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1. Methods 66 

1.1 The modelling method of 𝑨𝑨𝑬𝑩𝑪,𝝀−𝟖𝟖𝟎 67 

The absorption coefficient σabs,Mie,λ was obtained by the following: 68 

𝜎𝑎𝑏𝑠,𝑀𝑖𝑒,𝜆 = ∫ 𝑄𝑎𝑏𝑠,𝑀𝑖𝑒,𝜆(𝐷𝑝) ∗ (
𝜋

4
𝐷𝑝

2) 𝑁(𝑙𝑜𝑔𝐷𝑝) ∗ 𝑑𝑙𝑜𝑔𝐷𝑝
 (1) 69 

where 𝑁(𝑙𝑜𝑔𝐷𝑝) is the PNSD function, 𝑄𝑎𝑏𝑠,𝑀𝑖𝑒,𝜆 is absorption efficiency which is simulated using 70 

the Mie-theory,  𝐷𝑝  is the particle. For 𝐷𝑝  bin, particles are classified into three types: non-light-71 

absorbing particles (Non-BC), BC-containing particles and pure BC particles. Parameters rext defined 72 

as mass fraction of pure externally mixed BC (Mext) to total BC mass (MBC) in different diameter bins 73 

and R_NBC defined as the number fraction of particles that does not contain BC are used to represent 74 

BC mixing state.The PNSD of Non-BC particles (𝑁(𝑙𝑜𝑔𝐷𝑝)𝑁𝑜𝑛−𝐵𝐶 ) and BC-containing particles 75 

(𝑁(𝑙𝑜𝑔𝐷𝑝)𝐵𝐶) can be given by the following equations: 76 

𝑁(𝑙𝑜𝑔𝐷𝑝)𝑁𝑜𝑛−𝐵𝐶 = 𝑁(𝑙𝑜𝑔𝐷𝑝)𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 𝑅_𝑁𝐵𝐶 (2) 77 

𝑁(𝑙𝑜𝑔𝐷𝑝)𝐵𝐶 = 𝑁(𝑙𝑜𝑔𝐷𝑝)𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ (1 − 𝑅_𝑁𝐵𝐶) (3) 78 

𝑁(𝑙𝑜𝑔𝐷𝑝)𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is the PNSD measured by the SMPS and APS. The PNSD of pure BC particles 79 

(𝑁(𝑙𝑜𝑔𝐷𝑝)𝑒𝑥𝑡 ) and core–shell mixed BC particles ( 𝑁(𝑙𝑜𝑔𝐷𝑝)𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙 ) can be given by the 80 

following equations: 81 

𝑟𝑒𝑥𝑡 =
𝑀𝑒𝑥𝑡

𝑀𝐵𝐶
  (4) 82 

𝑁(𝑙𝑜𝑔𝐷𝑝)𝑒𝑥𝑡 = 𝑁(𝑙𝑜𝑔𝐷𝑝)𝐵𝐶 ∗ 𝑓𝑒𝑥𝑡(𝐷𝑝)  (5)  83 

 𝑁(𝑙𝑜𝑔𝐷𝑝)𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙 = 𝑁(𝑙𝑜𝑔𝐷𝑝)𝐵𝐶 ∗ (1 − 𝑓𝑒𝑥𝑡(𝐷𝑝) (6)  84 

𝑓𝑒𝑥𝑡(𝐷𝑝) is volume fraction of pure BC at each diameter bin which can be calculated by : 85 

𝑓𝑒𝑥𝑡(𝐷𝑝) =
𝑀𝐵𝐶(𝐷𝑝)∗𝑟𝑒𝑥𝑡

𝜌𝐵𝐶∗𝑁(𝑙𝑜𝑔𝐷𝑝)𝐵𝐶∗(
𝜋

6
𝐷𝑝

3)

1 (7) 86 

where 𝜌𝐵𝐶  is the density of BC (1.5 g cm−32); MBC is derived from AE33. Size distribution of BC 87 

mass 𝑀𝐵𝐶(𝐷𝑝) is calculated based on the normalized Cx fraction 𝑓𝐶𝑥(𝐷𝑝) at each diameter bin: 88 

𝑀𝐵𝐶(𝐷𝑝) = 𝑀𝐵𝐶 × 𝑓𝐶𝑥(𝐷𝑝)  (8) 89 

In addition to the PNSD of the three types of particles mentioned above, another key parameter of 90 
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the core-shell model is the diameter of the BC core, at each diameter bin the 𝐷𝑐𝑜𝑟𝑒 is calculated as: 91 

𝐷𝑐𝑜𝑟𝑒 = (
6×𝑀𝐵𝐶(𝐷𝑝)∗(1−𝑟𝑒𝑥𝑡)

