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Abstract. Weaknesses in process representation in chemistry-climate models lead to biases in simulating surface ozone and

to uncertainty in projections of future ozone change. We develop a deep learning model to demonstrate the feasibility of

ozone bias correction in a global chemistry-climate model. We apply this approach to identify the key factors causing ozone

biases and to correct projections of future surface ozone. Temperature and the related geographic variables latitude and month

show the strongest relationship with ozone biases. This indicates that ozone biases are sensitive to temperature and suggests5

weaknesses in representation of temperature-sensitive physical or chemical processes. Photolysis rates are also an important

factor highlighting the sensitivity of biases to simulated cloud cover and insolation. Atmospheric chemical species such as the

hydroxyl radical, nitric acid and peroxyacyl nitrate show strong positive relationships with ozone biases on a regional scale. We

correct model projections of future ozone under different climate and emission scenarios following the shared socio-economic

pathways. We find that changes in seasonal ozone mixing ratios from the present day to the future are generally smaller10

than those simulated without bias correction, especially in high-emission regions. This suggests that the ozone sensitivity to

changing emissions and climate may be overestimated with chemistry-climate models. Given the uncertainty in simulating

future ozone, we show that deep learning approaches can provide improved assessment of the impacts of climate and emission

changes on future air quality, along with valuable information to guide future model development.

1 Introduction15

Atmospheric chemical transport models have been developed over several decades with the principal purpose of simulating the

composition of the atmosphere (Zhang, 2008), and chemistry schemes have been incorporated in chemistry-climate and Earth

system models to investigate the interactions between atmospheric composition and climate change (Flato, 2011). However,

current chemistry-climate models are imperfect in simulating the concentration of atmospheric chemical species, even though

they represent our latest understanding of the governing physical and chemical processes. Biases obtained through comparison20

with observations indicate that not all relevant processes can be adequately represented in models, and there are uncertainties

associated with emissions, chemistry, transport, deposition, clouds, and aerosols in addition to structural errors associated with
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model resolution (Knutti and Sedláček, 2013; Archibald et al., 2020a). Representation of these processes may be biased due to

poor understanding and simplified parameterisation, and the errors may propagate in complex Earth system models.

While some models reproduce observed concentrations relatively well, this does not confirm that they represent the gov-25

erning processes well because biases arising from different processes may offset each other. Different models apply differing

parameterisations of key processes, and even where these reflect current understanding there may be large differences in model

responses to changing conditions (Wild et al., 2020). This may lead to unreliable projections of changes in atmospheric com-

position under future emission and climate scenarios. However, it is difficult to identify the origin of the biases in models, and

this severely hinders model improvement and prevents a full understanding of the interactions between chemistry and climate30

through the Earth system.

Tropospheric ozone (O3) is an important greenhouse gas affecting climate, and is a photochemical air pollutant at the

Earth’s surface, damaging human health and ecosystems (Archibald et al., 2020a). Many studies show that the magnitude of

the tropospheric O3 burden and surface O3 concentrations in remote areas can be simulated relatively well (Young et al., 2018;

Griffiths et al., 2021). However, large differences still exist in simulated surface O3 concentrations in high-emission areas35

(Turnock et al., 2020), and there are large uncertainties in temporal trends (Tarasick et al., 2019) that cannot be captured well

by global chemistry-climate models (Parrish et al., 2021). In addition, structural biases in O3 caused by coarse model resolution

are hard to eliminate, and typically lead to higher surface O3 concentrations in polluted areas (Wild and Prather, 2006; Stock

et al., 2014). Given the difficulty in resolving the O3 biases in a complex chemistry-climate model, the aim of this study is to

correct simulations of present day surface O3 concentrations across the globe, and to generate more reliable O3 projections40

under future scenarios.

Machine learning provides a valuable approach to correct O3 biases. Appropriate algorithms can be applied to identify the

relationships between model responses and the driving variables based on extensive training. Deep learning approaches apply

algorithms with more complex architectures and larger parameter spaces based on artificial neural networks (Goodfellow

et al., 2016). In atmospheric science, machine learning has been successfully applied in some fields such as the prediction45

of precipitation (Sønderby et al., 2020; Ravuri et al., 2021) and air pollution (Kleinert et al., 2021). Numerical approaches

used in solving ordinary and partial differential equations in chemical and dynamic systems (Han et al., 2018; Keller and

Evans, 2019), and in parameterising subgrid processes for clouds in climate models (Rasp et al., 2018) can also be replaced

by machine learning to reduce computational costs. However, reliance on machine learning approaches to make predictions

may lead to loss of interpretability of the results, and we therefore choose to apply a deep learning model to the output from a50

chemistry-climate model to gain greater physical insight.

