
Dear editor, 

Thank you for handling our paper. We thank the two referees for their positive 
comments and insightful suggestions, which have significantly improved our paper. 
We have provided point-by-point responses and revised the manuscript accordingly. 

 

Sincerely, 

Yawen Kong on behalf of all co-authors



Referee #1: 

The authors present a new framework for performing atmospheric flux inversions. 
This framework is based on a four-dimensional local ensemble transform Kalman 
filter (4D-LETKF), with GEOS-Chem used as the transport model. The method is 
applied to version10r column-averaged CO2 retrievals from the OCO-2 satellite over 
the five year period from 2015 to 2020. The estimated fluxes were found to be 
broadly consistent with those from other flux inversion systems. This represents the 
first application of a 4D-LETKF algorithm to perform an atmospheric inversion using 
OCO-2 data. 

I find the paper to be well written and clear in general. The method is novel because it 
combines a high-dimensional grid-based parameterisation with an ensemble Kalman 
filtering approach. I appreciate that the authors performed sensitivity experiments to 
better understand what is driving the results. My main critique is that I find the 
mathematical description of the method lacking. My secondary critique relates to the 
lack of a discussion of the advantages or disadvantages of the method in comparison 
to other inversion systems. 

Response: 

We thank the referee for the constructive and positive comments on our paper. We 
provide point-by-point responses as follows. 

 

I found it difficult to understand the method based on Section 2.1. Here are my 
specific questions: 

How are the ensemble members initialised? 

Response: 

First, the perturbation matrix Xb is generated through Cholesky decomposition to the 
covariance matrix B (i.e., 𝐁𝐁 = 𝐗𝐗𝑏𝑏(𝐗𝐗𝑏𝑏)𝑇𝑇/(𝑘𝑘 − 1)) to approximate the error structure 
of the control vector xb. Then the ensemble members xb(i) {i = 1, 2, …, k} are 
initialized by adding the ensemble mean 𝒙𝒙�𝒃𝒃  (i.e., calculated as the average of 
optimized result from the two previous time steps and a fixed value of one) to the ith 
column of the perturbation matrix Xb. We clarified this process in our revised 
manuscript as follows (Lines 117-121). The color of track changes is displayed in red. 

Lines 117-121: 

“The prior covariance matrix B was constructed based on a normal distribution with 
the standard deviation of 3.0 within a spatial correlation length of 2000 km, and the 
spatial correlation of the prior flux errors between ocean and land is set to zero in our 
inversion. The ensemble perturbation matrix Xb was constructed through Cholesky 
decomposition to B (i.e., 𝐁𝐁 = 𝐗𝐗𝑏𝑏(𝐗𝐗𝑏𝑏)𝑇𝑇/(𝑘𝑘 − 1)), and the ensemble members xb(i) {i 
= 1, 2, …, k} were generated by adding the ensemble mean 𝒙𝒙�𝒃𝒃 to the ith column of 
Xb.” 



 

The matrix B appears in equation (1) but not in equations (2)-(5). Is B the error 
structure for x^b that is mentioned in line 115? How does B affect the posterior state 
if it does not appear in the calculations? 

Response: 

Yes, B represents the error structure of xb, which is used to initialize the ensemble 
members xb(i) and thus affects the posterior state of our inversions (Hunt et al., 2007). 

 

What is contained within the vector x^b (and x^a, and so on)? Is it the control 
variables (scaling factors) for the whole assimilation period (7 days), or is it just for 
the first day? If it's just the first day, what are the implied values for the next 6 days, 
which will affect the modelled concentrations y^{b(i)}? Are these assumed to be 
equal to the prior mean? I looked at Figure~1 but I still could not understand what 
was happening.  

Response: 

The vectors xb and xa contain the scaling factors of emission fluxes for the first day of 
each assimilation window. For the next 6 days, these vectors adopt the prior mean 𝒙𝒙�𝒃𝒃, 
which represents an average from the optimized scaling factors for the two previous 
time steps and the current first guess value one (Peters et al., 2007). The perturbations 
of the modelled CO2 concentrations (yb(i)) are related to the ensemble perturbations of 
fluxes on the first day (xb), which lays the foundation for deriving xa for the first day 
through equations (2)–(5). We clarified it in the revised manuscript (Lines 126-128). 

Lines 126-128: 

“In each assimilation cycle, the ensemble members xb(i) (with the ensemble mean 𝒙𝒙�𝒃𝒃 
and perturbations Xb to approximate B) are initialized on the first day of the 
assimilation window, and the following 6 days use the same 𝒙𝒙�𝒃𝒃  without 
perturbation.” 

 

Related to the last point, the calculation of \bar{x}^b is described as "the average 
optimized result from the two previous time steps and a fixed value of one". Does this 
calculation apply to the new day entering the assimilation period, or to all the days?  

