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Abstract. Understanding carbon sources and sinks across the Earth’s surface is fundamental in climate science and policy; 

thus, these topics have been extensively studied but have yet to be fully resolved and are associated with massive debate 

regarding the sign and magnitude of the carbon budget from global to regional scales. Developing new models and estimates 15 

based on state-of-the-art algorithms and data constraints can provide valuable knowledge and contribute to a final ensemble 

model in which various optimal carbon budget estimates are integrated, such as the annual Global Carbon Budget paper. 

Here, we develop a new atmospheric inversion system based on the four-dimensional local ensemble transform Kalman filter 

(4D-LETKF) coupled with the GEOS-Chem global transport model to infer surface-to-atmosphere net carbon fluxes from 

Orbiting Carbon Observatory-2 (OCO-2) V10r XCO2 retrievals. The 4D-LETKF algorithm is adapted to an OCO-2-based 20 

global carbon inversion system for the first time in this work. On average, the mean annual terrestrial and oceanic fluxes 

between 2015 and 2020 are estimated as −2.02 GtC yr−1 and −2.34 GtC yr−1, respectively, compensating for 21% and 24%, 

respectively, of global fossil CO2 emissions (9.80 GtC yr−1). Our inversion results agree with the CO2 atmospheric growth 

rates reported by the National Oceanic and Atmospheric Administration (NOAA) and reduce the modelled CO2 

concentration biases relative to the prior fluxes against surface and aircraft measurements. Our inversion-based carbon fluxes 25 

are broadly consistent with those provided by other global atmospheric inversion models, although discrepancies still occur 

in the land-ocean flux partitioning schemes and seasonal flux amplitudes over boreal and tropical regions, possibly due to the 

sparse observational constraints of the OCO-2 satellite and the divergent prior fluxes used in different inversion models. 

Four sensitivity experiments are performed herein to vary the prior fluxes and uncertainties in our inversion system, 

suggesting that regions that lack OCO-2 coverage are sensitive to the priors, especially over the tropics and high latitudes. In 30 

the further development of our inversion system, we will optimize the data-assimilation configuration to fully utilize current 

observations and increase the spatial and seasonal representativeness of the prior fluxes over regions that lack observations. 
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1 Introduction 

The atmospheric concentration of carbon dioxide (CO2) reached 414.7 parts per million (ppm) in 2021, rising 49% above the 

preindustrial level (Friedlingstein et al., 2021); this increased CO2 continuously enhances the greenhouse effect and global 35 

warming. To predict and mitigate climate change, it is of critical importance to understand how much CO2 is released and 

absorbed by human and natural systems, where these exchanges occur, and how these carbon fluxes respond to 

anthropogenic and natural forcings (Canadell et al., 2021). Atmospheric CO2 measurements have indicated that on average, 

half of the CO2 emitted by humans from fossil fuels and land-use changes globally (Tian et al., 2021) is taken up by the 

oceans and land each year (Ciais et al., 2019), and the spatiotemporal distributions of global and regional carbon budget must 40 

be further reconstructed and analysed using increasingly sophisticated bottom-up and top-down approaches. 

Top-down methods, unlike bottom-up methods in which carbon sources and sinks are simulated by process-based models, 

infer carbon fluxes from observed spatiotemporal CO2 concentration gradients within each carbon reservoir (Gurney et al., 

2002). Surface fluxes are estimated by conducting data inversions using atmospheric transport models in a Bayesian 

framework to correct prior carbon fluxes to match measured CO2 concentrations within the error structures of the priors and 45 

observations (Ciais et al., 2010). Various global CO2 atmospheric inversion systems have been developed over the past 

decades, and these systems differ in their associated transport models, assimilated observations, and inversion algorithms. 

Different inversion systems tend to estimate consistent global total net carbon fluxes due to the carbon mass balance being 

constrained by global atmospheric measurements; however, large discrepancies have been reported at fine spatiotemporal 

scales (e.g., monthly zonal averages), and these discrepancies have urged scientists to organize community-wide inverse 50 

model intercomparisons to identify and mitigate gaps in the understanding of carbon cycle dynamics. Such international 

collaboration efforts include the Atmospheric Tracer Transport Model Intercomparison 3 (TransCom 3) (Gurney et al., 2003), 

the REgional Carbon Cycle Assessment and Processes (RECCAP) (Peylin et al., 2013; Ciais et al., 2022), the Orbiting 

Carbon Observatory-2 Model Intercomparison Project (OCO-2 MIP) (Crowell et al., 2019), and many other inverse model 

intercomparison studies (Chevallier et al., 2014; Houweling et al., 2015; Thompson et al., 2016). 55 

Global carbon inversion estimates tend to converge with these preceding intercomparison projects, although discrepancies 

and uncertainties still exist and persist today (Basu et al., 2018; Gaubert et al., 2019; Bastos et al., 2020). Further 

atmospheric inversion improvements could be obtained through technological advancements of the observations, data 

assimilation techniques, atmospheric transport models, prior fluxes, and associated error statistics. The recently accelerated 

expansion of carbon measurement networks (e.g., ground-, aircraft-, and space-based platforms) has enhanced our 60 

capabilities to constrain and evaluate atmospheric inversion models. Most remarkably, the continuous improvements in CO2 

column retrievals from satellites such as the Orbiting Carbon Observatory-2 (OCO-2) (Eldering et al., 2017) have 

substantially promoted satellite-based carbon inversion estimates, which are now comparable to surface measurement-based 

inversions in terms of their credibility (Chevallier et al., 2019). Further developments associated with the fundamental roles 

of carbon atmospheric inversions in climate science and policymaking as well as the current large model spread are still 65 
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urgently required. The utilization of rapidly evolving satellite retrievals in combination with the latest transport models and 

data assimilation techniques represents a future direction to improve our understanding of global and regional carbon cycle. 

In this study, we develop a new global CO2 atmospheric inversion system based on the four-dimensional local ensemble 

transform Kalman filter (4D-LETKF) coupled with the GEOS-Chem global transport model to estimate surface-to-

atmosphere net carbon fluxes from 2015 to 2020. The LETKF is a variant of the ensemble Kalman filter (Hunt et al., 2007) 70 

and has been applied in various atmospheric data assimilation studies demonstrating its efficiency and accuracy 

(Houtekamer and Zhang, 2016). In LETKF, the analysis state can be solved at each model grid independently, and only the 

observations within a specified local area around each model grid are assimilated. Several studies have assessed the impact 

of assimilating satellite data on CO2 flux inversions based on the 4D-LETKF algorithm through the observation system 

simulation experiments (e.g., Miyazaki et al., 2011; Liu et al., 2019). Here, for what is, to our knowledge, the first time, we 75 

adapt the 4D-LETKF algorithm to establish a global carbon inversion system that is constrained by realistic space-based 

retrievals of the column-averaged dry air mole fraction of CO2 (XCO2). The latest OCO-2 V10r bias-corrected XCO2 

retrievals (OCO-2 Science Team, 2020) are assimilated into our inversion system. We conduct a comprehensive evaluation 

of our carbon inversion results through 1) an independent evaluation against surface- and aircraft-derived CO2 measurements 

by latitude, 2) four sensitivity experiments with varied prior fluxes, error structures, and assimilation window length, and 3) 80 

comprehensive comparisons with other state-of-the-art inversion model estimates to investigate both the consistencies and 

inconsistencies among the models and explore their possible drivers. Because our inversion system is built upon a new 

inversion algorithm and the latest OCO-2 retrievals, it can contribute to an ensemble of existing global CO2 inversions and 

help constrain carbon inversion model spread and reduce uncertainties. 

