
Dear editor and all reviewers:  

 

We thank the editor and reviewers for their contribution to the improvement of our manuscript. 

Responses to reviewers on “Correcting ozone biases in a global chemistry-climate model: 

implications for future ozone” by Zhenze Liu et al. are given below. For clarity, the reviewer 

comments are given in bold, followed by our responses. The modified text in our revised manuscript 

is given in italics and blue. 

 

 

Reviewer comments 1:  

 

This work addresses the uncertainties in the simulation of surface ozone in chemistry-climate 

models by offering a novel approach, using machine learning, in identifying the causes of 

biases originating from the representation of related key processes. As such, it is an excellent 

feasibility contribution in correcting modelled O3 biases. The results demonstrate that these 

biases are mainly due to the UKESM1 model effect of temperature and photolysis rates, and 

thus provides valuable insight for further model improvement which ultimately should allow 

improving the assessment of the impacts of changing emissions and climate on future air 

quality. The paper is very well written and supported with solid analysis, clear presentation 

and meaningful interpretation and I have no comments of technical nature. I would only like 

to point out the need for follow-up studies to tackle the questions of the sensitivity of the 

obtained results on the particular machine learning technique employed here and the 

environment of the technique validation with the consideration of additional, independent 

derivations of the O3 biases with alternative observational data. These are included in the 

following specific comments indicated by the corresponding line numbers. 

 

We thank the reviewer for their positive comments here, and address specific comments below. 

 

 

SPECIFIC COMMENTS 

 

1. 49-51: This sentence does not clearly introduce the motivation/justification of this study. 

How is the "gain of greater physical insight" consistent to "loss of interpretability of the 

results"? Please rephrase.  

 

The motivation of this study is to explore the feasibility of correcting modelled surface ozone biases, 

and to provide improved future ozone projection. However, the approach we use also allows us to 

extract information on the relationship between key model variables and model biases. While the 

approach does not allow us to attribute the biases to specific processes in the model directly, it does 

provide valuable insight into the origin of the biases in a physically meaningful way. The biases are 

strongly related to temperature, for example, which implicates chemical and/or boundary layer 

processes. This provides some guidance for future model development, and goes beyond a simple 

black-box prediction of future biases, which is what our phrase “loss of interpretability” was 

referring to. We thank for reviewer for their comment and we have now rephrased this sentence to 



make the meaning clearer. 

 

Page 2, line 50: 

However, reliance on machine learning approaches to make predictions may lead to loss of 

interpretability of the results. We therefore choose an approach based on physical model variables 

that allows us to extract the importance of these variables and thus derive some physical insight 

into the performance of the chemistry-climate model.  

 

 

2. 52-53: Is the current study the first one to apply machine learning for estimating and 

correcting global model ozone biases? If yes it should be mentioned explicitly. 

 

As far as we are aware, our study is the first to demonstrate ozone bias correction for a global 

chemistry-climate model with the purpose of producing improved projections of future ozone. Two 

other studies have corrected ozone biases in chemistry transport models, but they have focused only 

on matching present-day ozone concentrations (Ivatt and Evans, 2020; Keller et al., 2021). We have 

amended the text to make the originality clearer.  

 

Page 2, line 54: 

In this study, we explore the application of deep learning to correct surface O3 biases in a global 

chemistry-climate model, and we apply it for the first time to improve projections of changes in O3 

under future scenarios.  

 

 

3. 102-103: Can this statement be elaborated? Is there no value in repeating the process (in 

a separate study perhaps) including observed station data from locations around the globe 

as to verify the results from the current gridded data analysis?  

 

We chose CAMS reanalysis data as they match observed surface ozone much better than UKESM1, 

and because they provide global data coverage. It is valuable to have a large amount of data to train 

machine learning models to ensure robust results. However, we acknowledge that CAMS reanalysis 

data does not always match observations where these are available, and note that this has been 

explored in more detail in other studies (Huijnen et al., 2020). Observations could be used directly, 

but we caution that these also have substantial uncertainties associated with spatial 

representativeness and data sparsity. We have now introduced the TOAR dataset to provide a more 

comprehensive comparison between different surface ozone datasets in Figure 2 of the revised 

manuscript. We have placed Section ‘Deep learning model application’ after Section ‘Deep learning 

model input’, and added new discussion text on TOAR and other observation-based dataset and 

their limitations. 