In this study, we explore the application of deep learning to correct surface O3 biases in a global chemistry-climate model

for the first time, and apply it to improve projections of changes in O3 under future scenarios. We identify the dominant factors

leading to O3 biases with the aim of guiding future model development. We introduce the chemistry-climate model, present-

day and future scenarios and the deep learning model in Sect. 2. We demonstrate the performance of the deep learning model55

in Sect. 3. We show the importance of different variables to O3 biases in Sect. 4, and how these vary by region in Sect. 5.
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We quantify surface O3 biases in the present day and future in Sect. 6, and show the importance for assessment of future O3

changes in Sect. 7. We present our conclusions in Sect. 8.

2 Approach

2.1 Chemistry-climate model and experiments60

We use version 1 of the United Kingdom Earth System Model, UKESM1 (Sellar et al., 2019) to simulate present-day (2004–2014)

and future (2045–2055) surface O3 mixing ratios under different emission and climate pathways. UKESM1 consists of a phys-

ical climate model, the Hadley Centre Global Environment Model version 3 (HadGEM3) with the Global Atmosphere 7.1 and

Global Land 7.0 (GA7.1/GL7.0) configurations (Walters et al., 2019) for atmosphere-only simulations with prescribed sea sur-

face temperatures, sea ice and greenhouse gas concentrations generated from the fully coupled UKESM1 (Meinshausen et al.,65

2017, 2020). Atmospheric composition is modelled with a state-of-the-art chemistry and aerosol module, the United Kingdom

Chemistry and Aerosol (UKCA; O’Connor et al., 2014), including a stratosphere-troposphere gas-phase chemistry scheme

(StratTrop; Archibald et al., 2020b) and an aerosol scheme (GLOMAP-mode; Mulcahy et al., 2020). An extended chemistry

scheme, incorporating more reactive volatile organic compounds (VOCs) is used in this study to provide an improved repre-

sentation of O3 production environments (Liu et al., 2021). The model resolution is N96L85 in the atmosphere, with 1.875◦ in70

longitude by 1.25◦ in latitude, 85 terrain-following hybrid height layers and a model top at 85 km.

For present day simulations, we use the Coupled-Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016)

historical anthropogenic and biomass emissions from Hoesly et al. (2018) and Van Marle et al. (2017) respectively. Biogenic

VOC emissions are calculated interactively in the Joint UK Land Environmental Simulator (JULES) land-surface scheme

(Pacifico et al., 2011) which is coupled to UKCA. For future simulations, we use the shared socio-economic pathways (SSPs;75

O’Neill et al., 2014) which represent different pathways of emission and climate policies in the future accounting for social,

economic and environmental development (Rao et al., 2017). We choose the SSP3-7.0 and SSP3-7.0-lowNTCF pathways to

demonstrate the impacts of weak and strong air pollutant emission controls in the future, respectively. Both pathways lead

to a warmer and more humid climate, but SSP3-7.0-lowNTCF has large reductions in anthropogenic emissions of near-term

climate forcer (NTCF) species that include O3 precursors and aerosols. Details of the present-day and future emissions under80

SSP3-7.0 and SSP3-7.0-lowNTCF can be found in Liu et al. (2022). Other emissions used here are the same as described in

Turnock et al. (2020).

2.2 Deep artificial neural network

We develop a deep learning model using a multilayer perceptron as it is a fundamental approach to build artificial neural

networks and easy to apply. More complex approaches such as convolutional or attention-based neural networks could be85

applied (LeCun et al., 2015; Vaswani et al., 2017), but multilayer perceptron neural networks are competitive and show good
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performance compared with other approaches (Tolstikhin et al., 2021). We hence choose a classic artificial neural network as

an initial step to explore the possibility of O3 bias correction; more complex approaches could be explored in future.

The multilayer perceptron neural network consists of an input layer, several hidden layers and an output layer, shown in Fig.

1. In the hidden layers, we use three independent modules – a densely-connected layer, a batch-normalisation layer (Ioffe and90

Szegedy, 2015) and a rectified linear unit (Relu; Glorot et al., 2011). Each layer has neurons that store data and associated

weights. Neurons in densely connected layers connect to each neuron in the following layer. The batch-normalisation layers

make the model training faster and more stable. The rectified linear unit is a non-linear activation function applied to the output

of the previous layer. The deep learning model developed here is applied to correct surface O3 mixing ratios solely simulated

by UKESM1.95

Figure 1. The structure of the deep artificial neural network built in this study. Each box represents one layer with neurons and weights to

be passed to the next layer. In the densely-connected layer (‘Dense’) all neurons connect with neurons in the next layer, and the number of

neurons is shown in brackets. In the batch-normalisation layer (‘BN’) the data is normalised and passed to the next layer. The rectified linear

unit (‘Relu’) acts as a non-linear activation function. The arrows show the computation path from input to output.