In the remainder of this paper, the utilized configurations, models, data inputs, and observation-based evaluations associated 85 

with the inversion system are described in Sect. 2, and the CO2 budget inversion estimates are analysed at the global and 

regional scales in Sect. 3. The sensitivity inversion results, the model limitations, and future perspectives are presented and 

discussed in Sect. 4, and Sect. 5 contains a summary of the findings obtained in this study. 

2 Data and methods 

2.1 Carbon flux inversion system 90 

We developed a Bayesian atmospheric inversion system (Fig. 1) to infer daily gridded surface carbon fluxes (excluding 

fossil fuel and biomass burning emissions, which were prescribed) from OCO-2 XCO2 retrievals. This system was built upon 

the GEOS-Chem global transport model coupled with the 4D-LETKF algorithm (Hunt et al., 2007) and is analogous to 

identifying a weight that linearly combines the ensemble members of carbon fluxes to obtain best-fitting CO2 observations. 

Our system assimilates OCO-2 XCO2 on an ongoing basis and optimizes carbon fluxes on the first day of each assimilation 95 

window for each grid cell independently by minimizing a cost function as follows (Eq. (1)): 
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( ) ( ) ( ) ( )( ) ( )( )T T1 1b bJ H H− −= − − + − −B Rx x x x x y x y x                                         (1) 

where x is a control vector consisting of variables to be optimized (i.e., the scale factors of the surface fluxes in each grid 

cell), xb is a prior guess corresponding to the control vector x with errors represented by a covariance matrix B, y is an 

observation vector that gathers the OCO-2 XCO2 retrievals, R represents the error covariance matrix, and H is the 100 

observation operator, which calculates the OCO-2-equivalent XCO2 value from the GEOS-Chem simulations, OCO-2 XCO2 

prior, and column averaging kernel. The cost function J(x) measures the differential surface carbon fluxes between the prior 

(xb) and optimized (x) estimates plus the difference in the XCO2 fields between the OCO-2 observations (y) and GEOS-

Chem simulations (H(x)); these two terms are weighted using the prior errors (B) and observation errors (R), respectively. 

In each data assimilation window, the control vector (x) is optimized through Eqs. (2)–(5) as follows  (Hunt et al., 2007): 105 

a b b a= + Xx x w                                                                                 (2) 

( )
1/2

1a b ak = − X X P                                                                        (3) 

( ) ( )T 1a a b o b−= −P Y Rw y y                                                                    (4) 

( ) ( )
1T 11a b bk
−

− = − +  
P I Y R Y                                                                (5) 

where a and b represent the posterior and prior state, respectively, k represents the ensemble size (i.e., 24), 𝒙𝒙� is the ensemble 110 

mean of the control vector, X is the ensemble perturbation matrix whose ith column represents 𝒙𝒙(𝒊𝒊) − 𝒙𝒙� {i = 1,2,…,k}, yo 

contains the assimilated OCO-2 XCO2 within the assimilation window and localization length, 𝒚𝒚�𝒃𝒃 is the mean of a prior 

XCO2 field averaged over yb(i) = H(xb(i)) {i = 1,2,…,k} simulations, Yb is the ensemble perturbation matrix whose ith column 

represents 𝒚𝒚𝒃𝒃(𝒊𝒊) − 𝒚𝒚�𝒃𝒃 {i = 1,2,…,k}, 𝒘𝒘�𝒂𝒂 is a weight vector, 𝐏𝐏�𝑎𝑎 is the analysis covariance matrix, and I is the identity matrix. 

The ensemble mean 𝒙𝒙�𝒃𝒃 is calculated by obtaining the average optimized result from the two previous time steps and a fixed 115 

value of one (Peters et al., 2007), thus propagating the optimized information from two previous steps to the current state and 

representing a moving average smoothing technique that suppresses variations in xb over time. The prior covariance matrix B 

was constructed based on a normal distribution with the standard deviation of 3.0 within a spatial correlation length of 2000 

km, and the spatial correlation of the prior flux errors between ocean and land is set to zero in our inversion. The ensemble 

perturbation matrix Xb was constructed through Cholesky decomposition to B (i.e., 𝐁𝐁 = 𝐗𝐗𝑏𝑏(𝐗𝐗𝑏𝑏)𝑇𝑇/(𝑘𝑘 − 1) ), and the 120 

ensemble members xb(i) {i = 1, 2, …, k} were generated by adding the ensemble mean 𝒙𝒙�𝒃𝒃 to the ith column of Xb. The term 

𝒘𝒘�𝒂𝒂 is a weight vector that specifies the linear combinations of ensemble perturbations Xb that are added to the prior mean 𝒙𝒙�𝒃𝒃 
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to estimate the posterior mean 𝒙𝒙�𝒂𝒂. The ensemble mean of 𝒙𝒙�𝒂𝒂 is then used to update the carbon fluxes at the current day, thus 

driving another GEOS-Chem simulation to generate the initial CO2 concentration fields for the next assimilation cycle. 

Our inversion system configuration is summarized in Table 1. The assimilation window was set to 7 days based on the 125 

inversion system configurations of Zhang et al. (2015), Liu et al. (2019), and Jiang et al. (2021). In each assimilation cycle, 

the ensemble members xb(i) (with the ensemble mean 𝒙𝒙�𝒃𝒃 and perturbations Xb to approximate B) are initialized on the first 

day of the assimilation window, and the following 6 days use the same 𝒙𝒙�𝒃𝒃  without perturbation. The carbon fluxes 

representing the first day of each window are optimized based on the link between the modelled XCO2 and observed XCO2 

within the assimilation window. The GEOS-Chem model and prior fluxes are described in Sect. 2.2 below, and Sect. 2.3 130 

describes how the OCO-2 XCO2 observations and their uncertainties were assimilated. In Sect. 2.4, we designed four 

sensitivity inversions to vary the prior fluxes and prior uncertainty statistics and investigate their influence on the inversion 

results. The procedure followed to evaluate the posterior fluxes and independent observations are presented in Sect. 2.5. 

2.2 Transport model and carbon fluxes 

GEOS-Chem is a global 3-D chemical transport model (Bey et al., 2001; https://geos-chem.seas.harvard.edu/) driven by 135 

meteorological fields obtained from the Goddard Earth Observing System (GEOS) of the National Aeronautics and Space 

Administration (NASA) Global Modelling and Assimilation Office. GEOS-Chem has been applied to develop global carbon 

inversion systems by several research groups worldwide (Feng et al., 2009; Deng et al., 2014; Liu et al., 2021), and the 

resulting systems vary according to their model versions, data assimilation methods, and utilized prior fluxes. Here, we used 

GEOS-Chem v12.2.1 in our inversion system to simulate the global CO2 transport and relate surface carbon fluxes to 140 

observed atmospheric CO2 gradients at a horizontal resolution of 4° latitude × 5° longitude, driven by GEOS-FP 

meteorology data. Such a spatial resolution is sufficient to capture large-scale atmospheric CO2 transport along with the 

associated spatiotemporal variability and can achieve a balance between ensemble simulations and computational costs. 

