO during the summer. Dry deposition is a major sink for desert dust aerosols because they are mainly emitted

in dry regions with weak precipitation and their mass distribution is dominated by larger sized particles (Bergametti et al.,

2018). The ability of the numerical models to simulate aerosol burdens at high-latitudes depends on emissions and transport

as well as wet and dry deposition (Sand et al., 2017). A study by Wu et al. (2020) found that Energy Exascale Earth System85

Model version 1 (E3SMv1) produces higher dry deposition than the Community Earth System Model (CESM1) for similar

dust emission fluxes. Biases in dry deposition fluxes in E3SMv1 can affect predictive skill for aerosol and INP concentrations.

Witek et al. (2016) evaluated sea spray emission functions using satellite observations and found large differences between

various sea spray parameterizations. These discrepancies between the model aerosol concentrations and the observations in

turn affect the predictability of INP concentrations.90
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A handful of previous studies have evaluated INP predictability in global models, using data from short-term field campaigns

(Wilson et al., 2015; McCluskey et al., 2018a). Due to the complex nature of field deployments on research vessels, most field

campaigns have measured INPs only for periods of a few weeks; long-term or year-round observations of INPs are rare,

especially in the high-latitude oceans. However, given the episodic nature of dust transport to the remote SO, as well as the

existence of seasonal cycles in high-latitude sea spray and dust concentrations (e.g., Ito and Kok, 2017; Liu et al., 2018),95

long-term observations are required to understand whether there is a strong seasonality in SO INP sources. Without such

observations, it is challenging to understand and constrain the aerosol sources and processes driving seasonal INP variations in

climate models.

Large uncertainties in simulated INP concentrations can contribute to uncertainties in cloud radiative properties and related

climate forcing, particularly in the SO (Vergara-Temprado et al., 2017; Yun and Penner, 2012; Tan and Storelvmo, 2016).100

Vergara-Temprado et al. (2018) simulated INP concentrations ranging over approximately four orders of magnitude in marine

air between 40◦S and 70◦S, and examined the impacts of higher INP concentrations on low-level mixed-phase clouds in the

cold sectors of extratropical cyclones, simulated at high resolution. Based on their simulations, they estimated that variations in

INP concentration over the SO could modulate the radiative properties of similar clouds by as much as 24-60 Wm−2. Vignon

et al. (2021) showed that a new immersion freezing ice nucleation parameterization based on INP measurements from the105

Measurements of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS) campaign improved simulations of

cloud radiative effects in the presence of supercooled liquid water near cloud top in the Weather Research and Forecasting

(WRF) model. Few studies have systematically (co-located in space and time) evaluated the simulated INP concentrations

from climate models in the SO. Such a comparison using long-term INP observations is critical for assessing the seasonality

of different INP sources and their impacts on SO clouds and energy budget.110

Macquarie Island Cloud Radiation Experiment (MICRE) (2017-2018) provides a unique opportunity to advance modeling

efforts regarding INP variability in the Southern Ocean, and understand the atmospheric processes controlling that variability,

by providing year-round, near-daily INP observations at Macquarie Island (DeMott et al., 2018a). Macquarie Island is ideal

for marine aerosol sampling due to its remote location. In this study, we use aerosols simulated by the E3SMv1 model in

combination with INP parameterizations for dust and sea spray aerosol to simulate INP number concentrations. We compare115

these with MICRE near-surface INP measurements at different temperatures.

This study focuses on two primary objectives: (1) evaluate simulated INP predictions against measurements during MICRE;

and (2) assess the potential causes of model-observation differences during MICRE due to missing particle sources of INPs, or

other model processes.
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2 Methods120

2.1 Aerosol Modeling

We use the aerosol fields simulated by the E3SMv1 Atmosphere Model (EAMv1) (Rasch et al., 2019) to simulate aerosol

properties and the resulting INP concentrations. EAMv1 is the atmospheric component of the E3SMv1 model (Golaz et al.,

2019). The land component in these simulations uses a prescribed vegetation seasonal cycle based on satellite phenology

(Lawrence and Chase, 2007). The use of EAMv1 for simulating immersion-mode INP concentrations has been demonstrated125

in previous studies for high-latitude regions in the SO and the Arctic (McCluskey et al., 2019; Shi et al., 2021). We use EAMv1’s

low-resolution configuration, which has a horizontal resolution of ca. 110 km with 72 vertical layers extending up to 0.1 hPa

(approximately. 64 km). The atmosphere layer nearest to the surface is 20 m thick, with a total of 15 layers between the surface

and 850 hPa, supporting an improved representation of gradients within the atmospheric boundary layer. EAMv1 uses a spectral

element method to solve the atmosphere’s dynamic equations on a cubed-sphere grid (Dennis et al., 2012; Golaz et al., 2019).130

Turbulence and clouds are parameterized using the Cloud Layers Unified by Binormals (CLUBB) parameterization (Larson

et al., 2002; Larson and Golaz, 2005; Bogenschutz et al., 2013; Golaz et al., 2002). The deep convection parameterization is

based on Zhang and McFarlane (1995) with improvements by Richter and Rasch (2008) and Neale et al. (2008). We nudge

the horizontal winds towards the Modern Era Retrospective-Analysis for Research and Applications reanalysis (MERRA-2)

(Gelaro et al., 2017) with a 6-h relaxation time scale following Ma et al. (2015) and Sun et al. (2019).135

EAMv1 uses the four-mode version of the Modal Aerosol Module (MAM4) to represent aerosol life cycles and properties

(Liu et al., 2016; Wang et al., 2020). Aerosol species represented in the baseline MAM4 version include sulfate, black carbon

(BC), mineral dust, sea salt aerosol, primary organic aerosol (POA), secondary organic aerosol (SOA), and marine organic

aerosol (MOA). In this study, we focus on two aerosol species relevant to INPs in the SO: (1) mineral dust and (2) sea spray,

which includes both inorganic (sea salt) and organic constituents (MOA). MAM4 simulates aerosol mass mixing ratios and140

size distributions in four log-normal modes: the (1) Aitken, (2) accumulation, (3) coarse, and (4) primary carbon modes.

Aerosols are internally mixed within each mode and externally mixed between modes. Individual aerosol species are included

in some or all of the four modes, depending on their typical size distributions and hygroscopicity. Once emitted, aerosol species

undergo horizontal transport and vertical mixing, chemical and microphysical transformation processes (e.g., condensation,

coagulation), dry deposition, and wet scavenging.145

Emission fluxes of natural dusts are calculated using the Dust Entrainment and Deposition (DEAD) model as a function

of wind speed, friction velocity, and surface erodibility (Zender et al., 2003; Mahowald et al., 2006). Anthropogenic dust

emissions associated with activites such as agriculture and off-road vehicle activity are not represented. The size distribution of

emitted dust particles is prescribed, with a mass fraction of 3.2% in the accumulation mode [0.1 µm to 1 µm] and 96.8% in the

coarse mode [1 µm to 10 µm]. Comparison of E3SMv1 dust concentrations with CESM1 and CESM2 has shown that E3SMv1150

underestimates the coarse mode dust lifetime, which may be mainly due to increased dry deposition in the thinner bottom layer

of the model (Wu et al., 2020). However, E3SMv1 emits more dust than CESM1 and CESM2 in the accumulation mode. As a
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result, dust optical depth (DOD) in E3SMv1 is higher than in CESM, but lower than lidar satellite retrievals (Wu et al., 2020).

As a consequence of the short dust lifetime, dust transport to the remote Arctic and SO is underestimated by the model.

Sea spray emission fluxes are simulated in the Aitken, accumulation, and coarse modes as a function of near-surface wind155

speed and prescribed sea surface temperature, with a prescribed emission size distribution (Mårtensson et al., 2003; Mona-

han, 1986). MOA emissions, and the variations in these emissions associated with ocean biological activity, are simulated

using the Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfac-

tants (OCEANFILMS) parameterization (Burrows et al., 2022a). In the EAMv1 implementation of OCEANFILMS, the main

impact of the simulated MOA is to elevate the total emitted sea spray particle number and mass in specific regions and sea-160

sons where the parameterization predicts increased organic fractions in accumulation mode sea spray particles. In an early

version of E3SM, the OCEANFILMS parameterization produced statistically-significant regional effects at high latitudes in

both hemispheres, including 20–50% increases in cloud condensation nuclei concentrations (at a supersaturation of S=0.1%)

across most of the SO (Burrows et al., 2022a).

2.2 Calculating INP Concentrations165

In this study, we compare INP concentrations calculated by E3SM’s default parameterizations with more recent paramateriza-

tions that have a stronger empirical basis, i.e., they are based on measurements of ambient (rather than laboratory-generated)

particles, and on a larger number of measurements.

Heterogeneous ice nucleation occurring in mixed-phase clouds is currently represented in EAMv1 for dust and BC aerosols

using classical nucleation theory (CNT) (Hoose et al., 2010; Wang et al., 2014). EAMv1 does not include marine aerosols as170

INP sources in CNT. In this study, we calculate INP concentrations at measurement temperatures using the aerosols simulated

by E3SM at the model’s surface layer.

