

1 Chemical properties, sources and size-resolved 2 hygroscopicity of submicron black carbon-containing 3 aerosols in urban Shanghai

4 Shijie Cui¹, Dan Dan Huang², Yangzhou Wu^{1,a}, Junfeng Wang¹, Fuzhen Shen^{1,b}, Jiukun
5 Xian¹, Yunjiang Zhang¹, Hongli Wang², Cheng Huang², Hong Liao¹, Xinlei Ge^{1,*}

6

7 ¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
8 Control, Collaborative Innovation Center of Atmospheric Environment and Equipment
9 Technology, School of Environmental Science and Engineering, Nanjing University of
10 Information Science and Technology, Nanjing 210044, China

11 ² Shanghai Academy of Environmental Sciences, Shanghai 200233, China

¹² ^anow at: Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
¹³ University, Hangzhou 310027, PR China

14 ^bnow at: Department of Meteorology, University of Reading, Reading, RG6 6BX, UK

15

16 *Corresponding author: Xinlei Ge (Email: caxinra@163.com)

17

18 For *Atmospheric Chemistry and Physics*

19

20 **Abstract.** Refractory black carbon (*r*BC) aerosols play an important role in air quality
21 and climate change, yet high time-resolved and detailed investigation on the
22 physicochemical properties of *r*BC and its associated coating is still scarce. In this work,
23 we used a laser-only Aerodyne soot particle aerosol mass spectrometer (SP-AMS) to
24 exclusively measure the *r*BC-containing (*r*BCc) particles, and compared their
25 properties with the total non-refractory submicron particles (NR-PM₁) measured in
26 parallel by a high-resolution AMS (HR-AMS) in Shanghai. The observation shows that
27 *r*BC was overall thickly coated with an average mass ratio of coating to *r*BC core (*R*_{BC})
28 of ~ 5.0 (± 1.7). However, mass of *r*BC coating species only occupied 19.1 (± 4.9)% of
29 those in NR-PM₁; sulfate tended to condense preferentially on non-*r*BC particles
30 therefore its portion on *r*BC was only 7.4 (± 2.2)%, while the majority of primary
31 organic aerosols (POA) were associated with *r*BC (72.7 ± 21.0 %). Positive matrix
32 factorization reveals that cooking emitted organics did not coat on *r*BC, and a portion
33 of organics coated on *r*BC was from biomass burning which was unidentifiable in NR-
34 PM₁. Small *r*BCc particles were predominantly from traffic, while large-sized ones
35 were often mixed with secondary components and typically had thick coating. Sulfate
36 and secondary organic aerosol (SOA) species were generated mainly through daytime
37 photochemical oxidation (SOA formation likely involved with in-situ chemical
38 conversion of traffic-related POA to SOA), while nocturnal heterogeneous formation
39 was dominant for nitrate; we also estimated the average time of 5~19 hours for those
40 secondary species to coat on *r*BC. Particles during a short period that was affected by
41 ship emissions, were characterized with a high vanadium concentration (on average 6.3
42 ± 3.1 ng m⁻³) and a mean vanadium/nickel mass ratio of 2.0 (± 0.6). Furthermore, the
43 size-resolved hygroscopicity parameter (κ_{rBCc}) of *r*BCc particles was obtained based on
44 its fully chemical characterization, and was parameterized as $\kappa_{rBCc}(x) = 0.29 - 0.14 \times$
45 $\exp(-0.006 \times x)$ (x is from 150 to 1000 nm). Under critical supersaturations (SSc) of
46 0.1% and 0.2%, the D_{50} values were 166 (± 16) and 110 (± 5) nm, respectively, and
47 with 16 (± 3)% and 59 (± 4)% of *r*BCc in number could be activated into cloud
48 condensation nuclei (CCN). Our findings are valuable to advance the understanding of
49 BC chemistry as well as the effective control of atmospheric BC pollution.

50 **1 Introduction**

51 Refractory black carbon (*r*BC) aerosols can directly absorb solar radiation,
52 indirectly change the nature of cloud and alter the albedo of snow or glaciers (Jacobi et
53 al., 2015), resulting in a positive radiative forcing that is second only to carbon dioxide
54 on both regional and global scales (Ramanathan and Carmichael, 2008;Bond et al.,
55 2013). The fresh *r*BC particles produced by incomplete combustion of biomass and
56 fossil fuel tend to be fractal in morphology and can mix with many other components
57 (Peng et al., 2016;Li et al., 2021). After entering into the atmosphere, fresh *r*BC can
58 further externally or internally mix with organic/inorganic species which are primarily
59 emitted or secondarily formed, and such aged *r*BC-containing (*r*BCc) particles (Chen
60 et al., 2017;Lee et al., 2017) might have contrasting chemical properties and
61 morphologies (or mixing states) (Liu et al., 2017a;Lee et al., 2019;Xie et al., 2019). In
62 addition, when *r*BC mixes with hydrophilic materials, its hygroscopicity, cloud
63 condensation nuclei (CCN) activity and size distribution, etc., can be significantly
64 changed, which subsequently affect its atmospheric behavior, impact and lifecycle (Liu
65 et al., 2013;Lambe et al., 2015). Therefore, it is necessary to elucidate the
66 physicochemical characteristics and sources of *r*BC cores and associated coating
67 materials, so as to better understand their influences on climate and air quality.

68 Chemical composition of ambient *r*BCc particles is largely dependent upon
69 atmospheric conditions and emission sources. In general, the thickness of coating, mass
70 contribution of secondary components (such as sulfate, nitrate and secondary organic
71 aerosol (SOA) species) and oxidation degree of the coated organics of *r*BCc particles,
72 increase with the aging time or oxidation capacity of ambient environment (Cappa et
73 al., 2012;Liu et al., 2015;Wang et al., 2017;Collier et al., 2018;Wang et al., 2019),
74 except in some specific cases that thickly coated *r*BCc might be dominated by primarily
75 emitted particles (such as from biomass burning (Wang et al., 2017)). Recent field
76 observations report that SOA species coated on *r*BC cores could account for 35% and
77 41% of the total SOA mass near traffic emission sources and in a polluted offshore
78 environment, respectively (Massoli et al., 2012;Massoli et al., 2015). A study of *r*BCc
79 particles in Singapore finds that over 90% of *r*BC derived from local combustion

80 sources (mainly traffic), while 30% of *r*BC was associated with fresh SOA generated
81 under the influences of daytime shipping and industrial emissions (Rivellini et al.,
82 2020). The SOA material concentrated on the surface of *r*BC was found to be chemically
83 different from the SOA that was externally mixed with *r*BC (Lee et al., 2017) in Fontana,
84 California, and another study in Shenzhen, China, reveals that more oxidized SOA
85 preferred to mix with *r*BC due to that abundant transition metals detected on *r*BC cores
86 might act as catalysts to convert less oxidized SOA to more oxidized SOA in aerosol
87 aqueous phase (Cao et al., 2022); the *r*BC could catalyze SO₂ to form sulfate as well,
88 as observed in Beijing (Zhang et al., 2020) and Guangzhou (Zhang et al., 2021), China.
89 Besides SOA, cooking-related OA is found to be externally mixed with *r*BC (Lee et al.,
90 2017; Wang et al., 2019), and a unique biomass burning related OA factor was identified
91 and was only present in *r*BCc rather than non-*r*BC particles during summertime in
92 Beijing (Wang et al., 2020a).

93 Size distribution of *r*BCc particles is also modulated greatly by their original
94 sources and ageing processes. For example, a study in Shanghai shows a bimodal size
95 distribution of *r*BCc, with a condensation mode dominated by traffic emissions (small
96 core size, thin coating) and a droplet mode including highly aged biomass burning
97 particles (large core size and thick coating) and highly aged traffic particles (small core
98 size and very thick coating) (Gong et al., 2016). Another study in Beijing (Liu et al.,
99 2019) further resolves four size modes of *r*BCc, relevant with traffic (small core, thin
100 coating), coal or biomass burning (moderate coating, both small and large cores), coal
101 combustion (large core, think coating) and secondary process (thick coating, both small
102 and large cores).

103 Moreover, water uptake and CCN activity of *r*BCc particles can increase with the
104 encapsulation of water-soluble substances such as sulfate, nitrate, and SOA (Liu et al.,
105 2013; Wu et al., 2019). Based on the measured chemical composition of *r*BCc, our
106 previous work has established a method for calculating size-resolved hygroscopicity
107 parameters of *r*BCc (κ_{rBCc}), and determined the CCN activation diameters of *r*BCc
108 particles for given critical supersaturation (SS_c) values (Wu et al., 2019).

109 Highly time-resolved chemical characterization of *r*BCc particles were seldom

110 reported in China and is still lacking in Shanghai. In this study, we utilized an Aerodyne
111 soot particle aerosol mass spectrometer (SP-AMS) to determine the concentration,
112 composition and size distribution of *r*BCc particles exclusively (technical details in
113 Section 2.1) in urban Shanghai for the first time. We also compared the SP-AMS
114 measurement results with those from a co-located Aerodyne high-resolution time-of-
115 flight aerosol mass spectrometer (HR-AMS), to comprehensively investigate the
116 characteristics of *r*BCc particles. We analyzed κ_{rBCc} and estimated the proportions of
117 activated *r*BCc numbers at given SSc as well.

118

119 **2 Experimental methods**

120 **2.1 Sampling site and instrumentation**

121 The field measurement was conducted from October 31 to December 2, 2018,
122 during which the instruments were deployed on 8th floor of the building of Shanghai
123 Academy of Environmental Sciences (SAES) (31°10'33.348" N, 121°26'10.978" E).
124 Shanghai can be a representative of the densely populated megacity across the world;
125 the measurement period also belonged to the cold season when sources of *r*BCc might
126 be complex, and can offer rich information about the *r*BCc; of course, future
127 measurements in other seasons are still essential to achieve a complete understanding
128 of *r*BCc. East of the sampling site is a large commercial shopping center, and the site
129 is surrounded by residential areas with two busy arterial roads directly to the east (~450
130 m) and south (~150 m), respectively (Figure S1 in the supporting information). In
131 addition, the adjacent areas are densely populated with roadside residents, office
132 workers, and market traders, as well as crowds in and out of the Caobao Road Metro
133 station (~100 m). The measurement period was dominated by northeasterly winds,
134 while many international freight companies located on northeastern side of the site, and
135 many freighters were reposing on the Huangpu River. Overall, the sampling site was
136 probably influenced by vehicular emissions, residential activities and the northeast
137 Cargo ship emission plumes, etc.

138 An Aerodyne SP-AMS and an HR-AMS were operated in parallel during the
139 campaign. The two AMSs shared a same sampling line with a PM_{2.5} cyclone (Model

140 URG-2000-30EN) in front to remove coarse particles. Ambient air pulled through the
141 sampling line was dried using a diffusion dryer filled with silicon gel and was
142 subsequently drawn into both instruments. Due to the transmission efficiency of the
143 inlet lens, both AMSs measured mainly particles of 30-1200 nm (denoted as PM₁).

144 The working principle of SP-AMS has been described in detail previously (Onasch
145 et al., 2012). However, in this work, we used only the intracavity infrared laser
146 vaporizer to selectively measure *r*BCc particles (*r*BC cores and associated coating
147 materials), as *r*BC can absorb 1064 nm laser light. The thermal tungsten vaporizer had
148 to be physically detached otherwise non-*r*BC particles can still be detected as the
149 filament can heat the vaporizer to ~200 °C even if it was turned off. Before sampling,
150 the SP-AMS was tuned and calibrated following the steps described previously (Lee et
151 al., 2015; Willis et al., 2016; Wang et al., 2017). During sampling, due to relatively low
152 *r*BCc mass loadings, the SP-AMS was operated with two mass sensitive V modes (2.5
153 minutes per cycle), one with a particle time-of-flight (PToF) mode (30 s) and another
154 one (120 s) with a mass spectral mode with mass-to-charge (*m/z*) ratio up to 500.
155 Filtered air was also measured in the middle of campaign (for 60 min) to determine the
156 limits of detection (LOD, three times the standard deviation) of various aerosol species
157 and to adjust the air-influenced mass spectral signals (Zhang et al., 2005).

158 Before removal of the tungsten heater, the calibrations of ionization efficiency (IE)
159 for nitrate and relative ionization efficiency (RIE) of sulfate were performed by using
160 pure ammonium nitrate and ammonium sulfate particles (Jayne et al., 2000), and the
161 values were assumed to be unchanged throughout the whole campaign (Willis et al.,
162 2016). RIE of *r*BC to nitrate was calibrated by using size-selected (300 nm) BC
163 particles (REGAL 400R pigment black, Cabot Corp.) (Onasch et al., 2012), and the
164 average ratio of C₁⁺ to C₃⁺ was calculated to be 0.584 to correct the interference on C₁⁺
165 from other organics. RIEs of ammonium, nitrate, sulfate and *r*BC were determined to
166 be 4.53, 1.10, 1.01, and 0.17, respectively, and RIE of organics used the default value
167 of 1.4 (Canagaratna et al., 2007). The size was calibrated by Polystyrene latex (PSL)
168 spheres (100–700 nm) (Duke Scientific Corp., Palo Alto, CA) before the measurement.
169 This study applied a collection efficiency (CE) of 0.5 for SP-AMS.

170 The co-located HR-AMS (DeCarlo et al., 2006) was used to measure all PM₁
171 including both *r*BCc and non-*r*BC particles, but it detected only non-refractory species
172 (NR-PM₁ species) as its 600 °C thermal heater is unable to vaporize *r*BC and other
173 refractory components. In addition, mass concentrations of gaseous pollutants, carbon
174 monoxide (CO), ozone (O₃), nitrogen dioxide (NO₂), and sulfur dioxide (SO₂) were
175 measured by the Thermo Scientific analyzers provided by SAES. Meteorological
176 parameters including air temperature (T), relative humidity (RH), wind speed (WS),
177 wind direction (WD) and precipitation, were obtained from Xujiahui Environmental
178 Monitoring Station of Shanghai (31°11'49.1424"N, 121°26'34.44" E)(~2400 m away
179 from the site). The concentrations of particle-phase vanadium (V) and nickel (Ni) that
180 were used to investigate ship influence were measured independently by an
181 Atmospheric heavy metal analyzer (XHAM-2000A, SAIL HERO., China).