We distinguished among four CO2 flux categories in the GEOS-Chem model, including fossil fuel fluxes, biomass burning 

fluxes, ocean fluxes, and terrestrial biospheric fluxes. The fossil fuel emissions from land and international bunker sources 145 

were derived from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC, version 2020) dataset (Oda et al., 2018) 

for  2014–2019, and we downscaled the dataset from the monthly to hour scale based on temporal scaling factors obtained 

from the Temporal Improvements for Modeling Emissions by Scaling (TIMES) database (Nassar et al. 2013). The 2020 

emissions were estimated by extrapolating daily 2019 emissions based on the emission growth rates from 2019 to 2020 

derived from the Carbon Monitor project (Liu et al., 2020, https://carbonmonitor.org/). The biomass burning emissions were 150 

obtained from the Global Fire Emissions Database (GFED) 4.1s (van der Werf et al., 2017) from 2014 to 2020; this database 

provides monthly emissions of different fire types and daily and 3-hourly temporal profiles. These monthly biomass burning 

emissions were downscaled to 3-hourly fluxes. Ocean-atmosphere CO2 fluxes on a 3-hourly basis were obtained from the 

pCO2-Clim prior of the CarbonTracker version CT2019B (CT2019B) (Takahashi et al. 2009; Jacobson et al., 2020). The 3-
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hour terrestrial biospheric fluxes were derived from the Simple Biosphere Model, Verison 4.2 (SiB4) global hourly dataset 155 

(Haynes et al., 2021). We halved the gridded terrestrial biospheric fluxes to dampen the seasonal cycle and then integrated 

annual fluxes as zero over land based on the balance between gross primary production and respiration in the SiB4 model, 

thus implying that the spatial-temporal variabilities in inferred terrestrial fluxes from our inversion system were mainly 

determined by the assimilated observations. The 2018 prior ocean and terrestrial biospheric fluxes were used for the 2019 

and 2020 inversions because CT2019B and SiB4 data were available up to 2018 at present. 160 

2.3 Assimilated OCO-2 observations 

OCO-2 is the first dedicated CO2-monitoring satellite designed by NASA; this satellite was launched in July 2014 (Eldering 

et al., 2017). It flies in a sun-synchronous, near-polar orbit 705 km above the Earth's surface with a repeat cycle of 16 days 

and a local overpass time of approximately 1:30 pm. OCO-2 collects 8 adjacent cross-track samples every 0.333 seconds (24 

samples per second) at a spatial resolution of 1.29 km × 2.25 km for each footprint at nadir. We assimilated the OCO-2 165 

Level 2 bias-corrected XCO2 retrievals, retrospective processing V10r (OCO-2 Science Team, 2020) in our inversion system. 

Figure 2 presents the spatial and seasonal distributions of valid OCO-2 V10r XCO2 retrievals over the 4° × 5° GEOS-Chem 

grid cells between 2015 and 2020. 

The high-density OCO-2 XCO2 retrievals were preprocessed to generate 1-s and 10-s averages before being assimilated 

because the retrieval errors were closely correlated both temporally and spatially (Crowell et al., 2019). First, the “good” 170 

retrievals in the OCO-2 Lite files were selected according to the “xco2_quality_flag” variable and filtered to remove outliers 

in each orbit using the “3 times the standard deviation” rule. That is, XCO2 values whose differences from their adjacent 

soundings deviated from the mean by more than three times the standard deviation were filtered out and not used in the 

subsequent data assimilation process. Then, the 1-s and 10-s averages and their uncertainties are computed using the 

formulas from Crowell et al. (2019). The 1-s averages were computed from the selected good retrievals across each 1-s span 175 

along the OCO-2 tracks using the method described by Crowell et al. (2019). The inverse error variance obtained for each 

XCO2 retrieval was used to calculate a weighted average for all related variables with the uncertainty represented by an 

average uncertainty of the adopted single soundings. Finally, 10-s averages were computed across each 10-s span 

(approximately corresponding to a ground track 70 km in length) by weighting the 1-s averages by their inverse variance 

values. The uncertainty of these 10-s averages was estimated as an average uncertainty for the adopted 1-s averages and was 180 

inflated by factors of 1.8 and 1.4 over lands and oceans, respectively; the results thus accounted for the representation errors 

that arose due to the mismatches between the GEOS-Chem model and assimilated OCO-2 observation resolutions. The 10-s 

averages were then assimilated to our inversion system while assuming independence among the different 10-s spans. 



7 
 

2.4 Sensitivity inversion experiments 

We performed four inversion sensitivity experiments using different prior fluxes, uncertainty configurations, and 185 

assimilation window lengths to investigate the influence of these factors on the resulting carbon inversions (Table 2). Based 

on the reference inversion, we reduced and increased the standard deviations of the normal distributions used to represent the 

error structures of xb in sensitivity experiments no. 1 (S_exp1) and no. 2 (S_exp2), respectively, to quantify the influence of 

the ensemble spread of xb on the carbon inversion results. In sensitivity experiment no. 3 (S_exp3), the prior terrestrial 

biospheric fluxes from CT2019B were used; these fluxes are based on the Carnegie-Ames Stanford Approach (CASA) 190 

biogeochemical model, and the other configurations remained the same as those used in the reference inversion. The 

comparison between S_exp3 and our reference inversion illustrates the impact of different prior terrestrial biospheric fluxes 

on the inversion results. In sensitivity experiment no. 4 (S_exp4), the data assimilation window length was doubled to 14 

days compared to the reference inversion, which tends to constrain fluxes based on more OCO-2 observations in each 

assimilation window. All four sensitivity inversions were performed considering the period from September 2014 to 195 

December 2015, thus providing inversion results 2015 for use and comparison in our analysis. 

2.5 Evaluation of posterior fluxes 

We compared the GEOS-Chem-modelled dry air mole fractions of CO2 based on posterior fluxes with independent surface 

and aircraft measurements to evaluate the posterior fluxes. These measurement data were not assimilated into our inversion 

system. Such evaluation methods have been widely used to evaluate global carbon budget estimates inferred from 200 

atmospheric inversion (Chevallier et al., 2019; Crowell et al., 2019). The evaluation observation datasets were obtained from 

the CO2 GLOBALVIEWplus v7.0 ObsPack database (Schuldt et al., 2021), which is maintained by the Earth System 

Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) 

(https://www.esrl.noaa.gov/gmd/ccgg/obspack/). The ObsPack framework (Masarie et al., 2014) archives direct atmospheric 

greenhouse gas measurements from different laboratories to support carbon cycle modelling research. We collected flask 205 

sample measurements from 52 stations (Table S1) at altitudes lower than 3000 m and aircraft measurements from 3 

programs (i.e., ABOVE, ACT, and TOM, please see Table S2) between 2015 and 2020. To perform the evaluation, GEOS-

Chem model-simulated CO2 concentrations were sampled at the locations and times corresponding to the observation data 

points to calculate the multiannual mean bias and root mean square error (RMSE) values by season and by latitude band. 