𝜌𝐵𝐶∗𝜋
)1/3  (9) 92 

After obtaining the absorption coefficient at each wavelength, the AAE at two wavelengths is 93 

calculated as the following equation: 94 

AAEλ1−λ2 =
ln(σabs,λ1)−ln(σabs,λ2)

ln(λ1)−ln(λ2)
  (10) 95 

 96 

 97 

1.2 Mass Scattering Efficiency calculations for different aerosol components.   98 

The size distributions of ammonium (AN) nitrate and ammonium sulfate (AS) paired from measured size 99 

distributions of nitrate, ammonium and sulfate by the SP-AMS under different non-refractory mass concentrations of 100 

PM1 (NR_PM1, PM1 corresponds to aerosols with aerodynamic diameter less than 1 𝜇m) is shown in Fig.S1a. Note 101 

that the Dm converted by assuming an aerosol density of 1.6 g/cm3 from the SP-AMS vacuum aerodynamic diameter 102 

Dva.  The MSEAN,PM1 defined as 𝑀𝑆𝐸𝑃𝑀1 =
𝜎𝑠𝑝,𝑃𝑀1

𝐴𝑁𝑃𝑀1
 under different NR_PM1 conditions and results of MSEAS,PM1 103 

are shown in Fig.S1b. The density of AS and AN are 1.769 and 1.72 g/cm3, and used refractive index of AS and AN 104 

is 1.53-10-7i. However, in this study, the aerosol scattering coefficient of PM10 (aerosols with aerodynamic diameter 105 

Figure S1. (a) Average size distributions of AS and AN under different NR_PM1 conditions, dashed lines are lognormal fitting 

curves; (b) Simulated PM1 MSE of AS and AN under different NR_PM1 conditions and corrected ones 
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less than 10 𝜇m) and the aerosol mass concentration of PM1 is measured by the SP-AMS. Therefore, the corrected 106 

MSE defined as 𝑀𝑆𝐸𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝜎𝑠𝑝,𝑃𝑀10

𝐴𝑁𝑃𝑀1
= 𝑀𝑆𝐸𝑃𝑀1 × 𝐶   is simulated and also shown in Fig.1b, and C is the 107 

correction factor. The average 𝑀𝑆𝐸𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 values for AS and AN are 4.6 and 4.8 m2/g, and used in this study. 108 

The MSEHOA  is simulated on the basis of identified average HOA Dgv and 𝜎𝑔 of 180 nm and 1.46 using the Mie 109 

theory in combination with calculated HOA density of 1.15 g/cm3.  The calculated MSEHOA is 3.2 m2/g.  110 

The MSEBC is simulated using the normalized Cx distribution shape shown in Fig.s4, and assuming an BC density 111 

of 1.5 g/cm3 and BC refractive index of 1.8-0.54i. The calculated MSEBC is 2.8 m2/g.  112 

The average size distributions of OA measured by the SP-AMS during the entire campaign is shown in Fig.S2a. The 113 

average size distributions of HOA and BBOA calculated from average HOA and BBOA mass concentrations together 114 

with identified average Dgv and 𝜎𝑔 of HOA and BBOA identified from SP-AMS measurements (175, 395 and 1.46, 115 

1.55 for HOA and BBOA as shown in Fig.Sx) are also shown in Fig.S2a. If the contributions of HOA and 116 

BBOA are subtracted (Fig.S2b), the OA size distribution can be well fitted using two lognormal modes. The mass 117 

concentration of fitted Mode 1 is consistent that of aBBOA and obviously different with mass concentrations of other 118 

remaining OA factors, and mass concentration of fitted Mode 2 is consistent with the sum of LOOA, MOOA and 119 

Night-OA.  Thus, the Mode 1 is identified as the size distribution of aBBOA. The Mode 2 of LOOA， MOOA and 120 

Night-OA suggests that most secondary organic aerosols during this campaign are likely internally mixed. Thus the 121 

Figure S2. (a) Average OA size distributions, and parts associated with HOA and BBOA, Dva is the vacuum aerodynamic 

diameter. (b) The average OA size distributions with contributions of HOA and BBOA subtracted, and the remaining can be 

well fitted using two lognormal modes.  
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MSEaBBOA is simulated as 4.5 m2/g with identified size distribution of Mode 1 and calculated aBBOA 122 

density g/cm3 using the scheme proposed by 3. Corrected MSE of MOOA, Night-OA, LOOA (MSESOA ) 123 

is calculated as 6.3 m2/g with identified size distribution of Mode 2 and estimated average density of 124 