2.3 Deep learning model application

Previous studies have shown that there are systematic seasonal biases in surface O3 mixing ratios simulated with many

chemistry-climate models (Young et al., 2018), including UKESM1 (Turnock et al., 2020). We compare present-day UKESM1

results with monthly mean surface O3 reanalysis data from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Atmospheric Composition Reanalysis 4 (EAC4) under the Copernicus Atmosphere Monitoring Service (CAMS;100

Inness et al., 2019). These reanalysis data are generated from chemical assimilation of observations into a chemical transport

model, and we choose to use these rather than sparse observations directly as they provide global coverage, which is important

for training the deep learning model. The CAMS O3 reanalysis data have been shown to be generally in good agreement with

Tropospheric Ozone Assessment Report (TOAR) observations for North America, Europe and parts of Asia where available,

although CAMS surface O3 concentrations show some positive biases, particularly in East and Southeast Asia (Huijnen et al.,105

2020; Wagner et al., 2021). The CAMS reanalysis provides surface concentrations at a scale comparable with our model, and

thus avoids uncertainties associated with the spatial representativeness of observations when using measured concentrations
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directly. We note that biases in the reanalysis will influence our results, but the CAMS data provide a good foundation with

which to demonstrate the feasibility of O3 bias correction.

We find that the mean surface O3 mixing ratios over 2004-2014 simulated by UKESM1 are underestimated in the Northern110

Hemisphere in winter (December, January, February) and overestimated across most continental areas in summer (June, July,

August), as shown in Fig. 2. Surface O3 mixing ratios are overestimated by 4 ppb on an annual mean basis and the biases show

a strong seasonal variation in the Northern Hemisphere. The deep learning model is trained to reproduce these biases so that

the original UKESM1 O3 mixing ratios can be corrected to match the observation-based reanalysis.
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Figure 2. Seasonal mean biases in surface O3 mixing ratios simulated with UKESM1 compared with CAMS reanalysis data (UKESM1

minus CAMS) in (a) December-January-February (DJF) and (b) June-July-August (JJA), and (c) annual mean biases, all averaged over

2004–2014. Global area-weighted average surface O3 mixing ratio biases (ppb) are shown in the top right of each panel.

2.4 Deep learning model input115

Earth system models have numerous variables influencing surface O3 mixing ratios, but including all variables as inputs for

the deep learning model is impractical due to the heavy computation burden. It may also lead to overfitting, a common issue in

machine learning associated with including more variables than can be justified by the limited volume of training data. Limiting

the number of variables used as inputs also makes the results easier to interpret. In this exploratory study, we investigated more

than 30 key input variables that represent the major large-scale influences on O3 chemistry and transport, and settled on 20120

variables that show the strongest relationships.

We consider major geographical and temporal variables including latitude, longitude, elevation, land cover and month. We

define latitude from the equator to the pole, and month from midwinter to midsummer in each hemisphere. Meteorological

variables such as temperature, pressure, humidity, zonal and meridional wind are considered as they strongly influence O3

chemical formation and transport. The sensitivity of O3 to temperature is of particular interest, and has been shown to be a125

substantial source of uncertainty in current studies (Archibald et al., 2020c). Temperature and humidity have also been shown

to influence O3 variability on both regional and synoptic scales (Han et al., 2020; Shi et al., 2020). Two fundamental photolysis

rates j(NO2) and jO(1D) governing O3 production and destruction are considered. Photolysis rates are strongly dependent on

clouds, but there are large uncertainties in simulated cloud cover in current models (Wu et al., 2007; Voulgarakis et al., 2009;

Hall et al., 2018). O3 deposition rates and boundary layer height (BLH) are considered as they influence O3 concentrations130

near the surface (O’Connor et al., 2014; Clifton et al., 2020). Concentrations of O3 precursors such as nitric oxide (NO), VOCs
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(primary VOC species) and biogenic isoprene are considered, as these govern O3 chemical production. The concentrations of

hydroxyl radical (OH) and the oxidative nitrogen species such as nitric acid (HNO3) and peroxyacyl nitrates (PAN) are also

considered because they reflect the general oxidation capacity of the atmosphere. HNO3 and PAN are important nitrogen sinks

that may transport nitrogen and affect O3 formation over a wide area. Between them, the 20 variables selected represent some135

of the key drivers of uncertainty in simulating surface O3, although we note that they are not independent of each other and that

other factors may also be important under some conditions. We use O3 mixing ratios from the lowest model layer of UKESM1

and normalise values of each input variable from zero to one.

2.5 Model training

The deep learning model is trained to reproduce the O3 bias in each UKESM1 grid cell based on the corresponding values of140

the input variables. We train the deep learning model using the biases of monthly mean surface O3 mixing ratios from each

model grid cell over 2004–2014 (192 longitudes × 144 latitudes × 12 months × 11 years = 3.6 million data samples). We

randomly split the data into training data (80 %), validation data (10 %) and testing data (10 %). Training data are only used to

train the model. The validation data provide an evaluation of model performance for each iteration of training, and the testing

data are used to provide an independent evaluation once model training is complete.145

The performance of the deep learning model is dependent on the volume of data and the settings used, and we experiment

with a range of different settings to keep a balance between training speed and accuracy. We choose an Adam optimiser for the

training algorithm (Kingma and Ba, 2014), and use mean absolute error for the loss function in this study. We use 0.01 as the

model learning rate, and 1024 grid boxes as the training batch size for stochastic gradient descent. Among these settings, we

find that the batch size is the most important factor influencing the model performance. 1024 randomly sampled data points150

account for about 4 % of the data from all grid cells in one month in each training iteration, and we find that this is adequate to

represent different situations of O3 biases and is found to be sufficient to train the model well.