In addition, we collected surface carbon flux estimates from different atmospheric inversion models, including NOAA's 210 

CT2019B (Jacobson et al., 2020), the Copernicus Atmosphere Monitoring Service (CAMS) model versions v20r2 and v20r3 

(Chevallier, et al., 2005), Jena CarboScope version sEXTocNEET_v2021 (Rödenbeck et al., 2018), and the Carbon 

Monitoring System Flux (CMS-Flux) (Liu et al., 2021). These carbon budget products were built upon different atmospheric 

inversion frameworks that vary with different transport models, observation constraints, and assimilation techniques. We 

performed comprehensive comparisons at both the global and regional scales to evaluate our inversion estimates. 215 
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3 Results 

3.1 Global carbon budget 

The annual global carbon budgets derived using our inversion system are shown for 2015–2020 in Table 3. The mean annual 

terrestrial flux—the sum of the net ecosystem exchange (−3.91 GtC yr−1) and fire (1.88 GtC yr−1) fluxes—was estimated as 

−2.02 GtC yr−1, and the mean annual oceanic flux was estimated as −2.34 GtC yr−1. On average, the terrestrial and oceanic 220 

fluxes compensated for 21% and 24%, respectively, of the global fossil CO2 emissions (9.80 GtC yr−1), with the remaining 

55% of fossil CO2 emissions (5.44 GtC yr−1) remaining in the atmosphere. Our inversion results agreed with NOAA's 

surface measurement-based atmospheric CO2 growth rates (https://gml.noaa.gov/ccgg/trends/gl_gr.html); this source 

reported average annual growth of 5.39 GtC yr−1 from 2015 to 2020 based on the conversion factor of 2.124 GtC ppm−1 

(Friedlingstein et al., 2021). The derived bias of 0.05 GtC yr−1 was slightly lower than the bias range of the atmospheric 225 

inversion models (0.06–0.17 GtC yr−1) that participated in the Global Carbon Budget 2021 (GCB2021) project 

(Friedlingstein et al., 2021). The broad consistency between our inversion results and the atmospheric CO2 growth rate from 

measurement suggests that the net atmosphere-surface exchange of CO2 was well constrained by our inversion system.  

The global carbon budget partitioning results are shown in Fig. 3, including our reference inversion results, other state-of-

the-art atmospheric inversion estimates, and the ensemble estimates from GCB2021 (riverine flux-adjusted) for 2015–2018, 230 

the common period when all of these data were available. The integrated land (with fossil CO2 emissions) and ocean fluxes 

were scattered around the purple diagonal line denoting the atmospheric growth rate in Fig. 3a, suggesting that the global-

scale CO2 fluxes were conserved and well-constrained in all of the considered inversion models, although these models 

assimilated different CO2 observations using various strategies. Our inversion system used a relatively large prior for land 

fluxes involving a combination of prescribed biomass burning emissions (~1.80 GtC yr−1) and annually zero terrestrial 235 

biospheric fluxes, while the other inversion models used annually zero or negative prior natural land fluxes (Fig. 3b). Despite 

the large prior land fluxes used by our model (denoted by the red open circles shown in Figs. 3a and 3b), our inversion 

system successfully corrected the global fluxes to match the atmospheric CO2 growth rates (the red solid circles in Figs. 3a 

and 3b). The major discrepancies derived from different inverse models involved the partitioning scheme between land and 

ocean fluxes. Our inversion results, as well as CAMS and Jena, estimated smaller land fluxes and ocean uptakes than CMS-240 

Flux and CT2019B. GCB2021 is comparable to our inversion estimates but presents a large budget imbalance (−0.63 GtC 

yr−1 averaged between 2015 and 2018) due to model deficiencies (Friedlingstein et al., 2021); this imbalance explained why 

the purple circles representing the GCB2021 estimates were not located on the purple lines in Figs. 3a and 3b. 

The differences among inversion-based global carbon budget estimates are mainly attributed to the natural components, not 

fossil fuel emissions, as illustrated by the large spread of natural fluxes (without the prescribed fossil CO2 emissions) in Fig. 245 

3b. This finding differs from previous intercomparison studies in which global atmospheric CO2 inverse models were shown 

to disagree on fossil fuel priors (Gaubert et al., 2019). All of the atmospheric inversion models shown in Fig. 3 adopted 

consistent fossil CO2 priors with an annual average of 9.7–10.0 GtC yr−1 from 2015–2018, benefiting from the community 
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efforts to constrain uncertainties associated with fossil fuel emissions and converge on global total carbon sinks. However, 

the land-ocean partitioning schemes of natural fluxes are much more uncertain and can reflect spreads up to 1.6 GtC yr−1 250 

(Fig. 3b), comparable with the uncertainties associated with the land-ocean partitioning scheme due to transport model 

differences reported by Basu et al. (2018). Moreover, we found that the global oceanic fluxes seemed to be largely 

unchanged relative to the ocean priors used in different inverse models (Fig. 3b), likely due to the weak observational 

constraints over oceans. The usage of prior ocean fluxes that differ by 1.1 GtC yr−1 among inverse models thus plays an 

important role in determining the land-ocean partitioning schemes of global fluxes in atmospheric inversion results. 255 

3.2 Regional carbon budget 

3.2.1 Latitudinal distribution of fluxes 

The partitioning divides between the northern extratropics (23°N–90°N) (NET) and the tropics (23°S–23°N) (T) + southern 

extratropics (90°S–23°S) (SET) are illustrated in Figs. 3c and 3d. The integrated fluxes from NET and T+SET are 

anticorrelated and scattered around the global atmospheric growth rate of CO2 minus the fossil CO2 emissions listed in 260 

GCB2021 (the purple diagonal line in Fig. 3c), suggesting that the global total natural fluxes were well-constrained by 

atmospheric inversion. Our inversion results suggest that NET and T+SET represent average natural fluxes of −3.5 GtC yr−1 

and −0.9 GtC yr−1, respectively, between 2015 and 2018, both of which lie within the ensemble of different inversion model 

estimates (Figs. 3c and 3d). Land fluxes dominate over ocean fluxes in NET, which are estimated as −2.6 GtC yr−1 and −0.9 

GtC yr−1, respectively, on average between 2015 and 2018. However, in T+SET, ocean fluxes (−1.4 GtC yr−1) dominate over 265 

land fluxes (0.6 GtC yr−1), because the area of ocean is much larger than land in this region. The differences among inversion 

model estimates could be attributed to land-ocean partitioning by latitude, although the discrepancies in posterior fluxes 

derived are largely reduced compared to the prior fluxes after assimilating the OCO-2 CO2 observations. GCB2021 tended to 

give larger land sinks than all of the atmospheric inversion models except for CAMS (Fig. 3d), although the large budget 

imbalance of GCB2021 complicated the interpretation of these large flux discrepancies. The disagreements among multiple 270 

inversion models over latitude indicated the existence of substantial uncertainties in the regional carbon budget estimates. 

3.2.2 Regional distribution of fluxes 

Figure 4 presents the spatial distribution of the natural fluxes derived from our reference inversion model, including both 

prior and posterior annual average fluxes between 2015 and 2020. We estimated a net land carbon flux of −2.4 GtC yr−1 

between 2015 and 2020 over the Northern Hemisphere; this value was slightly larger than the −2.1 ± 0.5 GtC yr−1 estimate 275 

obtained from 2000–2010 by Ciais et al. (2019) based on a two-box atmospheric inversion model. Figure 4 shows that large 

carbon sinks are located in the northern forests and woodlands over the eastern USA, Asia, and Europe, as well as in the 

tropical evergreen forests over South America and Africa (Fig. 4c). Since the prior biospheric annual flux was integrated as 

zero over land globally (Fig. 4a), the spatial distribution of the posterior carbon sinks was reconstructed only by the 
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assimilated OCO-2 XCO2 through atmospheric inversion. When the biomass burning fluxes were added, as was prescribed 280 

in our inversion system (Fig. 4b), we observed large flux gradients over South America, southern Africa, and the Eurasia 

boreal region in the posterior fluxes (Fig. 4d) due to extensive savanna and forest fires (van der Werf et al., 2017). 