Because smaller dust particles may not be effective INPs, we adopt DeMott et al. (2015) (hereafter, D15) to simulate the

immersion-mode dust INPs for particles larger than 0.5 µm. For predicting sea spray INPs, we use a parameterization based on

surface active-site density of SSA which was developed using observations under clean conditions at a coastal site in Ireland175

(McCluskey et al., 2018c) (hereafter, M18). For INP contributions from MOAs, we use the Wilson et al. (2015) parameteriza-

tion (hereafter, W15), which assumes that the INP number concentrations are directly proportional to the amount of organic

carbon in the SSA. W15 was originally developed using droplet samples from the sea surface microlayer and the subsurface

water in the Arctic and Atlantic Oceans. We apply these parameterizations to the relevant aerosol fields simulated by the

E3SMv1 model (see Section 2.1). The different empirical INP parameterizations used in this study and their limitations are180

summarized in Table S1 in the Supplementary Information.

To compare with measured INPs, we modified the heterogeneous ice nucleation module in E3SMv1 to output additional

diagnostic variables that use measurement temperatures instead of ambient temperatures to calculate the INP concentrations

[m−3] at the surface (see Equation 1). While the default immersion freezing parameterizations in E3SMv1 treat both dust and
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BC, we focus only on dust INPs here since the contribution of BC to immersion mode ice nucleation in the SO atmosphere is185

negligible (Kanji et al., 2020).

In the E3SMv1 implementation of CNT, the change in cloud ice crystal number concentration due to immersion freezing on

dust, Nimm,dust [m−3 s−1], during the model time step ∆t, is calculated as:

∆Nimm,dust = Naer,dust [1− e(−Jimm,dust(Tambient,raer) ∆tmodel)] , (1)

where Naer,dust [m−3] is the total (cloud-borne and interstitial) dust number concentration in accumulation and coarse190

modes (ice-borne aerosol is not tracked in the model), and Jimm,dust [s−1] is the heterogeneous nucleation rate for dust

calculated as a function of modal radii of dust, raer, and model’s ambient temperature, Tambient. Analogous relationships are

implemented for each ice-nucleating species and freezing mode handled by the CNT scheme.

We calculate a diagnostic that uses the measurement temperature, and an assumed measurement time scale:

NINP,imm,dust = Naer,dust [1− e(−Jimm,dust(Tmeasurement,raer) ∆tmeasurement)] . (2)195

A notable feature of Equation 1 is that the freezing rate is non-linearly dependent on time. Therefore, the number of freezing

events that occur during a particular time interval is sensitive to the model’s discretization of time, i.e., to the length of the

time step. All else being equal, a reduction in model time step would be expected to increase heterogeneous freezing. By

implementing CNT in Community Atmospheric Model version 5 (CAM5) mode, Wang et al. (2014) showed that this time

step dependence is small at time scales close to the E3SMv1 model time step (1800 s), for typical conditions. However, such a200

timestep dependence of CNT in E3SMv1 is still unclear and requires future investigation.

Since observational time scales are much shorter – on the order of a few seconds – the values of NINP,imm,dust calculated

following Equation 2 have a significant sensitivity to the assumed time scale. In this study, we use tmeasurement = 10s, following

the approach used in other similar model evaluation exercises (for example, Wang et al. (2014)). We also assume that all dust

particles are equally likely to participate in ice nucleation, which is also an assumption used in Hoose et al. (2010) and Wang205

et al. (2014). Under these assumptions, we calculate and output NINP,imm,dust at several measurement temperatures. The

addition of these diagnostic outputs does not modify the simulation results.

2.3 INP Observations

We use INP measurements from the MICRE campaign that was conducted between April 2016 and March 2018. This campaign

was a joint effort by the Australian Antarctic Division (AAD), Bureau of Meteorology, the Commonwealth Scientific and210

Industrial Research Organization (CSIRO), and US Department of Energy Atmospheric Radiation Measurement (DOE-ARM)

to address the current observation gaps that limit evaluation of cloud properties over the SO in climate models. Immersion-
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mode INP number concentrations were collected for the second year of MICRE adjacent to the cloud, precipitation, aerosol

and radiation instruments (McFarquhar et al., 2021; Tansey et al., 2022).

Measurement samples were collected and averaged for a period of 2–3 days at Macquarie Island location [54.49◦S, 158.93◦E]215

in the remote SO. All measurements were made at an altitude of ca. 4m above mean sea level (MSL) and the sampler was lo-

cated inside the enclosure (DeMott et al., 2018a). Filters were processed using the Colorado State University ice spectrometer

(McCluskey et al., 2018a) to obtain temperature spectra of immersion freezing INP concentrations from -28◦C to 0◦C (DeMott

et al., 2018a). Particle samples collected on filters were immersed in purified water and shaken to create suspensions for im-

mersion freezing measurements. In this standard technique, the tray was inserted into an aluminum block and cooled until the220

samples were frozen. Concentrations of INPs were calculated at different temperatures using the fraction of unfrozen wells per

given temperature (Beall et al., 2017; Vali, 1971). Uncertainty ranges in measured INP concentrations were calculated using

Poisson counting statistics (McCluskey et al., 2017).

MICRE produced the first dataset of long term INP number concentrations over the SO (DeMott et al., 2018a). Long-term

INP datasets like MICRE are a valuable resource for evaluating model estimates of seasonal and day-to-day variability in225

INP number concentrations over large, pristine marine environments (McFarquhar et al., 2021). Aerosol measurements from

MICRE were limited. Number concentrations of sub-micron aerosols using condensation particle counter (CPC) and cloud

condensation nuclei (CCN) were directly measured. However, since CPC and CCN counts are dominated by smaller, soluble

particles that do not contribute significantly to INPs, we do not expect these instruments to provide an informative measure of

the particles that drive INP concentrations.230

2.4 Model Experiments Design

We ran E3SMv1 model simulations from October 2015 to October 2018 with horizontal winds nudged using the Modern-Era

Retrospective Analysis-2 (MERRA-2) (Gelaro et al., 2017). Nudging was applied to the entire vertical domain. The model sim-

ulation period was chosen to correspond to the time period of the MICRE campaign and other aerosol evaluation datasets used

in this study. The first two months of the simulation were treated as spin-up and excluded from our analysis. Control simulations235

(hereafter, CTL) use default dry deposition in MAM4 as described in Zhang et al. (2001). Model fields in a cubed-sphere grid

are remapped to latitude and longitude domain and co-located spatially (nearest grid cell in the model to Macquarie Island lo-

cation) and temporally (taking the average of the same days used for INP calculations from observations) with measurements.

The aerosol number and speciated mass concentrations are prognostically simulated at 30-minute intervals, and the model

fields are written as 6-hour instantaneous outputs at a horizontal resolution of approximately 1◦ x 1◦. The cloud microphysics240

(Gettelman et al., 2015) in E3SMv1 uses freezing tendencies calculated for each model grid box on the basis of the simulated

aerosol population and ambient state variables (temperature, pressure, and specific humidity). However, measurements of INP

are typically performed across multiple temperatures, and are reported as a function of the instrument temperature rather than

the ambient temperature. In order to compare the model simulations of INPs from CNT against the in situ measurements, we
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added diagnostic variables in the model to simulate immersion-mode freezing rates and INP concentrations at measurement245

temperatures. These diagnostic variables are not passed to the cloud microphysics module and do not change the simulation.

2.5 Sensitivity Experiments

2.5.1 Dry deposition

An additional sensitivity simulation is conducted where we revise the coefficients in the model’s particle dry deposition pa-

rameterization following Emerson et al. (2020) (hereafter, EXP). The revised coefficients were shown by Emerson et al. (2020)250

to produce dry deposition fluxes that showed better agreement with observed fluxes over several land use categories, with

some of the largest changes occurring over the ocean. Emerson et al. (2020) showed that GEOS-Chem simulations of coarse

mode particles between 2 µm and 10 µm increased over the oceans using the new coefficients for dry deposition. While many

processes contribute to the model bias in INP concentrations, we focus on the role of dry deposition in this study because it is

the dominant removal mechanism for coarse mode particles.255

2.6 Comparison to In situ Aerosol Observations

Very limited long-term measurements are available for evaluation of simulated aerosol concentrations in the SO. Because

MICRE does not provide aerosol information, we compare modeled dust and sea salt concentrations with climatological mea-

surements from University of Miami coastal stations. The sampling time period varies between the stations. We compare

observed values with simulated values from the model grid cell closest to the measurement location. The geographic locations260

of stations used in this study are shown in Figure 1, and their coordinates and measurement time periods are listed in Table 1.

These measurements are not constrained by a upper cut-off radius (Spada et al., 2015).

