18 Mar 2022
18 Mar 2022
Status: this preprint is currently under review for the journal ACP.

Seasonal Variation of Oxygenated Organic Molecules in Urban Beijing and their Contribution to Secondary Organic Aerosol

Yishuo Guo1, Chao Yan1,2, Yuliang Liu3, Xiaohui Qiao4, Feixue Zheng1, Ying Zhang1, Ying Zhou1, Chang Li1, Xiaolong Fan1, Zhuohui Lin1, Zemin Feng1, Yusheng Zhang1, Penggang Zheng5, Linhui Tian7, Wei Nie3, Zhe Wang5,6, Dandan Huang8, Kaspar R. Daellenbach2,9, Lei Yao1,2, Lubna Dada2,9, Federico Bianchi2, Jingkun Jiang4, Yongchun Liu1, Veli-Matti Kerminen2, and Markku Kulmala1,2 Yishuo Guo et al.
  • 1Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
  • 2Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Finland
  • 3Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • 4State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing, China
  • 5Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR, China
  • 6Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University (HKPolyU), Hong Kong SAR
  • 7Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
  • 8State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
  • 9Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Abstract. Oxygenated organic molecules (OOMs) are crucial for atmospheric new particle formation and secondary organic aerosol (SOA) growth. Therefore, understanding their chemical composition, temporal behavior, and sources is of great importance. Previous studies on OOMs mainly focus on environments where biogenic sources are predominant, yet studies on sites with dominant anthropogenic emissions, such as megacities, have been lacking. Here, we conducted long-term measurements of OOMs covering four seasons of the year 2019 in urban Beijing. The OOM concentration was found to be the highest in summer (1.6 × 108 cm-3), followed by autumn (7.9 × 107 cm-3), spring (5.7 × 107 cm-3) and winter (2.3 × 107 cm-3), suggesting that enhanced photo-oxidation together with the rise of temperature promote the formation of OOMs. Most OOMs contained 5 to 10 carbon atoms and 3 to 7 effective oxygen atoms (nOeff = nO–2 × nN). The average nOeff increased with increasing atmospheric photo-oxidation capacity, which was the highest in summer and the lowest in winter and autumn. By performing a newly developed workflow, OOMs were classified into four types: aromatic OOMs, aliphatic OOMs, isoprene OOMs, and monoterpene OOMs. Among them, aromatic OOMs (29–41 %) and aliphatic OOMs (26–41 %) were the main contributors in all seasons, indicating that OOMs in Beijing were dominated by anthropogenic sources. The contribution of isoprene OOMs increased significantly in summer (33 %), which is much higher than those in other three seasons (8–10 %). Concentrations of isoprene (0.2–5.3 × 107 cm-3) and monoterpene (1.1–8.4 × 106 cm-3) OOMs in Beijing were lower than those reported at other sites, and they possessed lower oxygen and higher nitrogen contents due to high NOx levels (9.5–38.3 ppbv) in Beijing. With regard to the nitrogen content of the two anthropogenic OOMs, aromatic OOMs were mainly composed of CHO and CHON species, while aliphatic OOMs were dominated by CHON and CHON2 ones. Such prominent differences suggest varying formation pathways between these two OOMs. By combining the measurements and an aerosol dynamic model, we estimated that the SOA growth rate through OOM condensation could reach 0.64 μg∙m-3∙h-1, 0.61 μg∙m-3∙h-1, 0.41 μg∙m-3∙h-1, and 0.30 μg∙m-3∙h-1 in autumn, summer, spring, and winter, respectively. Despite the similar concentrations of aromatic and aliphatic OOMs, the former had lower volatilities and, therefore, showed higher contributions (46–62 %) to SOA than the latter (14–32 %). By contrast, monoterpene OOMs and isoprene OOMs, limited by low abundances or high volatilities, had low contributions of 8–12 % and 3–5 %, respectively. Overall, our results improve the understanding of the concentration, chemical composition, seasonal variation and potential atmospheric impacts of OOMs, which can help formulate refined restriction policy specific to SOA control in urban areas.

Yishuo Guo et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-181', Anonymous Referee #1, 10 Apr 2022
  • RC2: 'Comment on acp-2022-181', Anonymous Referee #2, 12 Apr 2022

Yishuo Guo et al.


Total article views: 492 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
381 102 9 492 35 4 11
  • HTML: 381
  • PDF: 102
  • XML: 9
  • Total: 492
  • Supplement: 35
  • BibTeX: 4
  • EndNote: 11
Views and downloads (calculated since 18 Mar 2022)
Cumulative views and downloads (calculated since 18 Mar 2022)

Viewed (geographical distribution)

Total article views: 504 (including HTML, PDF, and XML) Thereof 504 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 26 May 2022
Short summary
Gaseous oxygenated organic molecules are able to form atmospheric aerosols, the suspended particles in the air. Those aerosols have significant influence on human health and climate change. Therefore, understanding the basic properties and aerosol formation potential of those organic molecules is of great importance.