Over the 11 TransCom land regions (Fig. 5), our inversion results were broadly consistent with the other atmospheric 

inversion products, although we did observe an unsurprising lack of agreement due to large uncertainties in regional flux 

estimates. Northern Africa, Southern Africa, and South American Tropical all represent net carbon sources due to the 285 

substantial fire emissions, especially from forest fires, in these regions. Large net carbon uptakes occur over North America, 

Eurasia, and Europe, where our inversion model estimated annual average fluxes of −0.3 GtC yr−1, −1.4 GtC yr−1, and −0.9 

GtC yr−1, respectively; further, these estimates broadly agreed with the ensemble of surface observation-based atmospheric 

CO2 inversions derived between 2001 and 2004 (Peylin et al., 2013), which provided flux values of −0.7 ± 0.5 GtC yr−1, −1.1 

± 0.4 GtC yr−1, and −0.4 ± 0.5 GtC yr−1, respectively, over these three regions. Our inversion model seemed to estimate 290 

slightly lower fluxes over the boreal and temperate regions in North America than the other inversion models. The OCO-2 

land observations were limited to lower latitudes during fall and winter in the Northern Hemisphere (Fig. 2), and the retrieval 

biases increased with the solar and satellite zenith angles (O’Dell et al., 2018). We would therefore speculate that the 

sampling and retrieval biases of the OCO-2 satellite at high latitudes weakened the capability of our inversion system to 

constrain land fluxes over boreal regions. Since total net natural fluxes are conserved globally, flux underestimations in 295 

particular regions are typically compensated for by flux overestimations of similar magnitudes in other regions through the 

atmospheric inversion process, thus resulting in large variations in regional flux estimates among different inversion models. 

3.3 Seasonal cycle of carbon fluxes 

The different atmospheric inversion systems analysed herein presented broadly consistent phases (source-to-sink transitions) 

and amplitudes (peak-to-trough differences) of the seasonal natural land flux cycle except over the tropical region (23°S–300 

23°N) (Fig. 6). Predominant sinks were identified over the Northern Hemisphere during the growing season, with maximum 

monthly sinks occurring in July (Figs. 6a and 6b). The prior flux used in our inversion system revealed a smaller carbon 

uptake in July (the red dashed curves in Figs. 6a and 6b); this peak is substantially enlarged (the red solid curves in Figs. 6a 

and 6b) in the posterior fluxes after assimilating OCO-2 XCO2. During fall and winter in the Northern Hemisphere, the shift 

from sink to source is consistently reproduced by different atmospheric inversion models, although the satellite-based 305 

posterior fluxes tend to follow the pattern of the prior due to a lack of valid OCO-2 XCO2 retrievals over the 50–90°N region 

(Figs. 2c and 2d). Overall, satellite-based inversions (e.g., our inversion model, CAMS v20r3, and CMS-Flux) tended to 

differ from the surface-based inversions (e.g., CAMS v20r2, CT2019B, and Jena) regarding the output peak sink estimates in 

the growing season. The satellite-based inversions estimated carbon fluxes of −1.28–−1.38 GtC month−1 over 50–90°N in 

July (Fig. 6a), and these values were slightly smaller than the surface-based inversion estimates (−1.58–−1.83 GtC month−1). 310 

Over the 23–50°N latitudinal band (Fig. 6b), the satellite-based inversions estimated larger carbon uptake magnitudes 

(−0.94–−1.19 GtC month−1) in July than the surface-based inversions did (−0.82–−0.98 GtC month−1). 
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The peaks and troughs identified in the carbon fluxes over the tropics (23°S–23°N) were not consistently represented by 

different atmospheric inversion models (Fig. 6c), indicating the need for collective efforts to improve tropical carbon budget 

estimates. A small seasonal cycle amplitude was revealed by our inversion results, CT2019B, and Jena, while the CMS-Flux 315 

and the two CAMS inversion models all presented relatively large seasonal cycle amplitudes. These substantial discrepancies 

could potentially be attributed to a lack of strong CO2 observational constraints and the difficulty of accurately simulating 

atmospheric transport processes in the tropics. The OCO-2 satellite is expected to provide broad coverage but is greatly 

hindered by cloud coverage during the wet season and aerosol pollution from biomass burning during the dry season in the 

tropics. In addition, in previous satellite-based inversions, researchers preferred not to use OCO-2 ocean glint observations 320 

due to known uncertainty issues (O’Dell et al., 2018), which substantially reduced the number of assimilated OCO-2 

observations over the tropics. The OCO-2 V10r satellite retrievals are thought to have improved these ocean glint 

observations, which were used as observational constraints in our inversion system. Over the mid- to high latitudes of the 

southern atmosphere (90–23°S), where much less land is present, the natural land flux inversion estimates did not depart 

largely from the priors and were highly consistent among different inversion models (Fig. 6d). 325 

Over the 11 TransCom regions, our inversion results exhibited seasonal cycle amplitudes similar to those of the other 

analysed inversion models (Fig. 7). The peak summertime drawdown of fluxes in the northern ecosystems, which represents 

the deeper sinks during the growing season, is consistently constrained by different inversion systems over the North 

American Boreal (Fig. 7a), North American Temperate (Fig. 7b), Eurasia Boreal (Fig. 7g), Eurasia Temperate (Fig. 7h), and 

Europe (Fig. 7k). However, these regions reveal relatively large ensemble spreads in their carbon source estimates during fall 330 

and winter due to the sparse satellite observational constraints and divergent seasonal amplitudes of the prior fluxes used in 

the inversion process, which finally result in large discrepancies in the annual flux estimates. For example, our inversions 

exhibited relatively small annual fluxes over the North American Boreal compared to the other inversion estimates (Fig. 5), 

and this was mainly due to the larger carbon sources derived between September and February (Fig. 7a). We also observed 

substantial disagreements in the seasonal cycle of the flux amplitude over the South American Tropical (Fig. 7c), Tropical 335 

Asia (Fig. 7i), and Australia (Fig. 7j) regions; these amplitudes were found to be close to carbon neutral based on the 

ensemble of different inversion models (Fig. 5) but diverged widely with regard to their annual and monthly flux estimates. 

3.4 Evaluation with CO2 measurements 

The GEOS-Chem-modelled XCO2 outputs based on posterior fluxes matched the OCO-2 XCO2 retrievals in terms of both 

their magnitudes (Fig. S1) and trends (Fig. S2), thus suggesting that our inversion system was effectively constrained by the 340 

assimilated OCO-2 XCO2 values. The modelled RMSEs of the posterior fluxes against the OCO-2 XCO2 values were 

constrained by our inversion system (Fig. S1). The posterior simulations (the red curves in Fig. S2) corrected the 

overestimated prior-modelled XCO2 values (the blue curves in Fig. S2) compared to the OCO-2 observations (black curves 

in Fig. S2) by adding terrestrial carbon uptake to the prior flux. Regarding the trends and interannual variability, the 
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simulations driven by prior fluxes overestimated the increasing XCO2 over the Northern and Southern Hemispheres, and this 345 

was corrected in our inversion system by increasing the terrestrial carbon sinks from 2015 to 2020 (Table 3). 