3 Deep learning model performance

We determine the deep learning model performance in predicting surface O3 biases using the testing data to give an independent

evaluation (Fig. 3). The model reproduces the surface O3 biases well with a high correlation coefficient of 0.99 and with a mean155

bias error of 0.1 ppb and root-mean-square error of 1.9 ppb. The frequency distribution of surface O3 biases predicted by the

deep learning model is very similar to that calculated using the O3 reanalysis data. The tails of the distribution also match well,

indicating that large biases can be reproduced well. The evaluation demonstrates that the input variables selected are sufficient

to predict surface O3 biases well.

To investigate the spatial and temporal behaviour of the model performance, we focus on surface O3 biases in the present-day160

high-emission regions of North America, Europe, East Asia and South Asia (Fig. 4). North America, Europe and East Asia all

show systematic negative surface O3 biases in winter and positive biases in summer (Fig. 4a–c). South Asia shows different

behaviour, with consistent positive biases for all months (Fig. 4d). O3 biases in South Asia show more fluctuations over the

6
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Figure 3. Evaluation of the deep learning model in simulating monthly mean surface O3 biases at each UKESM1 grid point based on testing

data. (a) O3 biases (UKESM1 minus CAMS) and biases predicted by the deep learning model. (b) Probability density function of O3 biases

(labelled here as Truth) and predicted O3 biases. Statistics are shown in the top right corner.
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Figure 4. Monthly mean surface O3 biases (UKESM1 minus CAMS; Truth) and O3 biases predicted by the deep learning model in (a) North

America, (b) Europe, (c) East Asia and (d) South Asia from January, 2004 to December, 2014.

annual cycle than those in other regions, but these fluctuations are also captured well by the deep learning model. We note that

the magnitudes of O3 biases are simulated well, and that the differences from year to year are also captured accurately. These165

7

https://doi.org/10.5194/acp-2022-196
Preprint. Discussion started: 7 April 2022
c© Author(s) 2022. CC BY 4.0 License.



four regions demonstrate that the deep learning model is able to predict regional differences and their respective magnitudes

well.

4 Feature importance

While all input variables contribute to the prediction of O3 biases, their relative contributions are different and can be estimated

to determine which ones are dominant. An advanced unified framework for interpreting predictions of machine learning models,170

Shapley additive explanations (SHAP; Lundberg and Lee, 2017) is used to calculate the contribution of different variables to

the predicted biases. The feature importance is represented by the SHAP value, which provides a quantitative measure of the

variable contribution, shown in Fig. 5. We calculate SHAP values for each variable using 100 sets of 100 data points randomly

selected from the full distribution and show their mean values and one standard deviation. The colours indicate the underlying

relationships between the O3 biases and the selected variables based on the correlation between the calculated SHAP values175

and variable values. Red represents a strong positive relationship (r > 0.7), blue represents a strong negative relationship (r <

-0.7), and green shows weaker relationships.
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Figure 5. Importance of different variables to surface O3 biases calculated by the Shapley additive explanations framework (SHAP) for the

deep learning model. Strong positive (r > 0.7) and negative (r < -0.7) relationships between O3 biases and variable values are shown in red

and blue, respectively, while weaker relationships are shown in green. The error bars show one standard deviation of feature importance for

each variable.

We find that latitude and month are important to O3 biases, and show negative and positive relationships to surface O3 biases,

respectively. This reflects more positive biases in Tropical regions than at the Poles, and more positive biases in summer than

winter. Temperature also shows a strong positive relationship, and this may partly reinforce the influence of latitude and month.180

Photolysis rates are also important for O3 biases, with jO(1D) associated with O3 destruction and j(NO2) with O3 production.

The concentrations of PAN, OH and HNO3 all show positive relationships to O3 biases. This may indicate that there are large

uncertainties in O3 production under high-oxidation and high-NOx environments. However, we find that VOCs and short-lived

NO concentrations are less important to O3 biases. This highlights the systematic regional and global-scale nature of the O3

biases in UKESM1, and indicates that the biases are not strongly associated with precursor abundance on a regional level.185

Similarly, isoprene concentrations show little contribution to O3 biases. We note that while O3 deposition rates and BLH are
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both important to O3 biases, this may partly reflect their similar seasonality. We note that the relationships derived between the

variables and O3 biases reflect association, not direct causation.