182

183 **2.2 Data analysis**

184 The AMS data (both SP-AMS and HR-AMS) were analyzed using standard ToF-
185 AMS data analysis tool (Squirrel version 1.59D and Pika version 1.19D), based on Igor
186 Pro 6.37 (Wavemetrics, Lake Oswego, OR, USA). The mass concentrations and high
187 resolution mass spectra (HRMS) of *r*BC and coating species (*r*BC_{CT}) were calculated
188 from high-resolution (HR) fitting of V-mode data. Size distributions of *r*BCc
189 components were determined by the PToF data with unit mass resolution and were
190 scaled to their mass concentrations obtained above. In particular, size distribution of
191 *r*BC was scaled to that of *m/z* 24 (C₂⁺) (the scaling factor is *r*BC mass concentration to
192 that of calculated based on its size distribution), because *m/z* 24 as a *r*BC fragment, has
193 least interference from other organic or inorganic species; such treatment was adopted
194 in earlier studies too (Collier et al., 2018; Wang et al., 2019; Wang et al., 2016).

195 The HR ion fitting of AMS data is able to distinguish various ions and isotopic
196 ions and calculate elemental ratios of organics such as oxygen-to-carbon (O/C),
197 hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), and organic mass to organic
198 carbon (OM/OC) ratios, via the original Aiken-ambient (A-A) method (Aiken et al.,
199 2008) and the improved method (I-A) (Canagaratna et al., 2015b). Outcomes of both

200 methods correlated well. Average O/C, H/C, and OM/OC ratios from the I-A method
201 used in this work were 24.9%, 7.3%, and 5.6%, respectively, higher than those from the
202 A-A method.

203 Furthermore, we performed Positive matrix factorization (PMF) (Paatero and
204 Tapper, 1994) analysis on the HRMS of organics measured by the SP-AMS via the PMF
205 Evaluation Tool (Ulbrich et al., 2009). The PMF solutions were thoroughly evaluated
206 following the protocols documented in Zhang et al. (2011). Finally, a 6-factor solution
207 was chosen as the optimal one. The final result included four primary OA (POA) factors,
208 namely hydrocarbon-like species enriched OA (HOA-rich), *r*BC-enriched OA (*r*BC-
209 rich), biomass burning OA (BBOA), water-soluble hydrocarbon-like species enriched
210 OA (WS-HOA), and two secondary OA (SOA) factors including a less oxidized
211 oxygenated OA (LO-OOA_{*r*BC}), and a more oxidized oxygenated OA (MO-OOA_{*r*BC})
212 (Key diagnostic plots in Fig. S2). As a comparison, the mass spectra of 5-factor and 7-
213 factor solutions are illustrated in Fig. S3 (for the 5-factor solution, factor 3 is a mixed
214 factor of BBOA and WS-HOA, while for the 7-factor solution, MO-OOA clearly
215 splits into factor 5 and factor 2). The HR-AMS data were processed in a similar way,
216 and four factors of NR-PM₁ organics were resolved, including hydrocarbon-related OA
217 (HOA_{NR-PM1}), cooking OA (COA_{NR-PM1}), less oxidized oxygenated OA (LO-OOA<sub>NR-
218 PM1</sub>), and more oxidized oxygenated OA (MO-OOA_{NR-PM1}) (Mass spectra and time
219 series shown in Fig. S4).

220

221 **2.3 Calculation of size-resolved hygroscopicity of *r*BCc**

222 The hygroscopicity parameter κ is a single parameter representing the
223 hygroscopicity of particles, calculated based on essentially the chemical composition
224 (Petters and Kreidenweis, 2007). SP-AMS measured size-resolved chemical
225 compositions of *r*BCc can thus lead to size-resolved hygroscopicity of *r*BCc (κ_{rBCc})
226 (Wu et al., 2019; Hu et al., 2021). This study applied a similar method proposed by Wu
227 et al. (2019) and the critical parameters involved in calculation are detailed in Table S1.
228 The procedures are briefly described here: (1) obtain the matrice of size-resolved mass
229 concentrations of each *r*BCc component from SP-AMS analysis; (2) convert the size-

230 resolved concentration matrice of inorganic ions (SO_4^{2-} , NO_3^- and NH_4^+) to
231 corresponding matrice of inorganic salts (NH_4NO_3 , NH_4HSO_4 , $(\text{NH}_4)_2\text{SO}_4$) using a
232 simplified solution of ion pairs (Gysel et al., 2007); (3) convert the size-resolved mass
233 matrice of all components (inorganic salts, OA and $r\text{BC}$) to those of size-resolved
234 volume fractions (Gysel et al., 2007; Chang et al., 2010; Wu et al., 2016); (4) combine
235 with previously reported hygroscopic parameters (Gysel et al., 2007; Chang et al.,
236 2010; Wu et al., 2016) to obtain the volumetric contributions of each component to the
237 hygroscopicity of $r\text{BCc}$; (5) use the Zdanovskii-Stokes-Robinson (ZSR) rule to derive
238 the size-resolved hygroscopicity of $r\text{BCc}$ ($\kappa_{r\text{BCc}}$) (Topping et al., 2005b, a).

239

240 **3 Results and discussion**

241 **3.1 Overview of chemical characteristics of $r\text{BCc}$ and NR-PM₁ particles**

242 Figure 1 presents the time series of meteorological parameters, concentrations of
243 gaseous pollutants (CO, NO_2 , O_3 , and SO_2), ship emission tracers (vanadium and
244 nickel), $r\text{BC}$ and $r\text{BC}_{\text{CT}}$ species and their mass percentages to the total $r\text{BCc}$ mass,
245 PMF-resolved OA factors and their corresponding fractional contributions. The
246 sampling period was featured by relatively moderate temperatures and very stagnant
247 conditions with average ($\pm 1\sigma$) temperature of $15.3 (\pm 2.9)$ °C and wind speed (WS) of
248 $0.16 (\pm 0.29)$ m s⁻¹. The wind with speeds <0.5 m s⁻¹ dominated most of the sampling
249 days and 42% of sampling time was with near-zero wind, therefore overall influence of
250 WS and WD on surface mass loadings of $r\text{BCc}$ was insignificant. Yet one should keep
251 in mind that WD can affect $r\text{BCc}$ sources, and WS in higher altitude might be stronger
252 therefore long-range transport of air pollutants was still possible. The average
253 concentrations of CO, NO_2 , O_3 , SO_2 , V, and Ni were determined to be $0.60 (\pm 0.26)$
254 ppm, $29.20 (\pm 17.07)$ ppt, $27.10 (\pm 15.97)$ ppt, $1.27 (\pm 0.72)$ ppt, $4.05 (\pm 3.19)$ ng m⁻³,
255 and $3.06 (\pm 2.45)$ ng m⁻³, respectively.

256 The mass loadings of $r\text{BC}$ and $r\text{BC}_{\text{CT}}$ ranged from 0.04 to 11.00 $\mu\text{g m}^{-3}$ and 0.37
257 to 30.47 $\mu\text{g m}^{-3}$ with campaign-mean values ($\pm 1\sigma$) of $0.92 (\pm 0.81)$ $\mu\text{g m}^{-3}$ and $4.55 (\pm$
258 $4.40)$ $\mu\text{g m}^{-3}$. The coating materials accounted for $81.8 (\pm 5.3)\%$ of the total $r\text{BCc}$ mass,
259 of which organics was the most abundant species (2.54 ± 2.52 $\mu\text{g m}^{-3}$, $46.6 \pm 6.4\%$),

260 followed by nitrate ($1.20 \pm 1.30 \mu\text{g m}^{-3}$, $18.5 \pm 8.0\%$), ammonium ($0.44 \pm 0.40 \mu\text{g m}^{-3}$,
261 $8.0 \pm 2.0\%$), sulfate ($0.30 \pm 0.19 \mu\text{g m}^{-3}$, $7.1 \pm 3.6\%$), and chloride ($0.07 \pm 0.05 \mu\text{g m}^{-3}$,
262 $1.7 \pm 1.0\%$). The mass ratio of $r\text{BC}_{\text{CT}}$ to $r\text{BC}$ (R_{BC}) ranged from 2.2 to 9.0, with an
263 average of ~ 5.0 (± 1.7). The average R_{BC} was higher than that in California ($R_{\text{BC}} = 2.3$)
264 (Collier et al., 2018) and in Shenzhen ($R_{\text{BC}} = 2.5$) (Cao et al., 2022), lower than that in
265 Tibetan Plateau ($R_{\text{BC}}=7.7$) (Wang et al., 2017) and similar to that in Beijing ($R_{\text{BC}}=5.0$)
266 (Wang et al., 2019), suggesting $r\text{BC}$ was relatively thickly coated throughout the
267 campaign. Correlation between $r\text{BC}$ and $r\text{BC}_{\text{CT}}$ was moderate (Pearson's $r = 0.76$).
268 Correlation coefficients (r) of chloride, nitrate, sulfate and organics with $r\text{BC}$ were 0.72,
269 0.87, 0.71 and 0.73, respectively, suggesting variability of sources among different
270 coating components.

271 Figure 2 compares the campaign-averaged diurnal patterns of $r\text{BC}_{\text{C}}$ and NR-PM_1
272 species, chemical compositions of $r\text{BC}_{\text{C}}$ and NR-PM_1 , and mass ratios of the species
273 coated on $r\text{BC}$ to those of NR-PM_1 . We found that the diurnal variations of nitrate,
274 sulfate, ammonium, chloride were very similar ($r > 0.92$) between the two particle
275 groups, while apparent difference was found for $r\text{BC}_{\text{C}}$ organics with a much obvious
276 morning rush hour peak (6:00 - 9:00). The results indicate that the formation processes
277 of inorganic salts coated on $r\text{BC}$ were similar to those uncoated on $r\text{BC}$, but there were
278 large difference regarding sources/processes existed for organics. For $r\text{BC}$ itself, the
279 diurnal cycle presented clearly a morning peak and an evening peak, likely relevant
280 with rush hour traffic emissions (CO showed similar pattern). On the contrary, R_{BC} had
281 a minimum in the morning and dropped to a low level in later afternoon, probably due
282 to influence from traffic-emitted fresh and barely coated $r\text{BC}$ particles (details in
283 Section 3.2.1).

284 Distributions of species between $r\text{BC}_{\text{C}}$ and non- $r\text{BC}$ particles were also different,
285 leading to different chemical compositions (Figs. 2g and 2h). Sulfate tended to
286 preferentially condense on non- $r\text{BC}$ particles, as its mass contribution to total $r\text{BC}_{\text{C}}$
287 mass was only $6.5 (\pm 4.2)\%$, while its contribution to total NR-PM_1 was $17.6 (\pm 8.3)\%$.
288 Apportionment of nitrate between $r\text{BC}_{\text{C}}$ and non- $r\text{BC}$ particles was about even as it
289 both occupied $\sim 26\%$ of the total $r\text{BC}_{\text{C}}$ and NR-PM_1 masses. Organics occupied $55.9 (\pm$

290 9.2)% of *rBCc* mass, larger than it in NR-PM₁ ($43.7 \pm 11.7\%$), due to that primary OA
291 species preferentially associated with *rBC*. Such result is similar to that observed in
292 winter in Beijing but contrary to the result that SOA was more abundant in *rBCc* in
293 Shenzhen (Cao et al., 2022).

294 On average, *rBCc* accounted for 19.1% of the total NR-PM₁ mass loading ($21.61 \pm 15.80 \mu\text{g m}^{-3}$)(Fig. 2i), comparable to that in Fontana, California (Lee et al., 2017).
295 The finding reveals that significant fractions of aerosol species were externally mixed
296 with *rBC*. Individually, sulfate captured by *rBC* only represented $7.4 (\pm 2.2)\%$ of NR-
297 PM₁ sulfate, similar to the earlier results (Lee et al., 2017; Wang et al., 2020a; Cao et al.,
298 2022; Ma et al., 2020); mass fractions of *rBCc* nitrate ($20.1 \pm 5.2\%$) and chloride ($20.4 \pm 5.5\%$) in NR-PM₁ were similar to the portion of total *rBCc* ($19.1 \pm 4.9\%$), while the
300 fraction of organics was higher ($26.1 \pm 7.3\%$). The lower fraction of sulfate in *rBCc*
301 than nitrate was likely due to a few reasons. One probable reason is traffic was a
302 dominant source of *rBC* (see Section 3.2.1 for details) and NO₂ is known to be mainly
303 from traffic as well, therefore secondarily formed nitrate was easy to condense on co-
304 emitted *rBC*, however SO₂ is mainly from other sources rather than traffic. Another
305 possible cause is that *rBC* concentration was relatively high during nighttime, and
306 nighttime formation of nitrate was significant; Sulfate, on the other hand, was mostly
307 formed in the afternoon due to photochemical oxidation in this study (see Section 3.3.2
308 for details), whereas afternoon *rBC* concentration was low. The relatively high ratio of
309 organics was attributed to the fact that majority of POA species were coated on *rBC*
310 (average ratio of $72.7 \pm 21.0\%$), while *rBC*-related SOA was $21.8 (\pm 7.7)\%$ of the total.
311 Note the *rBCc* POA here included all four POA factors, and COA_{NR-PM1} did not coat on
312 *rBC* thus was not included in the calculation.

314

315 **3.2 Distinctive sources of OA in *rBCc* and in NR-PM₁**

316 As shown previously, source apportionment results of OA in *rBCc* and NR-PM₁
317 were different. This section discusses in details the characteristics of OA sources in
318 *rBCc* and in bulk NR-PM₁.

319 **3.2.1 Source apportionment of OA in *r*BCc**

320 Figure 3 shows the HRMS and temporal variations of the six OA factors resolved
321 from PMF analysis of *r*BCc organics. Note the PMF analysis included *r*BC signals (i.e.,
322 C_x^+ ions) to aid identification of different factors, yet calculations of elemental ratios of
323 these OA factors did not include C_x^+ ions in order to explicitly explore the properties of
324 organic coating. The HRMS of HOA-rich and *r*BC-rich were similar to the OA
325 previously reported in urban environments near traffic emissions and/or in
326 gasoline/diesel vehicle exhaust (Massoli et al., 2012;Lee et al., 2015;Enroth et al.,
327 2016;Saarikoski et al., 2016;Willis et al., 2016;Lee et al., 2017), therefore both factors
328 were traffic-related. The HOA-rich mass spectrum was featured by intense hydrocarbon
329 ion series (i.e., $C_nH_{2n+1}^+$ and $C_nH_{2n-1}^+$ ions in Fig. 3c), and a lowest O/C ratio of 0.07.
330 Mass fraction of *r*BC signals (i.e., C_n^+ ions, such as m/z 12, 24, 36, 48, and 60, etc.) in
331 HOA-rich was 8.1%. Mass spectrum of *r*BC-rich factor had remarkable contribution
332 from *r*BC (24.2%). Beside C_n^+ ions, the *r*BC-rich factor contained more oxygenated
333 organic fragments and presented a higher O/C ratio of 0.21 than that of HOA-rich,
334 similar to previous studies (Willis et al., 2016;Lee et al., 2017). This result is reasonable
335 as previous studies (Corbin et al., 2014;Malmborg et al., 2017) found that refractory
336 organics could generate oxygenated ion fragments (such as CO^+ and CO_2^+ derived from
337 oxygenated species on soot surface or inside soot nanostructure). HOA-rich factor
338 correlated very well with the common AMS tracer of vehicular OA, $C_4H_9^+$ ($r=0.95$, Fig.
339 3i), while *r*BC-rich factor did match the variation of *r*BC well ($r=0.90$, Fig. 3g). Since
340 diesel combustion often releases more *r*BC than that of gasoline, it is likely that the
341 *r*BC-rich factor is representative of diesel vehicle exhaust while HOA-rich factor
342 represents gasoline combustion emissions. This result demonstrates that laser-only SP-
343 AMS is capable of distinguishing diesel and gasoline burning particles which typically
344 cannot be separated by other AMS measurements. Further verification should be subject
345 of future work.

