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Figure S1. Mean sea level pressure (filled colors) and geopotential heights (contours) at 500 hPa for 6-13
August 2015 period, 00 UTC
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Figure S2. Mean sea level pressure (filled colors) and geopotential heights (contours) at 500 hPa for 1-8
August 2015 period, 00 UTC
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Figure S3 Scatter plots showing the modeled versus observed MDA8 O3 and T2MAX for 2015 (red dots)
and 2018 (blue dots) for all analyzed stations. The left panels depict the observed vs modeled T2MAX, while
the right panels exhibit the observed vs modeled MDA8 O3. The solid lines are the lines of best fit.
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Figure S4. Contribution to hourly O3 concentrations of local and other European sources, HTAP2 source
regions, and other global source types at each station during the 1-8 August 2018 period at two stations
located in north and south of Brandenburg and at two stations located in east and west of Baden-

Wirttemberg. In addition, this plot includes simulated wind speed and direction.

S1. Surface ozone origin attributed to NOx or VOC sources during two different high ozone peak events

Figures S5 to S8 depict the contribution of each tagged source region and type to modeled MDAS8 O3 values for
both the NOx and VOC tagged simulations in 2015 and 2018 for 14 German states. Results are averaged over each
grid cell defined as a certain German state (see Table 7).

When we attribute ozone to VOC emissions, we noticed a high contribution of biogenic VOCs (on average 39.86
and 35.4 pg/m® in 2015 and 2018, respectively) compared to anthropogenic VOCs (on average 14.7 and 12.7
pg/m? in 2015 and 2018) on total ozone production. Previous studies (Safieddine et al., 2017, Glasius and
Goldstein, 2016, Guenther et al., 2012) showed that biogenic VOC emissions are at least one order of magnitude
higher than anthropogenic VOC emissions on a global scale and that BVOCs are also more reactive than the
anthropogenic VOC (Atkinson and Arey, 2003). We see that during the high-ozone episodes, our model shows an
enhancement of up to 60 pg/m? in the MDAS Os concentration due to German biogenic VOCs, partly due to
chemistry and partly due to the stagnant conditions that confine the pollutants near the ground. This is comparable
to Churkina et al. (2017), in which, by switching on and off the biogenic emissions, it was shown that the ozone
response to VOC emissions (both local and regional) reached a maximum of 60% during a heatwave period in
July 2006. Karamchandani et al. (2017), using the OSAT (o0zone source apportionment technology) tagged species
methods in CAMX version 6.1, also indicated biogenic VOC emissions to be an important contributor to the high
end of O3 for most of the European cities selected for their work, explaining up to 33% of MDAS8 Os. In general,
the contribution of European and German biogenic emissions to MDAS8 Ojs is higher in 2015 (18.3 and 21.1 pg/mé,

respectively) than in 2018 (13.2 and 20.2 pg/md, respectively).
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Methane also has an important contribution to O3 formation, being most of the time the second-largest contributor
after biogenic VOCs. CH. is coming mostly from lateral boundary concentration, and, due to its long lifetime, our
results show a constant contribution of methane to total ozone ~32.4+3.4 ug/m? (up to 50% of total MDAS Os)
similar to Butler et al., 2018, 2020, Fiore et al. 2008.

The NOx- and VOC-tagged simulations revealed that for some of the German states, the ozone concentration
during peak days seems not to be dominated by German emissions, but rather largely influenced by ozone
transported from other countries. The contribution of German anthropogenic NOy precursor emissions to modeled
MDAS Os in different regions is lying between 2.1 to 76.6 pg/m? in 2015 and between 1.8 to 81.8 pg/m® in 2018
(see Figs. S5-S8), while the contribution of German biogenic VOC emissions in different German states varies
between 1.8 and 57.1 pug/m?® in 2015 and between 1 to 51.4 pg/m® in 2018. These findings emphasize that the
contribution of German emissions shows a heterogeneous spatial and temporal behavior in the analyzed receptor
regions. In Baden-Wirttemberg, Bavaria, Hesse, Rhineland-Palatinate, and Saarland, days with elevated MDAS8
O3 (above the WHO target limit of 100 pg/m?) are driven by German sources (anthropogenic NOx or biogenic
VOC) which explain more than 50% of modeled MDAB8 Os, thus highlighting the importance of German emissions
combined with enhanced photochemical activity. Conversely, periods of low ozone concentration (under the WHO
target limit of 100 pug/m?®) are driven by inter-regional and intercontinental transport combined with a large
contribution of O3 from the upper troposphere, while the contribution of German sources is small.
Intercontinental transport of ozone from anthropogenic and biogenic NOx and VOC sources apart from methane
has little effect on the total MDAS8 Oz concentrations in the episodes studied here compared to the contribution of
European NOy and VOC precursors. This is in agreement with previous findings of Fiore et al., 2009, Lupascu and
Butler, 2019, Butler et al., 2020, and the reference therein that showed during summer the surface ozone has a
stronger sensitivity to local and European emissions than in the other seasons.

As for the individual station analyzed, the ozone transported from other European regions has a significant
contribution to the total MDAS8 Os. In both years, major upwind regions that dominate the ozone concentrations
in different German receptor regions are central Europe (CEN) (up to 61.5 pg/m?in 2015 and 42.2 ug/m? in 2018),
France (up to 65.1 pg/m? in 2015 and 50.3 pg/m? in 2018), Benelux (up to 18.6 pg/m?® in 2015 and 26.4 pug/m®in
2018), United Kingdom and Ireland (up to 14.7 pug/m® in 2015 and 18.9 pg/m® in 2018) and the Scandinavian
Peninsula (up to 18.3 pg/m?3 in 2015 and 18.2 pug/m?® in 2018). As in the case of the individual stations, these
findings strengthen the idea that a reduction of high O3 pollution could not be achieved without a regional
collaboration of controlling emissions sources within Europe.

Shipping activities in the Baltic and North Seas also have a relatively high contribution to the MDAS8 Oj calculated
in the German receptor regions, up to 15.4 pg/m? in 2015 and up to 14.7 pg/m? in 2018 i.e., Schleswig-Holstein.
This is consistent with previous work (i.e., Lupascu and Butler, 2019, Pay et al., 2019, Aksoyoglu et al., 2016,
Jonson et al., 2020) that highlighted the impact of shipping on ozone production near coastal regions. As we saw
when we analyze the contribution of shipping for individual stations in Bavaria and Baden-W(rttemberg, the Baltic
and North Seas emissions can contribute to a peak of 1.9 pg/m?in 2015 and 4.3 pg/m? in 2015, reinforcing the
role of the shipping on ozone predicted in coastal areas as well as the role of meteorology that transports the O

from these emissions further inland.
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Figure S5. Mean modeled MDAS8 Os concentration for each German state from different emission sources
and types during the 6-13 August 2015 period. In each case, the contributions of NOx-tagged sources to the
total MDA8 Os are shown.
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Figure S6. Mean modeled MDAS8 Os concentration for each German state from different emission sources

and types during the 1-8 August 2018 period. In each case, the contributions of NOx-tagged sources to the

total MDAS8 O3z are shown.
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Figure S7. Mean modeled MDAS8 Os concentration for each German state from different emission sources
and types during the 6-13 August 2015 period. In each case, the contributions of VOC-tagged sources to the
total MDA8 Os are shown.
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Figure S8. Mean modeled MDA8 Os concentration for each German state from different emission sources
and types during the 1-8 August 2018 period. In each case, the contributions of VOC-tagged sources to the
total MDA8 Os are shown.