The relationships between variables with highest feature importance and the O3 biases are generally directly interpretable,

demonstrating that the deep learning model may be capturing the internal relationships between inputs and outputs in a physi-190

cally realistic way. This provides some insight into the sources of O3 biases in UKESM1. We emphasise that the high impor-

tance of a variable does not indicate that the variable itself is not simulated well by the chemistry-climate model, or that it is

the direct cause of the bias. Since temperature is generally represented well in UKESM1 (Sellar et al., 2019), the importance

of temperature thus indicates that O3 biases may be caused by the representation of physical and chemical processes that are

sensitive to temperature changes, such as chemical reaction rates (Coates et al., 2016; Newsome and Evans, 2017), or to other195

processes for which temperature is a proxy, and this explains the seasonality of the reversal in O3 biases from winter to summer

in the Northern hemisphere.

5 Spatial O3 bias sensitivity

The sensitivity of surface O3 biases to specific variables differs across regions, and we show the spatial sensitivity to variables

with high feature importance and strong correlation to O3 biases in Fig. 6. Since each variable is considered independent in200

the deep learning model, we use the change in annual mean O3 bias caused by changes in each variable in each UKESM1

grid cell independently to represent the spatial sensitivity. We perform an experiment for each variable where we increase the

value of that variable by a small amount (0.5 standard derivations of its temporal variability over 2004-2014) and calculate the

corresponding change in surface O3.

Surface O3 biases are most sensitive to temperature, particularly in continental areas in the Northern hemisphere where205

higher temperatures are associated with higher O3 (Fig. 6a). There is a strong relationship with photolysis rates across a large

area, particularly in continental areas at mid and high latitudes (Fig. 6b, c), and there is a larger influence from jO(1D) than from

j(NO2). The chemical environment is important for O3 biases on a regional scale. OH concentrations show a strong association

with O3 biases in North America, Europe and East Asia, indicating that high biases in these high-emission regions may be

associated with high atmospheric oxidation capacity (Fig. 6d). There is also a strong sensitivity to the concentrations of PAN in210

South Africa, South Asia and South East Asia (Fig. 6e). This may indicate uncertainty in the NOx emission inventory in these

regions or the large impacts of nitrogen reservoirs on O3 production. Given the long lifetime of PAN, it is also associated with

O3 biases in remote areas such as the Arctic, indicating that the transport of air pollutants may be important to surface O3 in

these areas. BLH is associated with O3 biases in tropical oceanic areas (Fig. 6f), and this may reveal the importance of greater

O3 mixing and downward transport when the boundary layer is relatively deep.215

The spatial sensitivity of surface O3 biases to different variables is helpful to guide future improvement of the UKESM1

model. There are substantial changes in annual mean surface O3 biases associated with adjusting variables values. Increasing

temperature, jO(1D), j(NO2), OH and PAN concentrations by 0.5 standard deviation changes annual mean surface O3 biases

from 4.0 ppb to 4.8 ppb (20 %), 3.0 ppb (-25 %), 4.3 ppb (8 %), 4.5 ppb (13 %) and 4.7 ppb (18 %), respectively. However,
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Figure 6. Sensitivity of annual mean surface O3 bias to increases in (a) temperature, (b) jO(1D), (c) j(NO2), (d) OH, (e) PAN and (f) BLH.

Variable values are increased by 0.5 standard deviation of their temporal variability for each UKESM1 grid cell independently.

we note that UKESM1 generally reproduces temperature and photolysis rates well compared with observations (Telford et al.,220

2013; Sellar et al., 2019), although there are large differences in simulated concentrations of OH and PAN (O’Connor et al.,

2014; Nicely et al., 2020). Our results suggest that chemical processes associated with temperature and oxidation capacity,

and cloud and aerosols influencing photolysis rates may be important sources of O3 biases in UKESM1, and that improved

representation of these processes may reduce current biases in surface O3.

6 Assessing biases in modelled future surface O3225

We can apply the relationships between variables and surface O3 biases derived from present day simulations to assess the

biases in future O3 projections with UKESM1 and to correct our estimates of future O3 concentrations. We demonstrate how

surface O3 biases change for two future emission and climate scenarios, SSP3-7.0 and SSP3-7.0-lowNTCF. These pathways

are associated with a warmer and more humid climate than the present day. While increased temperature might be expected to

increase surface O3 biases, we find that annual mean O3 biases decrease from 4.0 ppb to 3.6 ppb (11 %) under SSP3-7.0 and230

to 1.3 ppb (67 %) under SSP3-7.0-lowNTCF. This is principally due to the changes in the chemical environment reflected by

decreases in the concentrations of OH (-15 % and -13 %) and PAN (-30 % and -38 %) under SSP3-7.0 and SSP3-7.0-lowNTCF,

respectively. In continental areas where surface O3 concentrations are overestimated, the UKESM1 model performance is likely

to improve under these less polluted future conditions. Since SSP3-7.0-lowNTCF represents a more stringent emission control

pathway than SSP3-7.0, there are larger decreases in O3 biases under this scenario.235
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We investigate the spatial distribution of annual mean changes in surface O3 biases in future scenarios. We find that O3

biases decrease in most oceanic areas under both future scenarios, see Fig. 7. However, O3 biases increase in some continental

areas especially in the Middle East, South Asia and East Asia under SSP3-7.0. This is due to less stringent emission controls

in these regions and hence higher concentrations of O3 precursors and their oxidation products under SSP3-7.0 (Turnock et al.,