In addition to the long-term climatological dataset from the University of Miami, we also evaluate the model results us-

ing year-long measurements of aerosol elemental composition from the DOE-ARM West Antarctic Radiation Experiment

(AWARE). AWARE collected samples at McMurdo station, Antarctica (77.84◦ S, 166.68◦ E) located at the southern tip of265

Ross Island, from November 2015 - December 2016. X-ray fluorescence was used to derive elemental composition of miner-

als, including Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ag, Pb, and Ba (Liu et al.,

2018). We derive concentrations of MgCO3, Al2O3, SiO2, K2O, CaCO3, TiO2, Fe2O3, MnO, and BaO from these elemental

compositions to calculate dust mass concentrations following Usher et al. (2003).

To evaluate the vertical distribution of dust and sea salt aerosols, we use aerosol mass concentrations from aircraft mea-270

surements made during the Atmospheric Tomography Mission (ATom) mission using the Particle Analysis by Laser Mass

Spectrometry (PALMS) instrument (Froyd et al., 2019). The PALMS instrument measures aerosol particles in the size range

from ca. 100 – 5000 nm, and particles are classified into several composition types, including mineral dust and sea salt. While

the entire time period for the ATom campaign does not overlap with MICRE, we use some flight tracks from ATom for February

and October of 2017 that overlap with the MICRE campaign.275
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To assess the predictive skill of simulated INP concentrations in near-surface air, we use a set of standard skill scores outlined

by the Monitoring Atmospheric Composition and Climate (MACC-II) project model evaluation methods (Cuevas et al., 2015;

Eskes et al., 2015; Huijnen and Eskes, 2012). The modified normalized mean bias (MNMB), Pearson’s correlation coefficient,

fractional gross error (FGE), and percentage of data points within a factor of 2 (2x) and 10 (10x) from the observations are

used to assess E3SMv1 INP concentrations. McCluskey et al. (2019) used MNMB and FGE to assess the model’s ability to280

simulate INP concentrations observed in Mace Head and the SO. We define MNMB and FGE in Equation 3 and Equation 4

respectively. In both these metrics, the differences between the observed and predicted INPs are normalized by the sum of

observed and predicted INP concentrations. Both are symmetric; MNMB ranges from -2 to 2 and FGE ranges from 0 to 2.

Because they are normalized, both these metrics avoid enormously high values in cases where model-observation differences

go up to several orders of magnitude.285

MNMB (INPP (T ), INPO(T )) =
2

Ntot

∑ INPP (T )− INPO(T )

INPP (T ) + INPO(T )
, (3)

FGE (INPP (T ), INPO(T )) =
2

Ntot

∑∣∣∣∣ INPP (T )− INPO(T )

INPP (T ) + INPO(T )

∣∣∣∣ , (4)

where INPO(T ) is a set of observed INP concentrations at the measurement temperature T , INPP (T ) is a set of predicted

INP concentrations from the model for temperature T using different INP parameterizations, and Ntot is the total number of

model-observation pairs.290

3 Results and Discussion

3.1 Evaluation of E3SMv1 aerosol concentrations

Figure 2 compares measured and simulated dust concentrations at Cape Grim, Cape Point, Ruckomechi, Palmer station, Maw-

son station, and McMurdo Station in Ross Island. All in situ locations in Figure 2 except McMurdo Station compare the model

with long-term climatological means from the U. Miami measurement network. At McMurdo Station, we evaluate monthly295

means for 2015-2016 using the AWARE field campaign measurements. In the SH, E3SM CTL simulations underestimate dust

concentrations by one to two orders of magnitude, especially at high latitude stations such as McMurdo Station, Palmer, and

Mawson, Antarctica. Substantial underestimation of dust in remote regions is a common problem across many climate models

(Adebiyi and Kok, 2020; Huneeus et al., 2011; Wu et al., 2020), and may be caused by problems with model source terms,

simulated transport, loss processes, dust size distribution, or numerical issues (Schutgens et al., 2020). For additional context,300

we also show evaluation results from stations in the NH in Figure S1 and Figure S2. The model overestimates dust in the NH

for the in situ stations in University of Miami; Ragged Point, Barbados; Oahu; Izana, Tenerife; Fanning Island; Bermuda East;

Cheju (except August and September); and Midway Island.
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Table 1. Location and data collection period of the ground stations used in this study for dust and sea salt concentrations.

Station name Latitude Longitude Data sampling period

Chatham Island 43.92◦S 176.50◦W 16-Sept-83 ; 11-Oct-1996

Cape Point 34.35◦S 18.48◦E 27-Feb-92 ; 21-Nov-96

Cape Grim Tasmania 40.68◦S 144.68◦E 11-Jan-83 ; 08-Nov-96

Marsh King George Island 62.18◦S 58.30◦W 27-Mar-1990 ; 25-Sept-96

Marion Island 46.92◦S 37.75◦E 25-Mar-1992 ; 01-May-1996

Mawson, Antarctica 67.60◦S 62.50◦E 18-Feb-87 ; 01-Jan-96

Palmer Station, Antarctica 64.77◦S 64.05◦W 03-Apr-90 ; 18-Oct-1996

Yate, New Caledonia 22.15◦S 167.00◦E 23-Aug-83 ; 23-Oct-1985

FunafutiTuvalu 8.500◦S 179.20◦W 08-Apr-83 ; 31-Jul-87

Nauru 0.530◦S 166.95◦E 16-Mar-1983 ; 02-Oct-1987

Norfolk Island 29.08◦S 167.98◦E 27-May-1983 ; 21-Feb-97

Rarotonga,CookIslands 21.25◦S 159.75◦W 23-Mar-1983 ; 23-Jun-94

American Samoa 14.25◦S 170.58◦W 19-Mar-1983 ; 03-Jan-96

Midway Island, NPacific 28.22◦N 177.35◦W 18-Jan-81 ; 02-Jan-97

Oahu, Hawaii, NPacific 21.33◦N 157.70◦W 21-Jan-81 ; 13-Jul-95

Cheju, KoreaWest 33.52◦N 126.48◦E 10-Sept-91 ; 27-Oct-1995

Hedo, OkinawaNASA 26.92◦N 128.25◦E 01-Sept-91 18-Mar-1994

Fanning Island, SEAREX 3.920◦N 159.33◦W 02-Apr-81 14-Aug-86

Enewetak Atoll, SEAREX 11.33◦N 162.33◦E 27-Feb-81 ; 10-Jun-87

Ragged Point,Barbados 13.17◦N 59.43◦W 05-May-1984 ; 01-Jul-98

Izana Tenerife 28.30◦N 16.50◦W 25-Jul-87 ; 01-Jul-98

Bermuda, West And East 32.27◦N 64.87◦W 29-Mar-1989 ; 01-Jan-98

MaceHead 53.32◦N 9.850◦W 11-Aug-88 ; 15-Aug-94

Rsmas,University of Miami 25.75◦N 80.25◦W 02-Jan-89 ; 07-Aug-98

Rukomechi, Zimbabwe 16.00◦S 29.50◦E Not-Known

Jabirun, NorthernAustralia 12.70◦S 132.90◦E Not-Known

Ross Island, McMurdo Station 77.85◦S 166.66◦E 29-Nov-2015 ; 03-Aug-2017

11
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Figure 1. The geographic locations of the ground observational stations used in this study for evaluating model aerosol concentrations.

Descriptions of these stations can be found in Table 1. Also shown are the sampling locations for the MICRE and AWARE campaigns (red),

and ATom flight tracks (blue).

Turning to sea salt, Figure 3 shows a model overestimation by at least an order of magnitude at Mawson and McMurdo

Station in Antarctica whereas it underestimates sea salt in Cape Grim and Palmer Station. The model also underestimates sea305

salt climatology by 1–2 orders of magnitudes in the NH stations (Figure S2).

We considered whether these biases in dust and sea salt simulation might be caused by model biases in simulation of

dry deposition, by examining the model’s response to adjusted dry deposition coefficients in the EXP sensitivity case. Dry

deposition is a major loss process for super-micron aerosol, and the parameterization of dry deposition used in E3SM was

recently shown to overestimate deposition to the ocean (Emerson et al., 2020). This adjustment does not yield significiant310

improvements to dust and sea salt concentrations in SH high latitude sites. Dust and sea salt budgets from CTL and EXP

simulations are provided in Table 2. Using revised dry deposition coefficients does not significantly improve the dry deposition

flux for dust or sea salt.