The atmospheric CO2 concentration measurements obtained at surface (Table S1) and by aircraft (Table S2) networks both 

confirmed that the CO2 values modelled based on posterior fluxes (the red curves in Fig. 8) were improved relative to those 

based on prior fluxes (the blue curves in Fig. 8); thus, this process substantially reduced the biases (Figs. 8a–c) and RMSEs 

(Figs. 8d–f) compared to the CO2 observations with regards to both latitude and altitude. The daily, seasonal, and interannual 350 

variations in surface CO2 concentrations were reproduced in the posterior flux-based simulations, as illustrated by the six 

selected stations (Fig. S3) that varied by latitude and altitude and provided continuous measurement records between 2015 

and 2020. The comparisons with aircraft observations in the free troposphere (above 3000 m) showed slightly smaller biases 

(Fig. S4) because these measurements were less affected by local sources (Chevallier et al., 2019). The evaluations 

conducted at the three atmospheric layers all presented large RMSEs in the northern extratropics (Fig. 8), suggesting that the 355 

inversion estimates of CO2 fluxes in this region tended to have relatively larger uncertainties than the other latitudes; this 

finding was consistent with the atmospheric inversion ensemble assessment of Crowell et al. (2019). The northern 

extratropics are dominated by land but lack adequate, high-quality OCO-2 XCO2 retrievals during fall and winter, therefore 

contributing weak observational constraints to the flux outputs. 

4 Discussion 360 

4.1 Influence of prior fluxes and uncertainties 

The sensitivity inversion results diverged with regard to the land and oceanic fluxes (Table 4), although all inversion results 

agreed with the NOAA atmospheric CO2 growth rates, suggesting that the prior fluxes associated with uncertainties altered 

the global carbon budget partitioning scheme in the atmospheric inversion results. The global net ecosystem exchange 

derived from our reference inversion model was −3.48 GtC yr−1 in 2015; this value was substantially different from the 365 

S_exp1–S_exp4 estimates (−2.99–−3.83 GtC yr−1). The global oceanic flux inversion estimates were adjusted accordingly in 

each inversion to match the atmospheric CO2 growth rates. Based on the evaluations performed using surface CO2 

measurements (Fig. S5), our reference inversion results presented slightly smaller biases and RMSEs in the modelled CO2 

over the tropics and northern latitudes than S_exp1, S_exp2, and S_exp4. The prior fluxes used in S_exp3 were derived from 

the CASA model (Table 2), and this experiment exhibited better performances in the northern mid-latitudes but presented 370 

larger biases and RMSEs than the reference inversion in the northern high-latitudes, possibly due to weaker constraints 

associated with satellite observations and inappropriate prior fluxes used in this region. Increasing the data assimilation 

window length to 14 days (S_exp4) slightly increased the global NEE and decreased the oceanic fluxes (Table 4), while the 

inversion model performance evaluated with surface measurement of CO2 concentrations are not improved (Fig. S5). 

The TransCom land regions showed different sensitivities to the prior fluxes used in the atmospheric inversion process at the 375 

annual (Fig. 9) and monthly (Fig. 10) timescales. For example, the flux estimates were broadly consistent among different 
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inversion experiments over Eurasia Temperate and Europe, where the inversions were not as sensitive as other regions to 

prior information due to the stronger observational constraints of the OCO-2 satellite measurements over mid-latitude areas. 

The sensitivity inversion estimates of fluxes are also broadly consistent over Southern Africa, Eurasia Boreal, and Australia. 

In contrast, the flux estimates over the North American Boreal and North American Temperate differed greatly in their signs 380 

and magnitudes across sensitivity inversions because the atmospheric inversion system not only gave more weight to the 

prior information but also represented the residual fluxes resulting from global optimization over these regions due to the 

weak observational constraints available in fall and winter (Figs. 10a and 10b). Large differences were also evident over the 

tropics (e.g., the South American Tropical, Northern Africa, and Tropical Asia) due to cloud- and aerosol-caused gaps in the 

satellite observations. In S_exp3, the amplitude in the seasonal cycle of carbon fluxes in the South American Tropical (Fig. 385 

10c), Northern Africa (Fig. 10e), and Tropical Asia (Fig. 10i) regions changed substantially compared to the other inversions, 

thus illustrating the large influence of prior fluxes on regional atmospheric inversions over the tropics. 

4.2 Limitations and future perspectives 

Atmospheric inversions are inherently ill-constrained due to the sparseness and uneven distribution of CO2 observations; 

additionally, these shortcomings are exacerbated by uncertainties in the process by which fluxes are associated with CO2 390 

concentrations in atmospheric transport model simulation. In the regions and months that lack adequate-quality observations, 

the prior information tends to be given more weight when estimating fluxes through inversion. Given the global optimization 

strategy of atmospheric inversions, the uncertainties associated with flux estimates over a given region can be propagated 

into another region representing a residual resulting from matching global observational constraints. Our analysis suggests 

that regional and monthly flux estimations are divergent across different atmospheric inversion models and even among the 395 

results of the same model under different configurations, although these monthly flux estimates can be integrated to estimate 

consistent global fluxes in line with the atmospheric growth rate of CO2. Our sensitivity inversions further revealed the 

considerable sensitivities of the regional inversion fluxes to the prior fluxes and their uncertainties, thus illustrating the 

difficulties associated with the consistent optimization of carbon fluxes from the global to the regional scale. 

The ensemble methods such as 4D-LETKF used in this study have a major advantage over the adjoint-based variational 400 

methods (e.g., 4D-Var) in system development simplification, but the limited ensemble size and the short spatial-temporal 

localization window could reduce the estimation accuracy when there is a lack of sufficient CO2 observations (Chatterjee and 

Michalak, 2013; Liu et al., 2016). The 4D-Var method uses an adjoint model to compute the sensitivity of CO2 

concentrations to surface fluxes, typically associated with a long assimilation window of years (e.g., Chevallier et al., 2005; 

Baker et al., 2006; Liu et al., 2016), which is accurate but computationally expensive. The 4D-LETKF algorithm relates 405 

surface carbon fluxes to CO2 observations through ensemble simulations upon a short assimilation window of hours to 

months (e.g., Kang et al., 2011; Peters et al., 2005; Bruhwiler et al., 2005). The 4D-LETKF algorithm was designed for easy 

implementation and computational efficiency (Hunt et al., 2007), making it easier and faster to use in high-dimensional 

assimilation systems than the 4D-Var method. 
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The explicit localization scheme in space and time for 4D-LETKF ensures the accuracy and efficiency of flux estimation 410 

based on a moderate size of ensemble members (Miyoshi and Yamane, 2007), especially over regions with sufficient 

observations. For example, the 4D-LETKF algorithm can achieve comparable carbon fluxes to 4D-Var over regions with 

dense CO2 observations (Liu et al., 2016). However, over observation-sparse regions, the localization scheme of 4D-LETKF 

makes it difficult to optimize fluxes effectively, while the 4D-Var method can optimize carbon fluxes based on observations 

over a broad region where CO2 concentrations are sensitive to fluxes. Increasing the duration of the assimilation window and 415 

localization length can improve 4D-LETKF performance in this case, however, impose a heavy computational burden. 