 

Page 6, line 144: 

2.4 Deep learning model application 

Previous studies have shown that there are systematic seasonal biases in surface O3 mixing ratios 

simulated with many chemistry-climate models (Young et al., 2018), including UKESM1 (Turnock 



et al., 2020). Ozone observations, such as those compiled for the Tropospheric Ozone Assessment 

Report (TOAR; Schultz et al., 2017), are typically used to evaluate model performance but 

observation sites are sparsely distributed, and there are few outside North America, Europe and 

parts of East Asia. In addition, many observations are representative of much smaller spatial scales 

than can be resolved by coarse resolution models, and this presents an additional source of 

uncertainty.  

 

We therefore also consider surface O3 reanalysis data from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Atmospheric Composition Reanalysis 4 (EAC4) under the Copernicus 

Atmosphere Monitoring Service (CAMS; Inness et al., 2019). This data is at a similar spatial scale 

to UKESM1 output and provides global data coverage, which is valuable in training the deep 

learning model to ensure more robust results. We compare surface O3 in UKESM1 with TOAR 

observations and CAMS reanalysis in Fig. 2. There are substantial biases in UKESM1, with surface 

O3 underestimated compared with observations in wintertime and overestimated in summertime. In 

contrast, the CAMS reanalysis is in much better agreement with TOAR, with mean seasonal biases 

of about 3 ppb. Comparing UKESM1 and CAMS data over the globe, we find that mean surface O3 

mixing ratios over 2004-2014 simulated by UKESM1 are underestimated in the Northern 

Hemisphere in winter (December, January, February) and overestimated across most continental 

areas in summer (June, July, August), and this occurs over broad regions, not just where 

observations are available.  

 

In the absence of a global observation-based ozone climatology, we apply the CAMS reanalysis 

product in our analysis. We note that recent studies have explored the fusion of observations and 

model output to generate surface O3 products at a global scale (Chang et al., 2019; Betancourt et 

al., 2022), but these approaches only work well in regions where measurement sites are available. 

The CAMS reanalysis provides surface concentrations at a scale comparable with our model, and 

thus avoids uncertainties associated with the spatial representativeness of observations when using 

measured concentrations. While biases in the reanalysis will influence our results, the CAMS data 

provide a good foundation with which to demonstrate the feasibility of O3 bias correction. 

 

 

 



 

Figure 2. Comparison of seasonal mean (December-January-February (DJF) and June-July-August 

(JJA)) and annual mean surface O3 mixing ratios between (a-c) UKESM1 and TOAR, (d-f) CAMS 

and TOAR, and (g-i) UKEMS1 and TOAR, all averaged over 2004-2014. Global area-weighted 

average surface mean mixing ratios (ppb) are shown in the top right of each panel. 

 

 

4. 151-154: In relation to the previous comment and in conjuction to the method description 

in the first paragraph of sub-section 2.5, the results of this test are impressive but of course 

must be viewed in the framework of comparing a test run against a validation run of the 

same (machine leaning) model. Is it possible to compare the resulting O3 biases from this 

test run (for selected locations) with respective biases obtained from a conventional 

method and an alternative observational data source? 

 

The independent evaluation shown in Figure 3 demonstrates that the deep learning model performs 

very well in reproducing the UKESM1 bias at times and locations that it was not trained at. However, 

the testing data provide sparse coverage over all times and locations, and thus sampling at a 

particular location would provide only partial (10%) coverage. The predicted bias would match the 

bias in UKESM1 with respect to CAMS very well (as evident from Fig 3), but any biases with 

respect to independent observations would then just reflect differences between CAMS and those 

observations, which provides little additional insight. However, we now include the biases in CAMS 

compared with TOAR observations in the new version of Figure 2, as discussed in detail above, to 

provide clearer context. 

 

 

5. 186-188: Can the results and the conclusions of Fig.5 be compared to those of other studies 

(based on any other methodology)? 