While this adjustment affects the dust life cycle, quantifying the causes of biases in dust and sea salt aerosols in E3SMv1

requires further investigation of other sources such as missing emission hotspots (recently shown to be important for high-315

latitudes (Neff and Bertler, 2015; Bullard, 2017)), loss processes (wet scavenging by precipitation and dry deposition to sur-

faces), uncertainties in wind-driven dust emissions (Gliß et al., 2021), and numerical diffusion (Ginoux et al., 2004).
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(a) Mawson, Antarctica (b) Palmer Station, Antarctica

(c) Cape Grim, Tasmania

(e) McMurdo Station

(d) Macquarie Island

Figure 2. Climatology of dust concentrations from ground stations in the Southern Hemisphere (SH) compared against E3SMv1 aerosol

climatology. Ground stations and their locations are listed in Table 1. Model aerosol concentrations were derived from monthly average

dust concentrations for the period 2016-2018. Error bars in the model represent standard deviation of dust aerosol mass concentrations for

2016-2018. Error bars in the observations for each ground station represent standard deviation of measurements for the period shown in

Table 1. Both CTL and sensitivity simulations (EXP) are shown for comparison with observations. Also shown are the E3SM simulated

dust climatology at Macquarie Island and time series of dust concentrations from the AWARE field campaign with co-located E3SM model

simulations.
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(a) Mawson, Antarctica (b) Palmer Station, Antarctica

(c) Cape Grim, Tasmania

(e) McMurdo Station

(d) Macquarie Island

Figure 3. Climatology of sea salt concentrations from ground stations in the Southern Hemisphere (SH) compared against E3SMv1 aerosol

climatology. Ground stations and their locations are listed in Table 1. Model aerosol concentrations were derived from monthly average

sea salt concentrations for the period 2016-2018. Error bars in the model represent standard deviation of aerosol mass concentrations for

2016-2018. Error bars in the observations for each ground station represent standard deviation of measurements for the periods shown in

Table 1. Both CTL and sensitivity simulations (EXP) are shown for comparison with observations. Also shown are the E3SM simulated sea

salt climatology at Macquarie Island.
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Table 2. Global Aerosol Budget: CTL and EXP E3SMv1 simulations

Parameters CTL EXP

Dust emission (Tg) 2.9e03 2.9e03

Sea salt emission (Tg) 3.0e03 3.0e03

Dust burden (Tg) 16 16

Sea salt burden (Tg) 4.6 5.2

Dust total lifetime (days) 2.1 2.0

Sea salt total lifetime (days) 0.60 0.63

Dust dry deposition lifetime (days) 2.6 2.4

Dust wet deposition lifetime (days) 9.1 9.5

Sea salt dry deposition lifetime (days) 0.8 1.0

Sea salt wet deposition lifetime (days) 1.7 1.8

EXP is the experiment with Emerson et al. (2020) dry deposition

parameterization

While the MICRE observations were conducted in near-surface air, the impacts of INPs on clouds occur at higher altitudes.

Therefore, adequate simulation of dust and sea spray aerosols above the surface level is also required to correctly simulate

the impacts of INPs on cloud properties. Evaluating the vertical profiles of aerosols from model and observations helps to320

identify if simulated biases in INP concentrations are mainly due to the biases in the model transport and removal mechanisms

of aerosol particles or due to the aerosol emissions near the surface (Burrows et al., 2022b). Because desert dust and other INP

relevant aerosol particles can be transported to longer distances from source regions, knowledge of aerosol vertical profiles are

important to understand INP contribution from different aerosol source types (Schrod et al., 2017).

To evaluate the model simulated vertical distributions of aerosols in the SO, we compare simulated vertical profiles of dust325

and sea salt aerosols with aircraft measurements of ATom in the size range 0.1 µm to 4.8 µm diameter averaged over 30◦S

- 60◦S and 160◦E - 160◦W (Thompson et al., 2021). Figure 4 shows that E3SMv1 adequately simulates the dust and sea

salt concentrations to within the range of observed values at all pressure levels up to 400 hPa, with the exception of 800 hPa

where the number of observations is too small to provide a meaningful sample (sample size = 2). ATom measurements are

converted to concentrations under standard temperature and pressure. We find that the simulated dust concentrations from330

E3SM (Figure 4, red lines) show smaller standard deviation compared to that observed in ATom measurements (Figure 4, grey

lines). We find that the dust concentrations do not vary much from the surface up to 400 hPa in E3SM simulations and ATom

measurements, which can be attributed to vertical mixing of the advected dust from the continental regions. In contrast, sea

spray concentrations decline monotonically with altitude, consistent with the presence of local surface emissions driven by

strong winds.335

The interpretation of model-observation agreement in vertical profiles should be taken with caution because the ATom

measurements used in Figure 4 includes only eight days of flights (dates are provided in Figure 4 caption) and might only
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be representative of zonal average aerosol concentrations for the flight days. However, E3SM-simulated dust and sea salt

concentrations represent monthly averaged values for the flight track. This is likely one of the reasons why simulated dust

concentrations in E3SMv1 show an underestimation of dust compared to in situ dust climatologies at SH stations (Figure 2),340

but are within the observational uncertainty for ATom measurements. Although the ATom flights did not directly pass over

Macquarie Island, these comparisons are useful to understand the model’s general behavior in simulating the vertical profiles

of dust and sea salt concentrations in this region. Visual inspection of the simulated and observed vertical gradients in dust

Figure 4. Vertical profiles of dust and sea salt concentrations from ATom aircraft observations using the PALMS instrument and E3SMv1

simulations averaged over 30S-60S and 160E-160W (grey, ATom observations and red, E3SMv1 simulations). Standard deviation for ATom

flight tracks are shown as grey lines and those from the model are shown as red lines. Vertical profiles of dust are shown for the size range

0.1 µm to 4.8 µm diameter. Total number of observations at each pressure are given here: 1000 hPa : 24, 900 hPa : 0, 800 hPa : 2, 700 hPa : 0,

600 hPa : 15, 500 hPa : 29, 400 hPa : 11, 300 hPa : 25, 200 hPa : 16. Profiles include flight tracks from 2016-08-08, 2016-08-12,2017-02-05,

2017-02-10,2017-10-08, 2017-10-11, 2018-05-03, 2018-05-06.
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and sea salt aerosols show good agreement and therefore indicate that vertical mixing is likely a smaller concern, compared

to other sources of biases in simulated INP concentrations in this region. The agreement between model and observations was345

assessed by checking if ATom observed mean values are within the simulated standard deviation for dust and sea salt. The

model evaluation of vertical aerosol profiles has implications for the role of INPs in cloud optical and microphysical properties

in the marine boundary layer (MBL) and free troposphere (Murray et al., 2021; Tan and Storelvmo, 2019; Burrows et al.,

2022b). For example, using lidar retrievals of dust, smoke, and cloud phase, Tan et al. (2014) showed that the presence of dust

and smoke particles were negatively correlated with the supercooled liquid fraction.350

3.2 Simulated global mean INP distributions

Atmospheric concentrations of INPs vary significantly between different regions of the globe due to geographic variations

in the concentrations of various INP-active aerosols. For example, Atkinson et al. (2013) showed that ice nucleation active

site densities for different types of feldspar dust mineral span seven orders of magnitude at −15◦C. We illustrate the global

distributions of simulated INPs in Figure 5, which shows maps of surface annual mean immersion-mode INP concentrations355

calculated using various INP parameterizations, at -28◦C (left panels) and -20◦C (right panels).

Different INP parameterizations produce substantially different concentrations of INPs. For example, CNT at 10s produces

annual mean dust INP concentrations that are 1-3 orders of magnitude higher than the D15 parameterization globally. The ratio

of CNT/D15 is highest near the SH polar regions, indicating that these regions are most sensitive to the choice of dust INP

parameterization during the dust episodes. Figure S3 shows the ratio of CNT/D15 over the SO being larger at -20 ◦C, compared360

to -28 ◦C. This can be explained by differences in the INP-temperature dependence, i.e., the slope of INP[L−1] / Tmeasurement

for the two parameterizations, which is shown in Figure S4.

In Table 3 and Table 4, we show statistics for the annual and seasonal INP concentrations in the SH and across the globe, at

two activation temperatures, -28◦C and -20◦C. Dust INPs dominate the global mean INP concentrations as well as its variability

at both -28◦C and -20◦C. CNT shows the highest variability in INP concentrations as seen from the standard deviation values365

in Table 3 and Table 4.

W15 has been used in past modeling studies of marine INP impacts on cloud properties (Vergara-Temprado et al., 2018)

and in the evaluation of model-simulated INPs in the SO (McCluskey et al., 2019). W15 was developed on the basis of

samples of organic matter collected from the sea surface microlayer (SSML) in the North Atlantic and Arctic Oceans. The

concentration of ice-nucleating entities (INE) in these samples was shown to be correlated with their total organic carbon370

mass. W15 parameterizes marine INPs as a function of simulated MOA, on the assumption that the relationship between

organic mass and INPs found in SSML material can be extrapolated to sea spray aerosol. This assumption may have important

limitations; e.g., differences in the size distribution and composition of INEs released into atmospheric SSA particles due to the

different SSA production mechanisms (Wang et al., 2017). A recent study using laboratory measurements showed that the INP

concentrations from submicron-sized SSA were lower by a factor of 10 compared to atmospheric INP concentrations from total375

SSA (Mitts et al., 2021). This study found that in addition to the submicron INEs within the SSML, super-micron-sized SSA
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-28oC -20oC

CNT Dust (10s)

D15

M18

W15

Figure 5. Global annual mean INP concentrations for 2017 at activation temperatures -28◦C (left panels) and -20◦C (right panels). Rows

represent different INP parameterizations used in this study: CNT (dust) 10s, D15 (dust), M18 (sea spray), and W15 (marine organic sea

spray). Details on INP parameterizations can be found in Table S1.
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particles produced from jet drops were also important to the total marine INP concentrations. Using the cruise measurements,

Trueblood et al. (2021) investigated the relationships between SSML INP and SSA INP at −15◦C during a dust wet deposition

event in the Mediterranean Sea. These observations showed a three-day lag between the increase in INP concentrations in the

SML and the increase in INPs from total SSA. This study concluded that processes governing the evolution of INPs in SSA380

and INPs in SSML are not the same. The effects of INEs and INPs on clouds in remote marine regions will therefore vary

based on their composition and other physical properties.