Alternatively, several ensemble Kalman filter studies estimated carbon fluxes for ecoregions, which reduced the system 

dimensions to minimize the impacts of sampling errors and the lack of observational constraints on inversions (Peters et al., 

2005; Feng et al., 2009). In the future, with the increased availability of satellite CO2 observations, the 4D-LETKF algorithm 

has the potential to play a more important role in grid-scale inversions. 420 

Although our inversion system exhibited a good performance based on the evaluations against independent observations, 

regional-scale uncertainties still exist due to the inversion model limitations discussed above. The development of an 

atmospheric inversion system is a continuing effort that can benefit from developing new algorithms to improve transport 

model simulations and data assimilations and from increasing CO2 observation availabilities for data constraints and 

evaluation processes. The future development of our inversion system will include the following two aspects. 1) We aim to 425 

optimize the inversion system configuration, including the assimilation window and localization length, which are currently 

empirically designed based on previous literature and simplified sensitivity test. A longer assimilation window or 

localization length could increase the amount of observation data used to constrain local fluxes; however, an appropriate 

configuration must be determined through comprehensive sensitivity experiments and evaluations, which are time-

consuming but will be considered in future work. 2) We hope to improve the regional and seasonal representativeness of the 430 

utilized prior fluxes, especially those over regions that lack valid CO2 observations (e.g., the northern high latitudes and the 

tropics). Biogeochemical models that integrate process-based modules and multiple observations can be used to improve the 

prior biosphere fluxes and help reduce model biases when simulating CO2 over moderate to high latitudes. The 

anthropogenic and biomass burning fluxes were prescribed in our inversion system, and these fluxes could be improved 

based on other inversion production chains to assimilate satellite retrievals of co-emitted short-lived reactive species, such as 435 

nitrogen dioxide (Zheng et al., 2020) and carbon monoxide (Liu et al., 2017; Zheng et al., 2021). 

5 Conclusions 

Atmospheric inversions have the potential to significantly improve our understanding of the carbon cycle at the global and 

regional scales given their ability to integrate both prior information and atmospheric observations. Here, we developed a 

Bayesian atmospheric inversion system based on the 4D-LETKF algorithm coupled with the GEOS-Chem model; this 440 

system was constrained by OCO-2 XCO2 retrievals. To the best of our knowledge, this work represents the first time the 4D-
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LETKF algorithm was adapted to a global carbon inversion system that assimilated OCO-2 data. With this newly developed 

inversion system, we inferred global gridded carbon fluxes from the latest OCO-2 V10r retrievals and investigated their 

magnitudes, variations, and partitioning schemes to understand the global and regional carbon budgets between 2015 and 

2020. The resulting inversion-based carbon budgets agreed with the NOAA-observed CO2 atmospheric growth rates and 445 

substantially improved the modelled CO2 concentrations across latitudinal bands compared with the independent ground- 

and aircraft-based observations. Our global and regional carbon flux inversion estimates were broadly consistent with the 

other state-of-the-art atmospheric inversion models and the ensemble estimates derived from GCB2021, although 

discrepancies were still evident in the partitioning schemes between the natural land and ocean fluxes and the amplitude of 

the seasonal flux cycle over the TransCom land regions; these discrepancies could be mainly attributed to the sparse 450 

observational constraints resulting from the sampling and retrieval biases of the OCO-2 satellite and the divergent prior 

fluxes used in different inversion systems. We further investigated the robustness of and uncertainties in our inversion results 

through four sensitivity inversion tests that varied with regard to the utilized prior fluxes, applied uncertainties, and 

assimilation window length; the results indicated that the reference inversion results represented the optimal configuration in 

the current inversion framework. Additionally, our sensitivity inversions suggested that regions in which OCO-2 coverage is 455 

lacking are sensitive to the prior flux configuration, especially the tropics and northern high latitudes. The sensitivity 

inversion evaluations, as well as the comparisons with previous inversion models and data products, highlighted the 

dedicated future development direction of our atmospheric inversion system, representing a continuous and ongoing effort. 
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Table 1. Configuration of the atmospheric carbon inversion system developed in this study. 
Model setup Configuration Main reference 

Inversion general setup   

Spatial scale Global / 

Spatial resolution 4° latitude × 5° longitude / 

Assimilation window 7 days Zhang et al. (2015), Liu et al. (2019), 

and Jiang et al. (2021) 

Carbon flux optimization The first day of each assimilation window / 

Horizontal localization length 1200 km / 

Bayesian inversion algorithm 4D-LETKF Hunt et al. (2007) 

Ensemble size 24 / 

Time period September 2014 to December 2020 / 

Transport model   

Model name and version GEOS-Chem v12.2.1 https://geos-chem.seas.harvard.edu/ 

Meteorological forcing GEOS-FP http://wiki.seas.harvard.edu/geos-

chem/index.php/GEOS-FP 

Spatial resolution 4° latitude × 5° longitude × 47 levels / 

Carbon flux data Fossil fuel: ODIAC2020 and Carbon Monitor Oda et al. (2018) and Liu et al. (2020) 

 Biomass burning: GFED 4.1s van der Werf et al. (2017) 

 Ocean flux: The pCO2-Clim prior of CT2019B Jacobson et al. (2020); Takahashi et al. 

(2009) 

 Biosphere flux: Simple Biosphere Model, verison 4.2 Haynes et al. (2021) 

Initial CO2 concentration field CT2019B Jacobson et al., (2020) 

Prior information   

Control vector (xb) Scale factors for daily gridded surface carbon fluxes 

excluding fossil fuel and biomass burning emissions 

/ 

Ensemble mean (𝒙𝒙�𝒃𝒃) Average of three values including the optimized results 

from the two previous time steps and a fixed value of one 

Peters et al. (2007) 

Error covariance of xb Normal distribution with a standard deviation of 3.0 / 

Observational constraint   

Satellite observation OCO-2 V10r bias-corrected XCO2 retrievals OCO-2 Science Team (2020) 

Processing method First 1-s average and then 10-s average Crowell et al. (2019) 

Error covariance of 10-s average Average uncertainty of the 1-s XCO2 averages, which were 

computed as averages of adopted individual soundings 

Crowell et al. (2019) 

Uncertainty inflation factor 1.8 over lands and 1.4 over oceans / 
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Table 2. Sensitivity inversion experiments conducted in this study. 
Experiment Prior terrestrial biospheric flux Uncertainty configuration Assimilation window Purpose of experiment 

S_exp1 SiB4 model 
Normal distribution with a 

standard deviation of 1.0 
7 days 

Analysis of the impact of 

smaller uncertainties on the 

carbon inversion results 

S_exp2 SiB4 model 
Normal distribution with a 

standard deviation of 5.0 
7 days 

Analysis of the impact of 

larger uncertainties 

S_exp3 CASA model used by CT2019B 
Normal distribution with a 

standard deviation of 3.0 
7 days 

Analysis of the impact of 

different prior fluxes 

S_exp4 SiB4 model 
Normal distribution with a 

standard deviation of 3.0 
14 days 

Analysis of the impact of 

assimilation window length 
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Table 3. Global anthropogenic CO2 budget from 2015–2020 derived from our reference inversion results and 
NOAA’s atmospheric CO2 growth rate. All values are in GtC yr−1. 