2020). Under SSP3-7.0-lowNTCF, there are widespread decreases in O3 biases except over East Asia, where anthropogenic240

VOC emissions increase substantially and there is a corresponding increase in PAN concentrations and an increase in O3

biases. In high-emission regions, the performance of UKESM1 in future O3 simulations largely depends on changes in O3

precursor emissions given that changes in temperature and photolysis rates are small under future scenarios. The performance

of UKESM1 in high-emission regions is expected to improve under scenarios with clean air quality policies, but is likely to

become worse under scenarios with increasing future pollutant emissions.245
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Figure 7. Annual mean change in surface O3 biases (ppb) between the present day (PD) and 2045-2055 under (a) SSP3-7.0 and (b) SSP3-

7.0-lowNTCF pathways.

7 Bias correction in future O3 projections

We can provide more reliable projections of future O3 by subtracting the calculated surface O3 biases from surface O3 mixing

ratios simulated with UKESM1 under future scenarios (Fig. 8). The simulated surface O3 mixing ratios vary in the different

scenarios due to different emissions and climate (Fig. 8a-c), but the spatial distributions are generally similar, with the highest

O3 levels in the Middle East and South Asia. The spatial patterns of surface O3 biases are also similar under the different250

scenarios, with biases highest in the Tropics (Fig. 8d-f). High O3 mixing ratios in the Middle East and South Asia are reduced

greatly after O3 bias correction (Fig. 8g-h). There are also large decreases in surface O3 mixing ratios in high-emission regions

e.g. North America and East Asia, and continental outflow regions e.g. North Atlantic. The corrected global annual mean

surface O3 mixing ratios are lower than those simulated under all scenarios, and are highest under SSP3-7.0 and lowest under

SSP3-7.0-lowNTCF, which is consistent with the uncorrected UKESM1 results.255

We show the changes in seasonal mean surface O3 mixing ratios in North America, Europe, South Asia, East Asia and the

globe from the present day to the future in Fig. 9, comparing the original assessments using UKESM1 with the bias-corrected

12

https://doi.org/10.5194/acp-2022-196
Preprint. Discussion started: 7 April 2022
c© Author(s) 2022. CC BY 4.0 License.



O3 conc., PD(a) 31.4

0
10
20
25
30
35
40
50
60

pp
b

O3 conc., SSP370(b) 32.1

0
10
20
25
30
35
40
50
60

pp
b

O3 conc., SSP370_lowNTCF(c) 27.0

0
10
20
25
30
35
40
50
60

pp
b

O3 bias, PD(d) 4.1

20
15
10
5

0
5
10
15
20

pp
b

O3 bias, SSP370(e) 3.7

20
15
10
5

0
5
10
15
20

pp
b

O3 bias, SSP370_lowNTCF(f) 1.4

20
15
10
5

0
5
10
15
20

pp
b

Corrected O3, PD(g) 27.3

0
10
20
25
30
35
40
50
60

pp
b

Corrected O3, SSP370(h) 28.5

0
10
20
25
30
35
40
50
60

pp
b

Corrected O3, SSP370_lowNTCF(i) 25.6

0
10
20
25
30
35
40
50
60

pp
b

Figure 8. Annual mean surface O3 mixing ratios (ppb) from UKESM1 simulations for (a) the present day (PD), (b) SSP3-7.0 and (c) SSP3-

7.0-lowNTCF. The corresponding surface O3 biases predicted with the deep learning model are shown in (d-f) and corrected surface O3

mixing ratios are shown in (g-i). Annual global mean mixing ratios are shown in the top right of each panel.

values. Under SSP3-7.0, the corrected changes in global mean surface O3 are slightly larger than the uncorrected UKESM1

results. However, in high-emissions regions the corrected changes are generally smaller than those originally simulated under

both SSP3-7.0 and SSP3-7.0-lowNTCF. In summer, corrected surface O3 mixing ratios increase in all regions considered here260

under SSP3-7.0, and decrease under SSP3-7.0-lowNTCF. Corrected O3 increases in South and East Asia under SSP3-7.0 are

6-8 ppb smaller than those simulated, and this indicates that O3 air quality degradation due to future emission growth and

climate change may not be as severe as the uncorrected UKESM1 simulations suggest. Similarly, under SSP3-7.0-lowNTCF,

corrected O3 decreases are smaller in all regions, and this indicates that the impacts of emission controls on O3 mitigation may

be smaller than those expected. This can be confirmed by the smaller global mean O3 decreases under SSP3-7.0-lowNTCF in265

the bias-corrected assessment (< 2 ppb) than in the original UKESM1 simulation (> 3 ppb). In winter, the corrected changes

in surface O3 mixing ratios are smaller than those simulated with UKESM1, whether these changes are positive or negative.