 

As noted, a few studies have used machine learning to calculate feature importance for biases in 

ozone (Ivatt and Evans, 2020; Keller et al., 2021). The most important variables these studies 

identify are broadly similar to those that we find, e.g. time of year and precursors such as PAN, but 

others differ, reflecting the different focus of the studies and different choice of features investigated, 

as well as differences in the models and approaches used. We note that these studies both used far 

more variables as inputs, and this presents a greater risk of overfitting which would also be expected 

to influence feature importance. However, we have now included a sentence in the paper to compare 

the feature importance with those of these other studies. 

 

Page 10, line 217: 

… We note that while O3 deposition rates and BLH are both important to O3 biases, this may partly 

reflect their similar seasonality. Previous studies investigating model O3 biases have found a broadly 

similar importance for some variables, e.g. for time of year and precursors such as PAN, but the 

different focus of these studies make direct comparison of the results difficult (Ivatt and Evans, 2020; 

Keller et al., 2021).  

 



 

6. 296-298: Also the choice of the particular machine learning model influences the derived 

O3 biases and conclusions. 

 

We thank the reviewer for this point, and we have added it into text. 

 

Page 17, line 353: 

We acknowledge that the choice of input variables and the machine learning approach applied are 

both likely to influence the sensitivity of O3 biases derived from the deep learning model … 

 

 

 

 

Reviewer comments 2:  

 

Overview: 

The paper presents a multilayer perceptron ML approach to predict the differences between 

monthly-mean simulations of ozone surface concentrations simulated by the UKESM1 and 

the EAC4 CAMS Reanalysis. The ML approach manages to predict the differences to a good 

degree, which is exploited by the authors to ML predict the differences for UKESMI1 

scenarios simulation of future ozone surface concentrations. The ML approach is trained by 

set of 20-30 input variables, such as temperature, photolysis rates and boundary layer height. 

While not a direct outcome of the ML approach, the importance of the different input 

variables is quantified using the SHAP framework. The paper is well written. 

 

We thank the reviewer for their positive comments here, and address the two main concerns below. 

 

 

General review: 

1. The fundamental problem of the paper is the use of the ozone surface concentration fields 

of the CAMSRA data as the “truth”. The ozone surface analysis is corrected too little by 

the assimilated ozone satellite retrievals, which are dominated by the stratospheric signal, 

to be considered a representation of the “truth” or the observations; they are just another 

model run. https://atmosphere.copernicus.eu/sites/default/files/2021-

06/CAMS84_2018SC3_D5.1.1-2020_reanalysis_validation.pdf. 

CAMS84_2018SC3_D5.1.1-2020_reanalysis_validation (copernicus.eu). There is no 

continuous gridded data set, which would make the identification of biases of simulated 

ozone surface values for all regions of the earth surface a straightforward task. This is in 

contrast to meteorological simulations for which meteorological re-analysis (i.e. ERA5) 

are considered a continuous global reference data set. 

 

We acknowledge the reviewer’s concern about our use of CAMS reanalysis data, and considered 

these issues carefully when originally selecting what surface ozone data to apply. We are aware that 

surface ozone observations are not used in the assimilation system, but note that assimilation of 



ozone elsewhere in the atmosphere leads to better representation of surface ozone than is available 

from other unconstrained model products. Direct comparison of CAMS surface ozone with 

observations demonstrates reasonably good performance, despite these limitations (Huijnen et al., 

2020), and the remaining biases are far smaller than those present in the UKESM1 model that we 

are using. We highlight that the purpose of our study is to demonstrate a new approach to bias 

correction, and this is independent of the choice of ozone data used. Direct use of observational data 

has its own caveats associated with the representativeness of measurement locations of the larger 

spatial scales that we resolve in our model (~150 km scale) and with sparse data coverage, and we 

note that these are very likely the same reasons that surface observations are not assimilated in the 

CAMS reanalysis.  