346 In this work, a multiple linear regression for the three-dimension size-resolved
347 mass spectra according to the method provided in Ulbrich et al. (2012) was used to
348 resolve the average size distributions of six OA factors. The diagnostic plots are shown

349 in Fig. S5. Overall, the lumped size distribution of six OA factor could reproduce well
350 that of total OA (except for a few size bins, most deviations are within 10%).
351 Correlation between measured and reconstructed OA of all size bins was very tight with
352 r of 0.99 and a slope of 0.97, indicating the robustness of the regressed size distributions
353 of all OA factors. The results together with size distributions of *rBCc* components, and
354 corresponding mass fractional contributions of different components in all size bins are
355 illustrated in Fig. 4. The average HOA-rich size distribution peaked around 150 nm
356 (D_{va} , vacuum aerodynamic diameter), generally matching with previously reported size
357 distribution of HOA (Sun et al., 2012;Ulbrich et al., 2012;Zhou et al., 2016).
358 Interestingly, size distribution of *rBC*-rich factor presented two modes, with one
359 peaking \sim 260 nm, and a more pronounced one peaking \sim 580 nm (Fig. 4a).

360 The BBOA was identified owing to its obviously higher signals of $C_2H_4O_2^+$ (2.03%)
361 and $C_3H_5O_2^+$ (1.62%) than those in other factors, as these two ions are well-known AMS
362 fragments of the biomass burning tracer, levoglucosan (Mohr et al., 2009;Cubison et
363 al., 2011). The time series of BBOA correlated particularly tightly with both marker
364 ions (r of 0.86 and 0.80, respectively); it in fact also correlated well with K^+ ($r=0.79$),
365 another tracer of biomass burning emission. The O/C and H/C ratios of BBOA were
366 0.12 and 1.78, and C_n^+ ions accounted for 9.1% of BBOA, all suggesting that the factor
367 was fresh and might be co-emitted with *rBC*. A relatively high N/C ratio (0.033) was
368 found for BBOA, which could be attributed to the large amounts of nitrogen-containing
369 organic species enriched in biomass burning OA (Laskin et al., 2009). In addition, the
370 size distribution of BBOA (Fig. 4a) (peak size \sim 500 nm) was similar to that of biomass
371 burning BC-containing particles obtained using single particle mass spectrometry in
372 Shanghai (Gong et al., 2016).

373 The PMF analysis deconvoluted a unique OA factor coated on *rBC*, namely WS-
374 HOA. Firstly, the WS-HOA mass spectrum had a series of hydrocarbon ion fragments
375 and its time series correlated well with them (e.g., r of 0.90 and 0.92 for WS-HOA vs.
376 $C_4H_7^+$ and $C_4H_9^+$, respectively). Secondly, this factor correlated the best ($r=0.57$) with
377 aerosol liquid water content (ALWC) (Fig. 3j) compared with the other five OA factors
378 (all $r<0.2$). Thirdly, a previous study (Ye et al., 2017) that investigated specially the

379 water-soluble fraction of OA via PMF analysis, separated also a HOA factor that
380 contained significant nitrogen-containing organic fragments, with a highest N/C ratio
381 among all other factors, and correlated well those nitrogenated fragments. The WS-
382 HOA defined here showed similar characteristics with the highest N/C (0.037) among
383 all factors and tight correlations with nitrogen-containing fragments ($r>0.80$). At last,
384 although WS-HOA had a relatively high O/C (0.31) with remarkable contributions from
385 $\text{C}_2\text{H}_3\text{O}^+$ and CO_2^+ , yet its correlations with these two ions were in fact not strong (r of
386 0.46 and 0.44, respectively); and WS-HOA had the least fraction of $r\text{BC}$ fragments
387 (0.9%) (note $r\text{BC}$ is hydrophobic), even less than the two SOAs (Fig. 3d). Both results
388 suggest that this factor is a collection of water-soluble primary OA species. The peak
389 of WS-HOA size distribution was ~ 150 nm, close to that of HOA-rich (Fig. 4a).
390 Aqueous-phase processed SOA (aqSOA) were typically with very high O/C ratio (Xu
391 et al., 2019), and size distribution of aqSOA often presented a droplet mode, peaking in
392 relatively large sizes (such as 500~600 nm)(Gilardoni et al., 2016; Wang et al., 2021; Ge
393 et al., 2012). Therefore, the moderate O/C (0.31) and small mode size of WS-HOA
394 again manifest it was not from aqueous-phase reactions but more likely the water-
395 soluble fraction of POA.

396 The PMF analyses separated two SOA factors, LO-OOA_{rBC} and MO-OOA_{rBC}.
397 Mass spectral features of the two SOAs were consistent with previous studies: The LO-
398 OOA_{rBC} was rich in $\text{C}_x\text{H}_y\text{O}_1^+$ ions (38.7%) (such as $\text{C}_2\text{H}_3\text{O}^+$ at m/z 43) but with less
399 contribution from $\text{C}_x\text{H}_y\text{O}_2^+$ ions (7.6%) and an overall moderate O/C (0.25), while MO-
400 OOA_{rBC} had much more contribution from $\text{C}_x\text{H}_y\text{O}_2^+$ ion family (22.7%) (such as CO_2^+
401 at m/z 44) and $\text{C}_x\text{H}_y\text{O}_1^+$ ions (44.7%), with a high O/C ratio (0.56). In addition, LO-
402 OOA_{rBC} correlated better with nitrate ($r=0.83$) than it with sulfate ($r=0.69$), while the
403 correlation between MO-OOA_{rBC} and sulfate ($r=0.84$) is better than it with nitrate
404 ($r=0.76$). Size distributions of the two SOAs were also in accord with their secondary
405 behaviors, both accumulating at larger sizes (~ 450 nm for LO-OOA_{rBC}, and a bit larger
406 mode size of ~ 500 nm for MO-OOA_{rBC}), in agreement with previous observations (Sun
407 et al., 2012; Ulbrich et al., 2012; Zhou et al., 2016).

408 In total, traffic-related POA (sum of HOA-rich, $r\text{BC}$ -rich and WS-HOA) was the

409 most abundant source of *rBCc* organics (39.1%); BBOA occupied ~18.4%; the
410 contributions of two SOAs were on par with each other (20.2% for LO-OOA_{*rBC*}, and
411 22.3% for MO-OOA_{*rBC*}) (Fig. 2g). Among traffic POA, gasoline derived HOA-rich
412 factor outweighed the diesel derived *rBC*-rich factor (11.4% vs. 6.3% of the total *rBCc*).
413 Contributions of different factors varied greatly for different sizes of *rBCc* particles
414 (Fig. 4b). Small-sized particles were overwhelmingly dominated by traffic POA; SOA
415 contributions increased with increase of size, and dominated over POA for 300-800 nm
416 ones; contribution of BBOA was also relative larger for 300-800 nm than for other-
417 sized ones; the very large particles (800-1000 nm) were found to be affected mainly by
418 traffic POA in this work. Correspondingly, for the total *rBCc* particles, *rBC* cores
419 peaked at ~170 nm, while other secondary inorganic components, behaving like SOA
420 factors, all peaked at a big size (~550 nm) (Fig. 4c) and their mass percentages were
421 also large for large-sized particles (Fig. 4d).

422 Figure 5a further demonstrates the changes of mass fractions of each *rBCc*
423 component as a function of *RBC*. *RBC* is a proxy of coating thickness. It was found that
424 the thinly coated *rBCc* (*RBC*<3) were dominated (up to ~80%) by traffic-related POA.
425 With the increase of *RBC*, contribution of secondary components increased gradually,
426 especially the two SOAs and nitrate (sulfate showed little changes across the whole *RBC*
427 range); SOA and nitrate contributions reached 40.2% and 31.3% at *RBC* = 8, respectively.
428 Accordingly, the oxidation degree (OSc = 2*O/C-H/C) (Kroll et al., 2011) of coated
429 organics increased with *RBC*. In Fig. 5b, we presented the mass contributions of OA
430 factors to the *rBC* mass at different *RBC* values. The *rBC* was as expected,
431 predominantly associated with POA (from 94% at *RBC*<2 to 66% at *RBC*>8), similar to
432 those from Fontana (Lee et al., 2017). Contribution of *rBC*-rich factor decreased
433 obviously, and those of SOA factors increased with *RBC*. The contributions of HOA-
434 rich, WS-HOA and BBOA factors changed little.

435

436 3.2.2 Comparisons with NR-PM₁ organics

437 As shown in Fig. S4, PMF analysis separated four OA factor for NR-PM₁ organics.
438 Two SOA factors (LO-OOA and MO-OOA) were resolved for both *rBCc* and NR-PM₁,

439 and their contributions to them were also close (Figs. 2g and 2h). Correlations of time
440 series between the two LO-OOA factors and between the two MO-OOA factors were
441 also tight (r of 0.94 and 0.90, respectively), indicating similar formation processes for
442 each SOA. But, of course, the SOAs from *r*BCc and from NR-PM₁ were not entirely
443 the same, as later ones had higher O/C ratios (0.52 of LO-OOA_{NR-PM1} and 0.62 of MO-
444 OOA_{NR-PM1}). On average, the portion of LO-OOA coated on *r*BC took up 21.6% mass
445 of LO-OOA in total NR-PM₁, and the portion was 26.0% for MO-OOA. This result
446 suggests that there were some differences regarding the partitioning of LO-OOA and
447 MO-OOA onto *r*BCc and non-*r*BC particles.

448 Compared with SOAs, source apportionment results of POA were quite distinct.
449 Firstly, there was only one HOA factor resolved for NR-PM₁, while three HOA factors
450 were separated for *r*BCc. Note the *r*BC-rich and WS-HOA factors occupied merely
451 3.1% and 2.1% of NR-PM₁ OA mass, respectively, probably the cause that they were
452 not identified in NR-PM₁ OA. Nevertheless, mass loadings of the sum of HOA-rich,
453 *r*BC-rich and WS-HOA factors (termed as HOA_{BC}) agreed quite well with that of
454 HOA_{NR-PM1} ($r=0.95$) (Fig. S7), verifying both source apportionment results. And,
455 HOA_{BC} took up 63.7% of HOA_{NR-PM1}, while previous studies reported that 81%
456 (Massoli et al., 2012) and 87 % (Massoli et al., 2015) of HOA were associated with
457 *r*BC. These results imply that HOA species in NR-PM₁ were largely internally mixed
458 with *r*BC affected by vehicular emissions. Secondly, COA_{NR-PM1} was only identified in
459 NR-PM₁ OA. AMS-resolved COA_{NR-PM1} is mainly from cooking oil and food
460 ingredients, therefore it negligibly internally mixes with *r*BC. This result is consistent
461 with previous observations (Lee et al., 2015; Willis et al., 2016; Lee et al., 2017; Collier
462 et al., 2018). At last, BBOA was identified in *r*BCc OA but not in NR-PM₁ OA. One
463 plausible reason was that the BBOA mass contribution was minor (equivalent to <5%
464 of NR-PM₁ OA mass) therefore was not able to be separated from other OA factors;
465 another speculation is that laser only SP-AMS can detect refractory species that HR-
466 AMS cannot, and a portion of these refractory species are likely rich in biomass burning
467 OA. Identification of BBOA in *r*BCc rather than in simultaneously measured total NR-
468 PM₁ was also found in Tibet (Wang et al., 2017) and Beijing (Wang et al., 2020a), role

469 of such BBOA and its interplay with *r*BC core remain a subject of future work.

470 Diurnal cycles of the POA and SOA factors from both PMF analyses are compared
471 in Figs. 6a and 6b. The diurnal pattern of stacked HOA_{rBC} indeed agreed with that of
472 HOA_{NR-PM1}, both with two peaks in the morning and evening rush hours, and, the
473 patterns of *r*BC-rich, HOA-rich, and WS-HOA factors showed similar behaviors
474 individually (Fig. 6a). The diurnal variation of COA_{NR-PM1} had pronounced peaks
475 during lunch and dinner times, and its percentage in NR-PM₁ OA reached 54% at night.
476 Diurnal patterns of two LO-OOA factors were somewhat different ($r=0.35$)(Fig. 6b).
477 LO-OOA_{rBC} has a major peak in the afternoon, while though LO-OOA_{NR-PM1}
478 concentration rose in the afternoon too but peaked in early evening (~20:00). The daily
479 variations of two MO-OOA factors were similar ($r=0.83$), both peaking at 16:00. The
480 afternoon increases of both SOAs indicate an important role of photochemical reactions,
481 yet differences in formation mechanisms, volatilities and partitioning behaviors of SOA
482 products could lead to diversities of their diurnal patterns and HRMS.

483

484 **3.3 Evolution and formation *r*BCc components**

485 **3.3.1 Behaviors of *r*BC cores**

486 Size distribution of *r*BC cores shown in Fig. 4c was relatively wide. Beside the
487 main peak at ~170 nm, it extended significantly into large sizes and had a small peak at
488 ~550 nm, which was close to the peak of secondary components. With results shown in
489 Fig. 5a, we found that small *r*BC cores were often thinly coated, while thickly coated
490 *r*BCc particle were often highly aged and a portion of them also had large-sized *r*BC
491 cores. This result is likely owing to that oxidation of *r*BC-bounded organics and/or
492 condensation of secondary species onto *r*BC surface can induce restructuring of soot
493 aggregates to form compact and large cores (Chen et al., 2018;Chen et al., 2016). Such
494 phenomenon is in line with earlier studies (Liu et al., 2019;Gong et al., 2016). We
495 further show the image plot of size distributions of *r*BC at different R_{BC} in Fig. S8a. It
496 can be found that the *r*BC mass in a large part concentrated in particles with R_{BC} of 5-
497 8, and there was indeed a significant portion of *r*BC appearing in large size range (400-
498 800 nm) with very thick coating (R_{BC} of 8-9).