These results highlight that the influence of changing emissions and climate on O3 may not be as large as those simulated

with UKESM1 and thus projections of future surface O3 changes may be overestimated. UKESM1 shows a strong seasonality

in surface O3 likely due to strong O3 sensitivity to temperature and chemical environment, and this leads to large changes270

in future O3. UKESM1 typically overestimates future surface O3 changes, and other chemistry-climate models are likely to

display similar behaviour. Therefore, the impacts of changes in emissions and climate on future O3 should be re-assessed in

light of the underlying surface O3 biases. We demonstrate the successful application of a deep learning model to address this
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Figure 9. Changes in seasonal mean surface O3 mixing ratios (ppb) with and without corrections in DJF (blue bars) and JJA (red bars) from

the present day (PD) to (a) SSP3-7.0 and (b) SSP3-7.0-lowNTCF in North America, Europe, South Asia, East Asia and the globe.

issue, and it would be valuable to take a similar approach with the output of other chemistry-climate models to provide a more

reliable assessment of future surface O3 changes.275

8 Conclusions

There are large uncertainties in the simulation of surface O3 in current chemistry-climate models, but it is difficult to identify

the causes of biases and improve representation of the key processes. In this study, we have demonstrated the feasibility of

correcting surface O3 biases for a chemistry-climate model, UKESM1, using a machine learning technique. A deep artificial

neural network is built with input variables important for O3 chemistry and dynamics. The deep learning model shows good280

performance in predicting surface O3 biases, with a high correlation coefficient of 0.99 and small mean bias errors of 0.1 ppb.
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Application of the deep learning model to the results from the process-based UKESM1 model shows promise for predicting

future O3 concentrations under different climate and emission trajectories with greater confidence.

This study has also explored the key factors governing O3 biases, which provide valuable insight for model improvement. We

find that temperature is an important factor governing O3 biases, especially for continental areas in the Northern hemisphere,285

indicating that physical and chemical processes influenced by temperature may be not represented well. Photolysis rates also

contribute to O3 biases across the globe, indicating that simulated clouds and aerosols may be an important source of O3 biases.

Chemical species such as PAN and OH are closely associated with O3 biases on a regional scale, suggesting that weaknesses

in representation of key chemical processes remains a substantial issue.

We have applied a deep learning model to generate a correction to the projections of surface O3 mixing ratios for the290

present day and under future SSP3-7.0 and SSP3-7.0-lowNTCF pathways. We find that global annual mean O3 biases (4.0

ppb) decrease by 0.4 ppb (11 %) and 2.7 ppb (67 %) under these scenarios, respectively. However, O3 biases in high-emissions

areas may increase due to increased O3 precursors. We use this approach to demonstrate that seasonal changes in surface O3

mixing ratios from the present day to the future may be overestimated by as much as 6 ppb with UKESM1, especially in

high-emission areas, and this highlights a strong O3 sensitivity to changes in future emissions and climate in the model. A295

similar overestimation of future O3 changes is likely in other chemistry-climate models, and the influence of emission controls

on surface O3 mixing ratios may thus be smaller than suggested by current model simulations. This suggests that emission

control policies may be less effective in improving regional air quality than global model simulations indicate.

The deep learning model employed here is a valuable tool to obtain more reliable predictions of the magnitude and spatial

distribution of surface O3 mixing ratios. We acknowledge that the choice of input variables is likely to influence the sensitivity300

of O3 biases derived from the deep learning model, and the relationships between O3 biases and input variables are not

always readily interpretable, which is common in machine learning. However, we demonstrate that the relationships between

the variables with the highest feature importance and surface O3 biases are intuitive, e.g. with temperature and photolysis

rates, and this provides useful insight for further model improvement. We acknowledge that there are uncertainties in the use

of reanalysis data, but have successfully demonstrated the feasibility of bias correction using this data, and will explore the305

challenges of data sparsity and spatial representativeness associated with use of surface measurements directly in future work.

The approach applied here provides a valuable opportunity to examine the uncertainties in a chemistry-climate model, and

helps improve assessment of the impacts of changing emissions and climate on future air quality.

Data availability. The data generated in this study are available upon request.

Author contributions. ZL, RD, OW designed the study. ZL built the model, conducted model simulations and performed the analysis with310

input from OW, RD, FO’C and ST. ZL, RD and OW prepared the paper, with contributions from all co-authors.