 

We agree with the reviewer that there is no perfect surface ozone climatology yet available to apply, 

but we do not feel that this compromises the value of our study. We have chosen to use the CAMS 

reanalysis data because it provides a reliable and realistic surface ozone climatology at scales 

comparable with UKESM1 that has complete coverage in space and time across the world. However, 

to address the reviewer’s concern, we have now explored the use of TOAR surface observations 

directly, and have included this in Section 2.4 ‘Deep learning model application’ as detailed above 

in our response to reviewer 1. 

 

On a separate point, we note that the word ‘Truth’ is commonly used in the machine learning field 

to represent training targets. However, we appreciate that it may be considered misleading in the 

current context, and we have therefore replaced this word with ‘Reference’ in the text and figures 

throughout the paper.  

 

 

2. For this reason, I suggest rejecting the paper because I cannot think of an easy fix of that 

dilemma. It seems necessary to introduce independent surface in-situ observations such 

as the TOAR data sets. Using the TOAR data set as reference make sense but limits 

strongly the area for which biases can be determined. The TOAR data set could also be 

used to demonstrate that the biases of UKSEM1 are indeed much larger than the biases 

of CAMS RA.  An alternative approach could be to use the applied method to transition 

results between different model types, but I am not sure if there are useful applications 

for that. 

 

We appreciate the reviewer’s concern here, but we do not feel that lack of an ideal surface ozone 

climatology with which to compare invalidates our study. Our demonstration of the approach, and 

our finding that ozone sensitivity to future climate and chemistry are overestimated in present 

models are still both valid. Future development of a robust and reliable ozone climatology would 

be valuable and would allow us to provide an improved quantification of the magnitude of the biases, 

but the main conclusions of our paper remain unaffected. 

 

However, we agree that it would be valuable to explore the use of surface ozone observations, 

despite the limitations associated with sparse coverage and spatial representativeness. We have 

therefore applied the TOAR surface ozone dataset, as suggested, and compared it with CAMS 



reanalysis data. We note that differences between CAMS and TOAR are much smaller than those 

between UKESM1 and TOAR, highlighting the large room for improvement of UKESM1, and we 

now show these differences in Figure 2 and accompanying text, as discussed in our responses to 

reviewer 1 and in Figure 5. We have also compared the feature importance that we derive for surface 

ozone biases based on CAMS and TOAR data separately, and describe these in Section 4. We find 

that the most important variables inferred from both datasets are the same, and this confirms that 

use of CAMS data does not fundamentally impact our results. However, in acknowledgement of the 

reviewer’s concerns we have now expressed our outlook for future development of the technique in 

the Conclusion section. 

 

Page 10, line 217: 

…We note that while O3 deposition rates and BLH are both important to O3 biases, this may partly 

reflect their similar seasonality. Previous studies investigating model O3 biases have found a broadly 

similar importance for some variables, e.g. for time of year and ozone precursors such as PAN, but 

the different focus of these studies make direct comparison of the results difficult (Ivatt and Evans, 

2020; Keller et al., 2021).  

 

To highlight the sensitivity of our results to the physical and chemical environment, we show the 

feature importance over land and ocean regions separately in Fig. 5b. Ozone precursors such as 

NO, isoprene and VOCs are much more important over land, along with some physical variables 

such as temperature. In contrast, O3 biases over the ocean are more sensitive to OH, deposition and 

boundary layer mixing. These differences reflect the differing importance of O3 formation and 

removal processes in the different regions, although we find that the dominant variables such as 

temperature and photolysis rates remain important for both regions.  

 

We also calculate the feature importance at the TOAR measurement locations only, and compare 

use of surface O3 from TOAR and CAMS separately to explore the sensitivity of our results to the 

choice of reference data. We find that the feature importance at these locations differs markedly 

from that over the globe for some variables, particularly for OH and for geographical variables 

such as latitude and longitude. These differences reflect the limited spatial coverage of measurement 

sites and the narrower range of chemical environments sampled. However, the feature importance 

is very similar whether using TOAR measurements or CAMS reanalysis O3 at these same locations, 

demonstrating that these datasets provide very similar information, and this lends confidence in our 

choice of CAMS reanalysis data in our analysis.  