499 **3.3.2 Formation of inorganic salts**

500 Sulfate and nitrate both peaked at a big size \sim 550 nm (Fig. 4c) and were mainly
501 associated with thickly coated *r*BCc ($R_{BC} > 6$, Figs. S8d and S8e). To investigate the
502 impacts of photochemistry and aqueous/heterogeneous chemistry on the formation of
503 *r*BC_{CT} species, we plotted the image plots of size distributions of nitrate, sulfate and
504 organics versus Ox ($O_3 + NO_2$) and relative humidity (RH) in Fig. 7. Here Ox is used
505 as a proxy of photochemical activity (Xu et al., 2017), and RH is an indicator of aqueous
506 reactions (Wu et al., 2018). Nitrate significantly concentrated in 65-100 ppb Ox range
507 but there was a weak accumulation in low Ox as well (Fig. 7a), while in Fig. 8d, nitrate
508 had a prominent hotspot in RH $> 85\%$. Generally, both strong photochemical activity
509 and high RH could promote nitrate formation. For sulfate, although the distribution was
510 scattered due to low level of mass loadings, high Ox level seemed to favor sulfate
511 formation (Fig. 7b); sulfate was scattered in the whole RH range and there were some
512 enhancements at high RH ($> 80\%$) but was much less clear-cut (Fig. 7e). Therefore
513 aqueous-phase production of sulfate was not important in this campaign.

514 We further calculated the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio
515 (NOR) (Xu et al., 2014), and plotted their variations against Ox and RH in Figs. 8a and
516 8e, respectively. The NOR rose substantially at Ox > 60 ppb but showed no increase at
517 Ox < 60 ppb, while it increased continuously with RH. Mass ratio of nitrate to *r*BC
518 stayed at a high level during nighttime when RH was high as well (overall diurnal trend
519 of NO_3^-/rBC was similar to that of RH, see Figs. S9a and S9d). This result indicates a
520 likely more important role of nocturnal nitrate formation (N_2O_5 hydrolysis) (Pathak et
521 al., 2011) (Sun et al., 2011) than photochemical production of nitrate during this
522 campaign; moreover, low temperature and high RH favor nitrate partitioning into the
523 particle phase during nighttime too (Gao et al., 2011). For sulfate, The SOR increased
524 with Ox while it increased with RH under relatively dry conditions ($< 60\%$) but
525 decreased with RH when RH $> 60\%$. This result, on the other hand, highlights that
526 photochemical production is more important than aqueous/heterogenous formation for
527 sulfate. In addition, mass ratios of sulfate to *r*BC were enhanced remarkably during
528 daytime and peaked in the afternoon (Fig. S9e), supporting the key role of

529 photochemical formation of sulfate. Sulfate precursor SO_2 was at a high level during
530 daytime too. The main formation pathway of sulfate is strikingly different from that
531 observed in winter Nanjing (Wu et al., 2018), suggesting significant seasonal variability
532 of sulfate formation even in the same region.

533

534 **3.3.3 Evolution of organics**

535 Organics had a broad average size distribution (Fig. 4c), but unlike $r\text{BC}$, its main
536 peak appeared at 500~600 nm. Figure S8b shows that the majority of organics
537 partitioned in $r\text{BCc}$ with R_{BC} of 5.0-9.0 and wide size coverage (300-800 nm).
538 Regarding its dependences on Ox and RH , it mainly accumulated at $\text{Ox} > 70 \text{ ppb}$ (Fig.
539 7c) and very high RH (~90%) (Fig. 7f). Consistently, O/C ratio and OSc both peaked
540 in the afternoon (Fig. S9b), all suggesting a critical role of photochemistry in affecting
541 the behavior of organics.

542 Figure 8 illustrates the mass ratios of each OA factor to $r\text{BC}$ varying with Ox and
543 RH . Mass ratios of all four POA factors generally presented decreasing trends (despite
544 some fluctuations) against Ox (Fig. 8b), and the total $\text{POA}_{r\text{BC}}$ showed evident decrease
545 with increase of Ox (Fig. 8d). Instead, both $\text{LO-OOA}_{r\text{BC}}$ and $\text{MO-OOA}_{r\text{BC}}$, as well as
546 their sum ($\text{SOA}_{r\text{BC}}$) increased continuously with Ox (Figs. 8c and 8d). This result proves
547 that photochemical oxidation contributed significantly to both $\text{LO-OOA}_{r\text{BC}}$ and MO-
548 $\text{OOA}_{r\text{BC}}$ formations. Comparatively, decreases of $\text{POA}_{r\text{BC}}$ perhaps point to its reaction
549 loss upon photochemical oxidation. With regard to RH , besides WS-HOA , the other
550 three $\text{POA}_{r\text{BC}}$ factors showed almost no dependences on RH (Fig. 8f); note the increase
551 of WS-HOA with RH did not indicate the aqueous production of WS-HOA (see
552 discussion in Section 3.2.1), but a result of enhanced dissolution with increase of
553 moisture. Overall small increase of $\text{POA}_{r\text{BC}}$ (Fig. 8h) with RH then mainly attributed to
554 WS-HOA . Contrary to the trends with Ox , mass ratios of two SOA factors as well as
555 the total SOA to $r\text{BC}$ went down with increase of RH (Figs. 8g and 8h), indicating a
556 trivial role of aqueous/heterogenous oxidation for the SOA coated on $r\text{BC}$ observed
557 during this campaign.

558 The aging of OA is generally characterized by the increase of O/C and decrease of

559 H/C (Ng et al., 2011; Zhao et al., 2019). The different aging pathways of OA follow
560 different slopes in the Van Krevelen (VK) diagram (Heald et al., 2010). For example,
561 addition of only one oxygen atom to the carbon skeleton results in a slope equal to 0,
562 while replacement of the hydrogen atom with a carboxylic acid group ($-\text{COOH}$) results
563 in a slope of -1 without fragmentation (C-C bond breaking), and -0.5 with
564 fragmentation (Heald et al., 2010; Ng et al., 2011; Zhao et al., 2019). As presented in Fig.
565 10a, fitting of all OA data yielded a slope of -0.96 , very close to -1 , suggesting that
566 OA ageing process resembled the hydrogen substitution with a $-\text{COOH}$ group
567 (carboxylation). Interestingly, the four OA factors (HOA-rich, WS-HOA, LO-OOA_{BC}
568 and MO-OOA_{BC}) aligned almost in a straight line with a slope of -0.77 (Fig. 9a), also
569 close to -1 . Figure S10 further reveals that there was a strong anti-correlation between
570 mass fractions of sum of HOA-rich and WS-HOA and sum of LO-OOA_{BC} and MO-
571 OOA_{BC} ($r=-0.97$); the slope of fitted line was -0.86 . All these results suggest that OA
572 evolution may contain a channel of photochemical transformations from HOA-rich and
573 WS-HOA to LO-OOA_{BC} and then to MO-OOA_{BC}. This result is also in line with the
574 observed decrease of POA_{BC} and increase of SOA_{BC} against Ox.

575 CHO^+ , CHO_2^+ and $\text{C}_2\text{H}_2\text{O}_2^+$ are the AMS tracer ions for carbonyl, carboxylic acid
576 and glyoxal, respectively (Wang et al., 2020b; Canagaratna et al., 2015a; Yu et al., 2014).
577 Mass fractions of these three fragment ions presented decreasing trends (or no clear
578 trends) against RH (Fig. S11), suggesting again that aqueous processing is not an
579 important pathway in OA evolution during this campaign. Conversely, fractional
580 contributions of these three ions presented increasing trends versus Ox, supporting the
581 dominance of photochemical oxidation pathway (Figs. 9b-d). Figures 9e-g show the
582 scatter plots of H/C versus O/C at different Ox concentrations. The regressed slope was
583 -1.03 for low Ox (<60 ppb) conditions (Fig. 9e), indicating that the OA aging at low
584 Ox level is mainly analogue to the carboxylation process. This result corresponds
585 precisely to the fact that mass fractions of CHO_2^+ and $\text{C}_2\text{H}_2\text{O}_2^+$ increased gradually with
586 Ox at low Ox, whereas that of CHO^+ remained essentially unchanged (Figs. 9b-d). The
587 fitted slope was -1.14 for moderate Ox conditions (60-80 ppb), and it changed to -0.43
588 for high Ox level (>80 ppb) but correlation became weaker ($r=-0.57$). This result

589 implies that the OA evolution under high Ox conditions might include oxidations by
590 the additions of alcohols, peroxides and carboxylation. In all, the evolution of $r\text{BCc}$ OA
591 in Shanghai during this campaign is governed by photochemistry rather than aqueous
592 chemistry, but with different oxidation pathways at different Ox levels.

593

594 **3.3.4 Coating time of secondary species onto $r\text{BC}$**

595 Although the $r\text{BCc}$ organics was dominated by primary sources (Fig. 2g), the
596 diurnal variations of OSc, O/C and H/C of the total organics, were controlled
597 predominantly by the two SOA factors. Correlations between the diurnal cycles of MO-
598 OOA $_{r\text{BC}}/r\text{BC}$ and OSc were extremely well ($r=0.97$ with OSc and $r=0.98$ with O/C),
599 and those of LO-OOA $_{r\text{BC}}$ were also tight ($r=0.91$ with OSc and $r=0.92$ with O/C).
600 The correlations with LO-OOA $_{r\text{BC}}$ were a bit weaker than those of MO-OOA $_{r\text{BC}}$,
601 indicating that MO-OOA $_{r\text{BC}}$ was probably the final products and was more important
602 in governing the overall oxidation level of organic coating. Figure 10a depicts the
603 diurnal variations of SOA $_{r\text{BC}}/r\text{BC}$ and POA $_{r\text{BC}}/r\text{BC}$. Diurnal variations of POA $_{r\text{BC}}/r\text{BC}$
604 and $r\text{BC}$ were overall similar, while the daily pattern of SOA $_{r\text{BC}}/r\text{BC}$ was almost
605 opposite to that of $r\text{BC}$. This result likely indicates that most POA $_{r\text{BC}}$ species were co-
606 emitted and coated on $r\text{BC}$ cores originally, therefore the coating process during $r\text{BCc}$
607 lifecycle was mainly relevant with SOA species rather than POA species. This process
608 is mainly through photochemical reactions, including in-situ oxidation of originally
609 coated POA species (for example, oxidation of HOA-rich plus WS-HOA to LO-
610 OOA $_{r\text{BC}}$, then to MO-OOA $_{r\text{BC}}$), and partitioning of secondary species formed in gas-
611 phase reactions onto $r\text{BC}$ surface. In addition, sulfate and nitrate were both secondarily
612 formed, but sulfate was dominated by photochemical production while nitrate was
613 governed by nocturnal heterogenous formation (as discussed in Section 3.3.2); different
614 diurnal patterns of them (Fig. S9) point to different coating processes too.

615 In this regard, we hereby propose a concept of average coating time (ACT), which
616 is used to roughly estimate the timescales required for secondary components coated
617 onto $r\text{BC}$. The specific method is listed as follows:

618 1. Move forward the diurnal variation of SA $_{r\text{BC}}/r\text{BC}$ (SA represents a secondary

619 aerosol species) for n hours to get a new SA_{rBC}/rBC diurnal pattern, labelled as
620 “ $SA_{rBC}/rBC(r\text{-}nh\text{-}ahead)$ ”. Here, the r value is the linear correlation coefficient between
621 the new SA_{rBC}/rBC diurnal pattern with that of rBC .

622 2. Choose the best correlation coefficient ($r\text{-}nh\text{-}ahead$), and nh corresponds to the
623 ACT for this secondary component.

624 It should be noted that the diurnal pattern of rBC might be affected by the changes
625 of planetary boundary layer (PBL) height, so that low PBL height could lead to high
626 rBC concentrations during nighttime. We thus used SA_{rBC}/rBC rather than SA_{rBC} here
627 to perform the correlation analyses with rBC . The relative variability of secondary
628 species to rBC might be a good way to eliminate the impacts of PBL, and better
629 represent the “coating process”. Nevertheless, one should be cautious that this treatment
630 is only a rough approximation of the “coating process”. Diurnal patterns of LO-
631 OOA_{rBC}/rBC and MO- OOA_{rBC}/rBC are depicted in Fig. 10b. They were both opposite
632 to the trend of rBC , and they were similar to each other, except that MO- OOA_{rBC}/rBC
633 peaked hours later in the afternoon, signifying that the MO- OOA_{rBC} needs longer time
634 to coated on rBC than LO- OOA_{rBC} does, consistent with the fact that MO- OOA_{rBC} was
635 “more aged”. Correspondingly, we obtained an ACT of 7 hours for MO- OOA_{rBC} (0.35-
636 7h-ahead) and 5 hours for LO- OOA_{rBC} (0.57-5h-ahead) (Fig. 10c) using the method
637 described above. The ACT of sulfate (0.65-7h-ahead) and nitrate (0.30-19h-ahead) were
638 7 and 19 hours, respectively (Fig. 10d). The results suggest that the rBC emitted mainly
639 in the morning rush hours requires a few hours to be adequately coated by LO- OOA_{rBC} ,
640 MO- OOA_{rBC} and sulfate, as these three species are mainly produced in the afternoon
641 by photochemical reactions; while photochemical production of nitrate is insignificant,
642 thus rBC was coated by nitrate until later night when nitrate was formed efficiently by
643 heterogenous N_2O_5 hydrolysis. Note the best r values were not high (for example, 0.35
644 for MO- OOA_{rBC} and 0.30 for nitrate), yet the adjusted trends of all secondary
645 components (Figs. 10c and 10d) matched that of rBC quite well during 3:00~12:00 (r
646 of 0.90, 0.91, 0.84 and 0.84 for MO- OOA_{rBC} , LO- OOA_{rBC} , sulfate and nitrate,
647 respectively), likely meaning that daytime variations of two SOAs and sulfate were
648 indeed controlled by the coating process while governing factors of their nighttime

649 variations might be complex, and *vice versa* for nitrate.

650

651 **3.4 Size-resolved hygroscopicity of *rBCc***

652 By using the method in Section 2.3, we calculated the size-resolved hygroscopicity
653 parameters for the total *rBCc* (κ_{rBCc}) and the coatings materials (κ_{CT}) across the whole
654 campaign. The image plots are illustrated in Figs. 11a and 11b. Generally, large κ_{rBCc}
655 and κ_{CT} values occurred at big particle sizes, and this result was overall similar to that
656 in Nanjing during winter (Wu et al., 2019). We further illustrate the size-resolved κ_{rBCc}
657 as a function of R_{BC} in Fig. 11c. The figure shows that κ_{rBCc} overall became larger with
658 increasing particle size regardless of the coating thickness. However, there were some
659 (though not significant) relatively high κ_{rBCc} values in the range of 80-150 nm (bottom
660 left and bottom right in Fig. 11c).