As shown in Table 3, global annual mean INP concentrations simulated by W15 are approximately an order of magnitude

higher than those simulated by M18 for background sea spray INPs. Such order-of-magnitude differences in INPs can have

important impacts on simulated cloud processes, including precipitation and cloud phase feedbacks on climate (Shi and Liu,385

2019; Kawai et al., 2021; Fan et al., 2017). Given this large discrepancy between the INP concentrations from various pa-

rameterizations, additional efforts are needed to evaluate and improve upon the existing parameterizations of marine INPs,

particularly in understanding the emissions and INP effectiveness of marine biogenic INPs emitted episodically from the ocean

surface (Steinke et al., 2021).

Kanji et al. (2017) compared temperature-INP spectra from studies of field measurements conducted globally for different390

categories of INP composition. This study found several orders of magnitude differences in INP concentration within any air

mass or particle composition. Figure 10 in Kanji et al. (2017) shows that at −20◦C, INP concentrations for marine samples

range from 0.001 L−1 to 2.0 L−1. The SH INP number concentration mean from D15, W15, CNT, and M18 are also within the

range estimated in Kanji et al. (2017). The E3SM-simulated SH INP mean across the temperature spectra are also within the

range of most frequently observed INP concentrations (0.0001 L−1 to 0.1 L−1) shown in Figure 5 of Welti et al. (2020) for the395

South Polar marine regions.

Table 3. Mean and standard deviations for E3SM surface INP concentrations for -28◦C. For context, both global and SH statistics are shown

for 2017.

Parameterization Global Annual Mean Global Annual σ SH Mean SH σ SH Summer Mean SH Summer σ SH Winter Mean SH Winter σ

D15 [L−1] 13 72 1.5 10 1.9 12 1.1 6.6

M18 [L−1] 0.21 0.27 0.24 0.27 0.28 0.32 0.21 0.18

W15 [L−1] 2.4 4.4 2.8 4.9 3.7 6.2 1.9 2.6

CNT 10 s [L−1] 1.6e02 8e02 24 1.4e02 28 1.6e02 20 1.1e02

σ represents standard deviation of the season or year.

3.3 Comparisons of simulated INPs with MICRE measurements

In the previous section, we compared global distributions of INPs from different parameterizations. In this section, we compare

the model-simulated INPs against MICRE observations at Macquarie Island, which can help evaluate the day-to-day and

long-term INP predictive skill of the model for remote marine regions in high-latitudes. In Figure 6, we show scatterplots of400
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Figure 6. Observed INP concentrations (L−1) at Macquarie Island from MICRE and simulated INPs from E3SMv1 and INP parameter-

izations. (a) and (b) : D15, (c) and (d) : M18, (e) and (f) : M18+D15, (g) and (h) : W15. INP concentrations are colored by activation

temperatures used for measurements. Solid line in each panel represents 1:1 comparison, while dashed lines represent a factor of 2 and 10

from the observations. Error metrics in each panel include fractional gross error (FGE), modified normalized mean bias (MNMB), spearman

correlation (R), percentage of model INPs within a factor of two from observations (2x), and percentage of model INPs within a factor of

10 from observations (10x). Scatter plots for austral summer (October-February) are shown in the left column and those for austral winter

(March - September) are shown in the right column.
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Table 4. Mean and standard deviations for E3SM surface INP concentrations for -20◦C. For context, both global and SH statistics are shown

for 2017.

Parameterization Global Annual Mean Global Annual σ SH Mean SH σ SH Summer Mean SH Summer σ SH Winter Mean SH Winter σ

D15 [L−1] 0.33 1.8 0.041 0.25 0.052 0.31 0.028 0.17

M18 [L−1] 2.7e-03 3.4e-03 3.2e-03 3.4e-03 3.6e-03 4.2e-03 2.7e-03 2.4e-03

W15 [L−1] 0.071 0.12 0.080 0.14 0.10 0.17 0.051 0.073

CNT 10 s [L−1] 5.2 28 0.72 4.9 0.84 5.7 0.60 4.0

σ represents standard deviation of the season or year.

simulated INPs from several INP parameterizations compared against MICRE INP measurements (for collections made over

2–3 days) and corresponding performance metrics.

We show results separately for austral summer (Figure 6, left) and austral winter (Figure 6, right). In both seasons, INPs are

significantly underpredicted using dust alone (D15; MNMB of -1.68 during the summer and -1.88 during the winter) or sea

spray alone (M18; MNMB of -1.13 during the summer and -1.58 during the winter). Across all measurement temperatures,405

D15 is biased low by up to four orders of magnitude compared to the measurements.

This low bias is consistent with the findings of McCluskey et al. (2019), who showed that using a combination of M18 and

D15 INPs from dust and sea spray aerosols simulated by the CESM model produced better agreement with immersion freezing

INP measurements at Mace Head research station and in the SO for the CAPRICORN campaign. Similarly, we find that better

agreement is achieved at MICRE when using the combination of M18 sea spray and D15 dust INPs (Figure 6g and Figure 6h)410

than by either sea spray or dust alone. Potential reasons for the remaining model-observation disagreement will be discussed

further in Section 3.6.

Interestingly, the W15 parameterization also produces better agreement with observed INPs compared to M18+D15 based

on the metrics shown in scatterplots in Figure 5. While W15 overpredicts summertime INPs by 1-2 orders of magnitude for

temperatures warmer than -20◦C, summertime INPs at colder temperatures, and wintertime INPs at warmer temperatures, agree415

better with observations than INPs predicted by the other parameterizations. Given the large uncertainties currently associated

with prediction of sea spray organic matter (Burrows et al., 2022a) and its INP efficiency (Steinke et al., 2021; Mitts et al.,

2021), and the lack of aerosol chemistry measurements at MICRE, it is difficult to discern at this time whether this improved

agreement reflects a better representation of the underlying physical and chemical processes. Clearly, more study is needed to

understand the regional and seasonal impacts of marine biology on sea spray INPs (Wolf et al., 2020; Trueblood et al., 2021).420

3.4 Variability in INPs

The time series of near-daily observed and simulated INP concentrations from 2017-2018 at Macquarie Island show that at a

given temperature, variability in INP measurements ranges over 2–3 orders of magnitude (Figure 7). We choose an interval of

0.5◦C for the time series analysis, because this interval matches the MICRE reported measurement increments for temperature.
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Figure 7. Time series of near-daily INP concentrations at Macquarie Island for specific activation temperature intervals: (a) -28.5◦C to -

28◦C, (b) -20.5◦C to -20◦C, and -16.5◦C to -16◦C. INP observations from MICRE are shown in black circles. Error bars on the observations

represent 95 % confidence interval width for number of INPs per liter of air at ambient temperature and pressure. Simulated INP concentra-

tions are interpolated to the grid box closest to Macquarie Island using the nearest neighbor interpolation method. For each sampling period,

simulated values are output as instantaneous values every 30 minutes and averaged from the start date to the end date. We color code different

parameterizations as follows: D15 (red), CNT (orange), W15(green), M18(blue), M18+D15(magenta). The values displayed in the brackets

in the legend show the mean values from observed and simulated INP concentrations.
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Panels a, b, and c in Figure 7 correspond to temperature intervals, −28.5◦C to −28◦C, -20.5◦C to -20◦C, and -16.5◦C to -16◦C425

respectively. From both observed and simulated INP concentrations, we do not see a clear seasonal cycle. INP highs in the

observations are episodic and are not restricted to specific seasons. However, some of the peak observed INP concentrations

occurring in Figure 7b during the austral summer months coincide with the time period for major dust emission events in

southern Australia and favorable ocean conditions for phytoplankton growth (Gabric et al., 2010). At -20.5◦C to -20◦C range,

CNT agrees well with INP measurements. However, for temperatures warmer than -20◦C, CNT significantly underestimates430

INP measurements by 2-3 orders of magnitude.