 2015 2016 2017 2018 2019 2020 2015–2020d 

Fossil CO2 emissions 9.63 9.67 9.79 10.01 10.06 9.61 9.80 

Terrestrial fluxes 

NEEa −3.48 −3.03 −4.30 −4.55 −4.03 −4.05 −3.91 

Fire 2.10 1.74 1.79 1.70 2.14 1.83 1.88 

Net fluxb −1.39 −1.29 −2.51 −2.85 −1.89 −2.22 −2.02 

Oceanic fluxes −2.33 −1.80 −2.77 −2.63 −2.28 −2.21 −2.34 

Growth rate in atmospheric CO2 5.91 6.58 4.51 4.54 5.89 5.19 5.44 

NOAA CO2 growth ratec 6.24 6.01 4.55 5.08 5.39 5.01 5.39 

aNEE represents the net ecosystem exchange. 670 
bNet flux represents the sum of the NEE and fire fluxes. 
cNOAA CO2 growth rates were obtained from https://gml.noaa.gov/ccgg/trends/gl_gr.html and were estimated based on the conversion 
factor of 2.124 GtC ppm−1 (Friedlingstein et al., 2021). 
dAnnual average estimates between 2015 and 2020. 
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Table 4. Global anthropogenic CO2 budget for 2015 derived from our reference inversion results and four sensitivity 675 
inversion experiments. All values shown here represent the global total fluxes for 2015 in GtC yr−1. 

 Reference inversion S_exp1 S_exp2 S_exp3 S_exp4 

Fossil CO2 emissions 9.63 9.63 9.63 9.63 9.63 

Terrestrial fluxes 

NEE −3.48 −3.01 −3.59 −2.99 −3.83 

Fire 2.10 2.10 2.10 2.10 2.10 

Net flux −1.39 −0.92 −1.49 −0.90 −1.73 

Oceanic fluxes −2.33 −2.63 −2.02 −2.48 −1.94 

Growth rate in atmospheric CO2 5.91 6.08 6.12 6.25 5.95 

NOAA CO2 growth ratec 6.24 6.24 6.24 6.24 6.24 
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Figure 1: Modelling structure of the carbon flux inversion system developed in this study. 
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 680 

Figure 2: Spatial and seasonal distributions of the valid OCO-2 XCO2 retrievals between 2015 and 2020. The numbers of days with 
valid OCO-2 XCO2 retrievals (xco2_quality_flag = 0) in each GEOS-Chem 4° × 5° grid cell are shown for the periods spanning from 
March–May (a), from June–August (b), from September–November (c), and from December–February (d). The values shown here 
represent annual averages between 2015 and 2020. 
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 685 

Figure 3: Global carbon flux partitioning schemes between the land and ocean and among different latitudinal bands for 2015–
2018. The atmospheric inversion results are represented by solid circles (representing posterior fluxes) and open circles (representing prior 
fluxes (if any)). The red circles represent the carbon flux estimates derived from our reference inversion results; the blue circles represent 
the CAMS versions v20r2 and v20r3 results (Chevallier, et al., 2005); the orange circles represent the Jena CarboScope version 
sEXTocNEET_v2021 results (Rödenbeck et al., 2018); the green circles represent the CMS-Flux results (Liu et al., 2021); and the pink 690 
circles represent the results of the NOAA CarbonTracker version CT2019B (Jacobson et al., 2020). The purple circles in panels (a) and (b) 
represent the GCB2021-derived (riverine flux-adjusted) estimates (Friedlingstein et al., 2021). The purple line and equation in each panel 
represent the sum of the x and y variables derived from GCB2021, and the grey shaded area represents the error equivale to one standard 
deviation. The purple lines thus have a slope of −1, and any deviation perpendicular to these purple lines indicates disagreements in the 
GCB2021 estimates, including the purple circles in panels (a) and (b) derived from the GCB2021 results due to carbon budget imbalances. 695 
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Figure 4: Spatial distribution of global natural carbon fluxes from 2015–2020. The annual average carbon fluxes derived from 2015–
2020 are shown at a spatial resolution of 4° latitude × 5° longitude. Panel (a) displays the prior terrestrial biospheric + oceanic fluxes used 
in the reference inversion system. Panel (b) shows the prior terrestrial biospheric + oceanic + fire fluxes (the fire fluxes were prescribed in 
the inversion system). Panel (c) shows the posterior terrestrial biospheric + oceanic fluxes derived from the reference inversion system. 700 
Panel (d) shows the posterior terrestrial biospheric + oceanic + fire fluxes. 
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Figure 5: Terrestrial natural land fluxes derived over the 11 TransCom land regions from 2015–2018. Each atmospheric inversion is 
represented by bars showing the posterior natural land flux (i.e., terrestrial biospheric + fire fluxes) averaged between 2015 and 2018 in 
each TransCom land region; the black lines represent the median values of all six inversion estimates. The colours of the atmospheric 705 
inversion models are the same as those shown in Fig. 3, and the references for each inversion model are included in the caption of Fig. 3. 
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Figure 6: Seasonal cycle amplitudes of natural land fluxes over different latitudinal bands from 2015–2018. The global natural land 
fluxes (i.e., terrestrial biospheric + fire fluxes) averaged between 2015 and 2018 were split into four zonal bands: (a) the northern high 
latitudes (50–90°N), (b) northern mid-latitudes (23–50°N), (c) tropics (23°S–23°N), and (d) southern extratropics (90–23°S). Each 710 
atmospheric inversion result was represented by solid curves (posterior flux) and dashed circles (prior flux (if any)). The colours of the 
atmospheric inversion models are the same as those shown in Fig. 3, and the references for each inversion model are listed in the caption 
of Fig. 3. 
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Figure 7: Seasonal cycle amplitudes of the natural land fluxes derived over the 11 TransCom land regions from 2015–2018. Each 715 
atmospheric inversion is represented by a solid curve representing the posterior natural land flux (i.e., terrestrial biospheric + fire fluxes) 
averaged between 2015 and 2018; the colours are the same as those shown in Fig. 3. The references for each inversion model are listed in 
the caption of Fig. 3. 
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Figure 8: Comparisons of GEOS-Chem-modelled dry air mole fractions of CO2 with surface and aircraft measurements. The 720 
simulations driven by the prior (blue curves) and posterior (red curves) fluxes of our reference inversions between 2015 and 2020 were 
evaluated against surface flask observations (a, d), aircraft observations obtained below 3000 m a.s.l. (b, e), and aircraft observations 
obtained above 3000 m (c, f) to derive the model biases (a–c) and RMSEs (d–f). The surface and aircraft measurement programs are 
summarized in Tables S1 and S2, respectively. 
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 725 
Figure 9: Terrestrial natural land fluxes over the 11 TransCom land regions derived from sensitivity inversions for 2015. The 
results of the reference inversion and four sensitivity inversions (please see Table 2) are represented by bars denoting the posterior natural 
land fluxes (i.e., terrestrial biospheric + fire fluxes) in 2015 for each TransCom land region; the black lines represent the median values of 
all six inversion estimates shown in Fig. 5 over the corresponding region and period. 
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 730 
Figure 10: Seasonal cycle amplitudes of natural land fluxes over the 11 TransCom land regions derived from sensitivity inversions 
for 2015. The results of the reference inversion and four sensitivity inversions (please see Table 2) are represented by solid curves 
denoting the posterior natural land fluxes (i.e., terrestrial biospheric + fire fluxes) in 2015; the colours are the same as those shown in Fig. 
9. 
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