1.31 g/cm3 using volume weighting rule.  125 

1.3 Refractive index retrieval  126 

Determined BBOA MSEs and MAEs were converted to Volume scattering or absorption 127 

efficiency (VSE or VAE) through VSE=MSE*density.  With given geometric mean (Dgn) and standard 128 

deviation (σg) values of the PNSD. The assuming total number concentration of 1000 (Ntot=1000 129 

/cm3),  PNSD can be given as : 130 

𝑁(𝑙𝑜𝑔𝐷𝑝) =
𝑑𝑁

𝑑𝑙𝑜𝑔𝐷𝑝
(𝐷𝑝) =

Ntot

√2𝜋 log(σg)
exp [−

(log(D𝑝)−log(D𝑔𝑛))2

2log2σg
]   (11) 131 

The with given refractive index of m=mR,BBOA +mi,BBOA×i , the aerosol scattering efficiency 𝑄𝑠𝑐𝑎 and 132 

absorption efficiency 𝑄𝑎𝑏𝑠 can be calculated using the Mie theory. And then scattering and absorption 133 

coefficients of bulk aerosols can be derived as: 134 

𝜎𝑠𝑐𝑎(𝜆) = ∫ 𝑄𝑠𝑐𝑎(𝑚, 𝜆, 𝐷𝑝) ×
𝜋

4
𝐷𝑝

2𝐷𝑝
𝑚𝑎𝑥

0
× 𝑁(𝑙𝑜𝑔𝐷𝑝) × 𝑑𝑙𝑜𝑔𝐷𝑝  (12)  135 

𝜎𝑎𝑏𝑠(𝜆) = ∫ 𝑄𝑎𝑏𝑠(𝑚, 𝜆, 𝐷𝑝) ×
𝜋

4
𝐷𝑝

2𝐷𝑝
𝑚𝑎𝑥

0
× 𝑁(𝑙𝑜𝑔𝐷𝑝) × 𝑑𝑙𝑜𝑔𝐷𝑝  (13)  136 

Where 𝜆 is the optical wavelength, and 𝐷𝑝
𝑚𝑎𝑥 of 2500 nm is set. The total volume concentration can be 137 

calculated as: 138 

𝑉𝑡𝑜𝑡 = ∫
𝜋

6
𝐷𝑝

3𝐷𝑝
𝑚𝑎𝑥

0
× 𝑁(𝑙𝑜𝑔𝐷𝑝) × 𝑑𝑙𝑜𝑔𝐷𝑝  (14)  139 

Then the VSE and MAE can be calculated as: 140 

𝑉𝑆𝐸(𝜆) =
𝜎𝑠𝑐𝑎(𝜆)

𝑉𝑡𝑜𝑡
    (15) 141 

𝑉𝐴𝐸(𝜆) =
𝜎𝑎𝑏𝑠(𝜆)

𝑉𝑡𝑜𝑡
    (16) 142 

The mR,BBOA was retrieved through varying mR,BBOA in iterations to find a mR,BBOA with which the derived 143 

VSE can be reproduced, in these iterations mi,BBOA was parameterized with the corresponding 144 

∆CO/∆BBOA using the relationships determined in Sect.3.4. The mi,BBOA was retrieved through varying 145 

mi,BBOA in iterations to find a mR,BBOA with which the derived VAE can be reproduced, and mR,BBOA are 146 

fixed as 1.6 due to that sensitivity tests show that very small influences of mR,BBOA variations on mi,BBOA 147 
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retrieval. 148 

 149 

 150 

  151 
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2. Other figures 152 

 153 

 154 

 155 

 156 

Figure S3. (a) Mass spectral profile in family groups and (b) time series of PMF OA components. Also exhibited are 157 

concentration variations of tracer compounds on the right axes. 158 

 159 
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 177 

 178 

Figure S4. Normalized average Cx distribution measured by the SP-AMS.  179 
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 205 

Figure S5. Photoed at at the Heshan supersite during the observation period.  206 
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 226 

 227 

Figure S6. (a) Diurnal variations of BBOA and HOA; (b) The distribution of BBOA/HOA ratio.  228 
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 230 

Figure S7. (a) to (c) Time series of resolved OA factors by SP-AMS measurements, and (d) is the derived BrC absorption 231 

coefficients at 370 nm. Shaded areas represent identified spikes.  232 
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 252 

Figure S8. Examples of identifying  differences of PNSD (△PNSD) and PVSD (△PVSD) 253 
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 286 

 287 

Figure S9. Average OA size distribution differences for spikes in Fig.3b, and the difference can be fitted using two lognormal 

modes, corresponding to HOA and BBOA respectively.  
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 305 

Figure S10. Variations of BBOA MSE under different Dgv, Dgn and 𝝈𝒈 conditions.  
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