661 In Figs. 12a and 12b, we further determined the average size-resolved κ_{rBCc} and
662 κ_{CT} as a function of coated diameter (D_{rBCc}). Both κ_{rBCc} and κ_{CT} values were relatively
663 high at $D_{rBCc}<100$ nm and presented slight decreases from 100 to 150 nm. This is
664 distinctive from those observed in Nanjing, where κ_{CT} increased with D_{rBCc} from 50 nm
665 (Wu et al., 2019). From Figs. 4b and 4d, it can be seen the *rBCc* with $D_{rBCc}<150$ nm
666 was dominated by a portion of ammonium and sulfate (8-10%) and organics (~60%),
667 of which organics was dominated by WS-HOA. Such composition explains the
668 relatively high hygroscopicity at $D_{rBCc}<150$ nm as both ammonium sulfate and WS-
669 HOA are hydrophilic; a slight decrease of the hygroscopicity from 100 to 150 nm D_{rBCc}
670 was also a response of decreased mass contributions of ammonium sulfate and WS-
671 HOA (and increase of hydrophobic HOA-rich contribution).

672 Figures 12a and 12b also provide the fitted exponential functions for the mean
673 κ_{rBCc} and κ_{CT} with D_{rBCc} . The equations are: $\kappa_{rBCc}(x) = 0.29 - 0.14 \times \exp(-0.006 \times x)$ and
674 $\kappa_{CT}(x) = 0.35 - 0.09 \times \exp(-0.003 \times x)$ (x is D_{rBCc} , $150 < x < 1000$ nm). Here, 0.29 and
675 0.35 are the upper limits of κ_{rBCc} and κ_{CT} , higher than those reported in Nanjing (0.28
676 and 0.30 for κ_{rBCc} and κ_{CT}); yet the increasing rates of κ_{rBCc} and κ_{CT} with D_{rBCc} are 0.14
677 and 0.09, respectively, which are much lower than those from Nanjing (0.35 and 0.27
678 for κ_{rBCc} and κ_{CT}) (Wu et al., 2019). Smaller increased contributions of hydrophilic

679 secondary species from 150 to 1000 nm in Shanghai than those from 100 to 1000 nm
680 in Nanjing are likely the cause of smaller increasing rates of hygroscopicity parameters.
681 In addition, it should be noted that the hygroscopicity is not only determined by the
682 bulk composition, but also affected by the phase state of particles. For instance, a recent
683 study reveals that the hygroscopic growth of phase-separated particles (with ammonium
684 sulfate as cores) can be reduced by the secondary organic shells and is dependent on
685 the thickness of organic coating (Li et al., 2021).

686 The critical supersaturation (SS_C) for a selected dry diameter (D_{rBCc} measured by
687 SP-AMS) of a $rBCc$ particle with a hygroscopicity parameter κ_{rBCc} , can be calculated
688 by the “ κ -Kohler theory” equation (Petters and Kreidenweis, 2007). Based on the size-
689 resolved κ_{rBCc} , the CCN activation diameter (D_{50}) of particles at a given critical SS_C can
690 be calculated (Wu et al., 2019). Then, by combining the measured $rBCc$ number size
691 distribution and the D_{50} value, activation fraction (f_{AC}) of $rBCc$ number population (i.e.,
692 the fraction greater than the D_{50}) can be obtained. Figure 12c shows the SS_C as a
693 function of D_{rBCc} for the entire sampling period to obtain the D_{50} at a specific SS_C . The
694 D_{50} values of the $rBCc$ particles were determined to be $166 (\pm 16)$ nm and $110 (\pm 5)$ nm
695 for SS_C of 0.1% and 0.2%, respectively. The two D_{50} values are both smaller than those
696 determined for $rBCc$ particle in Nanjing (Wu et al., 2019), likely owing to the presence
697 of WS-HOA in Shanghai. Figure 12d shows the f_{AC} at SS_C of 0.1% (D_{50} of 166 nm) was
698 $16 (\pm 3)\%$, and the f_{AC} at SS_C of 0.2% (D_{50} of 110 nm) was $59 (\pm 4)\%$.

699

700 **3.5 A case study influenced by ship emissions**

701 **3.5.1 Potential source areas of $rBCc$**

702 To explore the potential geographic origins of $rBCc$ at the receptor site, the hybrid
703 single-particle Lagrangian integrated trajectory (HYSPLIT) model (version 4.9) was
704 applied here. The backward trajectories were classified into four air mass clusters (Fig.
705 S12a), including one long-range transport from northern sea (Cluster1), one long-range
706 transport from northeastern sea (Cluster2), a local one from eastern ports (Cluster3),
707 and one from northwestern inland region (Cluster4). The four clusters occupied 23.8%,
708 33.8%, 37.3%, and 5.0% of the total trajectories, respectively. It is clear that the

709 sampling period was influenced by offshore air masses in most of the time (95%).
710 Cluster3 had the highest mean $r\text{BCc}$ concentrations ($13.2 \pm 10.9 \mu\text{g m}^{-3}$) while the mean
711 concentrations of the other three clusters were apparently lower ($4.3 \sim 5.2 \mu\text{g m}^{-3}$). This
712 result is plausible as Cluster3 was the shortest in length therefore was least diluted
713 compared with other three clusters. Average chemical compositions of the $r\text{BCc}$ from
714 four clusters (Fig. S12b) showed some differences as well: Cluster1 and Cluster2 had
715 higher MO-OOA_{rBC} contributions, possibly owing to the interceptions of more aged
716 SOA species during the long-range transports; While Cluster4 had less MO-OOA_{rBC}
717 but a bit more POA_{rBC} contributions, likely attributing to more primary species emitted
718 in inland regions (similarly, a higher fraction of nitrate was likely because of enhanced
719 NO₂ emissions).

720

721 **3.5.2 A typical case of $r\text{BCc}$ affected by ship emissions**

722 Ship emissions are found to have an important impact on the air quality of
723 Shanghai and the Yangtze River Delta (Zhao et al., 2013; Fan et al., 2016; Liu et al.,
724 2017b; Chen et al., 2019). The ship engines usually burn heavy fuel oil (HFO), and
725 vanadium (V) and nickel (Ni) can be adopted as reliable tracers for the ship-emitted
726 particles (Ault et al., 2009; Moldanová et al., 2009; Ault et al., 2010). The long-term
727 variation of Ni/V ratio in ship-emitted particles in Shanghai has been recently reported
728 (Yu et al., 2021). The main conclusion is that Ni/V ratio was close to 0.4 in 2018, while
729 it became to be greater than 2.0 in 2020. Our measurement was carried out in 2018, and
730 we therefore chose a period from November 3rd to 5th as a typical case affected by ship
731 emissions (SEP period), since the average Ni/V ratio was ~ 0.50 and high concentrations
732 of both Ni and V were found. Figure S13 shows the concentration-weighted trajectories
733 (CWT) of ship emission tracers (V, Ni), $r\text{BC}$ and $r\text{BC}$ -rich factor during SEP, displaying
734 that these components were mainly from sea. During SEP, the correlation coefficient (r)
735 between V(Ni) and $r\text{BC}$ was 0.69 (0.74), indicating the SEP was indeed impacted by
736 ship emissions.

737 Figure 13 displays the chemical characteristics of $r\text{BCc}$ and NR-PM₁ components
738 (especially the OA factors), V and Ni, gaseous pollutants and the meteorological

739 parameters during SEP. As a comparison, we also selected a period with no ship
740 emissions with the same time span as SEP (from 0:00 on November 10 to 0:00 on
741 November 12, termed as non-SEP), and a similar plot during non-SEP is presented in
742 Fig. S14. During SEP, the wind was mainly from east, and the average wind speed was
743 $\sim 0.5 (\pm 0.3) \text{ m s}^{-1}$; Wusong, Luojing and Waigaoqiao ports located northeast of the
744 sampling site (Fig. S1). Instead, the wind was mainly from north during non-SEP.
745 During SEP, the average mass concentrations of V and Ni were $6.3 (\pm 3.1) \text{ ng m}^{-3}$ and
746 $3.2 (\pm 1.4) \text{ ng m}^{-3}$, respectively, while those during non-SEP were only $2.9 (\pm 1.4) \text{ ng}$
747 m^{-3} and $2.6 (\pm 1.6) \text{ ng m}^{-3}$. The average mass ratio of V/Ni during SEP was 2.0 in
748 agreement with those reported in ship-influenced PM₁ (Mazzei et al., 2008; Mar et al.,
749 2009), and within the range of 1.9 to 3.5 for domestic HFO (Zhao et al., 2013), while
750 the average ratio of V/Ni (1.1 ± 0.8) during non-SEP was outside the range. Moreover,
751 the major air pollutants emitted from ships include nitrogen oxides (NO_x), sulfur oxides
752 (SO₂), carbon monoxide (CO), hydrocarbons and primary/secondary particles (Becagli
753 et al., 2017; Wu et al., 2021). As demonstrated in Fig. 13b and Fig. S14b, SO₂
754 concentration was overall higher during SEP (10:00-16:00 on November 11 not
755 included); mass loading of NO₂ was higher during the rush hours of non-SEP, but was
756 higher at night (no traffic) during SEP. Mass proportion of sulfate in NR-PM₁ during
757 SEP was also higher than that during non-SEP ($22.7 \pm 8.1\%$ vs. $19.1 \pm 5.3\%$), but *vice*
758 *versa* for nitrate ($17.8 (\pm 9.9)\%$ during SEP vs. $26.2 (\pm 9.1)\%$ during non-SEP).

759 We further investigated the dependences of *r*BC_c and NR-PM₁ species on V during
760 SEP and non-SEP, as shown in Fig. S15. Here we only used V since Ni level might be
761 influenced by other emission sources, such as refining industry (Jang et al., 2007; Kim
762 et al., 2014) in urban Shanghai, and during non-SEP, Ni still presented a good
763 correlation with *r*BC ($r=0.80$). During SEP, V concentrations (most of them $>4 \text{ ng m}^{-3}$)
764 overall positively correlated with both sulfate and nitrate (except for *r*BC_c sulfate) (Fig.
765 S15a). Considering that V concentration was independently measured for all fine
766 particles, a better correlation with total NR-PM₁ sulfate than it with *r*BC_c sulfate is
767 reasonable. Similarly, V-rich particles had positive correlations with traffic-related OA
768 and LO-OOA no matter in *r*BC_c or in total NR-PM₁ (Fig. S15b). Conversely, during

769 non-SEP, particles with low-V content (most of them $<4 \text{ ng m}^{-3}$) had no clear links with
770 sulfate, nitrate, POA and SOA species (even anti-correlations for $V > 2.5 \text{ ng m}^{-3}$) (Figs.
771 S15c and S15d; a detailed comparison of the correlation coefficients of V with OA
772 factors of *r*BCc and NR-PM₁ organics are provided in Table S2). The results above
773 demonstrate that during SEP, chemical properties of the particles (both fresh and aged
774 ones) were clearly linked with ship influences.

775 Previous studies (Ault et al., 2009;Ault et al., 2010;Liu et al., 2017b) have shown
776 that the fresh ship-emitted V-rich particles are typically accompanied by high sulfate
777 contribution, while those aged V-containing ship particles are on the other hand with
778 relatively high nitrate contribution. In order to further probe chemical characteristics
779 and evolution processes of particles influenced by ship emissions, we divided SEP into
780 three episodes (i.e., EP1-EP3) (marked in Fig. 13). During EP1, *r*BC content was
781 highest (Fig. 13i) and coating was thinnest (Fig. S16i) indicating the particles were
782 relatively fresh, nevertheless the SOA contents were not low (Figs.13h and 13j), OSC
783 was moderate (Fig. S16j), sulfate portions in NR-PM₁ and *r*BCc were both the highest
784 (26.5%), and nitrate portion was the lowest (9.8%) among three episodes (Figs.13g and
785 13i). Such composition is not common in other cases, demonstrating it was a specific
786 period impacted by fresh ship emissions. EP2 had the highest mass loadings of V, gas
787 pollutants as well as the lowest PBL height (~200 meters) (Fig. S16). Mass
788 contributions of nitrate increased and sulfate decreased, and *r*BC content decreased
789 from those during EP1, signifying that the particle population likely contained some
790 aged ship-emitted particles. Surely, particle composition during EP2 was also
791 influenced by the formation mechanisms of secondary species: EP2 was mostly during
792 nighttime, therefore photochemical formation of sulfate and SOA were weak (as shown
793 in Figs. 13g and 13j, sulfate contribution was only 15.1%, and SOA contribution was
794 only 33.7%), while nitrate formation was enhanced due to the nocturnal process. During
795 EP3, *r*BC was the lowest, sulfate and V were moderate, nitrate and SOA were highest
796 in both *r*BCc and NR-PM₁, OSC and *R*_{BC} were highest in *r*BCc among the three episodes
797 (Figs. 13i-j and Figs. S16i-k), therefore it was also a period with influence from aged
798 ship-emitted particles; the difference from EP2 is that photochemically formed sulfate

799 and SOA were still significant as EP3 was in the later afternoon and early evening,
800 though heterogeneously formed nitrate played a non-negligible role too (see the
801 increase of RH, increase of nitrate and decrease of O₃ concentrations from the
802 beginning of EP3 in Fig. 13).

803

804 **4. Conclusions and implications**

805 We conducted a field measurement during November of 2018 in urban Shanghai,
806 China, focusing on the elucidation of physical and chemical properties of the ambient
807 particles containing *r*BC cores (*r*BCc) by using a laser-only SP-AMS together with a
808 HR-AMS. The campaign-average *r*BCc was 4.6 (\pm 4.4) $\mu\text{g m}^{-3}$, occupying \sim 19.1 (\pm
809 4.9) % mass of the total NR-PM₁. The average mass ratio of coating to *r*BC cores (*R*_{BC})
810 was \sim 5.0 (\pm 1.7), indicating an overall thick coating, compared with the *r*BCc near
811 combustion source. Sulfate was found to preferentially condense on non-*r*BC particles
812 thus led to a low fraction of *r*BCc sulfate to that in NR-PM₁ (7.4% \pm 2.2 %), while
813 distribution of nitrate between *r*BCc and non-*r*BC particles showed no obvious
814 difference. PMF analysis on *r*BCc and NR-PM₁ OA reveals that cooking-related
815 organics were externally mixed with *r*BC, and a small portion of organics from biomass
816 burning was only present in *r*BCc; the traffic-related OA species, however, was in a
817 large part internally mixed with *r*BC.