Episodic dust from long-range transport may contribute to INP concentrations in the SO. For example, Neff and Bertler

(2015) found that dust emissions of 30 Tg a−1 in New Zealand could contribute as much as 21.9% to dust deposition in

the SO. In particular, previous studies using backtrajectories and observed radon concentrations have shown that airmasses

arriving at Macquarie Island can be influenced by aerosol emissions in Australia and Antarctica (Brechtel et al., 1998). In435

order to understand the potential dust sources to Macquarie Island, we performed 15-day backtrajectory analyses using the

Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) (Draxler and Rolph, 2010). Often, we found that

air transported to Macquarie Island had passed over potential regional dust sources including the coasts of Antarctica and South

America (not shown).

3.5 INP statistics in models and measurements440

We evaluate the shape of the INP probability density functions (PDFs) to understand how the frequency distribution of simu-

lated INP concentrations compare against those from the MICRE observations. Figure 8 presents the PDFs of simulated and

observed log10(INP) concentrations, in several freezing temperature ranges. The PDFs for the model represent only the days

when the MICRE INP observations are valid at a given measurement temperature.

Such an analysis can provide qualitative insights into the sources likely to be relevant to peak INP concentrations (Hartmann445

et al., 2019). For example, previous studies have shown that the log-normal shape of the INP PDF distributions can be associ-

ated with air-quality events that involve more mixing and dilution whereas skewed distributions can be associated with local

emission sources (Gong et al., 2019).

Figure 8 is consistent with the results observed in Figure 7 and shows that M18+D15 PDF peak is centered at INP concen-

tration about an order of magnitude lower than MICRE PDF. The D15 PDFs are consistently shifted to lower values compared450

to MICRE and other parameterizations and the distribution is bimodal. We observe that E3SM’s default CNT dust parame-

terization predicts significantly more freezing than D15 especially at colder measurement temperatures. The PDFs for W15

parameterization are also bimodal and has a broader spread compared to MICRE.

We also compare MICRE INP PDFs with INP PDFs from other ship-based campaigns in the SO to assess the island effects on

the MICRE data. At -16.5◦C, PDFs for INPs sampled closer to Macquarie Island from other ship-based campaigns, MARCUS455

and ACE, are similar to MICRE PDFs and centered around 1.0× 10−3 L−1 – 1.0× 10−2 L−1. Even though we include INPs
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Figure 8. Probability density function (PDF) plots of log10INP (T) from E3SM CTL simulations and MICRE observations for 2017-2018.

Also shown are the PDFs of INP measurements from other SO field campaigns, MARCUS and ACE (includes INP measurements collected

closer to Macquarie Island). We show simulated and observed log10INP (T) PDFs for temperatures (a) -16.5◦C to -16◦C, (b) -20.5◦C to

-20◦C, (c)-28.5◦C to -28◦C. Corresponding MARCUS and ACE PDFs are shown for -20◦C, and -16◦C in panels (a), (b), and (c). For PDFs

of simulated and observed INPs during MICRE, the panels include 16 data points for -16.5◦C to -16◦C; 103 for -20.5◦C to -20◦C; 78 for

-28.5◦C to -28◦C. Model-simulated INPs are included only for co-located days with MICRE.
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sampled near Macquarie Island, we see a growing discrepancy between MICRE and other ship-based campaigns at colder

temperatures (Figure 8b). These results show that the island effects are not uniform with temperature.

3.6 Potential reasons for model INP bias

By taking into account additional observational evidence and recent studies documenting limitations in the E3SMv1 aerosol460

representation, we discuss three likely sources of model-observation discrepancies in MICRE INPs: (1) Potential local or

regional INP sources that are not represented in the model, such as land sources, sea spray arising from coastal wave action,

coastal shelf-induced changes in ocean biology, ocean chemistry, and sea spray composition, or re-suspension of dust from

surface waters (Cornwell et al., 2020); (2) E3SMv1’s underprediction of dust aerosol, especially over remote regions away from

emission sources, including high latitudes; (3) a likely high bias in dust freezing rates in the E3SMv1 CNT parameterization465

that partially compensates for the underprediction of dust concentrations; and (4) regionally elevated marine organic emissions

that are not necessarily accurately represented at local scale in the OCEANFILMS MOA emission model, or in their ice

nucleation efficiency by W15.

3.6.1 Bias in E3SM CNT INP concentrations

Potential causes of bias in E3SM’s CNT-based dust INPs include: 1) Overestimation of dust immersion freezing rate coeffi-470

cients estimated by the Wang et al. (2014) parameterization used in E3SM (Cornwell et al., 2021), and 2) biases associated

with using E3SMv1’s CNT-based INP 10 s diagnostic as a proxy for INPs measured by the ice spectrometer.

To compare the E3SMv1 model’s CNT-based parameterization with INPs observed by the ice spectrometer, it is necessary to

make assumptions, either implicit or explicit, about the time dependence of immersion freezing. Throughout this manuscript,

we have used E3SM’s built-in 10 s diagnostic to compare E3SM’s prediction of INPs with observations. This diagnostic is475

calculated from the rate of change of freezing rate (also called the tendency) over the E3SM model’s cloud microphysics time

step of 300 s, and linearly interpolated to a time step of 10 s. In taking this approach, we have implicitly assumed that the

INPs measured by the ice spectrometer can be adequately estimated by a linearized version of the CNT model that simulates

isothermal freezing over a 10 s time scale. Since ice spectrometer experiments are not performed isothermally, but at a constant

cooling rate, these assumptions are inconsistent with the experimental approach used in these observations. We quantified how480

much the number of INPs predicted by E3SM’s CNT parameterization would change if the parameterization were applied to

an idealized ice spectrometer measurement performed at a constant cooling rate.

We conducted idealized simulations of isothermal and constant cooling rate droplet freezing experiments to explore the

implications of the time-dependent behavior assumed by the E3SM’s CNT parameterization when compared with observed

INPs from the ice spectrometer. We perform sensitivity simulations for conditions representative of high and low INP regimes.485

We calculated the heterogeneous ice nucleation rate coefficient for a given temperature (Jhetcoeffimm(Tmeasurement) [cm−2 s−1])

by dividing the nucleation rate Jimm,dust [s−1] by the particle surface area. We assumed a median particle radius of 1.5 µm.

To calculate dust ice nucleation tendencies, we adopted the CNT expression proposed by Wang et al. (2014), but we used a
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fixed contact angle of 46◦. We note that except for the idealized simulations, all other CNT-based results shown in this study

use a probability density function (PDF) model for contact angle distributions following Wang et al. (2014). Since a linearized490

version of CNT is frequently used to approximate the relationships between frozen fractions and particle freezing properties,

we also compared the idealized simulations of frozen fractions and INPs from the isothermal prognostic CNT against the

linearized version of CNT (Equation 5)

FFlinear CNT = Jhetcoeffimm(Tmeasurement) Ag ∆tmeasurement , (5)

where ∆tmeasurement is the measurement time after the start of the experiment at which the measurement of frozen fraction is495

made and Ag is the median ice nucleation active surface area per droplet.

We first estimated the dust total surface area per filter by multiplying the dust surface area per grid box volume simulated

in the E3SM model by the volume of air sampled by the ice spectrometer during the MICRE campaign. For ice spectrometer

measurements of INPs, filters collected are placed in tubes with 7 mL of deionized water and immersion freezing spectra are

obtained by dispensing 50 µL aliquots of aerosol suspensions into multiple wells trays (Creamean et al., 2022b). We multiplied500

the total particle surface area per filter by a factor of 50µL
7mL and diluted 11-fold to calculate the median ice nucleation active

surface area per droplet (Ag) to be used in constant cooling rate experiments. Because isothermal measurements use one particle

per droplet, we renormalized the dust total surface area per filter by the E3SM model simulated dust number concentrations

at Macquarie Island. We assumed a log-normal distribution centered around Ag with one standard deviation, representative of

monodisperse INPs.505

We simulated droplet freezing and calculated the ensemble mean frozen fraction using a Monte Carlo approach following

Alpert and Knopf (2016). For each experiment, we calculated the ensemble mean frozen fraction by sampling a random amount

of ice nucleation surface area for each of 1000 droplets in 10 trials. From the fraction of droplets frozen and the known volume

of air filtered, we calculated INP concentrations for constant cooling rate experiments using Equation 6 (Vali, 1971).