Response: 

This calculation applies to all 7 days within each assimilation window. 

 

The modelled concentrations y^{b(i)} must also depend on state values from before 
the assimilation period. Are these set to the posterior mean, or are they different from 
each ensemble member? What is assumed exactly?  



Response: 

The ensemble mean of posterior fluxes (𝒙𝒙�𝒂𝒂) is used to update the carbon fluxes on the 
first day of each assimilation window and to drive a GEOS-Chem simulation to 
generate the initial CO2 concentration fields for the next assimilation window (i.e., the 
next 7 days). The initial CO2 fields are the same across different ensemble simulations 
(yb(i)). We have clarified this configuration in the revised manuscript (Lines 123-124). 

Lines 123-124: 

“The ensemble mean of 𝒙𝒙�𝒂𝒂 is then used to update the carbon fluxes at the current day, 
thus driving another GEOS-Chem simulation to generate the initial CO2 concentration 
fields for the next assimilation cycle.” 

 

I find the notation regarding \bar{x} a little confusing. Is this the unweighted average 
of the ensemble members? I ask because \bar{x}^a and \bar{x}^b are not unweighted 
averages, so the notation is a little bit inconsistent.  

Response:  

𝑥̅𝑥  is the unweighted average of ensemble members. 𝒙𝒙�𝒂𝒂  and 𝒙𝒙�𝒃𝒃  represent the 
unweighted mean of the prior (xa) and posterior (xb) ensemble members, respectively. 

 

How does the localisation length work? It is stated that "y^o contains the assimilated 
OCO-2 XCO2 within the assimilation window and localization length". Since the state 
vector contains every grid cell for a day, how can any observations be excluded by the 
localization length?  

Response:  

For the 4D-LETKF algorithm (Hunt et al., 2007), the state vector is optimized for 
each grid point independently. Therefore, the state vector contains only one grid for a 
day in each assimilation cycle, and only the OCO-2 observations within a specified 
distance (i.e., explicit localization length) around each grid cell are assimilated. We 
have added an introduction of this feature for LETKF in Lines 72-73 and Line 96. 

Lines 72-73: 

“In LETKF, the analysis state can be solved at each model grid independently, and 
only the observations within a specified local area around each model grid are 
assimilated.” 

Line 96: 

“Our system assimilates OCO-2 XCO2 on an ongoing basis and optimizes carbon 
fluxes on the first day of each assimilation window for each grid cell independently 
by minimizing a cost function as follows (Eq. (1))” 



 

I think it would help for the authors to discuss how their method compares to other 
methods. For example, a conventional 4D-Var system has a similar state space and a 
similar cost function. What, in the authors view, are the advantages of their method? I 
think just a short discussion of the most common methods and how they compare 
qualitatively to the authors method would be enough. 

Response: 

Thanks for this good suggestion. We have added a short discussion in Lines 399-419. 

Lines 399-419: 

“The ensemble methods such as 4D-LETKF used in this study have a major 
advantage over the variational methods (e.g., 4D-Var) in system development 
simplification, but the limited ensemble size and the short spatial-temporal 
localization window could reduce the estimation accuracy when there is a lack of 
sufficient CO2 observations (Chatterjee and Michalak, 2013; Liu et al., 2016). The 
4D-Var method uses an adjoint model to compute the sensitivity of CO2 
concentrations to surface fluxes, typically associated with a long assimilation window 
of years (e.g., Chevallier et al., 2005; Baker et al., 2006; Liu et al., 2016), which is 
accurate but computationally expensive. The 4D-LETKF algorithm relates surface 
carbon fluxes to CO2 observations through ensemble simulations upon a short 
assimilation window of hours to months (e.g., Kang et al., 2011; Peters et al., 2005; 
Bruhwiler et al., 2005). The 4D-LETKF algorithm was designed for easy 
implementation and computational efficiency (Hunt et al., 2007), making it easier and 
faster to use in high-dimensional assimilation systems than the 4D-Var method. 

The explicit localization scheme in space and time for 4D-LETKF ensures the 
accuracy and efficiency of flux estimation based on a moderate size of ensemble 
members (Miyoshi and Yamane, 2007), especially over regions with sufficient 
observations. For example, the 4D-LETKF algorithm can achieve comparable carbon 
fluxes to 4D-Var over regions with dense CO2 observations (Liu et al., 2016). 
However, over observation-sparse regions, the localization scheme of 4D-LETKF 
makes it difficult to optimize fluxes effectively, while the 4D-Var method can 
optimize carbon fluxes based on observations over a broad region where CO2 
concentrations are sensitive to fluxes. Increasing the duration of the assimilation 
window and localization length can improve 4D-LETKF performance in this case, 
however, impose a heavy computational burden. Alternatively, several ensemble 
Kalman filter studies estimated carbon fluxes for ecoregions, which reduced the 
system dimensions to minimize the impacts of sampling errors and the lack of 
observational constraints on inversions (Peters et al., 2005; Feng et al., 2009). In the 
future, with the increased availability of satellite CO2 observations, the 4D-LETKF 
algorithm has the potential to play a more important role in grid-scale inversions.” 