818 A regression algorithm was applied to deconvolute the size distributions of
819 individual *r*BCc OA factors, and results show that small *r*BCc particles were
820 predominantly generated from traffic, and such particles could grow bigger because of
821 condensation of secondary inorganic and organic components, resulting in thick coating.
822 Investigation on diurnal patterns of the *r*BCc species reveals that sulfate and two SOA
823 factors (LO-OOA_{*r*BC} and MO-OOA_{*r*BC}) were generated mainly through daytime
824 photochemical oxidation; nitrate, on the other hand, was governed mainly by the
825 nocturnal N₂O₅ hydrolysis. Partial SOA was found to be produced from in-situ
826 photochemical conversion from traffic-related POA. An average coating time (ACT)
827 was proposed to roughly estimate the timescales for the secondary species to coat on
828 *r*BC, and the ACT of sulfate, LO-OOA_{*r*BC}, MO-OOA_{*r*BC} and nitrate were approximately

829 7, 5, 7 and 19 hours, respectively.

830 Moreover, the size-resolved hygroscopicity parameters of *rBCc* particles (κ_{rBCc})
831 and the coating material (κ_{CT}) were obtained based on the elucidated composition of
832 *rBCc* particles. The fitted equations are: $\kappa_{rBCc}(x) = 0.29 - 0.14 \times \exp(-0.006 \times x)$ and
833 $\kappa_{CT}(x) = 0.35 - 0.09 \times \exp(-0.003 \times x)$ (x is D_{rBCc} , $150 < x < 1000$ nm). The minimums
834 of both κ_{rBCc} and κ_{CT} were at ~ 150 nm due to the abundances of hydrophobic *rBC* cores
835 and traffic-related HOA at this size. Under critical supersaturations (SS_C) of 0.1% and
836 0.2%, the D_{50} values were estimated to be $166 (\pm 16)$ and $110 (\pm 5)$ nm, and the
837 activated number fractions of *rBCc* particles were $16 (\pm 3)\%$ and $59 (\pm 4)\%$,
838 respectively. Finally, a typical case with influence from ship emissions was investigated.
839 During this period, the *rBCc* particles were enriched in V (6.3 ± 3.1 ng m⁻³), with a
840 V/Ni ratio of $2.0 (\pm 0.6)$, and various secondary formation processes affect the ship-
841 emitted particles at different times of the day.

842 In summary, the findings from this comprehensive study on *rBCc* provide rich
843 information regarding the various primary sources and secondary formation pathways
844 of species coated on *rBC*, as well as the features of distributions of those species
845 between *rBC* and non-*rBC* particles. In particular, different types of *rBCc* particles
846 from diesel and gasoline vehicle emissions were resolved and elucidation of their
847 properties are useful to their future effective control. Understanding of the formation
848 processes and coating timescales of secondary components is helpful to understand the
849 impact of ambient BC particles too. At last, the parameterized relationship of
850 hygroscopicity with size distribution is useful for modelling the climate effect of *rBC*
851 (alternation of cloud properties).

852

853 *Data availability.* The data in this study are available from the authors upon request
854 (caxinra@163.com).

855

856 *Supplement.* The supplement related to this article is available online at: XXX

857

858 *Author contributions.* SJC, DDH, YZW, JFW, FZS, and XLG conducted the field

859 measurement. SJC, DDH, YZW, JFW, and JKX analyzed the data. YJZ, HLW, CH and
860 HL reviewed the paper and provide useful suggestions. SJC and XLG wrote the paper.

861

862 *Competing interests.* The contact author has declared that neither they nor their co-
863 authors have any competing interests.

864

865 *Disclaimer.* Publisher's note: Copernicus Publications remains neutral with regard to
866 jurisdictional claims in published maps and institutional affiliations.

867

868 *Acknowledgements.* We sincerely thank SAES to provide data of gaseous pollutants and
869 particulate V and Ni, and the logistic help during the campaign.

870

871 *Financial support.* This work has been supported by the National Natural Science
872 Foundation of China (42021004, 21976093 and 21777073).

873

874 *Review statement.* This paper was XXX.

875

876 **References**

877 Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty,
878 K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn,
879 A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R.,
880 Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez,
881 J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with
882 high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,
883 4478-4485, <https://doi.org/10.1021/es703009q>, 2008.

884 Ault, A. P., Moore, M. J., Furutani, H., and Prather, K. A.: Impact of emissions
885 from the Los Angeles port region on San Diego air quality during regional transport
886 events, Environ. Sci. Technol., 43, 3500-3506, <https://doi.org/10.1021/es8018918>,
887 2009.

888 Ault, A. P., Gaston, C. I., Ying, W., Gerardo, D., Thiemens, M. H., and Prather, K.

889 A.: Characterization of the single particle mixing state of individual ship plume events
890 measured at the Port of Los Angeles, Environ. Sci. Technol., 44, 1954-1961,
891 <https://doi.org/10.1021/es902985h>, 2010.

892 Becagli, S., Anello, F., Bommarito, C., Cassola, F., Calzolai, G., Di Iorio, T., di
893 Sarra, A., Gómez-Amo, J.-L., Lucarelli, F., Marconi, M., Meloni, D., Monteleone, F.,
894 Nava, S., Pace, G., Severi, M., Sferlazzo, D. M., Traversi, R., and Udisti, R.:
895 Constraining the ship contribution to the aerosol of the central Mediterranean, Atmos.
896 Chem. Phys., 17, 2067-2084, <https://doi.org/10.5194/acp-17-2067-2017>, 2017.

897 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo,
898 B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.
899 K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang,
900 S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W.,
901 Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G.,
902 and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific
903 assessment, J. Geophys. Res.: Atmos., 118, 5380-5552,
904 <https://doi.org/10.1002/jgrd.50171>, 2013.

905 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang,
906 Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R.,
907 Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and
908 Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with
909 the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185-222,
910 <https://doi.org/10.1002/mas.20115>, 2007.

911 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli,
912 P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D.,
913 Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of
914 organic compounds using aerosol mass spectrometry: characterization, improved
915 calibration, and implications, Atmos. Chem. Phys., 15, 253-272,
916 <https://doi.org/10.5194/acp-15-253-2015>, 2015a.

917 Canagaratna, M. R., Massoli, P., Browne, E. C., Franklin, J. P., Wilson, K. R.,
918 Onasch, T. B., Kirchstetter, T. W., Fortner, E. C., Kolb, C. E., Jayne, J. T., Kroll, J. H.,

919 and Worsnop, D. R.: Chemical compositions of black carbon particle cores and coatings
920 via soot particle aerosol mass spectrometry with photoionization and electron ionization,
921 J. Phys. Chem. A, 119, 4589-4599, <https://doi.org/10.1021/jp510711u>, 2015b.

922 Cao, L.-M., Wei, J., He, L.-Y., Zeng, H., Li, M.-L., Zhu, Q., Yu, G.-H., and Huang,
923 X.-F.: Aqueous aging of secondary organic aerosol coating onto black carbon: Insights
924 from simultaneous L-ToF-AMS and SP-AMS measurements at an urban site in
925 southern China, J. Clean Prod., 330, 129888,
926 <https://doi.org/10.1016/j.jclepro.2021.129888>, 2022.

927 Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E.
928 S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A.,
929 Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, P. K.,
930 Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption
931 Enhancements Due to the Mixing State of Atmospheric Black Carbon, Science, 337,
932 1078-1081, <https://doi.org/10.1126/science.1230260>, 2012.

933 Chang, R. Y. W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S.
934 J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (κ) of ambient
935 organic aerosol at a field site subject to biogenic and anthropogenic influences:
936 relationship to degree of aerosol oxidation, Atmos. Chem. Phys., 10, 5047-5064,
937 <https://doi.org/10.5194/acp-10-5047-2010>, 2010.

938 Chen, B., Bai, Z., Cui, X., Chen, J., Andersson, A., and Gustafsson, O.: Light
939 absorption enhancement of black carbon from urban haze in Northern China winter,
940 Environ. Pollut., 221, 418-426, <https://doi.org/10.1016/j.envpol.2016.12.004>, 2017.

941 Chen, C., Fan, X., Shaltout, T., Qiu, C., Ma, Y., Goldman, A., and Khalizov, A. F.:
942 An unexpected restructuring of combustion soot aggregates by subnanometer coatings
943 of polycyclic aromatic hydrocarbons, Geophys. Res. Lett., 43, 11,080-011,088,
944 <https://doi.org/10.1002/2016GL070877>, 2016.

945 Chen, C., Enekwizu, O. Y., Fan, X., Dobrzanski, C. D., Ivanova, E. V., Ma, Y., Gor,
946 G. Y., and Khalizov, A. F.: Single Parameter for Predicting the Morphology of
947 Atmospheric Black Carbon, Environ. Sci. Technol., 52, 14169-14179,
948 <https://doi.org/10.1021/acs.est.8b04201>, 2018.

949 Chen, D., Tian, X., Lang, J., Zhou, Y., Li, Y., Guo, X., Wang, W., and Liu, B.: The
950 impact of ship emissions on PM2.5 and the deposition of nitrogen and sulfur in Yangtze
951 River Delta, China, Sci. Total Environ., 649, 1609-1619,
952 <https://doi.org/10.1016/j.scitotenv.2018.08.313>, 2019.

953 Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the
954 system H⁺- NH₄⁺- SO₄²⁻- NO₃⁻- H₂O at tropospheric temperatures, 102, 2155-
955 2171, <https://doi.org/10.1021/jp973043j>, 1998.

956 Collier, S., Williams, L. R., Onasch, T. B., Cappa, C. D., Zhang, X., Russell, L.
957 M., Chen, C.-L., Sanchez, K. J., Worsnop, D. R., and Zhang, Q.: Influence of Emissions
958 and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban
959 Environment: Insights From a Soot Particle-Aerosol Mass Spectrometer, J. Geophys.
960 Res.: Atmos., 123, 6648-6666, <https://doi.org/10.1002/2017jd027851>, 2018.

961 Corbin, J. C., Sierau, B., Gysel, M., Laborde, M., Keller, A., Kim, J., Petzold, A.,
962 Onasch, T. B., Lohmann, U., and Mensah, A. A.: Mass spectrometry of refractory black
963 carbon particles from six sources: carbon-cluster and oxygenated ions, Atmos. Chem.
964 Phys., 14, 2591-2603, <https://doi.org/10.5194/acp-14-2591-2014>, 2014.

965 Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M.
966 J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A.,
967 Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J.,
968 Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol
969 from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem.
970 Phys., 11, 12049-12064, <https://doi.org/10.5194/acp-11-12049-2011>, 2011.

971 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken,
972 A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez,
973 J. L.: Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer,
974 Anal. Chem. , 78, 8281-8289, <https://doi.org/10.1021/ac061249n>, 2006.

975 Enroth, J., Saarikoski, S., Niemi, J., Kousa, A., Ježek, I., Močnik, G., Carbone, S.,
976 Kuuluvainen, H., Rönkkö, T., Hillamo, R., and Pirjola, L.: Chemical and physical
977 characterization of traffic particles in four different highway environments in the
978 Helsinki metropolitan area, Atmos. Chem. Phys., 16, 5497-5512,

979 <https://doi.org/10.5194/acp-16-5497-2016>, 2016.

980 Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K., Fu, Q.,
981 and Chen, L.: Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River
982 Delta and East China Sea and Their Potential Environmental Influence, *Environ. Sci.*
983 *Technol.*, 50, 1322-1329, <https://doi.org/10.1021/acs.est.5b03965>, 2016.

984 Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., Shou, Y., Wang, J., Wang,
985 X., Nie, W., Xu, P., and Wang, W.: Semi-continuous measurement of water-soluble ions
986 in PM2.5 in Jinan, China: Temporal variations and source apportionments, *Atmos.*
987 *Environ.*, 45, 6048-6056, <https://doi.org/10.1016/j.atmosenv.2011.07.041>, 2011.

988 Ge, X., Zhang, Q., Sun, Y., Ruehl, C. R., and Setyan, A.: Effect of aqueous-phase
989 processing on aerosol chemistry and size distributions in Fresno, California, during
990 wintertime, *Environ. Chem.*, 9, 221-235, <https://doi.org/10.1071/EN11168>, 2012.

991 Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M.,
992 Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P., Pietrogrande, M. C., Visentin, M.,
993 Scotto, F., Fuzzi, S., and Facchini, M. C.: Direct observation of aqueous secondary
994 organic aerosol from biomass-burning emissions, *Proc. Natl. Acad. Sci. U. S. A.*, 113,
995 10013-10018, <https://doi.org/10.1073/pnas.1602212113>, 2016.

996 Gong, X., Zhang, C., Chen, H., Nizkorodov, S. A., Chen, J., and Yang, X.: Size
997 distribution and mixing state of black carbon particles during a heavy air pollution
998 episode in Shanghai, *Atmos. Chem. Phys.*, 16, 5399-5411, <https://doi.org/10.5194/acp-16-5399-2016>, 2016.

1000 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison,
1001 M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study
1002 between chemical composition and hygroscopic growth of aerosol particles during
1003 TORCH2, *Atmos. Chem. Phys.*, 7, 6131-6144, <https://doi.org/10.5194/acp-7-6131-2007>, 2007.

1005 Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F., Aiken, A.
1006 C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A simplified description of
1007 the evolution of organic aerosol composition in the atmosphere, *Geophys. Res. Lett.*,
1008 37, <https://doi.org/10.1029/2010gl042737>, 2010.

1009 Hu, D., Liu, D., Kong, S., Zhao, D., Wu, Y., Li, S., Ding, S., Zheng, S., Cheng, Y.,
1010 Hu, K., Deng, Z., Wu, Y., Tian, P., Liu, Q., Huang, M., and Ding, D.: Direct
1011 Quantification of Droplet Activation of Ambient Black Carbon Under Water
1012 Supersaturation, J. Geophys. Res.: Atmos., 126, e2021JD034649,
1013 <https://doi.org/10.1029/2021jd034649>, 2021.

1014 Jacobi, H. W., Lim, S., Ménégoz, M., Ginot, P., Laj, P., Bonasoni, P., Stocchi, P.,
1015 Marinoni, A., and Arnaud, Y.: Black carbon in snow in the upper Himalayan Khumbu
1016 Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and
1017 radiative forcing, The Cryosphere, 9, 1685-1699, <https://doi.org/10.5194/tc-9-1685-2015>, 2015.

1018 Jang, H.-N., Seo, Y.-C., Lee, J.-H., Hwang, K.-W., Yoo, J.-I., Sok, C.-H., and Kim,
1019 S.-H.: Formation of fine particles enriched by V and Ni from heavy oil combustion:
1020 Anthropogenic sources and drop-tube furnace experiments, Atmos. Environ., 41, 1053-
1021 1063, <https://doi.org/10.1016/j.atmosenv.2006.09.011>, 2007.

1022 Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and
1023 Worsnop, D. R.: Development of an aerosol mass spectrometer for size and composition
1024 analysis of submicron particles, Aerosol Sci. Technol., 33, 49-70,
1025 <https://doi.org/10.1080/027868200410840>, 2000.

1026 Kim, K.-H., Shon, Z.-H., Mauulida, P. T., and Song, S.-K.: Long-term monitoring
1027 of airborne nickel (Ni) pollution in association with some potential source processes in
1028 the urban environment, Chemosphere, 111, 312-319,
1029 <https://doi.org/10.1016/j.chemosphere.2014.03.138>, 2014.