15

https://doi.org/10.5194/acp-2022-196
Preprint. Discussion started: 7 April 2022
c© Author(s) 2022. CC BY 4.0 License.



Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Zhenze Liu thanks the University of Edinburgh China Scholarship Council. Oliver Wild and Ruth M. Doherty thank

the Natural Environment Research Council (NERC) for funding under grants NE/N006925/1, NE/N006976/1 and NE/N006941/1. Fiona M.

O’Connor was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and also acknowledges support from the EU315

Horizon 2020 Research Programme CRESCENDO (grant agreement number 641816). Steven Turnock would like to acknowledge support

from the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China

as part of the Newton Fund.

16

https://doi.org/10.5194/acp-2022-196
Preprint. Discussion started: 7 April 2022
c© Author(s) 2022. CC BY 4.0 License.



References

Archibald, A., Neu, J., Elshorbany, Y., Cooper, O., Young, P., Akiyoshi, H., Cox, R., Coyle, M., Derwent, R., Deushi, M., et al.: Tropospheric320

Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa:

Science of the Anthropocene, 8, https://doi.org/10.1525/elementa.2020.034, 2020a.

Archibald, A. T., O’Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F.,

Dhomse, S. S., Griffiths, P. T., et al.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn

1.0) implemented in UKESM1, Geoscientific Model Development, 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020b.325

Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G., Knote, C., and Shin, M.: On the changes in surface ozone over

the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Philosophical Transactions of the Royal

Society A, 378, 20190 329, https://doi.org/10.1098/rsta.2019.0329, 2020c.

Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M., Emberson, L., Fares, S., Farmer, D. K., Gentine, P., Gerosa,

G., et al.: Dry deposition of ozone over land: processes, measurement, and modeling, Reviews of Geophysics, 58, e2019RG000 670,330

https://doi.org/10.1029/2019RG000670, 2020.

Coates, J., Mar, K. A., Ojha, N., and Butler, T. M.: The influence of temperature on ozone production under varying NO x conditions–a

modelling study, Atmospheric Chemistry and Physics, 16, 11 601–11 615, https://doi.org/10.5194/acp-16-11601-2016, 2016.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958,335

https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Flato, G. M.: Earth system models: an overview, Wiley Interdisciplinary Reviews: Climate Change, 2, 783–800, https://doi.org/10.1002/wcc.

148, 2011.

Glorot, X., Bordes, A., and Bengio, Y.: Deep sparse rectifier neural networks, in: Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pp. 315–323, JMLR Workshop and Conference Proceedings, http://proceedings.mlr.press/v15/340

glorot11a/glorot11a.pdf, 2011.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT press, http://www.deeplearningbook.org, 2016.

Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Has-

sler, B., et al.: Tropospheric ozone in CMIP6 simulations, Atmospheric Chemistry and Physics, 21, 4187–4218, https://doi.org/10.5194/

acp-21-4187-2021, 2021.345

Hall, S. R., Ullmann, K., Prather, M. J., Flynn, C. M., Murray, L. T., Fiore, A. M., Correa, G., Strode, S. A., Steenrod, S. D., Lamarque,

J.-F., et al.: Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission,

Atmospheric Chemistry and Physics, 18, 16 809–16 828, https://doi.org/10.5194/acp-18-16809-2018, 2018.

Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on daily variability in summertime surface

ozone in eastern China, Atmospheric Chemistry and Physics, 20, 203–222, https://doi.org/10.5194/acp-20-203-2020, 2020.350

Han, J., Jentzen, A., and Weinan, E.: Solving high-dimensional partial differential equations using deep learning, Proceedings of the National

Academy of Sciences, 115, 8505–8510, https://doi.org/10.1073/pnas.1718942115, 2018.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., et al.:

Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS),

Geoscientific Model Development, 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.355

17

https://doi.org/10.5194/acp-2022-196
Preprint. Discussion started: 7 April 2022
c© Author(s) 2022. CC BY 4.0 License.



Huijnen, V., Miyazaki, K., Flemming, J., Inness, A., Sekiya, T., and Schultz, M. G.: An intercomparison of tropospheric ozone reanalysis

products from CAMS, CAMS interim, TCR-1, and TCR-2, Geoscientific model development, 13, 1513–1544, https://doi.org/10.5194/

gmd-13-1513-2020, 2020.

Inness, A., Ades, M., Agusti-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes,

H., Flemming, J., et al.: The CAMS reanalysis of atmospheric composition, Atmospheric Chemistry and Physics, 19, 3515–3556,360

https://doi.org/10.5194/acp-19-3515-2019, 2019.

Ioffe, S. and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International

conference on machine learning, pp. 448–456, PMLR, https://arxiv.org/abs/1502.03167, 2015.

Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem

chemistry model v10, Geoscientific Model Development, 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.365

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, https://arxiv.org/abs/1412.6980,

2014.

Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1. 0: a neural network approach to predict near-surface ozone concentrations in

Germany, Geoscientific Model Development, 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, 2021.
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