 



Minor comments 

Line 151, what does the word ''integrated'' mean here? Does it mean that the flux field 
was shifted to have annual mean zero? How was this done? 

Response:  

The word “integrated” means that the prior terrestrial biospheric fluxes are 
approximately equal to zero on an annual basis, although these fluxes have a seasonal 
cycle ( i.e., the monthly fluxes are not zero). This was done by the SiB4 model, a 
balanced land surface model which was designed to equate ecosystem respiration with 
gross primary production over one year at every grid point (Parazoo et al., 2008; 
Haynes et al., 2021). We have clarified this in Lines 156-157 as below. 

Lines 156-157: 

“We halved the gridded terrestrial biospheric fluxes to dampen the seasonal cycle and 
then integrated annual fluxes as zero over land based on the balance between gross 
primary production and respiration in the SiB4 model” 
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Referee #2: 

General comments 

The authors applied a flux inversion system based on LETKF algorithm to estimate 
the global and regional CO2 fluxes based on OCO-2 satellite observations. They 
obtained useful results indicating ability to reconstruct the regional surface fluxes 
fitting within a spread of the recent global inverse modelling results by other 
modelling systems. On the other hand, there are deficiencies of the method that 
authors could not overcome and hope to improve in further developments. Paper is 
well written and illustrated and can be accepted after minor revisions. 

Response: 

We thank the referee for the constructive comments on our paper. We have provided 
our point-by-point responses as follows and revised the manuscript accordingly. 

 

Detailed comments. 

The length of optimization window of 1 week limits the power of the remote 
observations to constrain the fluxes. One can see a difference between fluxes retrieved 
with Kalman smoother when applying 1-month and 3-month assimilation window 
(Bruhwiler et al, 2005). The deficiency has been noted in the abstract as ‘Four 
sensitivity experiments are performed herein to vary the prior fluxes and uncertainties 
in our inversion system, suggesting that regions that lack OCO-2 coverage are 
sensitive to the priors, especially over the tropics and high latitudes’, which authors 
hope to address in future. 

Response:  

Thanks for your comments. We agree that the 1-week assimilation window may limit 
the power of remote observations to constrain fluxes. We adopt such a short window 
because the OCO-2 satellite provides spatially dense observations of XCO2 per week 
over most regions, which is already sufficient to drive the 4D-LETKF algorithm to 
optimize fluxes. We also tested a 2-week window in the experiment S_exp4, which 
gave broadly consistent estimates of global and regional fluxes with the 1-week 
window inversions. These results have suggested that the OCO-2 provides similar 
constraints on fluxes despite the length of the assimilation window being doubled. 
However, we still observed that a few regions without sufficient OCO-2 coverage 
(e.g., the tropics and high latitudes) tended to be sensitive to the priors in carbon flux 
estimates, which could be further improved based on an assimilation window longer 
than 2 weeks. We will address this issue as the referee suggested in the future. 

 

There are visible problems with posterior fluxes, as shown on Fig. 4, the range of 
annual mean grid fluxes occasionally goes out of reasonable range, exceeding 100 
gC/m2/year, pointing to a poor balance between large scale and grid scale 



uncertainties, lack of a spatial correlation constraint on flux correction gradients. The 
results with the presumably similar algorithm in Liu et al (2019) do not show such 
noise, which pint to having some important differences that must be documented. 
Similar flux noise problem was encountered by Miyazaki et al, (2011) and later 
studies. Can authors isolate the cause of the problem? Could it be a result of using 
random grid fields as ensemble flux perturbations, while there is an alternative of 
using smoother random fields? 

Response:  

Thanks for pointing out this problem, which is related to the configuration of prior 
flux fields and their ensemble perturbations. Liu et al. (2019) did not present the noise 
of posterior grid fluxes like our study, probably because they sampled the ensemble 
perturbations based on the prior flux model instead of random grid fluxes as in our 
study, which better represents the spatial variations of both prior and posterior fluxes. 
According to our new experiment S_exp5, using a better prior flux field, we can 
reduce the uncertainties of prior fluxes in inversions and suppresses the noise of 
posterior fluxes (Fig. R1). Miyazaki et al (2011), which encountered a similar flux 
noise problem to our study, suggested that setting a high spatial correlation of grid 
flux uncertainties and doubling the ensemble size from 48 to 96 substantially reduced 
the noise of posterior fluxes and provided smoother posterior fields. Based on these 
discussions above, the methods to constrain grid-scale uncertainties include using a 
reasonable prior flux associated with small uncertainties, constraining the spatial 
correlation of grid flux uncertainties, and increasing the ensemble size. 