1030 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R.,
1031 Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E.
1032 R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
1033 for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133-139,
1034 <https://doi.org/10.1038/nchem.948>, 2011.

1035 Lambe, A. T., Ahern, A. T., Wright, J. P., Croasdale, D. R., Davidovits, P., and
1036 Onasch, T. B.: Oxidative aging and cloud condensation nuclei activation of laboratory
1037 combustion soot, J. Aerosol Sci., 79, 31-39.

1039 <https://doi.org/10.1016/j.jaerosci.2014.10.001>, 2015.

1040 Laskin, A., Smith, J. S., and Laskin, J.: Molecular characterization of nitrogen-
1041 containing organic compounds in biomass burning aerosols using high-resolution mass
1042 spectrometry, Environ. Sci. Technol., 43, 3764-3771,
1043 <https://doi.org/10.1021/es803456n>, 2009.

1044 Lee, A. K. Y., Willis, M. D., Healy, R. M., Onasch, T. B., and Abbatt, J. P. D.:
1045 Mixing state of carbonaceous aerosol in an urban environment: single particle
1046 characterization using the soot particle aerosol mass spectrometer (SP-AMS), Atmos.
1047 Chem. Phys., 15, 1823-1841, <https://doi.org/10.5194/acp-15-1823-2015>, 2015.

1048 Lee, A. K. Y., Chen, C.-L., Liu, J., Price, D. J., Betha, R., Russell, L. M., Zhang,
1049 X., and Cappa, C. D.: Formation of secondary organic aerosol coating on black carbon
1050 particles near vehicular emissions, Atmos. Chem. Phys., 17, 15055-15067,
1051 <https://doi.org/10.5194/acp-17-15055-2017>, 2017.

1052 Lee, A. K. Y., Rivellini, L. H., Chen, C. L., Liu, J., Price, D. J., Betha, R., Russell,
1053 L. M., Zhang, X., and Cappa, C. D.: Influences of primary emission and secondary
1054 coating formation on the particle diversity and mixing state of black carbon particles,
1055 Environ. Sci. Technol., 53, 9429-9438, <https://doi.org/10.1021/acs.est.9b03064>, 2019.

1056 Li, W., Teng, X., Chen, X., Liu, L., Xu, L., Zhang, J., Wang, Y., Zhang, Y., and Shi,
1057 Z.: Organic coating reduces hygroscopic growth of phase-separated aerosol particles,
1058 Environ. Sci. Technol., 55, 16339–16346, <https://doi.org/10.1021/acs.est.1c05901>,
1059 2021.

1060 Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans, G.,
1061 Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic properties
1062 controlled by mixing state and composition, Atmos. Chem. Phys., 13, 2015-2029,
1063 <https://doi.org/10.5194/acp-13-2015-2013>, 2013.

1064 Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, Dominick V.,
1065 Reddington, Carly L., Kong, S., Williams, Paul I., Ting, Y.-C., Haslett, S., Taylor,
1066 Jonathan W., Flynn, Michael J., Morgan, William T., McFiggans, G., Coe, H., and
1067 Allan, James D.: Black-carbon absorption enhancement in the atmosphere determined
1068 by particle mixing state, Nat. Geosci., 10, 184-188, <https://doi.org/10.1038/ngeo2901>,

1069 2017a.

1070 Liu, D., Joshi, R., Wang, J., Yu, C., Allan, J. D., Coe, H., Flynn, M. J., Xie, C., Lee, J., Squires, F., Kotthaus, S., Grimmond, S., Ge, X., Sun, Y., and Fu, P.: Contrasting physical properties of black carbon in urban Beijing between winter and summer, *Atmos. Chem. Phys.*, 19, 6749-6769, <https://doi.org/10.5194/acp-19-6749-2019>, 2019.

1071

1072

1073

1074 Liu, S., Aiken, A. C., Gorkowski, K., Dubey, M. K., Cappa, C. D., Williams, L. R., Herndon, S. C., Massoli, P., Fortner, E. C., Chhabra, P. S., Brooks, W. A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., China, S., Sharma, N., Mazzoleni, C., Xu, L., Ng, N. L., Liu, D., Allan, J. D., Lee, J. D., Fleming, Z. L., Mohr, C., Zotter, P., Szidat, S., and Prevot, A. S. H.: Enhanced light absorption by mixed source black and brown carbon particles in UK winter, *Nat. Commun.*, 6, 8435, <https://doi.org/10.1038/ncomms9435>, 2015.

1075

1076

1077

1078

1079

1080

1081 Liu, Z., Lu, X., Feng, J., Fan, Q., Zhang, Y., and Yang, X.: Influence of Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly Time-Resolved Online Measurements and Numerical Simulation in Shanghai, *Environ. Sci. Technol.*, 51, 202-211, <https://doi.org/10.1021/acs.est.6b03834>, 2017b.

1082

1083

1084

1085 Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y., Jiang, Y., Zhu, W., Ge, X., Collier, S., and Zheng, J.: Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China, *Atmos. Environ.*, 222, 117141, <https://doi.org/https://doi.org/10.1016/j.atmosenv.2019.117141>, 2020.

1086

1087

1088

1089 Malmborg, V. B., Eriksson, A. C., Shen, M., Nilsson, P., Gallo, Y., Waldheim, B., Martinsson, J., Andersson, O., and Pagels, J.: Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated with Online Aerosol Mass Spectrometry, *Environ. Sci. Technol.*, 51, 1876-1885, <https://doi.org/10.1021/acs.est.6b03391>, 2017.

1090

1091

1092

1093 Mar, V., Fulvio, A., Andrés, A., Xavier, Q., Teresa, M., Saúl García, D. S., María Dolores, H., and Rosalía, F. P.: Chemical tracers of particulate emissions from commercial shipping, *Environ. Sci. Technol.*, 43, 7472-7477, <https://doi.org/10.1021/es901558t>, 2009.

1094

1095

1096

1097 Massoli, P., Fortner, E. C., Canagaratna, M. R., Williams, L. R., Zhang, Q., Sun, Y., Schwab, J. J., Trimborn, A., Onasch, T. B., Demerjian, K. L., Kolb, C. E., Worsnop,

1098

1099 D. R., and Jayne, J. T.: Pollution Gradients and Chemical Characterization
1100 of Particulate Matter from Vehicular Traffic near Major Roadways: Results from the
1101 2009 Queens College Air Quality Study in NYC, *Aerosol Sci. Technol.*, 46, 1201-1218,
1102 <https://doi.org/10.1080/02786826.2012.701784>, 2012.

1103 Massoli, P., Onasch, T. B., Cappa, C. D., Nuamaan, I., Hakala, J., Hayden, K., Li,
1104 S.-M., Sueper, D. T., Bates, T. S., Quinn, P. K., Jayne, J. T., and Worsnop, D. R.:
1105 Characterization of black carbon-containing particles from soot particle aerosol mass
1106 spectrometer measurements on the R/VAtlantisduring CalNex 2010, *J. Geophys. Res.:
1107 Atmos.*, 120, 2575-2593, <https://doi.org/10.1002/2014jd022834>, 2015.

1108 Mazzei, F., D'Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., and Vecchi,
1109 R.: Characterization of particulate matter sources in an urban environment, *Sci. Total
1110 Environ.*, 401, 81-89, <https://doi.org/10.1016/j.scitotenv.2008.03.008>, 2008.

1111 Mohr, C., Huffman, J. A., Cubison, M. J., Aiken, A. C., Docherty, K. S., Kimmel,
1112 J. R., Ulbrich, I. M., Hannigan, M., and Jimenez, J. L.: Characterization of Primary
1113 Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles
1114 with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and
1115 Chamber Observations, *Environ. Sci. Technol.*, 43, 2443-2449,
1116 <https://doi.org/10.1021/es8011518>, 2009.

1117 Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V.,
1118 Faccinetto, A., and Focsa, C.: Characterisation of particulate matter and gaseous
1119 emissions from a large ship diesel engine, *Atmos. Environ.*, 43, 2632-2641,
1120 <https://doi.org/10.1016/j.atmosenv.2009.02.008>, 2009.

1121 Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and
1122 Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from
1123 aerosol mass spectra, *Atmos. Chem. Phys.*, 11, 6465-6474, <https://doi.org/10.5194/acp-11-6465-2011>, 2011.

1125 Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L., Williams, L.
1126 R., Davidovits, P., and Worsnop, D. R.: Soot Particle Aerosol Mass Spectrometer:
1127 Development, Validation, and Initial Application, *Aerosol Sci. Technol.*, 46, 804-817,
1128 <https://doi.org/10.1080/02786826.2012.663948>, 2012.

1129 Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor
1130 model with optimal utilization of error estimates of data values, *Environmetrics*, 5, 111-
1131 126, <https://doi.org/10.1002/env.3170050203>, 1994.

1132 Pathak, R. K., Wang, T., and Wu, W. S.: Nighttime enhancement of PM2.5 nitrate
1133 in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible
1134 contributions of heterogeneous hydrolysis of N₂O₅ and HNO₃ partitioning, *Atmos.*
1135 *Environ.*, 45, 1183-1191, <https://doi.org/10.1016/j.atmosenv.2010.09.003>, 2011.

1136 Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy, Z. M., Zeng, L.,
1137 Shao, M., and Wu, Y. S.: Markedly enhanced absorption and direct radiative forcing of
1138 black carbon under polluted urban environments, *Proc. Natl. Acad. Sci. U. S. A.*, 113,
1139 4266-4271, <https://doi.org/10.1073/pnas.1602310113>, 2016.

1140 Petit, J. E., Favez, O., Albinet, A., and Canonaco, F.: A user-friendly tool for
1141 comprehensive evaluation of the geographical origins of atmospheric pollution: Wind
1142 and trajectory analyses, 88, 183-187, <https://doi.org/10.1016/j.envsoft.2016.11.022>,
1143 2017.

1144 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of
1145 hygroscopic growth and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7,
1146 1961-1971, <https://doi.org/10.5194/acp-7-1961-2007>, 2007.

1147 Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to
1148 black carbon, *Nat. Geosci.*, 1, 221-227, <https://doi.org/10.1038/ngeo156>, 2008.

1149 Rivellini, L.-H., Adam, M. G., Kasthuriarachchi, N., and Lee, A. K. Y.:
1150 Characterization of carbonaceous aerosols in Singapore: insight from black carbon
1151 fragments and trace metal ions detected by a soot particle aerosol mass spectrometer,
1152 *Atmos. Chem. Phys.*, 20, 5977-5993, <https://doi.org/10.5194/acp-20-5977-2020>, 2020.

1153 Saarikoski, S., Timonen, H., Carbone, S., Kuuluvainen, H., Niemi, J. V., Kousa,
1154 A., Rönkkö, T., Worsnop, D., Hillamo, R., and Pirjola, L.: Investigating the chemical
1155 species in submicron particles emitted by city buses, *Aerosol Sci. Technol.*, 51, 317-
1156 329, <https://doi.org/10.1080/02786826.2016.1261992>, 2016.

1157 Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S.,
1158 Hung, H. M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization

1159 of the sources and processes of organic and inorganic aerosols in New York city with a
1160 high-resolution time-of-flight aerosol mass spectrometer, *Atmos. Chem. Phys.*, 11,
1161 1581-1602, <https://doi.org/10.5194/acp-11-1581-2011>, 2011.

1162 Sun, Y. L., Zhang, Q., Schwab, J. J., Yang, T., Ng, N. L., and Demerjian, K. L.:
1163 Factor analysis of combined organic and inorganic aerosol mass spectra from high
1164 resolution aerosol mass spectrometer measurements, *Atmos. Chem. Phys.*, 12, 8537-
1165 8551, <https://doi.org/10.5194/acp-12-8537-2012>, 2012.

1166 Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol
1167 hygroscopicity model framework: Part 2 – Including organic compounds, *Atmos. Chem.*
1168 *Phys.*, 5, 1223-1242, <https://doi.org/10.5194/acp-5-1223-2005>, 2005a.

1169 Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol
1170 hygroscopicity model framework: Part 1 – Inorganic compounds, *Atmos. Chem. Phys.*,
1171 5, 1205-1222, <https://doi.org/10.5194/acp-5-1205-2005>, 2005b.

1172 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
1173 Interpretation of organic components from Positive Matrix Factorization of aerosol
1174 mass spectrometric data, *Atmos. Chem. Phys.*, 9, 2891-2918,
1175 <https://doi.org/10.5194/acp-9-2891-2009>, 2009.

1176 Ulbrich, I. M., Canagaratna, M. R., Cubison, M. J., Zhang, Q., Ng, N. L., Aiken,
1177 A. C., and Jimenez, J. L.: Three-dimensional factorization of size-resolved organic
1178 aerosol mass spectra from Mexico City, *Atmos. Meas. Tech.*, 5, 195-224,
1179 <https://doi.org/10.5194/amt-5-195-2012>, 2012.

1180 Wang, J., Ge, X., Chen, Y., Shen, Y., Zhang, Q., Sun, Y., Xu, J., Ge, S., Yu, H., and
1181 Chen, M.: Highly time-resolved urban aerosol characteristics during springtime in
1182 Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry,
1183 *Atmos. Chem. Phys.*, 16, 9109-9127, <https://doi.org/10.5194/acp-16-9109-2016>, 2016.

1184 Wang, J., Zhang, Q., Chen, M., Collier, S., Zhou, S., Ge, X., Xu, J., Shi, J., Xie,
1185 C., Hu, J., Ge, S., Sun, Y., and Coe, H.: First Chemical Characterization of Refractory
1186 Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l),
1187 *Environ. Sci. Technol.*, 51, 14072-14082, <https://doi.org/10.1021/acs.est.7b03973>,
1188 2017.

1189 Wang, J., Liu, D., Ge, X., Wu, Y., Shen, F., Chen, M., Zhao, J., Xie, C., Wang, Q.,
1190 Xu, W., Zhang, J., Hu, J., Allan, J., Joshi, R., Fu, P., Coe, H., and Sun, Y.:
1191 Characterization of black carbon-containing fine particles in Beijing during wintertime,
1192 *Atmos. Chem. Phys.*, 19, 447-458, <https://doi.org/10.5194/acp-19-447-2019>, 2019.

1193 Wang, J., Ye, J., Liu, D., Wu, Y., Zhao, J., Xu, W., Xie, C., Shen, F., Zhang, J.,
1194 Ohno, P. E., Qin, Y., Zhao, X., Martin, S. T., Lee, A. K. Y., Fu, P., Jacob, D. J., Zhang,
1195 Q., Sun, Y., Chen, M., and Ge, X.: Characterization of submicron organic particles in
1196 Beijing during summertime: comparison between SP-AMS and HR-AMS, *Atmos.*
1197 *Chem. Phys.*, 20, 14091-14102, <https://doi.org/10.5194/acp-20-14091-2020>, 2020a.