INP(T )[L−1] =
ln(1−FF)

Vdrop

Vsuspension
Vair

, (6)510

where FF is the frozen fraction, Vdrop is the volume of each drop 7 mL, Vsuspension is the volume of the aerosol suspension

50 µL diluted 11-fold, and Vair is the volume of air per sample from the MICRE measurements. For isothermal experiments, we

calculated INP concentrations by multiplying the frozen fraction and the total dust aerosol number concentrations in Macquarie

Island collocated using E3SM outputs. Since these are idealized simulations, we chose an average estimate of total dust aerosol

number concentrations for the duration of the MICRE campaign. Figure 9 shows idealized simulations of INP concentrations515

for INP surface areas typically found in Macquarie Island (low dust loading) and the Sahara desert (high dust loading). We list

and describe the idealized immersion freezing simulations in Table 5.
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Table 5. List of stochastic droplet freezing experiments

Experiment name Description

Isothermal experiments

ISO linear 10s sig1 Linearized CNT (Equation 5) with monodisperse INPs for constant temperatures and a residence time of 10 s

ISO CNT 10s sig1 Prognostic CNT with monodisperse INPs for constant temperatures and a residence time of 10 s

ISO E3SMCNT 300s sig1 Same as ISO CNT 10s sig1 but for a residence time of 300 s

ISO E3SMCNT 10s sig1 ISO E3SMCNT 300s linearly interpolated to 10 s

Constant cooling rate experiments

CR5 sig1 Constant cooling rate of 5 K/min with monodisperse INPs;

Temperature is reduced with time using the cooling rate of 5 K/min

CR0.33 sig1 Same as CR5 sig1 but for a cooling rate of 0.33 K/min

CR0.05 sig1 Same as CR5 sig1 but for a cooling rate of 0.05 K/min

(a) (b)

Figure 9. Idealized simulations of CNT-based INP concentrations using isothermal and constant cooling rate stochastic freezing experi-

ments. Table 5 describes the different experiments shown in this figure. (a) Low dust conditions with Ag for isothermal experiments =

6.06× 10−11 cm2 per droplet and Ag for constant cooling rate experiments = 8.27× 10−9 cm2 per droplet. (b) High dust conditions with

Ag for isothermal experiments = 6.0× 10−3 cm2 per droplet and Ag for constant cooling rate experiments = 2.18× 10−5 cm2 per droplet.

We find that E3SMv1’s CNT-based linearized 10s diagnostic is a good approximation of the prognostic CNT formulation

used in ISO CNT 10s sig1 for low-INP conditions similar to those observed at MICRE. However, the linearized diagnostic

underestimates the exact formula by an order of magnitude or more in places like the Sahara desert where the dust loading520

is several orders of magnitude higher than in Macquarie Island. This can be attributed to the fact that the E3SM INP 10 s

diagnostic is linearly interpolated from the ice nucleation rate tendencies calculated over the E3SM model’s internal cloud

processing time step size of 300 s (Zhang et al., 2018). This implies that the time dependence of nucleation becomes more

non-linear in high dust loading conditions and cannot be represented using the linearized formulation of CNT.
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We find that in high dust loading conditions (Figure 9b), idealized simulations of different measurement approaches (isother-525

mal and constant cooling rate) yield similar INP results whereas they yield very different results in low dust loading conditions.

We find that relatively smaller INP concentrations are simulated for higher cooling rates (Figure 9, CR5 sig1, CR0.03 sig1,

CR0.33 sig1). This is because droplets are exposed to colder temperatures for a shorter duration at higher cooling rates and

therefore the droplets are less likely to freeze. A dependence of frozen fraction on cooling rate has been reported in some past

experimental studies of certain INP types that include some pure minerals of certain mass concentrations in drops (e.g. Alpert530

and Knopf, 2016; Broadley et al., 2012; Herbert et al., 2014).

Because the INP 10 s diagnostic is used only for model comparisons against in situ measurements, this bias in the calculation

of the CNT-based INP 10 s diagnostic does not affect the cloud properties simulated in the microphysics modules in E3SM.

Revisiting the treatment of CNT in E3SM is beyond the scope of this paper. However, we recommend that future studies of

this kind should consider the non-linear time-dependent behavior of heterogeneous ice nucleation in models when comparing535

INP observations against model simulations, especially in regions with high INP concentrations.

We show that for aerosol conditions similar to MICRE, the INP concentrations simulated by CNT for idealized ice spectrom-

eter experiments are similar to the INP concentrations estimated using the 10 s INP diagnostic that we have used throughout

this manuscript. These results indicate that the 10 s diagnostic is a reasonable approximation of the exact formulation of CNT

used by E3SM, when applied to ice spectrometer measurements at this location.540

We have used idealized experiments here to explore the implications of parameterization choices for the evaluation of INPs

simulated by models that use CNT parameterizations. However, it is important to note that, to date, the prediction of time-

dependent behavior arising from idealized CNT-based simulations has not been systematically validated with experimental

results from the ice spectrometer. Given the potentially important implications of these parameterization choices for model

evaluation, controlled laboratory studies would be valuable that challenge this theory by targeting experimental conditions545

where the predictions of CNT differ from those of deterministic parameterizations.

3.6.2 Bias in E3SM simulated aerosol properties

Biases in E3SM-simulated aerosol could contribute to model-observation differences in INP concentrations. One of the known

reasons for underestimation of high latitude dust concentrations in E3SMv1 is the lack of high-latitude dust emission sources.

Shi et al. (2021) found that adding high latitude dust sources led to improvements in model simulations of INP concentrations550

in the Arctic. Aerosol bias in climate models can be due to inaccurate representations of one or more important processes in the

aerosol life cycle. For example, Rosenberg et al. (2014) compared global climate model simulations with Saharan desert dust

measurements and concluded that most models underestimated coarse mode Saharan dust emissions. As previously discussed,

E3SM under predicts dust concentrations at high latitudes, due in part to a low bias in the dust lifetime (Wu et al., 2020).

Adebiyi and Kok (2020) found that the systematic underestimation of coarse dust in climate models is primarily determined555

by the dust size distribution. In this study, we have shown that in E3SMv1, biases in dust are ameliorated, but do not appear to

be fully resolved by revising the dry deposition coefficients. Many other processes could cause biases in simulated dust, such
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as structural errors in E3SM’s dry deposition, errors in parameterized wet deposition, and errors associated with the model’s

numerics.

3.6.3 Island effects and comparisons to other ship-based campaigns560

We discuss the evidence that the island may affect observed INP concentrations and contribute to model-observation differences

during MICRE. To understand whether MICRE is representative of the SO region, we compare MICRE INPs with those from

other ship-based campaigns in the SO, Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS)

(DeMott et al., 2018b) and Antarctic Circumnavigation Expedition (ACE) (Tatzelt et al., 2021). Figure S5 (top panel) shows

an aerial shot of Macquarie Island, along with the Aurora Australis ship used for MARCUS field campaign. MARCUS INP565

measurements (November 2017 - April 2018) were largely collected over the open ocean and likely less impacted by local

island effects. Bottom panel in Figure S5 shows the MICRE filter. ACE INP measurements were carried out during the austral

summer of 2016 – 2017 and INP concentrations were estimated using the immersion freezing droplet array method (Conen

et al., 2012).

Figure 10a shows INP-temperature dependency for INPs collected during MICRE (blue) and the ship-based campaigns in570

the SO. Below −20
◦
C, observed INP concentrations during MICRE are significantly higher than open-ocean INPs during

MARCUS (gray) and ACE (red) campaigns. For temperatures above −10
◦
C, few INP values in the ACE campaign are higher

than MICRE, but these are likely the INP data measured when the cruise was in the vicinity of the land (Tatzelt et al., 2021).

MARCUS INPs measured closer to Macquarie Island (yellow) are in the range of INP concentrations seen from MICRE.

Figure 10a suggests that processes local to Macquarie Island may produce local INP concentrations that are significantly575

higher than over the open ocean.

Porter et al. (2022) found that small island sources off the coast of Russia contribute to high concentrations of biological

INPs in the Arctic due to the nutrient rich water from the riverine sources. Their findings indicated that islands may be potential

sources of biogenic INPs near the Russian coast. Although more work is needed to define the key sources of biological or

biogenic INPs affecting MICRE INP concentrations, similar island processes may play a role in altering the marine boundary-580

layer dynamics near Macquarie Island. These effects could potentially influence surface INP sources, losses, and boundary-

layer mixing due to surface drag and orographic lifting caused by the island. Inoue et al. (2021) investigated the cruise data

from the marginal ice zone in the Chukchi Sea and found high INP concentrations from sea salt and organic carbon above

−10◦C during the high wave conditions. Since MICRE collected samples near the surf zone, taller waves and high surface

winds may increase sea spray supply to the INPs. Figure S5 shows that the sea spray aerosols emitted from wave breaking on585

the western side of the island pass over the entire isthmus during the regular strong wind conditions present at these latitudes.

The potential existence of local terrestrial or anthropogenic sources from the island could yield high INP concentrations during

MICRE compared to open ocean INP samples from ACE or MARCUS campaigns in the SO. It would be interesting to employ a

regional model with atmosphere-ocean-wave coupling to test these localized island processes. If local sources indeed dominate

29



(a)

(b) (c)

(d) (e)

Figure 10. Relationships between temperature and INP concentrations. (a) MICRE INP measurements (in blue) along with MARCUS

(March 15 - 30 2018) (in yellow) and ACE (December 2016 - Jan 2017) (red) ship measurements when the ships were closer to Macquarie

Island. Also shown are other MARCUS measurements from dates when the ship was in the open ocean (gray). Shown in other panels are

INP-temperature dependency for E3SM simulated INPs (b) M18+D15, (c) M18, (d) D15, (e) W15. Model INP concentrations are shown

only at Macquarie Island for the time period of the MICRE campaign.