 

Figure R1. The global natural carbon fluxes in 2015 derived from four inversions. 
The reference inversion (a), S_exp1 (b), and S_exp3 (c) are described in Tables 1 and 
2 of the main text. S_exp5 (d) used the same configurations as S_exp3 except for the 
uncertainty of prior fluxes set as a normal distribution with standard deviation of 1.0. 



 

Another issue related to the grid flux noise is the ensemble size. As shown by 
Chatterjee et al (2012), Chatterjee and Michalak, (2013) the inversion results are 
sensitive to ensemble size, and useful improvement are archived by increasing the 
ensemble size beyond 100. Miyazaki et al (2011) also obtained visible improvement 
of flux constraint by increasing the ensemble size from 48 to 96. Compared to those 
designs a system presented in this study relies on rather small ensemble size.  

Response:  

We agree that increasing the ensemble size can reduce grid flux noises. We have used 
an ensemble size of 24 because the LETKF performs well with a small ensemble size 
(e.g., Miyoshi and Yamane, 2007; Liu et al., 2019). The LETKF adopts the explicit 
localization schemes and the analysis is done in a much lower-dimensional space 
spanned by ensemble perturbations (Hunt et al., 2007). We will try larger ensemble 
sizes in the future development of our inversion system to constrain grid flux noises. 

 

Despite of the visible success in weather forecast applications, LETKF use in carbon 
flux inversion has been tried in several studies but did not become widely used due to 
limitations, presumably not providing a better computational efficiency over 
adjoint-based variational or low rank inversion algorithms. In a revised manuscript it 
is advisable to mention the deficiencies of the LETKF system: limitations of small 
ensemble size and short window length (which may be reasonable for coupled 
weather-carbon cycle assimilation) and provide better arguments in support of this 
direction in comparison to other settings, for example Kalman filter approaches 
formulated by Feng et al, (2009). 

Response:  

Thanks for this good suggestion. We have added a short discussion in Lines 399-419. 

Lines 399-419: 

“The ensemble methods such as 4D-LETKF used in this study have a major 
advantage over the variational methods (e.g., 4D-Var) in system development 
simplification, but the limited ensemble size and the short spatial-temporal 
localization window could reduce the estimation accuracy when there is a lack of 
sufficient CO2 observations (Chatterjee and Michalak, 2013; Liu et al., 2016). The 
4D-Var method uses an adjoint model to compute the sensitivity of CO2 
concentrations to surface fluxes, typically associated with a long assimilation window 
of years (e.g., Chevallier et al., 2005; Baker et al., 2006; Liu et al., 2016), which is 
accurate but computationally expensive. The 4D-LETKF algorithm relates surface 
carbon fluxes to CO2 observations through ensemble simulations upon a short 
assimilation window of hours to months (e.g., Kang et al., 2011; Peters et al., 2005; 
Bruhwiler et al., 2005). The 4D-LETKF algorithm was designed for easy 
implementation and computational efficiency (Hunt et al., 2007), making it easier and 



faster to use in high-dimensional assimilation systems than the 4D-Var method. 

The explicit localization scheme in space and time for 4D-LETKF ensures the 
accuracy and efficiency of flux estimation based on a moderate size of ensemble 
members (Miyoshi and Yamane, 2007), especially over regions with sufficient 
observations. For example, the 4D-LETKF algorithm can achieve comparable carbon 
fluxes to 4D-Var over regions with dense CO2 observations (Liu et al., 2016). 
However, over observation-sparse regions, the localization scheme of 4D-LETKF 
makes it difficult to optimize fluxes effectively, while the 4D-Var method can 
optimize carbon fluxes based on observations over a broad region where CO2 
concentrations are sensitive to fluxes. Increasing the duration of the assimilation 
window and localization length can improve 4D-LETKF performance in this case, 
however, impose a heavy computational burden. Alternatively, several ensemble 
Kalman filter studies estimated carbon fluxes for ecoregions, which reduced the 
system dimensions to minimize the impacts of sampling errors and the lack of 
observational constraints on inversions (Peters et al., 2005; Feng et al., 2009). In the 
future, with the increased availability of satellite CO2 observations, the 4D-LETKF 
algorithm has the potential to play a more important role in grid-scale inversions.” 

 

Detailed comments 

Line 72 In addition to Liu et al 2019, it is useful to mention the results by Miyazaki et 
al. (2011) who also studied adding GOSAT satellite observations. 

Response:  

Done. 
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