1198 Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W., Zhang, Y., Wu,
1199 C., Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P., Fu, P., Li, Y., Lee, H. C., Choi,
1200 H., Zhang, J., Liao, H., Chen, M., Sun, Y., Ge, X., Martin, S. T., and Jacob, D. J.:
1201 Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter
1202 Beijing haze, *Proc. Natl. Acad. Sci. U. S. A.*, 118, e2022179118,
1203 <https://doi.org/10.1073/pnas.2022179118>, 2021.

1204 Wang, S., Newland, M. J., Deng, W., Rickard, A. R., Hamilton, J. F., Muñoz, A.,
1205 Ródenas, M., Vázquez, M. M., Wang, L., and Wang, X.: Aromatic Photo-oxidation, A
1206 New Source of Atmospheric Acidity, *Environ. Sci. Technol.*, 54, 7798-7806,
1207 <https://doi.org/10.1021/acs.est.0c00526>, 2020b.

1208 Willis, M. D., Healy, R. M., Riemer, N., West, M., Wang, J. M., Jeong, C.-H.,
1209 Wenger, J. C., Evans, G. J., Abbatt, J. P. D., and Lee, A. K. Y.: Quantification of black
1210 carbon mixing state from traffic: implications for aerosol optical properties, *Atmos.*
1211 *Chem. Phys.*, 16, 4693-4706, <https://doi.org/10.5194/acp-16-4693-2016>, 2016.

1212 Wu, Y., Ge, X., Wang, J., Shen, Y., Ye, Z., Ge, S., Wu, Y., Yu, H., and Chen, M.:
1213 Responses of secondary aerosols to relative humidity and photochemical activities in
1214 an industrialized environment during late winter, *Atmos. Environ.*, 193, 66-78,
1215 <https://doi.org/10.1016/j.atmosenv.2018.09.008>, 2018.

1216 Wu, Y., Liu, D., Wang, J., Shen, F., Chen, Y., Cui, S., Ge, S., Wu, Y., Chen, M.,
1217 and Ge, X.: Characterization of Size-Resolved Hygroscopicity of Black Carbon-
1218 Containing Particle in Urban Environment, *Environ. Sci. Technol.*, 53, 14212-14221,

1219 <https://doi.org/10.1021/acs.est.9b05546>, 2019.

1220 Wu, Y., Liu, D., Wang, X., Li, S., Zhang, J., Qiu, H., Ding, S., Hu, K., Li, W., Tian,
1221 P., Liu, Q., Zhao, D., Ma, E., Chen, M., Xu, H., Ouyang, B., Chen, Y., Kong, S., Ge, X.,
1222 and Liu, H.: Ambient marine shipping emissions determined by vessel operation mode
1223 along the East China Sea, Sci. Total Environ., 769, 144713,
1224 <https://doi.org/10.1016/j.scitotenv.2020.144713>, 2021.

1225 Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler,
1226 A., and Hu, M.: Particle hygroscopicity and its link to chemical composition in the
1227 urban atmosphere of Beijing, China, during summertime, Atmos. Chem. Phys., 16,
1228 1123-1138, <https://doi.org/10.5194/acp-16-1123-2016>, 2016.

1229 Xie, C., Xu, W., Wang, J., Liu, D., Ge, X., Zhang, Q., Wang, Q., Du, W., Zhao, J.,
1230 Zhou, W., Li, J., Fu, P., Wang, Z., Worsnop, D., and Sun, Y.: Light absorption
1231 enhancement of black carbon in urban Beijing in summer, Atmos. Environ., 213, 499-
1232 504, <https://doi.org/10.1016/j.atmosenv.2019.06.041>, 2019.

1233 Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition,
1234 sources, and processes of urban aerosols during summertime in northwest China:
1235 insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14,
1236 12593-12611, <https://doi.org/10.5194/acp-14-12593-2014>, 2014.

1237 Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P.,
1238 Wang, Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and Photochemical
1239 Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China,
1240 Environ. Sci. Technol., 51, 762-770, <https://doi.org/10.1021/acs.est.6b04498>, 2017.

1241 Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W.,
1242 Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in Aerosol Chemistry
1243 From 2014 to 2016 in Winter in Beijing: Insights From High-Resolution Aerosol Mass
1244 Spectrometry, J. Geophys. Res.: Atmos., 124, 1132-1147,
1245 <https://doi.org/10.1029/2018jd029245>, 2019.

1246 Ye, Z., Liu, J., Gu, A., Feng, F., Liu, Y., Bi, C., Xu, J., Li, L., Chen, H., Chen, Y.,
1247 Dai, L., Zhou, Q., and Ge, X.: Chemical characterization of fine particulate matter in
1248 Changzhou, China, and source apportionment with offline aerosol mass spectrometry,

1249 Atmos. Chem. Phys., 17, 2573-2592, <https://doi.org/10.5194/acp-17-2573-2017>, 2017.

1250 Yu, G., Zhang, Y., Yang, F., He, B., Zhang, C., Zou, Z., Yang, X., Li, N., and Chen,
1251 J.: Dynamic Ni/V Ratio in the Ship-Emitted Particles Driven by Multiphase Fuel Oil
1252 Regulations in Coastal China, Environ. Sci. Technol., 55, 15031-15039,
1253 <https://doi.org/10.1021/acs.est.1c02612>, 2021.

1254 Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical
1255 characterization of SOA formed from aqueous-phase reactions of phenols with the
1256 triplet excited state of carbonyl and hydroxyl radical, Atmos. Chem. Phys., 14, 13801-
1257 13816, <https://doi.org/10.5194/acp-14-13801-2014>, 2014.

1258 Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y., Zhao, J.,
1259 Liu, C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang Annie, L., Ji, Y., Wang, G., Hu,
1260 M., Molina Mario, J., and Zhang, R.: An unexpected catalyst dominates formation and
1261 radiative forcing of regional haze, Proc. Natl. Acad. Sci. U. S. A., 117, 3960-3966,
1262 <https://doi.org/10.1073/pnas.1919343117>, 2020.

1263 Zhang, G., Fu, Y., Peng, X., Sun, W., Shi, Z., Song, W., Hu, W., Chen, D., Lian,
1264 X., Li, L., Tang, M., Wang, X., and Bi, X.: Black Carbon Involved Photochemistry
1265 Enhances the Formation of Sulfate in the Ambient Atmosphere: Evidence From In Situ
1266 Individual Particle Investigation, J. Geophys. Res.: Atmos., 126, e2021JD035226,
1267 <https://doi.org/10.1029/2021JD035226>, 2021.

1268 Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J.-L.:
1269 Time- and size-resolved chemical composition of submicron particles in Pittsburgh:
1270 Implications for aerosol sources and processes, J. Geophys. Res., 110,
1271 <https://doi.org/10.1029/2004JD004649>, 2005.

1272 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop,
1273 D. R., and Sun, Y.: Understanding atmospheric organic aerosols via factor analysis of
1274 aerosol mass spectrometry: a review, Anal. Bioanal. Chem., 401, 3045-3067,
1275 <https://doi.org/10.1007/s00216-011-5355-y>, 2011.

1276 Zhao, J., Qiu, Y., Zhou, W., Xu, W., Wang, J., Zhang, Y., Li, L., Xie, C., Wang, Q.,
1277 Du, W., Worsnop, D. R., Canagaratna, M. R., Zhou, L., Ge, X., Fu, P., Li, J., Wang, Z.,
1278 Donahue, N. M., and Sun, Y.: Organic Aerosol Processing During Winter Severe Haze

1279 Episodes in Beijing, J. Geophys. Res.: Atmos., 124, 10248-10263,
1280 <https://doi.org/10.1029/2019jd030832>, 2019.

1281 Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., and Chen,
1282 L.: Characteristics and ship traffic source identification of air pollutants in China's
1283 largest port, Atmos. Environ., 64, 277-286,
1284 <https://doi.org/10.1016/j.atmosenv.2012.10.007>, 2013.

1285 Zhou, S., Collier, S., Xu, J., Mei, F., Wang, J., Lee, Y.-N., Sedlacek, A. J.,
1286 Springston, S. R., Sun, Y., and Zhang, Q.: Influences of upwind emission sources and
1287 atmospheric processing on aerosol chemistry and properties at a rural location in the
1288 Northeastern U.S., J. Geophys. Res.: Atmos., 121, 6049-6065,
1289 <https://doi.org/10.1002/2015jd024568>, 2016.

1290

1291

1292 Figure 1. Time series of (a) wind direction (WD) colored by wind speed (WS)
 1293 (b) air temperature (T), relative humidity (RH) and precipitation, (c) mass concentrations of
 1294 rBC, Ni, V, and R_{BC} (mass ratio of all coating species to rBC), (d) mass concentrations
 1295 of gas pollutants of CO, NO₂, O₃ and SO₂, (e) mass fractions (%) of different OA factors
 1296 to the total rBCc OA, (f) mass fractions (%) of different components to the total rBCc
 1297 mass, and (g) mass concentrations of stacked rBCc components.

1298

1299 Figure 2. Diurnal cycles of mass concentrations of (a–e) $r\text{BC}_\text{C}$ and NR-PM_1 species
1300 (organics, nitrate, ammonium, sulfate, and chloride), and (f) $r\text{BC}$ and $R\text{BC}$. Campaign-
1301 average chemical composition of $r\text{BC}_\text{C}$ (g) and NR-PM_1 (h). (i) Mass ratios of species
1302 in $r\text{BC}_\text{C}$ to those in NR-PM_1 (the whiskers above and below the boxes mark the 90%
1303 and 10% percentiles, respectively; the upper and lower edge of the boxes represent the
1304 75% and 25% percentiles, respectively; and the lines and triangles inside the boxes
1305 denote the median and mean values, respectively; SOA represents $([\text{LO-OOA}_{r\text{BC}}] +$
1306 $[\text{MO-OOA}_{r\text{BC}}])/([\text{LO-OOA}_{\text{NR-PM}_1}] + [\text{LV-OOA}_{\text{NR-PM}_1}])$, and POA represents $([r\text{BC-rich} +$
1307 $\text{HOA-rich} + \text{BBOA} + \text{WS-HOA}])/\text{HOA}_{\text{NR-PM}_1}$).

1308

1309 Figure 3. High resolution mass spectra of (a) rBC-rich, (b) BBOA, (c) HOA-rich, (d)
 1310 WS-HOA, (e) LO-OOA_{rBC}, and (f) MO-OOA_{rBC}. (g-l) Time series of corresponding
 1311 factors, their tracers (rBC, C₂H₄O₂⁺, C₄H₉⁺, ALWC, nitrate and sulfate) as well as the
 1312 correlation coefficients (ALWC refers to aerosol liquid water content, which was
 1313 estimated by using the model II of extended aerosol inorganic model (E-AIM II)(Clegg
 1314 et al., 1998); calculation details and results at different RH values are described in the
 1315 caption and shown in Fig. S6)

1316

1317

1318 Figure 4. Campaign-average size distributions of six *r*BCc OA factors (a) and individual
 1319 rBCc components (b), and corresponding mass contributions of the six factors to the
 1320 total *r*BCc OA (c), and the major components to the total *r*BCc (d) at different sizes
 1321 (80-1000 nm).

1322

1325 Figure 5. (a) Variations of mass fractions of the major $r\text{BCc}$ components against R_{BC} .
 1326 (b) Variations of mass contributions of individual $r\text{BCc}$ OA factors to $r\text{BC}$ against R_{BC} .
 1327

1328

1329 Figure 6. Comparisons of the diurnal patterns of different POA factors (b) and SOA
1330 factors (c) of $rBCc$ and $NR-PM_1$.
1331

1332

1333

1334 Figure 7. Image plots of size distributions of *r*BCc nitrate, sulfate, organics as a function
1335 of (a-c) Ox and (d-f) RH, respectively (color represents its concentration).
1336

1337

1338 Figure 8. Variations of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio, mass
 1339 ratios of different POA factors, SOA factors and total POA and SOA to *r*BC against Ox
 1340 (a-d) and RH (e-h) ($\text{NOR} = n\text{NO}_3^-/(n\text{NO}_3^- + n\text{NO}_2 + n\text{NO})$ and $\text{SOR} = n\text{SO}_4^{2-}/(n\text{SO}_4^{2-} + n\text{SO}_2)$,
 1341 where $n\text{NO}_3^-$, $n\text{SO}_4^{2-}$, $n\text{NO}_2$, $n\text{NO}$ and $n\text{SO}_2$ are the molar concentrations of particle-
 1342 phase sulfate, nitrate, gaseous NO_2 , NO and SO_2 , respectively).

1343

1344

1345 Figure 9. (a) Van Krevelen diagram of H/C versus O/C ratios for all rBCc OA and the
 1346 six factors colored by Ox concentrations (the black line represents the linearly fitted
 1347 line of all OA data, and the red line is the fitted line of the four OA factors). (b-d) Mass
 1348 fractions of selected oxygenated ion fragments as a function of Ox (meanings of the
 1349 boxes are the same as those described in Fig. 2). (e-g) Scatter plots of H/C versus O/C
 1350 ratios under different Ox levels (data are colored by Ox concentrations).

1351

1352 Figure 10. Campaign-average diurnal patterns of (a) rBC , POA_{rBC}/rBC and
 1353 SOA_{rBC}/rBC , and (b) rBC , $MO-OOA_{rBC}/rBC$ and $LO-OOA_{rBC}/rBC$. Adjusted diurnal
 1354 patterns by the average coating time (ACT) for (c) $LO-OOA_{rBC}/rBC$, $MO-OOA_{rBC}/rBC$,
 1355 and (d) SO_4^{2-}/rBC , NO_3^-/rBC .

1356

1357

1358 Figure 11. Image plots of size-resolved hygroscopicity parameters of (a) $r\text{BCc}$ ($\kappa_{r\text{BCc}}$),
 1359 (b) its coating materials (κ_{CT}) during the whole campaign, and (c) the campaign-average
 1360 size-resolved $\kappa_{r\text{BCc}}$ at different R_{BC} .

1361

1362 Figure 12. Campaign-average size-resolved hygroscopic parameters for $rBCc$ (κ_{rBCc})
 1363 and (a) for its coatings (κ_{CT}) (b) (the red lines are exponential fits of the data of 150-
 1364 1000 nm). (c) Campaign-average size-resolved critical supersaturation (SS_C), and (d)
 1365 the predicted activated fraction of $rBCc$ number concentration based on D_{50} at SS_C of
 1366 0.1% (166 nm) and 0.2% (110 nm) (the solid circles are mean values, the upper and
 1367 lower lines are the 75th and 25th percentiles, respectively).
 1368