30



the INPs observed at MICRE, it may therefore be expected to be less directly comparable to global models than the open ocean590

measurements from ship-based campaigns such as MARCUS.

For comparison, we also plot simulated INP concentrations versus temperature using different parameterizations (Figure 10b

– 10e). We find that INPs simulated using the combination of M18 and D15 are more similar to the MARCUS measurements

than to MICRE. Therefore, we tentatively conclude that some combination of potential nearby terrestrial and coastal effects,

along with model bias in aerosol concentrations from regional sea spray and long-range dust transport, may be primary causes595

of model-observation differences at MICRE.

4 Summary, Conclusions, and Outlook

As global models increasingly introduce aerosol-aware treatments of cloud freezing, they improve their process realism and

their ability to dynamically simulate climate and Earth system responses to future change (e.g. increases in dust and sea

spray emissions associated with higher wind speeds in a warmer climate, increases in Arctic sea spray emissions as the sea600

ice retreats, and changes in dust emissions associated with desertification, permafrost melt, and changes in land management

practices). However, with this increased complexity of process representations, model simulations of cloud processes also

become increasingly susceptible to biases in simulated aerosol.

In this study, we use the first long-term observations of INPs from the SO to evaluate the potential of a state-of-the art Earth

System model, E3SMv1, to accurately simulate SO INPs on the basis of simulated aerosol. First, we evaluate and identify605

biases in E3SMv1 simulation of the major aerosol sources of INPs in the SO (sea spray and dust aerosol) by using regional in

situ observations from across the SO. Consistent with previous studies, we find that E3SMv1 underpredicts near-surface dust

aerosol mass concentrations as compared with ground-based in situ measurements at several SO coastal sites in the University

of Miami measurement network, and the AWARE field campaign. However, vertical dust concentration profiles are consistent

with limited aircraft-based measurements in the SO from the ATom campaign. Both the model and observations show little610

change in dust concentration with height, which is consistent with dust arising from remote sources. However, the decline in

sea spray aerosol amount with increasing height above sea level is also consistent with ATom observations, suggesting that

E3SMv1 adequately represents the mixing of aerosol tracers between boundary-layer and free tropospheric air in this region.

These model evaluations enable us to clearly articulate both the key limitations of the MICRE INP observations as a model

evaluation dataset, and certain key limitations of E3SMv1 aerosol process representations for simulating INPs that are adequate615

for use in cloud microphysics parameterizations. Here we summarize the main limitations of this study and make recommen-

dations for future field experiments and model developments to overcome these limitations.

For future field campaigns measuring INP concentrations, it will be valuable to include a strategy for parallel measurement of

size-resolved aerosol concentration and composition, ideally including super-micron particles. On the other hand, other long-

term INP field studies (Schrod et al., 2020; Tatzelt et al., 2021; Welti et al., 2018) have shown that bulk aerosol concentrations620

do not necessarily correlate with INP climatology. A recent work by Creamean et al. (2022a) also showed that there was no
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significant relationship between the INP concentrations and particle size in the central Arctic for year-long size-resolved INP

observations. However, due to the lack of in situ aerosol measurements during MICRE, we could not conclusively attribute

the causes of the model-observation differences or explain the sources of day-to-day variability in measured INPs, although

a closer investigation of this issue is the topic of a separate, ongoing study. While a multi-week campaign with simultaneous625

measurements of INP, particle chemistry, and particle size distributions can improve the predictability of INP concentrations,

long-term INP measurements such as MICRE are important to understand the impacts of synoptic weather and seasonal aerosol

characteristics on INP concentrations.

Another interesting finding from this study is the unexpected discrepancy between observed INP concentrations at a coastal

site (MICRE) and over the open ocean (MARCUS). One approach to utilize island sites yet limit the island impacts is to630

tie auxiliary observations such as wind speed, direction, and aerosol properties to detect days that are significantly impacted

by local sources. A second approach is to collect observations directly over the open ocean. Such measurements have been

conducted during ship campaigns in recent years. However, with a few notable exceptions, most of these campaigns have lasted

only a few weeks. Although ship-based short term campaigns have provided important insights into INP sources and model

performance (McCluskey et al., 2019), in light of the ca. three order-of-magnitude day-to-day variability in INP concentrations635

during MICRE, long term multi-season INP and aerosol measurements are critical to adequately evaluate INP variability over

the SO in climate models. Despite their inherent challenges, it would be interesting to explore longer-term at-sea measurement

platforms (e.g., ship-based experiments covering multiple months or a full seasonal cycle, unmanned floating platforms) that

collect representative samples of INPs in open and remote ocean regions.

We note that for all of the INP parameterizations we have used, it was necessary to extend them beyond the conditions for640

which they were originally developed, in order to apply them to model simulation of INPs. For example, D15 was originally

developed for activation temperatures below -19 ◦C, but we have extrapolated it to warmer temperatures in this study. Similarly,

the M18 and W15 parameterizations were developed on the basis of sampled aerosol and sea surface microlayer material from

limited geographic regions and seasons. However, recent studies have shown that the efficiency of ice nucleating entities in

seawater changes in response to ocean biological processes and the INP efficiency is not uniformly high in all marine regions645

with high primary productivity (Wolf et al., 2020). Future experimental efforts should continue to extend the temperature

range of available INP parameterizations, and also to evaluate and improve their representativeness for different environmental

conditions.

Additionally, INPs can interact with other aerosol particles and trace gases, which can affect their IN ability and lifetime in

the atmosphere. For example, Creamean et al. (2019) showed that biological INPs from summertime phytoplankton blooms650

and bacterial respiration were likely transported hundreds of kilometers from the Bering Strait to the Arctic atmosphere, as a

result that these INPs experienced significant exposure to the weather and chemistry along the transport pathways. The impacts

of atmospheric and cloud processing on INP effectiveness are currently not fully understood and require more study.

The simulation of INPs in this study is subject to biases in E3SMv1 simulation of dust and sea spray aerosol. However, we

find that E3SMv1 underpredicts dust in the SO, consistent with previous studies, while E3SMv1’s native CNT parameterization655
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of dust INPs likely overpredicts their freezing efficiency compared to recent measurements and parameterizations of natural

and ambient dusts (Cornwell et al., 2021). Therefore, it is important to improve both the simulated dust lifecycle and dust INP

parameterizations to correct INP biases in high latitudes.

We examined one model process potentially contributing to biases in aerosol simulation: the choice of coefficients in the

model’s dry deposition parameterization. Dry deposition has important impacts on long-range transport of coarse mode aerosol,660

and the parameterization used in E3SMv1 was recently shown by Emerson et al. (2020) to be inconsistent with a meta-analysis

of experimental results. However, our sensitivity experiment shows that E3SMv1’s biases in sea spray and dust deposition were

not alleviated by adopting the dry deposition coefficient values recommended by Emerson et al. (2020). A more comprehensive

analysis of biases in E3SM-simulated aerosol, and the causes of those biases, is an important topic that will be examined in

separate ongoing and future research activities. As a result, INP concentrations do not improve on using the revised dry665

deposition coefficients (Figure S6).

In addition to the above limitations, additional model development would be helpful to improve the simulation of processes

affecting INPs in global models, such as the addition of parameterizations for the emissions of agricultural dusts (Tobo et al.,

2014; O’Sullivan et al., 2014; Steinke et al., 2016; Suski et al., 2018), minerology of dust particles (Atkinson et al., 2013;

Harrison, 2019; Vergara-Temprado et al., 2017) and biological particles that act as efficient INPs at warmer temperatures such670

as fungal spores and bacteria (Prenni et al., 2009; Huffman et al., 2013; Tobo et al., 2013; Mason et al., 2015).

We have shown that E3SMv1’s current immersion freezing parameterizations do not consider sea spray aerosol, which is

an important source of INPs in the SO. Further, E3SMv1’s treatment of dust immersion freezing is impacted by compensating

biases – an underprediction of dust amount compensated by an overprediction of its effectiveness as INP. Overall, we find

that using recent INP parameterizations for both sea spray and dust (M18 and D15), E3SMv1 would underpredict INPs by675

2–3 orders of magnitude at Macquarie Island, although biases over the open ocean are likely smaller. Previous studies have

shown that INP simulation errors of one order of magnitude (or less) can contribute to significant biases in modeled cloud

radiative effects and cloud-climate feedbacks. For example, Zhao et al. (2021) showed that strong seasonal changes in cloud

properties and radiative forcing occurred in global model simulations after including MOA INPs. Consequently, global net

cloud forcing changed by 0.016 Wm−2 per year due to INP variations. Our findings therefore have important implications for680

climate model simulations of the cloud-phase climate feedback (Murray et al., 2021; Vignon et al., 2021) and seasonal climate

in high latitudes (Prenni et al., 2007), particularly for future climate projections where aerosol INP sources will change in a

changing Earth System.

Code availability. The EAMv1/E3SMv1 source code can be found at https://github.com/E3SM-Project/E3SM/tree/v1.0.0. Code for droplet

freezing idealized simulations will be available upon request.685
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