 



 

 

Figure 5. Importance of different variables to surface O3 biases calculated by the Shapley additive 

explanations framework (SHAP) for the deep learning model. (a) Feature importance over the globe 

derived from CAMS reanalysis data. Strong positive (r > 0.7) and negative (r < -0.7) relationships 

between O3 biases and variable values are shown in red and blue, respectively, while weaker 

relationships are shown in grey. (b) Feature importance over land and ocean regions derived from 

CAMS reanalysis data. (c) Comparison of feature importance inferred from CAMS and TOAR 

separately at the TOAR measurement locations only. Error bars show one standard deviation of 

feature importance in % for each variable. 

 

Page 17, line 360: 

… and will explore the challenges of data sparsity and spatial representativeness associated with 

use of surface measurements directly in future work. The development of a robust and reliable 

surface O3 climatology based on observations would be particularly useful to improve assessment 

of model biases.  

 

 

3. The conclusion from the SHAP based ranking of feature importance remains too general 

and I am not sure what can be learned from that. All the mentioned factors contribute to 

ozone variability, and it is likely that that is also reflected in their correlation with the 

inter-model differences.  The often-mentioned biases of the emissions were seemingly not 

identified as a large contributor to ozone biases, which is surprising as the relatively small 

impact of the NO concentrations. I also wonder why ozone concentrations itself were not 

used as an input variable for the training. I am not saying the results are wrong, I would 

only suggest avoiding the over-interpretation of these correlations into actual causes of the 

biases. But, if the authors can demonstrate that so far unknown deficiencies of UKSEM1 

were identified and potentially even fixed based on the finding of the feature importance, 

this should be mentioned more convincingly. 

 

The principal goals of our study are to demonstrate the new approach to bias correction and show 

how important this can be for our assessment of future changes in surface ozone with current models. 

Extracting the feature importance from the bias correction approach applied provides additional 

useful information, but does not constitute a vital result upon which our conclusions depend. We 



have tried to be clear that the importance of features should not be interpreted as causation; there is 

merely an association of the biases with these features. It is not the purpose of this study to identify 

specific process weaknesses in the model. Despite this, and in contrast to the reviewers assertation, 

additional useful insight can still be gained from this information. The importance of temperature is 

clear, and suggests weakness in chemistry or boundary layer processes. As the reviewer notes, NO 

is not a particularly important feature, suggesting that NOx emissions are not a major source of 

biases at this scale, but we note that VOC are substantially more important, highlighting that the 

combination of chemistry and emissions is important. We also note that NO is more important for 

biases over the ocean than over the land in our new text and figure 5b, and we have now added this 

analysis in the manuscript to emphasise that there are substantial regional variations reflecting 

different chemical and physical environments. 

 

We explored the use of ozone as an input variable to the machine learning model (along with many 

other variables), but found that it was not necessary to achieve good performance. The relationship 

between ozone biases and ozone is of course strong, but we did not feel that this provided any useful 

additional information about why biases occur.  

 

To address the reviewer’s concerns, we have reiterated the importance of not overinterpreting the 

feature importance, and we have adjusted out statements about what can be learned from these (in 

response to point 2 above), and discussed the underlying weaknesses in UKESM1 suggested by 

other studies in the section on feature importance. 

 

Page 11, line 243:  

… or to other processes for which temperature is a proxy, and this explains the seasonality of the 

reversal in O3 biases from winter to summer in the Northern hemisphere.  

 

Specifically for UKESM1, Archibald et al. (2020) found that the O3 responses to same temperature 

changes in two chemical mechanisms (including StratTrop of UKESM1) are distinct, suggesting that 

temperature may be a main source of biases. In addition, more comprehensive chemistry schemes 

based on StratTrop further enlarge the O3 biases in summer, reported by Archer‐Nicholls et al. 

(2021) and Liu et al. (2022), indicating that the chemistry scheme itself may not be the main cause 

of biases but the external variables driving the scheme e.g. temperature and photolysis rates may 

be more important. We note that the relationships derived between the variables and O3 biases 

reflect association, not causation, and that specific processes cannot be identified directly as the 

sources of biases. However, the association revealed provides some hints for the underlying 

processes associated with relevant variables. 
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